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Highlights 

 nZVI particles production has been successfully intensified by SDR 

technology 

 The optimal operating parameter values allowed to obtain unimodal PSD  

 The continuous production of nZVI was in the range 0.24-24 kg/d 

 2D and 3D models resulted necessary to avoid erroneous data interpretation 

 

 

 

Abstract 

The aim of this work was to investigate the optimization of iron nanoparticles production by 

spinning disk reactor. The influence of the two main operating parameters, i.e. rotational 

velocity and feed injection point position was investigated through evaluating the particle size 

distribution, the X-Ray powder diffraction spectra and metallic iron percentage production. 

Results showed that increasing both rotational velocity and the distance of reagents injection 

feed points from the disk centre led, to the production of metallic iron nanoparticles 

characterized by lower mean size. In particular, the optimal rotational velocity was found to 

be 1400 rpm whereas the optimal distance of injection feed point from disk centre was found 

to be 3.5 cm. According to these operating parameter values it was possible to obtain 

monodisperse nanoparticles, characterized by a mean size of 28±2.1 nm and a production in 

the range 0.24-24 kg/day depending on the initial Fe(II) concentration. The results were then 

interpreted in light of three fluid dynamics models able to simulate the rotating thin liquid 

film on the surface of the spinning disk reactor. The applicability of Nusselt model was also 

investigated and discussed. 
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1. Introduction 

Metallic and organic nanoparticles are of great interest for the industry due to their 

applications in several fields [1,2]. Research on this topic seeks to develop many procedures 

to synthetize nanoparticles, mostly at lab scale, batch-wise and with low yield [3,4]. These 

procedures generally do not suit industrial needs of continuous, high capacity production and 

usually the product characteristics require targeting narrow particle size distributions and 

high quality, which is difficult to achieve by traditional equipment [5]. Process intensification 

techniques aim at minimizing plant size of continuous, high yield equipment capable to 

produce specific sized, high quality nanoparticles, combined with an increase in energy 

efficiency, safety and cost reduction [6–13]. In particular, iron metallic nanoparticles (nano 

zerovalent iron, nZVI) have been extensively studied due to the various industrial [14] and 

environmental applications [15] and due to the  notable enhancement with respect to 

conventional technologies [16–26]. nZVI can be successfully produced by wet-chemistry 

method, using as a precursor iron sulphate or iron chloride and as a reducing agent sodium 

borohydride [27–31]. The use of Spinning Disk Reactor for the synthesis of metallic 

nanoparticles has been widely studied in the last two decades [32–34], due to the remarkable 

applicability and simple scale-up of this technology in this specific field [35]. Other 

nanoparticles, such as iron-oxide based one as magnetite, has already been synthetized with 

SDR, obtaining a very narrow and tuneable particle size distribution in the range 5-10 nm 

[36]. The SDR consists of a rotating disk with a jet of one, two or more liquid feeds 

impinging onto the top surface of the disk, creating a thin and highly sheared film due to the 

high centrifugal forces, leading to very rapid mixing and short residence time [37–39]. The 
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uniform and rapid micromixing environment generation on the rotating disk represents the 

main advantage offered by SDR in nanoparticles production by precipitation methodology. 

Micromixing conditions provide better control on formation and local distribution of 

supersaturation in the liquid film, influencing nanoparticles nucleation and crystal growth 

kinetics (which is a function of molecular diffusion phenomenon to the growing crystals) 

[40]. The analogy between plug-flow reactor (PFR) and SDR has been proposed by various 

authors: at high rotational velocity values (>1000 rpm), low viscosities (close to that of 

water) and high inlet flowrates, the bulk flow behaviour of SDR and PFR were proved to be 

very close [41,42]. The achievement of PFR flow conditions allows to high conversion rates 

and very good product quality (unimodal distribution size) to be obtained, reducing at the 

same time the residence time in the reactor maximizing the product yield [43]. In the 

production of metallic nanoparticles the reduction of residence time is fundamental, as well 

as reaching micromixing conditions [44]. Indeed, the imperfect crystallisation of particles or 

the crystals aggregations are mainly caused by non-uniform and slow mixing, since the 

crystal nucleation is influenced by the mixing at molecular scale, i.e. micromixing. Therefore, 

the achievement of micromixing conditions in the reactor vessel represents a fundamental 

goal to increase local supersaturation values and to favour crystal nucleation rather than 

crystal growth [45]. SDR technology has demonstrated its suitability for the production of 

well dispersed and unimodal nanoparticles [39,43,46,47] and for this reason it was selected 

for the optimization of nZVI production.  

In this study, nZVI particles were successfully produced by a lab-scale SDR equipment, 

using the classical borohydride reduction method and fixing inlet flowrates according to a 

previous study [43]. The initial iron precursor and reducing agent concentration, as well as 

their molar ratio, were fixed according to the optimal values obtained in a previous work 
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performed in batchwise with Rushton equipped baffled stirred tank reactor [48]. nZVI 

production optimization was then carried out varying the feed streams position on the disk 

and the rotational velocity. The obtained data (X-Ray powder Diffraction spectra, Particle 

Size Distribution and metallic iron percent content) were then interpreted through the 

computational fluid dynamics modelling of the used SDR, according to Nusselt, Pigford and 

Lepehin and Riabchuk models. 

