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Summary
After export from the nucleus it turns out that all mRNAs are not treated equally. Not only is mRNA
subject to translation, but through RNA binding proteins and other trans-acting factors, eukaryotic
cells interpret codes for spatial sorting within the mRNA sequence. These codes instruct the
cytoskeleton and translation apparatus to make decisions about where to transport and when to
translate the intended protein product. Signaling pathways decode extra-cellular cues and can modify
transport and translation factors in the appropriate cytoplasmic space to achieve translation locally.
Identifying regulatory sites on transport factors as well as novel physiological functions for well
known translation factors have provided significant advances in how spatially controlled translation
impacts cell function.

Introduction
Spatial regulation of translation within the cytoplasm results in the accumulation of newly
synthesized proteins in discrete locations of the cell. The most widely studied mechanism to
spatially restrict protein synthesis is through active sorting of the template for translation within
the cytoplasm, often termed mRNA localization [1]. mRNA localization allows cells the
flexibility to determine the exact place and time of protein synthesis in the absence of de
novo transcription providing a mechanism to quickly respond to changes in their extra-cellular
environment. The information required for localization is contained within the mRNA
sequence. There are many potential mechanisms to explain how a nucleic acid sequence
distributes an mRNA within the cytoplasm [1]. It is possible that sequences within the mRNA
interact directly with cytoskeletal elements [2], although most current models for localization
suggest that mRNA sequences interact with subsets of RNA binding proteins, forming a
Localizing Ribonucleo-Protein (L-RNP) complex. The L-RNP localizes through interactions
with cytoskeletal elements either directly or indirectly. Therefore, in addition to carrying the
information required for protein synthesis, an mRNA contains sequences whose purpose is to
select the appropriate complement of trans-acting factors to achieve proper spatio-temporal
regulation of translation.
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Many localized mRNAs are translationally repressed, and it has been hypothesized that this is
to prevent ectopic synthesis during transport [1]. Localized mRNAs need to associate with
localizing factors as well as reversible translational repressors that are responsive to spatial
cues in the cytoplasm. To ensure repression in the cytoplasm, translational regulatory factors
join the mRNA as soon as it is synthesized in the nucleus [3]. The activities of these localization
and translational repression factors need to be coordinated to achieve the proper timing of
events and can be contained within a single factor or provided by interacting factors. As a
consequence, a great deal of study has been devoted to the formation and function of the
components of RNP complexes. Global analysis of mRNA associated with RNP components
has observed that many of them associate with multiple functionally related mRNAs [4]. Thus
the cell's ability to respond to extra-cellular signals may be coordinately regulated through
RNPs by initiating the translation of many members of a multi-protein complex at the same
time and place [4]. This central role of RNP complexes in spatial control of translation will be
illustrated through one well-known mammalian mRNA localization factor, ZBP1. Other
systems, such as yeast and Drosophila operate through parallel mechanisms and will not be
detailed here due to space restrictions [5,6].

ZBP1 is a Src dependent translational repressor
ZBP1 is an RNA binding protein isolated from chick embryo fibroblasts based on its affinity
for a cis-acting 54 nucleotide cytoplasmic localization element within the 3′UTR of β-actin
mRNA known as the zipcode [7]. The zipcode sequence was necessary and sufficient for
peripheral targeting of RNA [8]. ZBP1 functions as a translational inhibitor by preventing 80S
ribosomal complex formation [3]. Importantly, Src phosphorylation of ZBP1 at tyrosine 396
resulted in translational derepression [3]. A non-phosphorylatable ZBP1 mutant prevented
translational derepression resulting in decreased peripheral actin and aberrant neurite
outgrowth [3]. Interestingly, β-actin translation sites were redistributed to the perinuclear
cytoplasm in myoblast cells containing a transfected β-actin mRNA lacking the zipcode,
supporting the hypothesis that interaction between ZBP1 and the zipcode prevents precocious
translation [9]. IMP1 (the human ortholog to ZBP1) RNP complexes, biochemically isolated
from HEK293 cells contain exon junction complex components and lack eIF4E, eIF4G, and
60S ribosomal subunits suggesting that IMP1 associated mRNAs have not undergone
translation [10]. In addition, a mouse ortholog of ZBP1 represses the translation of insulin-like
growth factor II mRNA in a developmentally regulated manner [11]. Altogether these data
demonstrate that an interaction between ZBP1 and the zipcode is required to regulate β-actin
mRNP complexes at the level of localization and translation. In this case, the localization and
translational repression activities for β-actin mRNP complexes are present within a single
trans-acting factor, and phosphorylation of this factor coordinates these activities.

