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Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce
apoptosis through caspase activation in a number of cancer cell lines while displaying minimal or
no toxicity on normal cells, suggesting that this protein may hold potential for development as a new
cancer therapeutic agent. Moreover, TRAIL can activate mitogen-activated protein kinases (MAPKS)
in addition to caspases. However, it has not been clearly understood how MAPKSs are activated by
TRAIL and the biological significance of their activation.

Here we show that TRAIL-induced MAPKSs activation is dependent on caspase activation and that
mammalian sterile 20-like kinase 1 (Mst1) functions as a mediator between caspase activation and
MAPKSs activation. Activation of MAPKs (JNK, p38, ERK) is differentially regulated by cleavage
size (40 kDa and 36 kDa) of Mst1, which is controlled by caspase-7 and -3.
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1. Introduction

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) consists of 281 and 291
amino acids in the human and murine forms, respectively. TRAIL is expressed as a type Il
integral membrane protein belonging to the tumor necrosis factor (TNF) superfamily (4-1BBL,
APRIL, BAFF, CD27L, CD30L, CD40L, EDAL, EDA2, FasL, GITRL, LIGHT, lymphotoxin
a, lymphotoxin af, OX40L, RANKL, TL1A, TNF, TWEAK, and TRAIL). TRAIL is related
most closely to a Fas/APO-1 ligand among TNF superfamily members. Like Fas ligand (FasL)
and TNF, the C-terminal extracellular region of TRAIL (amino acids 114-281) exhibits a
homotrimeric subunit structure [1]. The apoptotic signal of TRAIL is transduced by binding
to the death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5), which are members of the
TNF receptor superfamily. Both DR4 and DR5 contain a cytoplasmic death domain that is
required for TRAIL receptor-induced apoptosis. TRAIL also binds to TRAIL-R3 (DcR1) and
TRAIL-R4 (DcR2), which act as decoy receptors by inhibiting TRAIL signaling [2-8]. Unlike
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DR4 and DR5, DcR1 does not have a cytoplasmic domain and DcR2 retains a cytoplasmic
fragment containing a truncated form of the consensus death domain motif [6]. Previous studies
suggest that DRs and DcRs interact through their extracellular domains to form homometric
and/or heterometric complexes [9]. TRAIL binding to death receptors is thought to result in
conformational changes that expose a binding surface for Fas-associated death domain
(FADD), an adaptor protein [10,11]. TRAIL triggers apoptosis by recruiting the apoptosis
initiator procaspase-8 through the adaptor FADD [12]. Caspase-8 can directly activate
downstream effector caspases including procaspase-3, -6, and -7 [13]. Caspase-8 also cleaves
Bidx and triggers mitochondrial damage that in turn leads to cytochrome c release [14].
Cytochrome c in the cytoplasm binds to Apaf-1, which then permits recruitment of
procaspase-9. Caspase-9 cleaves and activates procaspase-3 [15]. Thus, TRAIL induces
apoptosis through caspase activation [16].

Mitogen-activated protein kinases (MAPKS) belong to a family of proteins which consists of
three family members: c-Jun NH2-terminal kinase (JNK), p38-MAPK, and extracellular
signal-regulated kinase (ERK). Previous studies have shown that caspase-8 is regarded to be
important not only for induction of apoptosis but also for activation of the MAPK signaling
pathway during treatment with TRAIL [17]. However, the molecular mechanism of how
TRAIL induces MAPK activation through caspase-8 has not been completely understood.
Previous reports reveal that a high degree of cross talk between proteolysis and kinase
activation occurs during treatment with TRAIL [18]. It has been suggested that caspase
activation induced by TRAIL most likely contributes to activation of protein kinases. Protein
kinases have emerged as direct substrates and effectors of caspases. Among them, caspase
cleavage engenders the production of a more active kinase by removal of the inhibitory domains
[10]. In response to apoptotic stimuli, the cleaved, caspase-activated kinases then serve to
propagate apoptotic signals through phosphorylation of relevant substrates such as MAPK.

Mstl (mammalian sterile 20-like kinase 1) is a ubiquitously expressed serine/threonine kinase
having a molecular weight of 59 kD [19]. It is a mammalian homolog of the budding yeast
Ste20 kinase [20]. Mstl is involved in a variety of cellular processes such as morphogenesis,
motility, proliferation, stress response, and apoptosis [20-22]. Previous studies have revealed
that Mst1 is cleaved by caspase-mediated proteolysis in response to apoptotic stimuli such as
FasL treatment [23]. Here, we observe that Mst1 is involved as a mediator of MAPK activation.
The C-terminus regulatory region of Mst1 contains two distinct functional domains, which are
required for homo- and/or hetero-dimerization and the regulation of kinase activity.
Interestingly, two caspase-cleavage sites have also been identified between the regulatory and
catalytic domains at the sequences DEMD?326S and TMTD349G [24]. Cell-free studies suggest
that these sites may be selectively cleaved by caspase-3, -6, -7 and -9 at DEMD?326S and
caspase-6 and -7 at TMTD349G, to generate catalytically active enzymes of 36 and 40 kDa,
respectively [23]. In this study, we clearly demonstrate that caspase-7 preferentially activated
JNK and p38 through 40 kDa cleaved forms of Mst1, while caspase-3 preferentially activated
ERK through 36 kDa cleaved forms of Mst1.