 

2. Experimental 

2.1. Materials and Equipment 

All the reagents were purchased from Sigma-Aldrich (Milan) and were of analytical grade. 

The solutions were prepared with deionized water. In detail, the following reagents were 

used: NaBH4, FeSO4·7H2O and CMC (Carboxy-Methyl Cellulose, as dispersing agent) 

(20000 g/mol). The SDR used in this work was schematized in Figure 1: it was composed of 

a static external cylinder and an inner rotating disc of Teflon (8.5 cm in diameter), where 

reaction takes place. The feed streams temperature was kept constant at 25°C through a water 

bath. The two reagent solutions were injected at five different distances from the disk center, 

ri (cm). The rotational velocity of the disk can be increased up to 1400 rpm and the intern 

diameter of feed stream lines was 3 mm.   
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Figure 1: schematization of the SDR used in the experiments. 

2.2. Analytical methods.  

The PSD of the produced nanoparticles were characterized by Dynamic Light Scattering 

method, using a Zetasizer Nano ZS (Malvern). The Fe(0) (%) production was determined 

quantitatively by the titration method, based on the use of Fe(III) solution that oxidized the 

Fe(0), in an inert atmosphere of nitrogen to avoid Fe(0) oxidation due to oxygen corrosion, to 

soluble Fe(II) that can be determined by UV-Vis spectro-photomer at 565 nm using a 

derivative of triazine in thioglycolate medium. The method is reported in literature [49]. The 

Fe(0) (%) production was determined also qualitatively using X-Ray powder Diffraction 

(XRD) method, using a Bruker D8 Advance. The magnetophoretic collection of synthetized 

nanoparticles was tested using a N50 grade NdFeB cylindrical permanent magnet (radius of 

0.025 m, thickness of 0.012 m and residual induction, Br, of 1.45 T). 

The solution viscosity has been measured in a previous work, according to the optimal CMC, 

NaBH4 and FeSO4·7H2O concentrations and was equal to 2.2 mPas at 25°C [48]. The 
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synthesis was carried out using reagent solutions prepared with deionized water previously 

de-oxygenated for 4 hours at 50°C under nitrogen atmosphere. The nZVI were produced in 

open atmosphere, without using nitrogen, since the residence time in the reactor vessel was 

lower than 1 s and the possible oxidation of freshly prepared nanoparticles was considered 

negligible, as reported in next paragraphs.   

2.3. Experimental procedure 

The nZVI synthesis was performed according to a previous study [43] fixing the iron 

precursor flowrate, QF, to 150 mL/min and the reducing agent flowrate, QB, to 37.5 mL/min. 

The concentration of Fe salt was set to 0.02 M, according to a previous study [48] and 

considering the optimal BH4
-/Fe(II) mol/mol ratio equal to 3 and the fixed QF and QB values, 

the concentration of reducing agent was set equal to 0.24 M. The two inlet streams were 

placed symmetrically with respect to the disk centre [50]. In the first experimental runs the ri 

was fixed equal to 2 cm [50] and selected rotational velocities,  (rad/s or rpm), were tested: 

78.54 (750 rpm), 104.72 (1000 rpm), 130.9 (1250 rpm) and 146.6 (1400 rpm) rad/s. The 

nZVI nanoparticles synthesis occurred according to the following reaction [48]: 

2𝐵𝐻4
−  +  𝐹𝑒(𝐻2𝑂)2+  →  𝐹𝑒(0)  +  2𝐵(𝑂𝐻)3   +  7𝐻2                                                              (1)                                                                                                                                           

The black solid particles appeared instantaneously to the addition of the reducing agent. The 

produced nanoparticles were collected, immediately characterized through the titration 

method and by Zetasizerwhereas 10 mL of solution were vacuum filtered, dried and stored 

under nitrogen atmosphere for subsequent XRD analysis. The second series of experimental 

runs was performed fixing the  to the optimal value found in the previous experiments and 

the influence of feed point-disk centre distance on the mean size of the produced nZVI was 

investigated, varying the ri according to the following values for both inlet streams: 1.5, 2, 
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2.5, 3 and 3.5 cm. The produced nanoparticles were then characterized in terms of mean 

hydrodynamic diameter, dm (nm), measured through the Zetasizer instrument. The Scanning 

Electron Microscope (SEM, JEOL Ltd.) was used to analyse the nanoparticles produced 

adopting the optimal operating parameter’s values (see Supplementary Materials). 

Each test was conducted in duplicate and the mean values were reported (the standard 

deviation in all tests was <3.7%). 

