
Multiple Mechanisms of 3D Migration: The Origins of Plasticity

Ryan J. Petrie1 and Kenneth M. Yamada2

1Department of Biology, Drexel University

2Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial 
Research, National Institutes of Health

Abstract

Cells migrate through 3D environments using a surprisingly wide variety of molecular 

mechanisms. These distinct modes of migration often rely on the same intracellular components, 

which are used in different ways to achieve cell motility. Recent work reveals that how a cell 

moves can be dictated by the relative amounts of cell-matrix adhesion and actomyosin 

contractility. A current concept is that the level of difficulty in squeezing the nucleus through a 

confining 3D environment determines the amounts of adhesion and contractility required for cell 

motility. Ultimately, determining how the nucleus controls the mode of cell migration will be 

essential for understanding both physiological and pathological processes dependent on cell 

migration in the body.

Introduction

How cells move has puzzled and bewitched multiple generations of life scientists [1–4]. Cell 

movement is an essential component of many physiological processes, such as the shaping 

of tissues and organs during development [5,6] and wound healing [7]. Tragically, cell 

movement drives the spread of tumor cells throughout the body [8].

Cell motility has been studied historically on two-dimensional (2D) tissue culture surfaces 

[9]. This model has yielded many fascinating molecular mechanisms that mediate and direct 

cell movement across 2D surfaces [10]. In particular, the small GTPase Rac1 has emerged as 

a central node in controlling cell polarity and directional migration [11, 12]. Localized 

activation of Rac1 at the plasma membrane directs the actin nucleator Arp2/3 to form the 

branched filamentous actin (F-actin) network which drives protrusion of the lamellipodium 

[13], a flat, fan-shaped structure often found at the leading edge of cells on 2D surfaces [14]. 

Integrin receptors then form small clusters termed nascent adhesions beneath the extending 

lamellipodium [15, 16]. The small GTPase RhoA helps to connect these nascent adhesions 

to myosin-containing actin (actomyosin) stress fibers by activating the formin family of actin 
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nucleators, including mDia2 [17,18]. These force-generating machines respond to the 

rigidity of the 2D surface and provide the power to enlarge and strengthen the cell-matrix 

adhesions needed for moving the bulk of the cell body. The cell-matrix adhesions 

disassemble after the nucleus passes over them, and myosin II-mediated contractility 

squeezes the back of the cell forward [19,20].

The field of cell motility has focused increasingly on discovering how cells move in 3D 

extracellular matrix (ECM) environments, such as dermis and fibrillar collagen. Intriguingly, 

in addition to the well-described mode of lamellipodia-based motility, single cells can switch 

between several distinct 3D migration mechanisms, a phenomenon termed migratory 

plasticity (reviewed recently in [21,22]). Understanding how and why cells transition 

between multiple 3D migration mechanisms is emerging as one of the foremost challenges 

in understanding the control of physiological cell movement [23,24].

This review will describe the distinct migration mechanisms used by cells in 3D 

environments. We will highlight how Rac1-mediated lamellipodia formation, RhoA-

mediated actomyosin contractility, and integrin-mediated adhesion dictate which mechanism 

a cell will use to move in 3D. Finally, we will suggest that the relative level of difficulty in 

moving the nucleus through a 3D matrix is the primary factor governing the choice of 3D 

migration mechanisms.

The plasticity of 3D cell movement

An early example of plasticity in the movement of cells was identified in developing 

Fundulus fish [25]. During gastrulation, Fundulus deep cells move in the space between two 

confining cell layers. Non-adherent deep cells possess large, stable blebs, which switch to 

flat lamellipodia or filopodia when the cells become more adhesive [26], similar to zebrafish 

progenitor cells [27]. More recently, studying changes in tumor cell morphology led to the 

discovery of the mesenchymal (elongated) and amoeboid (rounded) modes of 3D cell 

migration [28,29]. It is now clear that many cell types can use distinct mechanisms to move 

through diverse 3D environments [30]. These modes of 3D cell migration are most easily 

classified by their relative cell-matrix adhesion and actomyosin contractility (Figure 1).