2. Materials and methods

2.1. Cell culture and survival assay

Human prostate adenocarcinoma DU-145 cells and human breast cancer MCF-7 cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS)
(HyClone, Logan, UT, USA) and 26 mM sodium bicarbonate for monolayer cell culture. The
cells were maintained in a humidified atmosphere containing 5% CO» and air at 37°C.
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2.2. Reagents and antibodies

Polyclonal anti-Mst1, anti-phospho-ERK, anti-ERK, anti-p38, monoclonal anti-phospho-p38,
anti-caspase 8, and anti-caspase 7 were purchased from Cell Signaling (Beverly, MA, USA),
and anti-ACTIVE (phosphoT183 and phosphoY185) JNK was purchased from Promega
(Madison, WI, USA). Polyclonal anti-JINK1 and anti-caspase 3 were purchased from Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). Monoclonal anti-PARP was purchased from
Biomol International, L.P. (Plymouth Meeting, PA, USA). Monoclonal anti-actin was
purchased from ICN (Costa Mesa, CA, USA).

2.3. Transfection

In order to generate caspase 3 overexpressing MCF-7 cells in a dose-dependent manner, cells
were transfected with 0.5 pg ~ 3 pg of pTracer CMV-caspase 3 using Lipofectamine Plus
(Gibco-BRL Life Technologies, Grand Island, NY, USA). The expression level was
determined by immunoblot analysis.

2.4. Protein extracts and polyacrylamide gel electrophoresis (PAGE)

Cells were lysed with 1 x Laemmli lysis buffer (2.4 M glycerol, 0.14 M Tris, pH 6.8, 0.21 M
sodium dodecy!l sulfate, 0.3 mM bromophenol blue) and boiled for 10 min. Protein content
was measured with BCA Protein Assay Reagent (Pierce, Rockford, IL, USA). The samples
were diluted with 1 x lysis buffer containing 1.28 M p-mercaptoethanol, and equal amounts of
protein were loaded on 8-12 % sodium dodecyl sulfate (SDS)-polyacrylamide gels. SDS-
PAGE analysis was performed according to Laemmli using a Hoefer gel apparatus.

2.5. Immunoblot analysis

Proteins were separated by SDS-PAGE and electrophoretically transferred to nitrocellulose
membrane. The nitrocellulose membrane was blocked with 5 % nonfat dry milk in PBS-
Tween-20 (0.1 %, v/v) at 4°C overnight. The membrane was incubated with primary antibody
(diluted according to the manufacturer’s instructions) for 2 h. Horseradish peroxidase
conjugated anti-rabbit or anti-mouse 1gG was used as the secondary antibody. Immunoreactive
protein was visualized by the chemiluminescence protocol (ECL, Amersham, Arlington
Heights, IL, USA).

2.6. ROS generation and FACS analysis

For the determination of ROS generation induced by metabolic oxidative stress or TRAIL (200
ng/ml), hydrogen peroxide generation was measured by incubation with 20 mM fluorescence
probe 2°,7’-dichlorofluorescein diacetate (DCF-DA) for 1 h. For the FACS analysis for
hydrogen peroxide production induced by TRAIL, hydrogen peroxide generation was
measured by incubation with 20 mM fluorescence probe 2’,7’-dichlorofluorescein diacetate
(DCF-DA) for 1 h.

2.7. siRNA of Mstl

To construct sSiRNA of Mst1, pSilencer 2.1-U6 hygro vector (Ambion, Inc., Austin, TX, USA)
was used for expressing siRNA for Mstl. The insert for hairpin siRNA into pSilencer was
prepared by annealing two oligonucleotides. For human Mst1 siRNA, the top strand sequence
was 5'-
GATCCGTGCAGCAATGTGACAGCCCTTCAAGAGAGGGCTGTCACATTGCTGCAT
TTTTTGGAAA-3', and the bottom strand sequence was 5'-
AGCTTTTCCAAAAAATGCAGCAATGTGACAGCCCTCTCTTGAAGGGCTGTCACA
TTGCTGCACG-3'. The annealed insert was cloned into pSilencer 2.1-U6 hygro digested with
BamH I and Hind I11. The correct structure of pSilencer 2.1-U6 hygro-Mst1 was confirmed by
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nucleotide sequencing. The resultant plasmid, pSilencer-Mst1, was transfected into DU-145
cells. The interference of Mstl protein expression was confirmed by immunoblot using anti-
Mst1 antibody.