2.4. Data interpretation and computational fluid dynamics simulations 

The obtained PSD and dm values were interpreted according to CFD simulations of the 

rotating liquid film generated on the top surface of the disk. The flow regime can be predicted 

basing on the Reynolds rotational number defined as follows [51]: 

𝑅𝑒 =
𝜔𝑟2

𝜈
                                                                                                                                                  (2)                                                                                                                                                                

where  (in this equation expressed in 1/s, in the following it will be reported as rpm or rad/s) 

is the rotational velocity of the disk,  (m2/s) is the fluid kinematic viscosity and r (m) is the 

radius at the measurement point on the disc. The flow on the rotating disk can be classified as 

laminar, transitional or turbulent according to Re number values over the disk. In detail, 

according to a number of experiments reported in [51], the flow on a free rotating disk can be 

considered laminar for Re numbers lower than 104, since in the range 104-105 the flow 

instabilities become significant and the flow can be considered in transition to turbulent 

conditions, fully established for Re number larger than 105. 

The rate of mixing, heat and mass transfer in the fluid is affected by the type of flow 

prevailing on a rotating disc surface under given conditions of flowrate and rotational speed. 

The fluid dynamics of a rotating liquid film can be described by the classical Navier-Stokes 
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equations in cylindrical coordinates (r, , z) obtaining a very complex differential equations 

system. Thus, several researchers [52–56] proposed various hypothesis to develop simple 

models to describe the hydrodynamic of rotating thin liquid film, as reported in the following 

paragraphs.  

2.4.1 The centrifugal model 

The simplest model to describe the flow on a rotating disk assumes that the liquid rotates at 

the same speed as the disc, so they are completely synchronized. Under these conditions, the 

centrifugal acceleration that drives the liquid film through the surface of the disk at the radius 

r can easily be estimated as rω2. With this assumption, the flow over the disk can be 

considered analogous to that on a sloping surface. Nusselt elaborated this model while 

studying the fluid-dynamic behavior of a liquid film condensing. Nusselt considered it as a 

laminar flow on a sloping plane.  

This assumption implies that the liquid has reached full flow conditions developed in which 

the weight of the film is perfectly balanced by the shear viscous forces. So, the model 

considers the Navier-Stokes equations and that of continuity in a cylindrical coordinate 

system and makes the following assumptions [35]: 

 steady-state conditions; 

 large rotational velocity, thus the system can be considered symmetric with respect to 

angular direction; 

 uniform pressure; 

 gravity force negligible influence on momentum transfer; 

 negligible inertial forces and superficial instabilities ; 
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 thin liquid film thickness ( (m)) lower than disk radius; 

 laminar flow; 

 Newtonian liquid; 

 liquid velocity instaneously reaches disk velocity and no tangential sliding occurs; 

 liquid motion is radial on disk surface, thus Coriolis acceleration is neglected; 

 T (K), v (m/s) and c (mmol/L) gradients are negligible if compared with those 

orthogonal to the disk surface. 

Basing on these assumptions, the Navier-Stokes equation can be written as follows: 

{
−

𝑣𝜃
2

𝑟
− 𝜈

𝜕2𝑣𝑟

𝜕𝑧2 = 0

𝑣𝑟
𝜕𝑣𝜃

𝜕𝑟
+

𝑣𝑟𝑣𝜃

𝑟
− 𝜈

𝜕2𝑣𝜃

𝜕𝑧2 = 0
                                                                                                                   (3)                                                                                                                        

Since the radial component of the velocity, vr (m/s) is lower than the tangential one, v (m/s) 

and considering the ω of the liquid equal to that of the disk for each value of the distance 

from the center of rotation we can put v = rω reducing the system previous to a single 

differential equation: 

−𝑟𝜔2 = 𝜈
𝜕2𝑣𝑟

𝜕𝑧2                                                                                                                                         (4)                                                                                                                                     

The integration of eq. 4 can be performed considering for z=0 vr=0 and z= dvr/dz=0: 

𝑣𝑟(𝑟, 𝑧) =
𝑟𝜔2

𝜐
(𝛿𝑧 −

𝑧2

2
)                                                                                                                      (5)                                                                                                                                               

Starting from vr the fully synchronized flow model can be used to obtain a reasonable 

estimate for a wide range of measures that characterize the flow on an SDR. Integrating from 

0 to  the average velocity can be obtained: 
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𝑣𝑟̅ =
1

𝛿
∫ 𝑣𝑟(𝑟, 𝑧)𝑑𝑧 =

𝑟𝜔2𝛿2

3𝜐

𝛿

0
                                                                                                              (6)                                                                                                                                       

And the inlet flow-rate can be expressed as: 

𝑄 = 2𝜋𝑟𝛿𝑣𝑟̅                                                                                                                                             (7)                                                                                                                                          

The Nusselt model assumes that the flow on a rotating disk is similar to that laminar of a 

liquid film flowing on a vertical wall, so the equations obtained here can also be easily 

derived substituting in the equations for the vertical wall, the gravitational constant g with 

rω2. Nusselt showed that for a Newtonian fluid of kinematic viscosity ν, the thickness of the 

film δ, can be expressed in terms of the flow rate of liquid Q which falls on a inclined plane 

of width w under gravitational acceleration g using the following equation: 

