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Abstract
Lipidomics is a logical outcome of the history and traditions of lipid biochemistry and advances in
mass spectrometry are at the heart of a renaissance in understanding the roles of lipids in cellular
functions. Our desire to understand the complexity of lipids in biology has led to new techniques that
allow us to identify over 1000 phospholipids in mammalian cell types and tissues. Improvements in
chromatographic separation and mass spectrometry have positioned us to determine not only the lipid
composition (i.e., parts list) of cells and tissues, but also address questions regarding lipid substrates
and products that previously overwhelmed traditional analytical technologies. In the decade since
lipidomics was conceived much of the efforts have been on new methodologies, development of
computer programs to decipher the gigabytes of raw data, and struggling with the highly variable
nature of biological systems where absolute quantities of a given metabolite may be less important
than its relative change in concentration. It is clear that the technology is now sufficiently developed
to address fundamental questions about the roles of lipids in cellular signaling and metabolic
pathways.

Introduction
Genomic and proteomic innovations revealed the need to explore metabolic processes at the
system level and lead inevitably to the development of lipidomics. Our laboratory initiated
efforts to develop a lipidomics platform in the late 1990s. A driving force was the recognition
that cells generate phosphatidic acid, a lipid second messenger, via multiple pathways. Thin
layer chromatography and high performance liquid chromatography (HPLC) were proving
insufficient to adequately address questions of sources of lipid molecular species. The focus
of the work was to integrate changes in cellular lipids into the larger network of cell surface
receptor signaling pathways. Much of the early efforts were designed to define how pattern
changes in cellular lipids influenced the cellular response to G protein coupled receptor
activation. Thus, lipidomics began with a focus on identifying lipid species that act as cellular
messengers and how these molecules integrate signaling and metabolic processes of cells.

As originally conceived computational lipidomics was a mass spectrometry based profiling
approach that includes the resolution, detection, and identification of lipid species [1,2].
However, it was intended to be more than comprehensive lipid analysis and to include a
systems-biology approach to the study of lipids, their interaction with other molecules, their
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cellular functions, and determination of pattern changes in membrane lipid composition
following signal transduction events or other important biological processes [3–5].
Characterization of lipid species by MS has evolved with advancements in instrumentation and
technology. The variety of ionization methods used in the current instrumentation has the
ability to generate gas phase ions from nonvolatile samples and has expanded the capabilities
for detection and analysis of a wide range of lipids of all sizes and structures, described in
recent reviews [6,7]. The many facets of lipidomics reflect both the diversity of lipid species
in biology and the plethora of functions mediated by lipids in physiology and disease. Owing
to lipidomics technology a precise phospholipid composition of E. coli was recently reported
[8], the critical role of lipids in HIV replication was unveiled [9], and the spatial and temporal
differences in phospholipid composition during embryo implantation were revealed [10].
Using lipidomics technology to examine phospholipid composition of liver extract in a
hypercholesterolemia study potential biomarkers were recently identified [11]. Other uses that
further illustrate the diversity of applications include differentiating roles of two diacylglycerol
kinase isoenzymes in lipid metabolism [12], defining lipid changes in brain regions of a mouse
model of Parkinson’s disease [13] and use of lipid MS as a screen for development of inhibitors
of phospholipases [14].

Mass spectrometric techniques for glycerophospholipid identification and
quantitation

The two predominant methods for phospholipid identification and quantitation are shotgun
lipidomics and LC/MS. These approaches have distinct strengths and weaknesses, but can be
used most effectively in combination.

Identification of lipids by collision-induced dissociation
Tandem mass spectrometry (MS/MS or MS2) is an essential tool in the identification of
glycerophospholipids. In excess of 1000 phospholipids are present in mammalian cell types.
This complexity leads to isobaric inter-class species (i.e. 34:0 PC and 34:1 PS in positive-ion
mode), which are inseparable by direct infusion MS analysis. An even more complicated
situation arises when samples have intra-class isobaric compounds (i.e. 38:4 PI, which can be
composed of 18:0/20:4, 18:1/20:3, or 16:0/22:4 fatty acid combinations, to name a few
examples). Mixtures of isobaric species such as these are extremely difficult to separate by any
MS1 chromatographic technique.

Unambiguous structural characterization of the glycerophospholipids requires an
understanding of the fragmentation processes involved in each lipid type. Hsu and Turk have
recently completed an in-depth study of the major phospholipid classes [15–22]. Product ions
arising from both positive and negative-ion mode fragmentatio n processes have been
investigated yielding a wealth of information on fatty acid, lysolipid and headgroup-related
fragments expected for each lipid type. In addition to the predominant diacyl phospholipids,
fragmentation processes for ether- and vinyl ether-containing phospholipids have also been
reported [21]. When chemically pure samples are analyzed, the sn-1 and sn-2 fatty acid
composition can be determined following analysis of the lysolipid fragment ratios.