2.8. Site-directed mutagenesis

The QuickChange XL Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA) was
used to make point mutations in Mst1 protein. One Asp residue in Mstl (Asp-349 Mstl) was
replaced with Glu (Glu-349 Mstl). Sense primer (5'-
CAGCACCATGACTGAAGGAGCCAATACTATG-3) and antisense primer (5'-
CATAGTATTGGCTCCTTCAGTCATGGTGCTG-3') were used for site-directed
mutagenesis. PCR reaction was prepared by adding 5 pl of 10X reaction buffer, 20 ng of dSDNA
template ()CMV5M-Myc-Mst1 wild type or pPCMV5M-Myc-Mst1 323NEMN326 which were
both kindly provided by Dr. Chernoff (Fox Chase Cancer Center, Philadelphia, PA, USA)),
125 ng of each sense primer, 125 ng of each antisense primer, 1 pl of deoxyribonucleotide
triphosphate mix, 3 pl QuickSolution, double-distilled water to a final volume of 50 pl, and 1
pl of Pfu Turbo DNA polymerase (2.5 U/ul). PCR was performed with 18 cycles (95°C for 50
sec; 60°C for 50 sec; 68°C for 7 min) with initial incubation at 95°C for 1 min. Following
temperature cycling, the reaction was placed on ice for 2 min to cool the reaction. After PCR,
1 pl of Dpn | restriction enzyme (10 U/ul) was added directly to each amplification reaction
and incubated at 37°C for 1 h to digest the parental supercoiled dsSDNA. The Dpn I-treated
dsDNA was transformed into Epicurian coli XL1-Blue supercompetent cells. Colonies were
selected and the resultant plasmid was sequenced using primer (5'-
GCAATCTTCATGATTCCTAC-3') to confirm mutation.

2.9. Construction of Mstl deletion mutants

3. Results

Various Mst1 deletion mutants myc-tagged at their N-terminal and with restriction enzyme
recognition sites at the flanking sides (5', Hind 111; 3', BamHI) were produced by PCR. For
Mst1-Myc 1-349 (amino acids 1-349) or Mst1-Myc 1-349 with D326N, sense primer was 5'-
TAATAAGCTTATGGAACAGAAACTCATCTCTGAAG-3, and antisense primer was 5'-
CGATGGATCCTCAATCAGTCATGGTGCTGGCTACTC-3'. As a PCR template,
pCMV5M-Myc-Mstl wild type or pPCMV5M-Myc-Mstl with D326N was used, respectively.
For Mst1-Myc 1-326 (amino acids 1-326), sense primer was 5'-
TAATAAGCTTATGGAACAGAAACTCATCTCTGAAG-3, and antisense primer was 5'-
CAGAGGATCCTTAATCCATTTCATCCTCTTCTGAG -3, and pPCMV5M-Myc-Mstl
wild type was used as a template. pcDNA3.1hygro-Myc-Mst1 1-349 wild type or 1-349 with
D326N or 1-326 was made by inserting the Hind I1l/BamHI-cleaved PCR product of various
deletion mutants into Hind 111/BamHI-cut pcDNA3.1hygro vector.

3.1. TRAIL-induced MAPKs activation was not caused by ROS generation

In contrast to the well-known mechanism of TRAIL-induced caspase activation followed by
PARP cleavage, TRAIL-induced MAPK activation and its relation to apoptosis is not well
understood. Nevertheless, several researchers reported that ROS generation played a role as
an upstream mediator of caspases as well as MAPK activation during TRAIL-induced
apoptosis [25,26]. To verify these reports, in the first step, we examined whether TRAIL
treatment activated MAPKS. We observed that three kinds of MAPK (INK, p38, and ERK)
were phosphorylated in accordance with caspase-8 activation and PARP cleavage during
TRAIL treatment (Fig. 1). In the next step, we attempted to determine ROS generation, as
measured by hydrogen peroxide generation, during TRAIL treatment. We used 2', 7'-
dichlorofluorescein diacetate (DCF-DA), a ROS-sensing molecule, which is oxidized in the
presence of ROS, causing the dyes to fluoresce. Figure 2A and 2B demonstrate that ROS is
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not generated during TRAIL treatment. To confirm that ROS was not involved in TRAIL-
induced MAPKSs activation, activation of MAPKs was examined after TRAIL treatment of
DU-145 cells in which catalase had been overexpressed for the purpose of decreasing the
intracellular level of ROS (Fig. 2C). Figure 2C shows that the level of phosphorylation of
MAPKSs (JNK, p38, ERK) is not decreased in catalase-overexpressed cells after TRAIL
treatment, implying that TRAIL-induced MAPKSs are not related to ROS generation, at least
in DU-145 cells.

3.2. TRAIL induced caspase-8-dependent MAPKSs activation

After eliminating ROS involvement with MAPKSs activation by TRAIL, we examined whether
caspases acted as MAPKSs activators. We first tested caspase-8, since Varfolomeev et al [17]
has already documented its ability to activate kinases. We tried to demonstrate that three kinds
of MAPK (JNK, p38, ERK) were phosphorylated in accordance with caspase-8 activation
during TRAIL treatment (Fig. 3). As shown in figure 3A, phosphorylation of MAPKSs induced
by TRAIL was decreased by caspase-8 inhibitor (Z-IETD-FMK), and caspase-8 involvement
in TRAIL-induced MAPKS activation was confirmed by downregulating caspase-8 using
SiRNA caspase-8 (Santa Cruz) (Fig. 3B).

