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Highlights: 

 Film-coated microparticles were developed for colon-specific drug delivery 

 Starch-coated films showed improved acidic and enzymatic resistance in the GI tract 

 Native and retrograded starches were used as binders to reinforce the resistance 

 Suitable molecular mass and high crystallinity of starch are important factors 
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ABSTRACT： 

The aim of this study was to prepare and characterize a novel type of starch-coated 

microparticles (MPs) allowing site-specific delivery of bioactives to the colon. An oral 

colon-specific controlled-release system was developed in the form of MPs coated with a resistant 

starch (RS2/RS3) film (RS@MPs) through an aqueous suspension coating process. The RS2 was 

chosen from a high-amylose cornstarch with 88.5% digestion resistibility. The RS3 was prepared by 

a high-temperature/pressure (HTP) treatment, with the following of enzymatic debranching, and 

retrogradation, resulting in a dramatic increase in enzymatic resistance (RS3 content: 76.6%). 

RS@MPs showed 40.7% of 5-aminosalicylic acid release within 8h. The in vivo study of 

fluorescein-loaded RS@MPs indicated the high acidic and enzymatic resistibility of RS@MPs and a 

restrained release in the upper GIT. Therefore, RS@MPs has revealed to be a high potential system 

for accurately targeting bioactive compound delivery to the colon. 

 

Keywords: 

Resistant starch; aqueous suspension film coating; controlled release; oral colon-specific delivery. 

 

Chemical compounds studied in this article 

Starch (PubChem CID: 24836924); Water (PubChem CID: 962); Ethanol (PubChem CID: 702); 

Sodium hydroxide (PubChem CID: 14798); Acetic acid (PubChem CID: 176); Iodine (PubChem 

CID: 807); Potassium iodine (PubChem CID: 4875); D-Glucose (PubChem CID: 5793); 

Hydrochloric acid (PubChem CID: 313); Phenol (PubChem CID: 996); Sulfuric acid (PubChem CID: 

1118); Potassium dihydrogen phosphate (PubChem CID: 516951); Dipotassium hydrogen phosphate 
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(PubChem CID: 24450); Citric acid (PubChem CID: 311); Dimethyl sulfoxide (DMSO) (PubChem 

CID: 679); Lithium bromide (PubChem CID: 82050); 5-aminosalicylic acid (5-ASA) (PubChem 

CID: 4075); Triethyl citrate (PubChem CID: 6506); Fluorescein isothiocyanate (FITC) (PubChem 

CID: 18730); Isoflurane (PubChem CID: 3763); Potassium chloride (PubChem CID: 4873); Sodium 

chloride (PubChem CID: 5234); 4’,6-diamidino-2-phenylindole (DAPI) (PubChem CID: 2954). 
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Nomenclature 

5-ASA 5-aminosalicylic acid 

DAPI 4’,6-diamidino-2-phenylindole 

DDSs drug delivery systems 

DMSO dimethyl sulfoxide 

FITC fluorescein isothiocyanate 

G50 Gelose 50 

G80 Gelose 80 

GIT gastrointestinal tract 

GPC gel permeation chromatography 

HACS high-amylose cornstarch 

HPMC hydroxypropyl methylcellulose 

HTP high-temperature/pressure 

IVIS in vivo imaging system 

MALS multi-angle light scattering 

Mn number-average molecular weight 

MPs microparticles 

Mw weight-average molecular weight 

NCS normal cornstarch 

OCT optimum cutting temperature 

PBS phosphate buffered saline 

PVP povidone 
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RC relative crystallinity 

RDS rapidly digestible starch 

RS resistant starch 

RS@MPs RS2/RS3 film-coated MPs 

SCFA short-chain fatty acids 

SDS slowly-digestible starch 

SEM scanning electron microscope 

SGF simulated gastric fluid 

SIF simulated intestinal fluid 

WCS waxy cornstarch 

XRD X-ray diffraction 
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1. Introduction 

Emphasis has been placed on controlling the rate and/or site of bioactive compounds released 

from oral formulations for improving the therapeutic potentials (Sastry, Nyshadham & Fix, 2000). 