𝛿 = (
3𝜐𝑄

𝑤𝑔
)

1/3

                                                                                                                                           (8)                                                                                                                                                      

That for the disk can be written as: 

𝛿 = (
3𝜐𝑄

2𝜋𝑟2𝜔2)
1/3

                                                                                                                                     (9)                                                                                                                          

 Eq. 9 can be substituted in Eqs. 5 and 6: 

𝑣𝑟(𝑟, 𝑧) =
𝑟𝜔2

𝜐
(

0.909
𝑄

𝜋𝜈2𝑟

1/3

(
𝑟𝜔2

𝜐2 )
1/3 𝑧 −

𝑧2

2
)                                                                                                (10)                                                                                              

𝑣𝑟̅ =
𝑟𝜔2

3𝜐

0.909
𝑄

𝜋𝜈2𝑟

2/3

(
𝑟𝜔2

𝜐2 )
2/3                                                                                                                              (11)                                                                                                                           

However, contrary to the analogous case of the film that runs along a vertical wall, in this 

case the steady state assumption does not subsist since the film thickness and radial velocity 

change continuously as flow flows along the disk. Thus, the average residence time on the 
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disk, τ (s), for a given feed radius, ri, can be calculated considering that the average time 

needed to cover a portion dr is equal to 𝑣𝑟̅dt. Therefore integrating the equation τ 

=INTEGRAL (dr/𝑣𝑟̅) according to the conditions t=0 for r=ri and t=τ for r=rd, one can obtain:  

𝜏 = (
81𝜋2𝜐

16𝜔2𝑄2)
1/3

(𝑟𝑑
4/3

− 𝑟𝑖
4/3

)                                                                                                         (12)                                                                                                                               

The average residence time and the thickness of the film are the two most important 

parameters of this model that most affect the transfer rate of energy and matter, as well as the 

rate of mixing and the effectiveness of the reactions occurred on the surface of the disk. From 

the previous equations it is possible to note that these two variables are controlled by the 

rotational velocity ω. A decrease of residence times and thickness film correspond to an 

increase of ω improving mixing and transfer of matter and heat. Therefore, the critical 

parameter to optimize to get the best operational performance of the SDR is just ω. The 

Nusselt's model is the simplest formulation of the Navier-Stokes equations and its validity is 

strongly bounded by the assumptions on which it is based. Various experimental studies have 

shown that the film thickness is lower than the predicted one from Nusselt, especially due to 

the effect of surface waves on the flow through the disk [57].                                                                                                                                         

The integration of the film thickness and velocity equation can be used to calculate other 

"global" measures of the flow conditions on the disk. For instance, by integrating the 

expression of the film thickness one can obtain the measurement of the volume of liquid (m3) 

on the surface of the disc: 

𝑉 = (
81𝜋2𝜐𝑄

16𝜔2 )
1/3

𝑟𝑑
4/3

                                                                                                                          (13)                                                                                                                   

Other useful global measures are reported below: 
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𝛿𝑚 =
𝑉

𝜋𝑟𝑑𝑖𝑠𝑘
2 ≈ 1.17 (

𝜐𝑄

𝑟𝑑
2𝜔2)

1

3
                                                                                                              (14)            

𝑣𝑟
𝑚 =

𝑄𝑟𝑑𝑖𝑠𝑘

𝑉
≈ 0.27 (

𝑄2𝜔2

𝜐𝑟𝑑
)

1
3

                                                                                                        (15) 

 

2.4.2 The Pigford model 

Nusselt model is considered a very simple model and can not be used when the rotational 

velocity is large or, in general in full turbulent flow. Burns and co-authors [58] have 

demonstrated that Nusselt model can not be used when the Ekman number is lower than 2 

(E=/2). The number of Ekman is defined as the ratio between the inertial and viscous 

contributions referred to the flow of a fluid on the spinning disc. Usually E dimensionless 

number value can be calculate to evaluate if a flow has reached the rotational synchronized 

conditions. Inertial contributions are very significant for lower Ekman numbers and the 

thickness of the measured film deviates noticeably from the predicted Nusselt values in these 

cases. Indeed, when E<2, the inertial contributions have a considerable contribution and a 

more complex two-dimensional model is required. A two-dimensional model for fluid flows 

over a rotating disk that takes into account both inertial and viscous contributions, was 

developed by Wood and Watts [56], i.e. the Pigford model. Burns gave a comparison of this 

model outputs with experimental data. Pigford model can be written in terms of radial and 

tangential velocity and consists of the following equations: 

{
𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
−

𝑣𝜃
2

𝑟
+

12𝑣𝑟
3𝐾1𝑟2𝜋2𝜐

𝑄2 = 0

𝑣𝑟
𝜕𝑣𝜃

𝜕𝑟
+

𝑣𝑟𝑣𝜃

𝑟
−

12𝑣𝑟
2𝐾2𝑟2𝜋2𝜐

𝑄2 (𝑟𝜔 − 𝑣𝜃) = 0
                                                                                (16)                                                                                       