β-actin mRNA is targeted in a Rho-dependent manner
In chicken embryo fibroblasts, β-actin mRNP complex targeting to the cell periphery was
induced with serum or PDGF implicating signal transduction pathways in this process [12].
Inhibiting tyrosine kinase activity prevented PDGF induced β-actin RNP complex targeting
[12]. Rho GTPases were similarly involved in localization as Rho inhibitors and a dominant
negative RhoA reduced serum induced peripheral targeting of β-actin mRNP complexes while
peripheral targeting increased in the presence of constitutively active RhoA [13]. In addition,
ROCK inhibition reduced β-actin mRNP complex targeting while overexpression of
p160ROCK increased targeting [13]. These data indicate RhoA and its downstream effector
ROCK are required for β-actin mRNP complex targeting to discrete cytoplasmic sites.
Consistent with the hypothesis that functionally related mRNAs may be coordinately regulated,
all seven mRNAs of the Arp 2/3 complex are targeted to cellular protrusions in what is thought
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to be a Rho GTPase dependent manner [14]. Thus RhoA and ROCK signaling is required for
peripheral targeting of RNP complexes.

ZBP1, adhesion and metastasis
ZBP1 levels in motile tumor cells collected in an in vivo collection assay were reduced 10 fold
compared to the levels in cells remaining in the tumor, inversely correlating ZBP1 levels with
metastatic potential [15,16]. Contrasted with this, high levels of IMP1 correlated with poor
prognosis in ovarian carcinomas and with metastasis in colon cancer [17,18]. Given ZBP1's
role as a translational regulator and localization factor, it is not surprising that ZBP1 expression
could result in disparate effects since different substrate mRNAs can be found within ZBP1
containing RNP complexes in different cell backgrounds. Thus ZBP1 may act as an RNA
regulon serving to integrate signals required for mRNA targeting and local translation of RNP
complexes containing functionally related transcripts [4,19].

Areas with high RhoA activity and high Src activity are likely sites of ZBP1 RNP complex
translational derepression establishing a local translation signature for ZBP1 containing RNP
complexes [3,13] This local translation signature is found at cell-cell and cell-substrate
adhesion complexes suggesting that ZBP1 mediated local β-actin translation may occur at these
sites. In fact, full-length β-actin mRNA is locally translated and accumulated at cell-cell
contacts in myoblast cells. In contrast, β-actin mRNA lacking the zipcode caused
mislocalization of β-actin translation sites resulting in a significant reduction in the amount of
N-cadherin targeted to adherens junctions [9]. Several studies support a role for ZBP1 mediated
local translation in regulating cellular adhesions[9,20-23]. Depletion of IMP1 from HeLa
adenocarcinoma cells resulted in a decrease in cell-cell contacts, reduced invadopod formation
and delayed cell spreading [20], and a ZBP1 paralog was found at spreading initiation centers
following replating in culture [21]. Moreover, β-actin, N-cadherin, β-catenin and other
members of adherens junction complexes contain putative zipcode sequences suggesting that
all of these mRNAs may be coordinately regulated. These data provide a physiological context
for localized translation and may explain how ZBP1 functions as a metastasis suppressor in
certain cell types [16,22]. Loss of ZBP1 expression in these cells may weaken cell-cell contacts
at the level of adherens and tight junctions resulting in cells that no longer have an intrinsic
polarity and are not attached as strongly to their neighbors making it easier for these cells to
orient and move toward chemo-attractant gradients that entice cells to move out of the tumor.