Actomyosin contractility and pressure-driven protrusion

In covalently cross-linked matrices, such as dermis and fibroblast-derived matrix, adherent 

fibroblasts can use their nucleus like a piston to generate intracellular pressure to drive 

forward a blunt, cylindrical lobopodial protrusion (Figure 1a) [31,32]. These elongated cells 

are highly polarized and migrate directionally, despite their lack of lamellipodia and a non-

polarized distribution of active Rac1 throughout the plasma membrane. In lobopodial 

fibroblasts, RhoA activity triggers actomyosin contractility to pull the nucleus forward via 

the nucleoskeleton-cytoskeleton linker protein nesprin 3. Due to the presence of a diffusion 

barrier around the nucleus, the forward motion of the nucleus pressurizes the cytoplasm to 

push the leading edge forward.

In contrast to fibroblasts, increasing RhoA activity in tumor cells moving in 2D and 3D 

results in a rounded cell shape [28,29] with actomyosin contractility localized to the back of 
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the cell (Figure 1c) [33]. Amoeboid tumor cells move using small, unstable blebs. These 

blebs may be generated by either weakened membrane-cortical cytoskeletal attachment, 

increased intracellular pressure, or both, and they help the cell to squeeze through the 3D 

matrix [4,34]. While some β1 integrin-mediated adhesion can be required for amoeboid 

tumor cell movement [29], the reduced focal adhesion size [31] and force generation [35] 

suggest that the adhesions in rounded, amoeboid cells are not nearly as strong as those found 

in more elongated cells, such as lobopodial fibroblasts.

Actin polymerization-driven membrane protrusion

In non-crosslinked 3D materials, such as type I collagen gels, adherent primary human 

fibroblasts and elongated (mesenchymal) tumor cells use low-pressure lamellipodial 

protrusions for migration (Figure 1b) [32]. Similar to lamellipodia on 2D surfaces, these 

protrusions use polarized Rac1 activity to direct Arp2/3-mediated actin-polymerization and 

push their plasma membrane through the matrix [31,36]. In contrast to lobopodial 

fibroblasts, intracellular pressure is lower and uniform throughout these cells. Some 

actomyosin contractility is still required for efficient 3D lamellipodia-based movment, 

however, most likely for aligning matrix fibers [37], enhancing protrusion stability [38], or 

moving the nucleus forward [39].

Inhibition of αvβ3 integrin-mediated cell-matrix adhesion reveals a second mechanism of 

actin-driven protrusion in breast cancer cells (Figure 1d). Normally, these cells utilize 

Arp2/3 to form lamellipodial protrusions in fibronectin-rich 3D collagen gels [36]. When 

Arp2/3 is inhibited, either directly or through increased α5β1 integrin recycling, these cells 

switch to using RhoA and the formin FHOD3 to help form distinctive spikes of F-actin at 

their leading edge. These actin spikes enable the aggressive invasive behavior of these 

elongated, metastatic cells [40].

Retrograde flow and 3D-dependent friction-driven movment

Interestingly, integrin-mediated adhesion, which is generally required for cells to move on 

2D surfaces, is not always necessary for cells to migrate in 3D [27,41–43]. When non-

adhesive cells are compressed between two surfaces, the rapid retrograde flow of 

actomyosin beneath the plasma membrane generates sufficient friction to propel the cell 

forward, despite the very low force produced (Figure 1e–g) [35]. Alternatively, the osmotic 

engine model of confined migration takes advantage of the semi-permeable nature of the 

plasma membrane to water, and it actively transports water from the front to the back of the 

cell to propel the cell forward (Figure 1h) [44]. Typically, cells that use these low-adhesion 

modes of friction-driven movement are unable to crawl along unconfined 2D surfaces, 

unlike amoeboid tumor cells [45]. Additionally, friction-driven, 3D cell movment generally 

does not require high actomyosin contractility, except to polarize the cells in some cases 

[43]. It remains unclear whether these forms of migration are efficient in fibrillar 3D 

matrices where contractility and adhesion are required [32,37,46].
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Correlating the mode of migration with the 3D environment

The nature of the matrix material surrounding cells often determines how a cell will migrate 

in 3D [31,47–49]. Interestingly, the relative constraints placed on the machinery for moving 

the nucleus by a particular 3D environment (Box 1) appears to correlate with the level of 

adhesion and actomyosin contractility required for overall cell migration (reviewed recently 

in [50]).