Jo
ur

na
l P

re
-p

ro
of



14 

 

 

Where K1 (usually in the range 0.5-0.7 and set equal to 0.61 according to experimental data 

fitting of Burns) and K2 (equal to E/E0, where E is a length scale beyond that inertial and 

viscous forces have the same magnitude order and E0= 10.8 cm) are empirical corrective 

constants for viscous terms: 

𝜆𝐸 = (
𝑄2

𝜔𝜐
)

1/4

                                                                                                                                        (17)                                                                                                                                   

The boundary conditions are –vr=4Q/d2 and v=0 for r=d/2, where d (mm) is the diameter of 

the feed flow distributor. 

2.4.3 Lepehin and Riabchuk model 

A more reliable model, if compared with the previous ones, is the Lepehin and Riabchuk (L-

R) 3D model, based on the assumptions of: (i) axial-symmetric laminar flow, (ii) inertial 

forces negligible with respect to Coriolis and centrifugal ones and (iii) constant pressure in 

the liquid film (equal to the atmospheric value).  The model can be expressed according to 

the following two equations [59,60]: 

{
𝜈

𝜕2𝑣𝑟

𝜕𝑧2 − 2𝜔𝑣𝜃 = 𝜔2𝑟

𝜈
𝜕2𝑣𝜃

𝜕𝑧2
+ 2𝜔𝑣𝑟 = 0

                                                                                                                        (18)                                                                                                                                  

Coupling this system with the integral form of continuity equation: 

𝑄 = 2𝜋𝑟 ∫ 𝑣𝑟𝑑𝑧
𝛿

0
                                                                                                                                 (19)                                                                                                                                               

and solving the new system with the proper initial and boundary conditions [60], the 

following equation is obtained: 

𝛿 = 0.886𝑄0.348𝜈0.328𝜔−0.676𝑟−0.7                                                                                                (20)                                                                                                                 
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The above mentioned models were implemented in gPROMS environment (ver. 4.0) and the 

software was used to simulate the hydrodynamics of the SDR according to the fixed 

operating conditions. Finally, the mixing intensity can be estimated through the obtained 

specific power dispersed on the rotating disk,  (W/kg), values. According to [37]  can be 

expressed as follows: 

𝜀 =
1

2𝜏
[(𝜔2𝑟2 + 𝑣𝑟̅

2)
𝑜𝑢𝑡

− (𝜔2𝑟2 + 𝑣𝑟̅
2)

𝑓𝑒𝑒𝑑
]                                                                           (21)                                                                                      

Whereas the mixing time can be calculated as [47]: 

𝜏𝑚𝑖𝑥 = 12 (
𝜐

𝜀
)

0.5

                                                                                                                                 (22) 

3. Results and discussion 

3.1 nZVI production: the influence of rotational velocity 

Figure 2 shows the results of characterization of the nZVI produced varying the rotational 

velocity of the disk. 
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Figure 2. Fe(0) (%) production (a), PSD (b) and XRD (c) of nZVI produced at different  

(QF=150 mL/min, QB=37.5 mL/min, T=25°C). 

The Fe(0) (%) content increases with the rotational velocity increase, since the conversion of 

Fe(II) resulted favoured by an increase of  and Re (see Table 1), that also determines an 

increase of Sh (Sherwood number is a function of Re and Schmidt number, Sc, where 

Sh=kmL/D and Sc=/D, with km (m/s) the mass transfer coefficient, D (m2/s) the diffusion 

coefficient of the Fe(II) ions, and L (m) is the characteristic length that in this case should be 

equal to ) and thus of the mass transfer rate [52,61].  

 

Table 1 

Calculated parameters of the first runs (Nusselt). 

     (rpm) 

Parameter Unit 750 1000 1250 1400 

m m 9.9E-05 8.2E-05 7.1E-05 6.5E-05 

vr
m m/s 0.23 0.28 0.33 0.35 

 s 0.114 0.094 0.081 0.076 

V mL 0.564 0.466 0.401 0.372 

 W/kg 37.88 81.58 147.91 200.11 

mix s 0.0029 0.0020 0.0015 0.0013 
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As expected, the best performances were achieved at the maximum rotational velocity of 

1400 rpm, since the Fe(0)(%) was 98.3%, the mean size of the nanoparticles was 28±2.1 nm 

and the peaks of iron oxide species were negligible in the XRD spectrum. In particular, the 

SDR allowed to obtain always an unimodal distribution size of the produced nanoparticles 

rather than a bimodal one, as obtained for some  values by means of Rushton equipped 

baffled stirred tank reactor [48]. The XRD spectra clearly show the presence of the typical 

peak at 45° of -iron [62]. Indeed, the characteristic peaks of iron oxide crystalline phases 