Localized translation in Neurons
The mammalian nervous system has emerged as a particularly influential system for studies
of localized translation and significant progress in our understanding the impact of spatially
regulating translation has come from studies in neurons. At least two events in differentiated
neurons have been proposed to involve localized translation within distinct domains of the
cytoplasm. The first role for localized mRNA translation in developing neurons is within the
growth cones of axons and is involved in axon guidance in response to guidance cues as well
as during axon regeneration after injury [24-26]. Interestingly, the ZBP1 dependent localization
system may play a role in this process similar to the one it plays in cell motility since β-actin
mRNA and the Xenopus ZBP1 homolog, Vg1RBP/Vera, have both been recently demonstrated
to localize to growth cones of Xenopus retinal axons [24,25]. Previously it was also
demonstrated that ZBP1 and localization of β-actin mRNA played a role in dendritic spine
formation of rodent hippocampal neurons [27,28].

A second role for localized translation in neuron cytoplasm is in synaptic plasticity (Fig. 1).
Early studies examining the long-term changes that occur at synapses following stimulation
recognized that new protein synthesis was required for later phases of these changes to occur
[29,30]. Modification of specific translation factors in response to synaptic activity have been
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defined recently and these studies have begun to reveal the molecular mechanisms by which
activity influences translation in neurons. There have been two major avenues of investigation
into the influence of synaptic activity on the translation machinery, one focused on the targeting
of mRNAs specifically to the axons or dendrites of neurons and the other focused on the
regulation of the general translation machinery due to synaptic activity. These two pathways
likely operate together to achieve local protein synthesis within the processes of neurons.

Targeting mRNA to active synapses
In mature neurons, specific targeting of mRNAs to distinct locations within the cytoplasm
provides the cell with a very powerful way to rapidly affect the concentration of particular
proteins at regions of the neuron quite distal to the nucleus, a particularly important function
when the lengths of some neuronal processes can reach several orders of magnitude over the
length of the cell soma [31,32]. Based on global analyses of mRNA content within the processes
of neurons it is clear that not all cellular mRNAs are present at these distal sites [33-35]. Because
the mRNA content within neurites is not equivalent to the population of mRNA present within
the whole cell, it is reasonable to hypothesize that mRNAs are under active sorting mechanisms
in the neuronal cytoplasm.

Recruitment of individual mRNAs directly to active synapses has not been demonstrated
directly, but many results indicate that synaptic activity influences the distribution of mRNA
as well as mRNA binding factors within the processes of neurons [27,36-39]. Several RNA
binding proteins demonstrate enrichment within microscopically observable punctate
structures, both in fixed cells as well as in living cells using fluorescent protein chimeras [40,
41]. Fluorescent mRNAs capable of transport into neuronal processes can be found in similar
formations after microinjection, and general RNA staining dyes also show punctate staining
[42,43]. Based on all of these observations, RNPs have been proposed to transport within
entities that have been called RNA granules [40]. The heterogeneous nature of these RNA
containing entities within the cytoplasm has made it challenging to gather information on
specific mRNA transport pathways by studying them. Despite this, it is abundantly clear that
synaptic activity influences the distribution and motility of these entities, and based on this it
has been proposed that mRNA localizes to active synapses through the RNA binding factors
and activities associated with RNA granules.