When cells move through narrow, confined channels that lack fibrillar matrix, adhesion and 

contractility are generally not required for cell motility (Figure 1e–h) [27,43]. Instead, 

friction with the walls may be sufficient to generate movement since the channel area is 

significantly larger than the 3D matrix pore size that limits nuclear movement [49]. In non-

crosslinked fibrillar 3D matrices such as collagen, however, adhesion and actomyosin 

contractility are required for cell movement, unless the nucleus is able to soften and change 

shape [51,52]. When the nucleus is rigid, such as in fibroblasts, adhesion and contractility 

are likely required to help the cell to apply traction force to align the matrix fibers and then 

to force the nucleus through the material [32,37,39,49]. Critically, low-pressure 

lamellipodial migration (Figure 1b) is not sufficient to move the nucleus through cross-

linked, fibrillar matrix [31]. Instead, primary human fibroblasts, myofibroblasts, and de-

differentiated chondrocytes use the power of myosin II to pull their nuclei through the cross-

linked environment and generate the pressure necessary for lobopodial protrusion (Figure 

1a) [32]. Thus, in this case, a cell can use a single mechanism to power both nuclear 

movement and protrusion of the leading edge.

Transitions between migration modes in a single cell

Interestingly, a single cell is capable of switching between different migration mechanisms 

in response to local changes to its soluble signaling and 3D matrix environments. The speed 

with which a cell can change to a new migration phenotype (≤ 15 minutes) [31] suggests 

these transitions do not require the expression of distinct sets of proteins, as needed at the 

onset of migration of heart precursor cells, for example [53]. Instead, cells likely transition 

between distinct migration modes by functionally rearranging the same core set of pro-

migration proteins, such as integrins, actin, myosin, Rac1, and RhoA, in response to 

differences in local signaling and 3D matrix environments. Determining how a single cell 

can transition between two or more migration modes will help us to understand how these 

processes are related mechanistically. For example, treatment of primary human fibroblasts 

with platelet-derived growth factor (PDGF) is sufficient to trigger high-pressure lobopodial 

migration (Figure 1a) in a cross-linked 3D matrix [31]. Inhibiting actomyosin contractility 

switches these cells to the less efficient Rac1-mediated, lamellipodial migration mechanism 

(Figure 1b). If integrin-mediated adhesion is prevented, for example in confined channels, 

cells further revert to friction-driven amoeboid (A1) fibroblast migration (Figure 1f) [27]. 

These results suggest that even though PDGF receptor signaling is sufficient to trigger all 

three fibroblast modes of 3D migration, there is a hierarchy of migration mechanisms. 

Specifically, cells first employ high-pressure lobopodia, followed by low-pressure 

lamellipodia, and finally the amoeboid (A1) migration mode. It will be important to 

establish how this hierarchy of fibroblast migration mechanisms is related to the choice 
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between mesenchymal and amoeboid tumor cell 3D movement; this information could help 

establish what, if anything, is abnormal in the movement of single metastatic cells. We 

speculate that reducing cell-matrix adhesion will be sufficient to convert highly-contractile 

lobopodial fibroblasts (Figure 1a) to the amoeboid form of integrin-dependent tumor cell 

movement (Figure 1c), since cells become rounded after inhibiting integrin-based adhesion 

[54].

How do contractility and adhesion dictate the mode of 3D migration?

The mode of migration may be governed by the way in which cells produce and apply the 

force necessary to move through their environment [42,55]. When cells are confined and 

prevented from adhering, the molecular clutch [56] is likely not engaged. A disengaged 

molecular clutch allows polymerized actomyosin cortical fibers to flow rapidly from the 

leading edge towards the rear of the cell [57]. Because cell-matrix adhesion is low, cells 

using such weak friction-based migration exert very little force on their surroundings, 

consistent with the characteristic actomyosin-independence of this type of cell movement 

[27,43,44]. These cells can migrate using either flat lamellipodia or stable blebs. It remains 

to be determined whether intracellular pressure affects how these cells move, but the key 

feature may be the relative tension in the plasma membrane, either in response to 

intracellular pressure or cortical rigidity, which controls protrusion choice during low-

adhesion 3D cell migration.

Once cell-matrix adhesion occurs, robust integrin engagement will trigger activation of the 

small GTPases Rac1 and RhoA [58,59], engage the molecular clutch, and transmit 

actomyosin-generated force from retrograde flow toward productive forward movment and 

matrix remodeling [60]. When the cell encounters cross-linked matrix, we speculate that an 

undiscovered mechanism detects the increased resistance to nuclear movement and activates 

the nuclear piston mechanism through increased RhoA signaling. This elevates actomyosin 

contractility in front of the nucleus, as discussed above, and generates the necessary force to 

support both traction and pressure increases. But why do these cells not continue to migrate 

using lamellipodia? One possibility is that elevated RhoA simply shuts off Rac1 signaling 

and lamellipodia formation through classical RhoA-Rac1 biochemical crosstalk [45,61]. 