(close to 63°) are also present, indicating that the particles were partially oxidized during the 

preparation of the sample. As reported by various authors, the presence of iron oxides as thin 

layer is necessary to prevent further oxidation of the product before its use [63–68]. The 

typical peaks of FeO and magnetite were well evident in the sample from the first runs at 750 

rpm, whereas they tended to disappear with the rotational velocity increase, since the Fe(II) 

conversion rose, as reported in Figure 1a. Through the application of the Scherrer equation 

[69] an average crystal’s size of 24 nm has been derived, that was lower than the mean 

dimension measured by DLS. This can be explained considering that the DLS measurement 

tend to slightly overestimate the particle’s dimension, since this method measures the 

hydrodynamic diameter. In addition, the SEM photo (see Supplementary Materials) clearly 

showed that the particle’s dimension varied in the range 20-40 nm. The obtained 

nanoparticles were characterized by a lower mean dimension with respect to those reported in 

a previous work, as visible in the HRTEM also reported [70] (in that case the particles were 

produced in batch systems without the use of any dispersing agent, showing a typical core-

shell structure as reported in various studies [62,71]). The magnetophoretic separation of the 

produced nanoparticles has been tested by means of a permanent magnet. The actual 
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magnetic field of the permanent magnet, Bx (T), along its symmetric axis, has been calculated 

according to the following equation [72]: 

𝐵𝑥 =
𝐵𝑟

2
[

𝑥 + 𝐿

√(𝐿 + 𝑥)2 + 𝑅2
−

𝑥

√𝑥2 + 𝑅2
]                                                                                       (23) 

where Br (T) is the residual induction, x is the distance from the magnet face in contact with 

the becker bottom, R (m) is the magnet radius and L (m) its thickness. Figure S3 displays the 

Bx variation along the symmetric x axis. The Bx decreased from 0.31 up to 0.043 from the 

bottom to the top of the liquid (0.038 m). The complete nanoparticle separation occurred after 

8 min (see Supplementary Materials). Analogous results have been reported for other iron-

based nanoparticles in literature [73–75]. 

The micro-mixing time of the last runs (=1400 rpm) was significantly lower in comparison 

to that of the first runs (=750 rpm) and this improved the performance of the nZVI 

production process, since for very fast reaction as the one studied in this work, a large mixing 

efficiency is fundamental to achieve homogeneous and high quality product [41,54,76]. 

Furthermore, only for =1400 rpm the mixing time reached the order of magnitude of 1 ms, 

that represents the typical value for the attainment of micromixing conditions [37]. 

Analogous considerations can be drawn considering the  values, that increased from 37.88 

W/kg up to 200.11 W/kg passing from =750 rpm to =1400 rpm, implying a remarkable 

improvement in the dissipated energy in the reaction volume. Other important considerations 

can be made based on the values of m, V, vm and . The average film thickness and reaction 

volume are correlated, and a  value increase led to a reduction of these parameters, leading 

to an enhancement of mass transfer rate during the reaction. This was mainly due to the 

characteristic length decrease of the phenomenon, i.e. the , causing, at the same time, an 

increase of the mass transfer coefficient at fixed hydrodynamic and liquid physical 
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conditions. Regarding the latter two parameters, an increase of average liquid radial velocity 

caused a decrease of the residence time, enhancing the convective mass transfer rate and, 

therefore, the reaction performances.  

In terms of the hydrodynamics of the thin rotating film, Figure 3 displays the Re values 

variation along the rm at the maximum  value.  

 

Figure 3: Re values varying the radial distance on the disk (=1400 rpm). 

 

The Reynolds number rapidly increased from the centre of the disk to the edge, achieving a 

maximum value of about 1.92x104, indicating that the flow was mainly laminar up to r=0.03 

m (where Re was equal to 0.95x104) and then displayed transitional flow characteristics 

across the rest of the disc surface to the peripherycharacteristics across the rest of the disc 

surface to the periphery, without reaching turbulent conditions. However, this result alone 

can not justify the use of Nusselt model to describe the thin film hydrodynamics, since the 

Ekman number should be considered. In particular, the calculated E number was 2.81, 3.1, 

3.33 and 3.46 according to increasing  values, implying that the prediction made by Nusselt 

model could be considered a first approximation, that usually tends to return vr values lower 
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in comparison with those experimentally measured [58,77]. Indeed, the E number was 

calculated using the m, but, as it is well known, the  varies along the radial coordinate over 

the disk surface, implying that local E numbers should be considered due to the variation of E 

in the rotating domain. For this reason, in the following paragraph, two other models were 

considered for the interpretation of the results from the second series of experiments and the 

description of the established hydrodynamic fields; it will be clear that Nusselt predictions 

were not accurate even if E>2.  

Finally, the optimal rotational velocity value was found to be 1400 rpm and this value was 

fixed for the subsequent runs. 

3.2 The influence of injection feed point on the nZVI mean size and CFD modelling 

Figure 4 displays dm trend with the ri variation. 