Micro RNAs (miRNAs) are a very recent addition to the repertoire of trans-acting factors that
are involved in recognizing mRNA sequence. miRNAs are endogenous small RNAs (21 nt)
that have complementarity to sites within subsets of mRNAs and as a result provide sequence
specific binding to those mRNAs [44]. miRNA targeted mRNAs are post-transcriptionally
silenced, through translational repression and perhaps enhanced mRNA turnover [45]. The
miRNAs are part of a much larger multi-protein complex, and the mRNA-miRNA interaction
functions to target this complex to an mRNA [45]. Several RNA binding proteins implicated
in the transport of mRNA as well as translational control and stability of mRNA have been
found among the components of these miRNA-associated complexes [46]. Moreover,
components of miRNA RNP complexes are found in processes and at synapses, and one
particular interaction (miR134-Limk1 mRNA) is important for controlling the size of dendritic
spines in a synaptic activity sensitive mechanism [47,48]. Although it has not been shown that
mRNA-miRNA interaction functions to localize mRNAs to the processes of neurons, this is
evidence that mRNA-miRNA interactions might repress translation of mRNAs that do get
localized.

Global activity, local effect
Recent work involving the translation machinery in neurons has also provided novel insights
into how regulation of the general machinery may participate in spatial control of translation
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within the cytoplasm. The example most relevant to neuron function in learning and memory
comes from studies of GCN2, an eIF2α kinase. eIF2α phosphorylation status appears to play
a central role in controlling expression of the CREB-antagonizing ATF4 transcription factor
[49,50]. ATF4 acts to repress memory formation that is stimulated by CREB mediated
transcription, and GCN2-/- mice make less ATF4, therefore memory formation is enhanced
[49]. The effect of GCN2 ablation in this process being due to eIF2α is supported by mice
harboring a mutated eIF2α allele, that prevents the inhibitory GCN2 phosphorylation, also
showing enhanced memory formation [50]. This suggests an attractive model for spatial control
of translation where at the activated synapses in the neuronal memory circuit, local changes in
eIF2α phosphorylation lead to the effects on ATF4 protein production. It has not been
demonstrated directly that eIF2α is only modified locally or that ATF4 is translated at active
synapses. However, given the strong spatial partitioning of synapses within the cytoplasmic
volume of a neuron it is feasible that controlling a general factor by local activation from
individual synapses can provide spatial control of translation of specific mRNAs. Recent
publications have also explored responsiveness of the general translation machinery to synaptic
activity suggesting that multiple mechanisms of translational control may be impacted by
synaptic activity [51-54].

Concluding Remark
In this review we examined data on the physiological consequences of mRNA localization and
local translation in both somatic and neuronal cells. Emerging evidence indicates that RNP
complexes containing translational silencing factors are key mediators of a cell's initial
response to extracellular environmental changes. In certain carcinoma cells, ZBP1 mediated
regulation of β-actin translation sites may be required to prevent progression to metastasis. In
neurons, regulated local translation occurs within growth cones to impact guidance as well as
at synapses to effect plasticity in learning and memory. These examples underscore the
importance of mRNA targeting and local translation on the physiology of multiple cell types.
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Figure 1. Spatial control of mRNA translation in neurons
Localizing mRNA to be transported to the neuronal processes begins RNP (L-RNP) formation
within the nucleus, helping to ensure stringent translational repression. In the cell soma after
export the mRNA (blue line) and associated RNA binding proteins (gray circle) form the L-
RNP. In one pathway, an L-RNP is actively transported along the axon (axonal mRNA
transport) to the growth cone where guidance cues activate local signal transduction pathways
(yellow stars). This activates kinases (open circle; inactive kinase, red circle; activated kinase)
that modify components of the transport and/or translation machinery, resulting in local
translation (represented by 40S and 60S ribosomal subunits) of the mRNA toward the direction
of the guidance cues to aid in navigation of the growth cone. In another pathway an L-RNP is
actively transported into the dendrites (dendritic mRNA transport). At the post-synaptic region
of activated synapses (green pre-synaptic terminal) synaptic activity activates signal
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transduction pathways, activating kinases that modify components of the transport and/or
translation machinery, resulting in local translation of the mRNA in the vicinity of the guidance
cues. The lack of activated kinases at non-stimulated synapses (red pre-synaptic terminal) does
not cause translational de-repression at these sites.
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