3.3. TRAIL induced different MAPKSs activation for caspase-7 and caspase-3

Next, we investigated caspase-7 and caspase-3 as executor caspases of caspase-8 to determine
whether caspase-7 or -3 was also involved in the TRAIL-induced MAPKSs activation. For this
purpose, caspase-7 or -3 was downregulated by using siRNA of caspase-7 or -3 in DU-145
cells, and then TRAIL-induced phosphorylation of MAPKs was examined (Fig. 4A, 4B).
Figure 4A demonstrates that caspase-7 plays an important role as a mediator of TRAIL-induced
MAPKSs phosphorylation. However, unexpectedly, when caspase-3 was downregulated,
phosphorylation of JINK and p38 was increased, and phosphorylation of ERK was decreased
(Fig. 4B). To confirm that caspase-7 and caspase-3 have different roles in MAPKSs activation
during TRAIL treatment, MCF-7 cells that lack caspase-3 were used. As shown in DU-145
cells, phosphorylation of all MAPKSs was decreased in the cells with caspase-8 inhibition and
caspase-7 downregulation (Figs. 5A and 5B). However, when caspase-3 was overexpressed,
phosphorylation of INK and p38 was decreased, but conversely, phosphorylation of ERK was
increased (Figs. 5C and 5D), which suggests that caspase-3 functions as a critical negative
mediator of JNK and p38 phosphorylation.

3.4. Mstl was a bridge between caspase and kinase activation

The previous results revealed that TRAIL-activated caspase was involved in the activation of
MAPK. We further examined how activated caspase regulated MAPK activation. Previous
studies suggest that the kinase Mst1 acts as a bridge between proteolysis and kinase activation.
Thus it might act as a bridge between caspase-3 and -7 and ERK, JNK, and p38. For
confirmation of the involvement of Mst1 as an upstream initiator of the MAPKSs (JNK, p38,
and ERK), loss of function by siRNA was used. After incorporating the sequences for sSiRNA
of Mstl into pSilencer 2.1-U6 hygro vector, the resultant plasmid pSilencer/si-Mst1 was
transfected into DU-145 cells and phosphorylated MAPKSs were investigated after TRAIL
treatment (Fig. 6A). Figure 6A shows that knockdown of Mst1 expression led to inhibition of
MAPKSs activation during TRAIL treatment. These results suggest that Mst1 functioned as a
mediator of TRAIL-induced MAPKSs activation. To make a stable cell line of siRNA of Mst1,
the transfected DU-145 cells were incubated with hygromycin B (250 pg/ml), and hygromycin
B-resistant cell clones were isolated. Then, the interference of Mstl protein expression was
confirmed by immunoblot using anti-Mst1 antibody (Fig. 6B). We selected several stable
transfectants and chose one transfectant (clone #6) for the confirmation of involvement of Mst1
in TRAIL-induced MAPKSs activation (Fig. 6C, left). To exclude the possibility that single
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clone # 6 is derived from a sensitive parent cell, a pool of selected clones (#6, #7, and #8) was
again examined for the involvement of Mstl in TRAIL-induced MAPKSs (Fig. 6C, right).
Figures 6C and 6D clearly show that TRAIL-induced MAPKS are dependent on Mst1, and
Mstl cleavage is also dependent on caspase-8 activation.

3.5. Differential regulation of MAPKs activation by Mstl depended on Mstl cleavage site

The next question was how MAPKSs activation might be regulated differentially by Mst1. A
previous report [23] demonstrated that the two cleavage sites of Mst1 recognized by caspases
had a differential caspase sensitivity; namely, caspase-3 or caspase-7 cleaved Mstl at D326
in vitro, while only caspase-7 cleaved Mstl at D349 in vitro. Moreover, we observed that the
different sizes of the cleaved forms of Mst1 appear sequentially (40 kDa, then 36 kDa) during
TRAIL treatment (Fig. 6E), which suggests that caspase-7 which cleaves mainly D349 (40
kDa) is first activated and then caspase-3 activation for the cleavage of D326 (36 kDa) follows.
In caspase-3-deficient-MCF-7 cells, a smaller amount of 36 kDa appeared at the later time of
TRAIL incubation (Fig. 6F). Furthermore, 40 kDa of Mst1 was decreased in caspase-7-
downregulated DU-145 after TRAIL treatment (2 h) (Fig. 6G). Figures 6F and 6G strengthen
the fact that caspase-7 for D349 and caspase-3 for D326 are consecutively activated. From our
results (Fig. 3-Fig. 6), we hypothesized that the 40 kDa of Mst1 cleaved by caspase-7
preferentially activated JNK or p38, whereas the 36 kDa of Mst1 cleaved by caspase-3
preferentially activated ERK. To test this hypothesis, we first generated mutants of Mst1, in
which D326, D349, and both D326 and D349 were point-mutated. After generation of various
mutants, each construct was transfected into a Mst1-knockdown selected cell clone (#6) to
maximally exclude the MAPK activation derived from endogenous Mst1, then phosphorylation
of various MAPKSs was examined after TRAIL treatment (Fig. 7A). As shown in Figure 7A,
depending on the cleavage size of Mst1 after TRAIL treatment, each MAPK was differentially
activated. To confirm that MAPKSs activation depends on Mst1 cleavage site, we designed
several deletion mutants of Myc-tagged Mst1 (1-349 amino acids of Myc-Mst1, 1-349 amino
acids with D326N of Myc-Mst1, and 1-326 amino acids of Myc-Mst1). After transfection to
Mst1-knockdown selected cell clone (#6), phosphorylation of the three MAPKSs was examined.
Figure 7B shows that JINK and p38 were more activated in the cells expressing 40 kDa of Mst1,
whereas ERK was more activated in the cells expressing 36 kDa of Mst1 during TRAIL
treatment. However, Figure 7B also shows that the appearance of cleaved forms of Mst1 was
not sufficient to induce MAPKSs activation, which suggests that another factor is necessarily
involved for the full activation accompanying cleaved Mstl during TRAIL treatment. Taken
together, these experiments have shown that the cleaved size of Mst1 selects the MAPK to be
activated.