 

Figure 4: nZVI mean size produced at different ri values (T=25°C, =1400 rpm, QF=150 

mL/min, QB=37.5 mL/min). 
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All the PSDs were unimodal (data not reported) and the optimal ri value was found to be 

0.035 m, since the obtained dm for these runs was the minimum value, i.e. 28±2.1 nm. The 

trend between ri and mean nZVI size was found to be inversely proportional. Indeed, the 

variation of ri strongly influences the specific energy power dispersed on the rotating disk, 

since it appears in both eqs. 11, 12 and 21. Furthermore, the  value can be calculated 

considering the different mean radial velocity predictions made by the specific employed 

fluid dynamic model, yielding different  values (Table 2). 

Table 2 

Calculated parameters of the second runs according to the three models. 

      Model 

ri (m) Parameter Unit Nusselt Pigford L-R 

0.015 
 s 0.089 

 W/kg 190.03 189.04 189.67 

0.020 
 s 0.076 

 W/kg 200.04 199.36 199.65 

0.025 
 s 0.060 

 W/kg 210.15 209.55 209.78 

0.030 
 s 0.044 

 W/kg 220.10 219.605 219.797 

0.035 
 s 0.027 

 W/kg 229.94 229.52 229.68 

 

The  value increased with an increase of ri (as reported in eq.(12) an increase of ri causes a 

significant decrease of residence time on the disk and the  is inversely proportional to ) and 

this trend might explain the decreasing nZVI mean size trend. In fact, at higher  values it 

was expected to obtain nanoparticles characterized by lower mean size, since the 

micromixing efficiency resulted maximized since the mixing time decreased. Analogous 

results were reported by other authors on the same SDR equipment, obtaining lower 
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nanohydroxyapatite mean sizes for higher  and ri values [47].  Another important result was 

that the differences among  values predicted using radial velocity values from the three 

employed models were negligible, notwithstanding the remarkable differences of the 

predicted hydrodynamic fields, as reported in Table 3 and Figures 5 and 6. However, as it 

will be showed in the following, after a deeper discussion about the  calculation procedure, 

the apparent negligible differences among  values will be considerable. 

Table 3 

Calculated average radial velocities according to the three models. 

    Model 

    Nusselt Pigford L-R 

ri (m) vr (m/s) 

0.015 
feed 0.166 0.581 0.414 

out 0.117 0.383 0.306 

0.020 
feed 0.182 0.518 0.414 

out 0.117 0.383 0.306 

0.025 
feed 0.140 0.474 0.379 

out 0.117 0.383 0.306 

0.030 
feed 0.131 0.440 0.352 

out 0.117 0.383 0.306 

0.035 
feed 0.125 0.414 0.331 

out 0.117 0.383 0.306 
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Figure 5: film thickness values at different r, according to the three different fluid dynamic 

models (T=25°C, =1400 rpm, QF=150 mL/min, QB=37.5 mL/min). 

 

Figure 6: average radial velocity values at different r, according to the three different fluid 

dynamic models (T=25°C, =1400 rpm, QF=150 mL/min, QB=37.5 mL/min). 

 

The values predicted by Nusselt model were always larger in comparison with those 

predicted by L-R one. On the contrary, the vr values predicted by Nusselt model were always 

lower than those predicted by the latter ones. The Nusselt model was not able to predict the 
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spin-up zone, i.e. the zone after that the liquid is rotating close to the disk velocity and results 

synchronized with it. In Figure 6 the spin-up zone is well visible for vr trends predicted by 

Pigford and L-R models. According to Burns and co-authors, the distance from the disk 

centre with respect the spin-up zone appears, rs (m), can be calculated by the following 

equation [58,77]: 

𝑟𝑠 = 0.88𝜆𝐸 (
𝑑

2𝜆𝐸
)

−0.025

𝐾1
0.11𝐾2

−0.37                                                                                          (24) 

This yields a value of 0.0267 m that is in agreement with the local minimum observed in 

Figure 6 for both Pigford and L-R vr trends.  

Another important consideration should be made about the E number. Considering that the 

film thickness varies with the radial distance over the disk surface, also the E number will 

undergo to a substantial variation, since it is inversely proportional to 2 (Figure 7). 

 

Figure 7: Ekman number values at different ri (i.e. ) (T=25°C, =1400 rpm, QF=150 

mL/min, QB=37.5 mL/min). 
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As reported by Figure 7, the E number was always lower than 2 up to ri=0.025 and 0.0175 m 

according to Nusselt and L-R models, respectively. This means that inertial forces are very 

important along the radial distance that includes about an half of the studied rotating film 

surface, implying that more accurate models than Nusselt one, such as Pigford and L-R 

models, should be used to well describe the hydrodynamic field. However, as demonstrated 

by the very close calculated  values according to the three models, the notable difference 

observed for the hydrodynamic field’s related parameter was not observed for the specific 

energy power dispersed on the rotating disk. The more probable explanation could be that the 

average residence time that appears in eq. 21 should be substituted with another expression 

that takes into account the radial velocity. Therefore, a different equation should be used to 

calculate the residence time, as reported below: 

𝑡𝑟𝑒𝑠 =
2(𝑟𝑑−𝑟𝑖)

𝑣̅𝑟𝑜𝑢𝑡+𝑣̅𝑟𝑓𝑒𝑒𝑑

                                                                                                                            (25)  

Table 4 reports the  and tres calculated according the vr predicted by the three fluid dynamic 

models. 