Shotgun lipidomics
Important innovations in ESI intrasource separation of lipids by direct infusion MS without
prior chromatographic separation was described by Han and Gross over the last several years
[23–27]. This approach, now termed “shotgun lipidomics”, has gained popularity [28–31]. Cell
extracts are analyzed by direct infusion MS using precursor ion scans (PIS) and neutral loss
scans (NL) to identify key lipid fragments. Using this method, lipid class (headgroup
identification) is accomplished using PIS and/or NL scans in positive- and/or negative-ion
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modes (see Table 1). The fatty acid content of individual lipids is then identified by PIS analysis
in negative-ion mode. For example, 38:4 PI (18:0/20:4 PI) would be identified by a precursor
ion scan of 241 m/z in negative ion mode (PI headgroup) as well and PIS scans of 283 m/z
(18:0 FA) and 303 m/z (20:4 FA). In its current form, shotgun lipidomics now widely utilizes
automated nanospray techniques. This facilitates extended analysis of low volume samples
that would not be practical using other analytical methods. Overall, this technique is excellent
for identifying the major pools of phospholipids (ca. 90% of the total phospholipid pool by
mass). However, this technique in its current form is not ideal for identifying trace level
phospholipids and there are significant limitations in the ability to achieve absolute quantitation
except for the most abundant species.

HPLC/MS lipid identification and quantitation
The application of ESI-MS as a soft ionization technique, originally developed for
macromolecules [32], was an important breakthrough in the analysis of glycerophospholipids.
Although shotgun or direct infusion mass spectrometry offers some advantages for analysis of
phospholipids from complex mixtures there are limitations in its use. The presence of isobaric
species, ion suppression, and exact lipid identification requires a different analytical approach.
Some of these problems can be solved by interfacing HPLC with on-line ESI-MS. Initial
separation of phospholipids by class can be achieved by normal phase LC/MS [33–36] resulting
in less ion suppression, high ionization yield and increased sensitivity for minor components.
A gradient as well as isocratic elution can be applied [35,36]. An important factor for lipid
quantitation is the use of internal standards which have a similar instrumental response to the
one of the analytes since it depends on the head group chemistry, acyl chain length and degree
of unsaturation. [37]. The use of several standards per class ensures greater number of minor
species identified in a complex lipid extracts as this relaxes the requirement for low lipid
concentrations needed for linearity [35,37].

A combination of reverse phase HPLC and MS allows detailed analysis of individual molecular
species with a high precision in a focused approach applicable for some limited categories of
molecules, including polyphosphoinositides [38–41]. Another useful technique based on LC/
MS is the focused analyses of specific groups of phospholipids by way of employing headgroup
specific scans [39,40].

The practical results from comprehensive lipidomics profiling of different cells or tissues is
the discovery of novel lipid species previously not identified. The strategy for MS based novel
lipid identification and characterization is presented in Fig. 1. Based on this strategy we have
recently identified a unique ether phosphatidylinositol species during lipidomics profiling of
human cirrhotic liver (unpublished data). The application of lipidomics profiling have led to
discovery of N-acyl phosphatidylserine in mouse brain [42,43] and n-acyl
phosphatidylethanolamine and phosphatidylserylglutamate in E. coli [44,45].