3.6. Mstl can be seen as a mediator between TRAIL-induced caspase activation and MAPK

activation

Our experimental data are summarized in Figure 8. From our studies, it was revealed that Mst1
is a key mediator between TRAIL-induced caspase activation and TRAIL-induced MAPKs
activation. After cleavage by caspases, Mst1 phosphorylates MAPKSs: the 40 kDa of Mst1
cleaved by caspase-7 selectively phosphorylates JNK and p38, while 36 kDa of Mst1 cleaved
by mainly caspase-3 selectively phosphorylates ERK.

4. Discussion

Contradictory to previous reports that ROS generation was the main cause of apoptosis through
caspase activation during TRAIL treatment [25,26], we could not observe either the meaningful
generation of ROS (Figs. 2A and 2B) or the inhibition of apoptosis by catalase overexpression
(Fig. 2C). This discrepancy suggests that there is not enough ROS generation to activate
caspases and MAPKSs during TRAIL treatment, at least in DU-145 cells. In agreement with
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this line of reasoning, Varfolomeev et al. [17] proposed that caspase-8 was regarded to be
important not only for apoptosis induction but also for MAPK kinase pathway activation by
TRAIL. It seems to be that MAPK activation induced by TRAIL is not dependent on ROS but
dependent on caspase-8 activation. Our results strengthen the implication that MAPKSs
phosphorylation during TRAIL treatment is dependent on caspase activation (Fig. 3-Fig. 5).
However, the molecular mechanism by which TRAIL induces MAPK activation through
caspase-8 has not been completely understood, while MAPK activation induced by ROS
generation is relatively well known even though it seems not to be a factor in TRAIL treatment.
In this study, we demonstrate that Mst1 plays an essential role as a mediator between caspase
activation and MAPK phosphorylation during TRAIL treatment. Mst1 has been reported, in
response to a wide variety of apoptotic stimuli, to be a prominent stimulator during apoptosis
[27], playing an important role as a caspase effector that contributes to apoptosis. Mst1 has
also been shown to act upstream of MAPK kinase kinase (MAPKKK) that regulates p38 and
JNK activities, acting as a putative MAPK kinase kinase kinase (MAPKKKK) [19], thus,
functioning in a positive feedback pathway that amplifies the apoptotic response through
MAPK activation. However, the biological significance of MAPK activation has been
emphasized for only its apoptotic effects, in spite of being known to have anti-apoptotic effects
as well. Figures 6A, 6C, and 6D confirmed that Mst1 acted downstream of caspase-8 and
upstream of MAPKS activation during TRAIL treatment. The differential activation of MAPKSs
during TRAIL treatment was clearly observed in caspase-3-deficient MCF-7 and caspase-3
overexpressed MCF-7 cells. Caspase-7 selectively activated JINK and p38 through 40 kDa
cleaved forms of Mst1, while caspase-3 selectively activated ERK through 36 kDa cleaved
forms of Mst1. However, as shown in Figure 7B, TRAIL treatment enhanced the ability of
Mst1 deletion mutants to phosphorylate MAPKS, which strengthens the previous report [23]
that both caspase cleavage and phosphorylation contributed to the activation of Mst1. These
results raise the question of whether Mst1 is phosphorylated prior to the Mst1 cleavage during
TRAIL treatment. Glantschnig et al [28] suggested that Mst1 activation is induced by existing,
active Mst kinase which phosphorylates Mst1. In this case, however, it is difficult to interpret
how TRAIL-induced caspase activation initiates phosphorylation of Mst1 via preexisting
active Mst1 kinase. As an alternative, Praskova et al. [29] found that Mst1 was activated by an
intramolecular autophosphorylation catalyzed within an activation loop of Mst dimer, and
NORE and RASSF1A which are bound to Mst1 suppressed this process. Therefore, we are
currently investigating the possibility that TRAIL-induced caspase activation can cleave
NORE and/or RASSF1A, resulting in dissociation from Mst1, which can induce Mstl
autophosphorylation followed by Mstl cleavage. Another important question is how cleaved
forms of Mstl can activate MAPKSs differentially. Mst1 was shown to act upstream of MAPK
kinases that regulate MAPK, functioning as MAPKKKK, upstream of MEKK1 [23]. Currently,
we also observed thatamong MAP3K, MEKK1 and MEKK4 were related to MAPKSs activation
during TRAIL treatment (data not shown). We are examining the possibility of differential
phosphorylations of the MEKK family by cleaved forms of Mst1, which will result in selective
recruitment of MEKK downstream cascades.