Table 4 

 and tres according to the three fluid dynamic models. 

      Model 

ri (m) Parameter Unit Nusselt Pigford L-R 

0.015 
tres s 0.195 0.057 0.076 

 W/kg 87.24 296.23 222.20 

0.020 
tres s 0.150 0.050 0.062 

 W/kg 100.39 301.37 241.45 

0.025 
tres s 0.136 0.041 0.051 

 W/kg 93.03 309.81 248.12 

0.030 
tres s 0.101 0.030 0.038 

 W/kg 96.72 320.02 256.24 
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0.035 
tres s 0.062 0.019 0.024 

 W/kg 100.66 331.30 265.23 

 

As clearly showed in Table 4, Nusselt model overestimates the residence time values, i.e. 

underestimates the radial velocity values, as already observed by Burns and co-workers 

[58,77]. This implies that the calculated  values through tres estimated by Nusselt’s vr values 

resulted in notably lower values than those reported for Pigford and L-R models that, 

conversely, were of the same order of magnitude. 

The reported results are quite important since they showed that, even if the E number values 

were larger than 2 in a wide part of the rotating domain according to L-R model, the Nusselt 

model’s predictions, in terms of both hydrodynamic field and energy-related parameters, 

were not in agreement with those obtained by more complex models. Moreover, besides the 

considerations made on E values, it is necessary to underline that the predictions made by 

Nusselt model may significantly vary from those made through 2D or 3D models, Pigford 

and L-R models respectively, even if the overall flow regime on the rotating disk can be 

considered laminar. In conclusion, 2D and 3D models should be in any case preferred rather 

than 1D model to avoid notable errors in the interpretation of the results obtained by SDR 

experimentations. 

Finally, Figure 8 displays the power relation between the obtained dm and the calculated  

according to the three fluid dynamic models for all the performed runs, using the eq. 24 for 

the residence time calculation. Jo
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Figure 8: correlation between nZVI mean size and e calculated by Nusselt (a), Pigford (b) 

and L-R (c) models. 

It is important to underline that the exponent of  obtained by the fitting of L-R model was 

closer to -0.5, that is the dependence both of micromixing and mesomixing times with respect 

to  [78]. The obtained trends well describes the relation between nZVI mean size and 

specific energy power dispersion, as previously discussed and demonstrated in a previous 

work [47]. Therefore, to obtain a lower mean size of the produce nanoparticles it can be 

useful increasing both rotational velocity and the distance between injection feed points and 

disk centre. However, to support again the discussion about the necessity to use more reliable 

model with respect to Nusselt one, the best fit between dm and  data was obtained for L-R, 

followed by Pigford model. 

Finally, the nZVI production per day, P (kg/day) was calculated using the following equation: 

𝑃 = 𝑄𝐹 ∗ 60 ∗ 24 ∗ [𝐹𝑒(𝐼𝐼)]0 ∗ 𝐹𝑒(0)(%) ∗
𝑀𝐹𝑒

1000
                                                                     (26) Jo
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where QF is in L/min and MFe (55.84 g/mol) is the iron molar mass. A P value in the range 

0.24-24 kg/day was obtained according to a [Fe(II)]0 value in the range 0.02-2 M, which was 

similar to data reported by other authors for the production of nanoAg particles using a SDR 

with a diameter of 19.5 cm [79]. 

 

4. Conclusions 

This study reports about the optimization of metallic iron nanoparticles production by means 

of a lab-scale (disk diameter=8.5 cm) spinning disk reactor. The experiments conducted 

according to previously found optimal reagent concentrations and inlet flowrates allowed to 

select the optimal rotational velocity (1400 rpm) and optimal distance of injection feed points 

from the disk centre (3.5 cm). According to these optimal parameter’s values, monodisperse 

metallic iron nanoparticles were produced, characterized by a mean size of 28±2.1 nm. The 

experimental results were interpreted considering the hydrodynamic field established on the 

rotating disk surface, modelling the rotating thin liquid film with classical models. In 

particular, Nusselt model returned higher film thickness with respect to the predictions made 

by more complex models, such as Pigford and Lepehin-Riabchuk models, leading to 

erroneous considerations about the dispersed power energy on the rotating disk. It was found 

that, even for laminar flow regime and Ekman number larger than 2, the use of 2D and 3D 

models, such as Pigford and Lepehin-Riabchuk ones, was preferable in comparison to Nusselt 

one. In fact, the residence time estimation through the latter model was always 1 order of 

magnitude higher in comparison with those estimated by the former ones, leading to lower 

calculated  values and possible errors in the experimental data interpretation. 
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