Alternatively, membrane tension may be significantly elevated in high-pressure cells due to 

pushing of the cytoplasm against the plasma membrane. Since Rac1 activity is sensitive to 

membrane tension [62,63], this may help to prevent lamellipodia formation. It will be 

important to determine the relative contributions of physical mechanisms such as pressure 

and membrane tension versus intracellular signal transduction in determining whether cells 

form lamellipodia versus lobopodia.

Concluding Remarks

Despite the many examples of plasticity now reported for cells moving in 3D environments, 

several important questions remain to be addressed. It is still not clear how many different 

mechanisms can be used by cells to move. Automated, unbiased imaging approaches could 

more rapidly establish how many distinct mechanisms cells can use to migrate [30,64]. The 

function of each mode of migration is also unclear. Is each mode of migration simply the 
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most efficient way for a cell to move through a particular 3D environment, or does the 

particular mode help with other cellular functions, such as matrix remodeling? While 

investigating the movement of cells in 3D matrix has led to many unanticipated questions, it 

provides an important approach to answering the fascinating questions of how and why cells 

move in the body.
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Box 1

Nuclear movement as the rate limiting step of migration. The nucleus is the largest, 

stiffest component of a cell. When a cell is moving through a confined space, it is 

actually the resistance to migration imposed by the matrix on the bulky nucleus that can 

slow overall cell movement. A typical nucleus appears to be unable to travel through a 

pore less than 7 μm2 in area [49]. As this size limit is approached, actomyosin 

contractility and cell-matrix adhesion become more and more essential, either acting at 

the rear of the cell to squeeze the nucleus through the pore [33] or pulling the nucleus 

from the front, as in lobopodial fibroblasts [32]. Alternatively, cells can change the 

structure of their nucleoskeleton to soften the nucleus and render it more deformable for 

easier passage through restricted spaces/pores within 3D matrices [51,52]. Additionally, 

up-regulation of extracellular proteases, such as MT1-MMP, may act to cleave the matrix 

fibers that impede nuclear movement, thus facilitating 3D cell migration [29,49].
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Figure 1. 
Regulators of the plasticity of cell migration in 3D environments. The choice of each distinct 

mode of cell migration may require a combination of two variables, the strength of cell-

matrix adhesion and the degree of actomyosin contractility. Primary human fibroblasts are 

currently the only cell type known to span the range of established cell migration 

phenotypes. (a) Lobopodial fibroblasts require cell-matrix adhesion and actomyosin 

contractility to move efficiently through cross-linked extracellular matrix. These cells use 

actomyosin contractility and robust integrin-mediated adhesion to pull the nucleus forward, 

like a piston, to pressurize the anterior cell and protrude the plasma membrane. (b) When 

contractility is reduced in fibroblasts, either by placing then in non-crosslinked matrix or 

inhibiting RhoA signaling, they switch to lamellipodia-based migration. When adhesion is 

prevented in confined 3D channels, fibroblasts shift to adhesion- and contractility-

independent movement. In addition to fibroblasts, other cell types display similar patterns of 

motility. (c) Rounded, amoeboid tumor cells are highly contractile, but they rely less on cell-

matrix adhesions compared to primary human fibroblasts. Amoeboid tumor cells migrate 

using small, unstable blebs, yet have enough cell-matrix adhesion to migrate across 2D 

surfaces. When RhoA is inhibited in amoeboid cells, they switch to a mesenchymal mode of 

motility, driven by lamellipodial protrusions. (d) When adhesion and adhesion trafficking 

are re-programed in certain breast cancer cells, they switch from Arp2/3 mediated 

Petrie and Yamada Page 11

Curr Opin Cell Biol. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lamellipodia to formin-mediated, RhoA-dependent actin spikes. (e–h) Finally, many cells 

that are poorly adhesive and non-motile on 2D substrates can begin to move when confined 

between two surfaces; these cells are largely contractility-independent and adhesion-

independent, migrate using large stable blebs, and exert very little force against the 

substrate. Future work should establish whether these modes of migration are universal or 

cell-type specific, as well as establishing if other mechanisms can generate distinct modes of 

3D cell migration.
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