Although, from our experiment, Mst1 is revealed as a mediator between caspase activation and
MAPKSs activation, the outcome of MAPKS activation is not yet clear. It appears that the INK
pathway functions in a cell-type and stimulus-dependent manner and its different components
can sometimes play opposing roles in apoptosis. The observation that the JNK pathway can
be either pro-apoptotic or anti-apoptotic suggests that INK is likely to act as a modulator, rather
than as an intrinsic component of the apoptotic machinery [30-32]. In the case of p38, the role
of p38 in the regulation of cell survival and apoptosis is also controversial. Taken together,
these findings suggest that it is the context in which the MAPK signal is generated, as well as
the magnitude and duration of the signal, that determines the biological effect on a cell.
Varfolomeev et al. [17] suggested that kinase pathway activation by TRAIL which includes
JNK and p38 was associated with increased production of the chemokines interleukin-8 (I1L-8)
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and monocyte chemotactic proteins-1 (MCP-1) and with enhanced macrophage migration.
Interestingly, it has been reported that MCP-1 in addition to IL-6 or -8 was upregulated in

pr

ostate cancer metastasis [4], which suggests that MAPK activation during TRAIL treatment

may function in several ways. Based on our previous report [33], we believe that Mst1 is
responsible for acquired TRAIL resistance, and even metastasis, by functioning as a mediator
between TRAIL-induced caspase activation and MAPK activation, and this possibility is under
investigation.
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TRAIL (200 ng/ml)

Figure 1. TRAIL-induced MAPK activation
DU-145 cells were treated with 200 ng/ml of TRAIL for various times, and the cell lysates
were analyzed for the detection of phosphorylated JNK, p38, and ERK as well as PARP and
caspase-8. Western blots shown are representative of three independent experiments.
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Figure 2. Determination of ROS generation induced by TRAIL

(A) DU-145 cells were treated with TRAIL (200 ng/ml) for indicated times, and hydrogen
peroxide generation was measured by incubation with 20 mM fluorescence probe 2’,7’-
dichlorofluorescein diacetate (DCF-DA) for 1 h using fluorescence microscope. (B) As an
alternative way of measurement of hydrogen peroxide generation, flow cytometry was used.
After TRAIL-treated DU-145 cells were incubated with 20 mM fluorescence probe 2°,7’-
dichlorofluorescein diacetate (DCF-DA) for 1 h, stained cells were analyzed with FACscan
flow cytometer. (C) After catalase-overexpressed DU-145 cells by adenoviral infection
expressing catalase (100 moi) or EGFP-overexpressed DU-145 cells by adenoviral infection
expressing EGFP as a control (100 moi) were treated with TRAIL (200 ng/ml, 4 h), various
MAPKSs were examined. Left panel: Western blot analysis, C, control; T, TRAIL. Right panel:
The ratio of the phosphorylated MAPKS to total protein of corresponding MAPKSs in TRAIL-
treated EGFP-overexpressed cells was set equal to 1, and the ratio of the phosphorylated
MAPKS to total protein of corresponding MAPKSs in TRAIL-treated catalase-overexpressed
cells was compared to this. Data are expressed as mean + SE of the densitometry data from
three independent experiments.
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Figure 3. Involvement of caspase-8 during TRAIL-induced MAPKSs activation in DU-145