Issues in mass spectrometry-based data analysis and quantification
Independent of the analytical method used, the rate limiting step in lipidomics is still the data
analysis that can impede the screen of large sets of samples. Nonetheless, the sine qua non of
scientific research is quantitation, and state-of-the-art lipid data analysis has been greatly
transformed by the rise of algorithms, tools, and standards for use in quantification. Generally,
this is accomplished through the judicious use of ESI-LC/MS for high quality separation of
lipid extractions along gradients that allow for area under curve (AUC) peak integrations, or
by use of headgroup-specific mass scanning techniques. The workflow in a typical quantitative
analysis system is summarized in Figure 2.
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There are several complications that must be dealt with in order to accomplish a comprehensive
lipidomics analysis. Readers are referred to a detailed overview of the data analysis
methodologies currently in use in the field [46], though several challenges for future
improvements exist. Here, we focus on a few common features of state-of-the-art quantification
systems currently in use. At the beginning of the data analysis pipeline, more than one strategy
exists for automated ESI-MS/MS identification [30,47], but none is ideal. Once full- or
headgroup-specific-scans by ESI-MS have been acquired, visualization of the raw data is a
critical step to ascertain quality control, to error check AUC integrations, which may often be
semi-automated, and to ensure that physical separation on LC columns has been accomplished
as intended. Instrument manufacturer software is currently inadequate, and eve n open source
solutions [48] may require considerable customization for use with complex lipid mixtures.
This is followed by the use of background baseline corrections and signal-to- noise criteria in
most analysis systems [e.g., 48]. As the ionization efficiency varies across carbon number,
degrees of unsaturation and headgroup composition under normal ESI MS conditions, robust
quantitation methods take this factor into account. When appropriate (e.g., for lipid classes
with large heterogeneity of ionization efficiency), multiple internal standards per class are
typically used [35,37]. Particularly when analyzing classes with large numbers of species,
deisotoping is essential to accurate quantitation, and algorithms to accomplish this exist [49].
The application of such methods in portions of the spectrum where lipid species exist at nearly
every m/z or where there are severe isobaric overlaps are still a major challenge. In some
samples (e.g., headgroup scanning conducted with a large number of heterogeneous acyl chain
lengths and number of double bonds, or direct inject MS), relative quantitation within similarly
ionizable class groupings is reported. Such profiling analyses have the greatest potential to be
informative when the lipid subclass of interest can be measured over the broadest number of
identified spesies possible and with sufficient numbers of replicates to draw robust conclusions.

Association of measured lipid changes with biological pathways of interest is an emerging area
in systems biology. Various methodologies are in active states of development and use [47,
50]. The number of lipids simultaneously measured continues to grow and the appreciation of
increased complexity of lipid species is likely to increase dramatically as emerging techniques
better define positional specificity of double bonds on fatty acids [51]. The need for application
of modern methods to limit the false discovery rate [52] in high-dimensional statistical
comparisons is also essential. With thousands of lipid analytes per experiment, such issues are
as important in lipidomics as in other omics endeavors.

Conclusions
The combination of highly sensitive ESI-based mass spectrometric techniques and the ability
to identify and quantitate thousands of lipid species has made mass spectrometry an essential
tool for lipid biochemistry. Results from lipidomics profiling provides insights into the roles
of lipids in cellular networks and is being used to identify prognostic or diagnostic markers of
disease progression. An extensive database on the lipid composition of macrophages, mass
spectra, CID-fragmentation spectra, and useful resources for lipidomics research can be found
at the LIPID MAPS website, http://www.lipidmaps.org/.
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Figure 1.
Strategy for MS-based novel lipid identification. Glycerophospholipids from biological
extracts are separated by HPLC chromatography. Unknown peaks are subjected to MS/MS or
MSn analysis to tentatively identify lipids. Synthetic standards are then used to confirm the
lipid identity using HPLC retention time (RT) and MSn fragmentation patterns.

Ivanova et al. Page 8

Curr Opin Chem Biol. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Workflow in a quantitative lipid analysis determination. Fragmentation of member species are
conducted to determine the molecular species. Varying degrees of quantitation (e.g., absolute
or relative) can be performed on data coming from either full or headgroup-specific scans in
systems with or without an LC column. A series of data processing steps including but not
limited to baseline subtractions, deisotoping, and peak matching to lipids positively identified
by MS/MS are standard elements in a typical lipidomics system. The sophisticated use of higher
order statistical analysis, often multivariate by nature, is growing in applications and
importance.
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Table 1

Summary of MS/MS methods for phospholipid headgroup analysis

Lipid Class Precursor Ion MS/MS Mode Fragment

PA [M-H]− PIS, 153 m/z glycerol phosphate -H2O
PC [M+H]+ PIS, 184 m/z phosphocholine

[M+Li]+ NL, 189 m/z Li cholinephosphate
[M+Na]+ NL, 205 m/z Na cholinephosphate
[M+Li/Na]+ NL, 59 m/z trimethylamine
[M+Li/Na]+ NL, 183 m/z phosphocholine
[M+Cl]− NL, 50 m/z methylchloride

PE [M-H]− PIS, 196 m/z glycerol phosphoethanolamine -H2O
PG [M-H]− PIS, 153 m/z glycerol phosphate -H2O

PIS, 227 m/z glycerol phosphoglycerol -H2O
PI [M-H]− PIS, 153 m/z glycerol phosphate -H2O

PIS, 241 m/z cyclic inositol phosphate
PS [M-H]− PIS, 153 m/z glycerol phosphate -H2O

NL, 87 amu serine
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