(A) After caspase-8 inhibitor (Z-IETD-FMK 20 uM) was pretreated for 30 min, followed by
TRAIL treatment (200 ng/ml) for 4 h, various MAPKSs were examined. Left panel: Western
blot analysis. Right panel: The ratio of the phosphorylated MAPKS to total protein of
corresponding MAPKSs in TRAIL-treated DU-145 cells was set equal to 1, and the ratio of the
phosphorylated MAPKS to total protein of corresponding MAPKSs in TRAIL-treated DU-145
cells with caspase-8 inhibitor pretreatment was compared to this. Data are expressed as mean
+ SE of the densitometry data from three independent experiments. (B) After caspase-8 was
downregulated by siRNA of caspase-8, TRAIL was treated for the examination of various
MAPKS. Left panel: Western blot analysis, C, control; T, TRAIL. Right panel: The ratio of the
phosphorylated MAPKS to corresponding actin in TRAIL-treated si scrambled RNA-
transfected cells was set equal to 1, and the ratio of the phosphorylated MAPKSs to
corresponding actin in TRAIL-treated si caspase-8 RNA-transfected cells was compared to
this. Data are expressed as mean = SE of the densitometry data from three independent
experiments.
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Figure 4. Involvement of caspase-7 or -3 during TRAIL-induced MAPKS activation in DU-145
(A) MAPKSs phosphorylation induced by TRAIL treatment (200 ng/ml, 4 h) was examined
after caspase-7 was downregulated by siRNA of caspase-7. Left panel: Western blot analysis,
C, control; T, TRAIL. Right panel: The ratio of the phosphorylated MAPKSs to corresponding
actin in TRAIL-treated si scrambled RNA-transfected cells was set equal to 1, and the ratio of
the phosphorylated MAPKS to corresponding actin in TRAIL-treated si caspase-7 RNA-
transfected cells was compared to this. Data are expressed as mean + SE of the densitometry
data from three independent experiments. (B) MAPKSs phosphorylation induced by TRAIL
treatment (200 ng/ml, 4 h) was examined after caspase-3 was downregulated by siRNA of
caspase-3. Left panel: Western blot analysis, C, control; T, TRAIL. Right panel: The ratio of
the phosphorylated MAPKS to total protein of corresponding MAPKS in TRAIL-treated si
scrambled RNA-transfected cells was set equal to 1, and the ratio of the phosphorylated
MAPKS to total protein of corresponding MAPKSs in TRAIL-treated si caspase-3 RNA-
transfected cells was compared to this. Data are expressed as mean = SE of the densitometry
data from three independent experiments.
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Figure 5. Involvement of caspase-8, -7 and -3 during TRAIL-induced MAPKSs activation in MCF-7
(A) After caspase-8 inhibitor (Z-IETD-FMK 20 puM) was pretreated for 30 min, MAPKSs
phosphorylation induced by TRAIL treatment (200 ng/ml, 4 h) was examined in MCF-7 cells
that lack caspase-3. Left panel: Western blot analysis. Right panel: The ratio of the
phosphorylated MAPKS to corresponding actin protein in TRAIL-treated MCF-7 cells was set
equal to 1, and the ratio of the phosphorylated MAPKSs to corresponding actin protein in
TRAIL-treated MCF-7 cells with caspase-8 inhibitor pretreatment was compared to this. Data
are expressed as mean + SE of the densitometry data from three independent experiments.
(B) MAPKSs phosphorylation induced by TRAIL treatment (200 ng/ml, 4 h) was examined
after caspase-7 was downregulated by siRNA of caspase-7 in caspase-3-deficient MCF-7 cells.
Left panel: Western blot analysis, C, control; T, TRAIL. Right panel: The ratio of the
phosphorylated MAPKS to corresponding actin protein in TRAIL-treated si scrambled RNA-
transfected cells was set equal to 1, and the ratio of the phosphorylated MAPKSs to
corresponding actin protein in TRAIL-treated si caspase-7 RNA-transfected cells was
compared to this. Data are expressed as mean + SE of the densitometry data from three
independent experiments. (C) MAPKSs phosphorylation induced by TRAIL treatment (200 ng/
ml, 4 h) was examined in MCF-7 cells overexpressing caspase-3. Left panel: Western blot
analysis, C, control; T, TRAIL. Right panel: The ratio of the phosphorylated MAPKSs to
corresponding actin protein in TRAIL-treated MCF-7/pcDNA3 cells was set equal to 1, and
the ratio of the phosphorylated MAPKSs to corresponding actin protein in TRAIL-treated
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MCEF-7/caspase-3 cells was compared to this. Data are expressed as mean * SE of the
densitometry data from three independent experiments. (D) After caspase-3 transfection in
dose-dependent manner, MAPKSs phosphorylation was examined after TRAIL treatment (200
ng/ml, 4 h) in MCF-7 cells overexpressing caspase-3. Upper panel: Western blot analysis, C,
control. Lower panel: The ratio of the phosphorylated MAPKS to total protein of corresponding
MAPKSs in TRAIL-treated cells with no caspase-3 transfection was set equal to 1, and the ratio
of the phosphorylated MAPKS to total protein of corresponding MAPKSs in TRAIL-treated
cells with different amounts of caspase-3 transfection was compared to this. Note the difference
in vertical scale of the three subpanels. Data are expressed as mean + SE of the densitometry
data from three independent experiments.
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Figure 6. Mstl as a mediator of caspase activation to MAPKSs phosphorylation during TRAIL

treatment

(A) MAPKSs phosphorylation induced by TRAIL treatment (200 ng/ml, 4 h) was examined
after transfection of control vector (pSilencer) or pSilencer-siMstl into DU-145 cells. Left
panel: Western blot analysis, C, control; T, TRAIL. Right panel: The ratio of the
phosphorylated MAPKSs to total protein of corresponding MAPKSs in TRAIL-treated si
scrambled plasmid-transfected cells was set equal to 1, and the ratio of the phosphorylated
MAPK:Ss to total protein of corresponding MAPKSs in TRAIL-treated si caspase-7 plasmid-
transfected cells was compared to this. Data are expressed as mean + SE of the densitometry
data from three independent experiments. (B) Immunoblots were made of Mst1 expression in
control vector transfected (pSilencer) or pSilencer-siMst1 stably transfected single cell clones

from DU-145 cells. Lysates containing equal amounts of proteins (20 ug) were separated by

caspase-7

MST1

actin

SDS-PAGE and immunoblotted with anti-Mst1 antibody. (C) Control plasmid (pSilencer) or
pSilencer-siMst1 stably transfected cells (clone #6) or a pool of selected clones (#6, #7, and
#8) was treated with TRAIL (200 ng/ml) for 4 h, and phosphorylation of MAPKSs was
examined. Left panel: Western blot analysis, C, control; T, TRAIL. Right panel: The ratio of
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the phosphorylated MAPKS to total protein of corresponding MAPKS in TRAIL-treated si
scrambled plasmid-transfected stable cell clone or clone pool was set equal to 1, and the ratio
of the phosphorylated MAPKS to total protein of corresponding MAPKSs in TRAIL-treated si
Mstl plasmid-transfected stable clone or pool was compared to this. Data are expressed as
mean * SE of the densitometry data from three independent experiments. (D) Mst1 cleavage
was examined in the presence of caspase-8 inhibitor (Z-IETD-FMK 20 puM, 30 min)
pretreatment before TRAIL treatment (200 ng/ml, 2 h or 4 h) in DU-145 cells. Upper panel:
Western blot analysis. Lower panel: The ratio of the uncleaved caspase-8 or Mst1 to
corresponding actin at 0 h was set equal to 1 (not shown), and the ratio of the cleaved caspase-8
or cleaved Mstl to corresponding actin at 2 h and 4 h of TRAIL treatment was compared to
this. Data are expressed as mean = SE of the densitometry data from three independent
experiments. (E, F) Shift of cleaved forms of Mstl during TRAIL treatment (200 ng/ml, 0-4
h) was examined in by Western blot analysis in DU-145 cells or MCF-7 cells, respectively.
Lower panel: The ratio of the 40 kDa cleaved Mst1 to corresponding actin at 2 h was set equal
to 1, and the ratio of the 40 kDa cleaved Mst1 to corresponding actin at 3 h and 4 h was compared
to this, then again the 40 kDa cleaved Mst1 at 2 h was set equal to 1, and compared with 36
kDa cleaved Mstl for hours 2, 3 and 4. Data are expressed as mean + SE of the densitometry
data from three independent experiments. (G) Involvement of caspase-7 with the cleaved forms
of Mstl during TRAIL treatment (200 ng/ml, 2 h) was examined in DU-145 cells after
caspase-7 was downregulated by siRNA of caspase-7. Upper panel: Western blot analysis,
C, control; T, TRAIL. Lower panel: The ratio of the 20 kDa cleaved caspase-7 (or 40 kDa
cleaved Mstl) in TRAIL-treated si scrambled RNA-transfected cells to 35 kDa uncleaved
caspase-7 (or 59 kDa uncleaved Mstl) in TRAIL-treated si scrambled RNA-transfected cells
was compared to the ratio of the 20 kDa cleaved caspase-7 (or 40 kDa cleaved Mst1) in TRAIL-
treated si caspase-7 RNA-transfected cells to 35 kDa uncleaved caspase-7 (or 59 kDa uncleaved
Mstl) in TRAIL-treated si caspase-7 RNA-transfected cells. Data are expressed as mean + SE
of the densitometry data from three independent experiments.
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Figure 7. Differential MAPKSs regulation by Mst1 cleavage size in DU-145

(A) MAPKSs phosphorylation was examined after transfection of various mutants of Mstl in
which D326, D349, and both D326 and D349 were mutated. Each construct was transfected
into Mst1-knockdown selected cell clone (#6), then after 48 h of transfection, phosphorylation
of various MAPKSs was examined after the cells were treated with TRAIL (200 ng/ml, 4 h).
Upper panel: Western blot analysis, C, control; T, TRAIL. Lower panel: The ratio of the
phosphorylated MAPKS to corresponding actin in TRAIL-treated cells was set equal to 1 in
wild-type, and the ratio of the phosphorylated MAPKSs to corresponding actin in TRAIL-treated
cells with different Mst1 deletions was compared to this. Data are expressed as mean + SE of
the densitometry data from three independent experiments. (B) After construction of several
deletion mutants of Myc-tagged Mstl (Myc-tagged 1-349 amino acids of Mst1, Myc-tagged
1-349 amino acids with D326N of Mst1, and Myc-tagged 1-326 amino acids of Mst1), each
deletion mutant was transfected into Mst1-knockdown selected cell clone (#6). After 48 h of
transfection, phosphorylation of various MAPKSs was examined after the cells were treated
with TRAIL (200 ng/ml, 4 h). Upper panel: Western blot analysis, C, control; T, TRAIL. Lower
panel: The ratio of the phosphorylated MAPKS to corresponding actin in TRAIL-treated cells
in wild-type was set equal to 1, and the ratio of the phosphorylated MAPKSs to corresponding
actin in TRAIL-treated cells with different Myc-tagged Mst1 deletions was compared to this.
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Note the difference in vertical scale of the three sub-panels. Data are expressed as mean + SE
of the densitometry data from three independent experiments.
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Figure 8. Schematic diagram of Mst1 as a mediator between TRAIL-induced caspase activation
and MAPK activation
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