The colon is one area that would benefit from the development and use of such controlled release 

technologies. Colon-specific drug delivery systems (DDSs) have attracted many researchers due to 

distinct advantages such as near neutral pH, long transit time and reduced enzymatic activity (Haupt 

& Rubinstein, 2002). Delivery of active compounds to the colon can highly benefit for various 

applications, including the reduced administered dosage and side effect of anti-inflammatory drugs 

for local treatments, and the avoidance of unwanted digestion and the improved bioavailability of 

protein drugs for systemic absorption (Vinaykumar, Sivakumar, Tamizhmani, Rajan & Chandran, 

2011).  

An ideal colon-specific DDS should effectively suppress the release of active compounds in the 

stomach and small intestine. However, there could be some technical challenges, which are 

associated with the pH variations along the gastrointestinal tract (GIT), the digestion enzymes, and 

the long transit time (Hamman, Enslin & Kotzé, 2005). To overcome these obstacles, recent 

developments in polymeric materials offer opportunities to facilitate the advance of colon delivery 

carriers, including the use of bacteria-degradable, pH-sensitive, pressure-sensitive, and 

time-dependent coating polymers (Lin, Chen & Luo, 2007; Maroni, Zema, Del Curto, Foppoli & 

Gazzaniga, 2012; Said, 2005). Among materials susceptible to colonic biodegradation, the interest in 

polysaccharides has grown strongly in recent years because of their nontoxicity, safety, and good 

biocompatibility (Sinha & Kumria, 2001). In particular, starch, as the second abundant 

polysaccharide, has received considerable attention due to its low cost, diversity of source, and high 
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availability (Remon, Voorspoels, Radeloff & Beck, 1996). The starch that is not hydrolyzed in the 

small intestine but can be degraded by colon microorganisms, is considered as resistant starch (RS) 

(Thompson, 2000), which plays an important role in digestive physiology (Fuentes-Zaragoza, 

Riquelme-Navarrete, Sánchez-Zapata & Pérez-Álvarez, 2010). RS is normally classified into five 

main types, namely RS1, RS2, RS3, RS4, and RS5 (Fuentes‐ Zaragoza et al., 2011). These RSs can 

offer additional advantages of starch as colon-specific carrier materials, as the fermentation of RSs 

by anaerobic microflora in the colon can produce short-chain fatty acids (SCFA) (Rubinstein, 1990). 

These SCFA may play an important role in maintaining health by reducing the risk of diseases, such 

as inflammatory diseases, Type 2 diabetes, obesity, and heart disease (Ríos-Covián, Ruas-Madiedo, 

Margolles, Gueimonde, de los Reyes-Gavilán & Salazar, 2016).  

For the purposes of controlled release and colon targeting, a well-accepted concept is to realize 

dosage forms to encapsulate active compounds with polymeric film coatings. Especially, much 

attention has been paid to the development of aqueous film coatings, instead of organic solvent, for 

safety, economic, and environmental reasons (Iyer, Hong, Das & Ghebre-Sellassie, 1990). Starch has 

been extensively evaluated for its film-forming ability as drug delivery coatings (Palviainen, 

Heinämäki, Myllärinen, Lahtinen, Yliruusi & Forssell, 2001). However, due to the hydrophilicity of 

starch and with the aim to avoid unwanted release of bioactives in the upper GIT, starches that are 

used as coating films need to be modified to possess particular features such as insolubility and 

impermeability (Cummings et al., 1996; Siccardi, Turner & Mrsny, 2005), resulting from the 

resistance to the acidic gastric pH or intestinal enzymes in the upper GIT (Chourasia & Jain, 2004). 

Up to now, most studies of starch-based films for colon-specific delivery have focused on blending 

commercially available polymers with starch derivatives to effectively control the physicochemical 

ACCEPTED M
ANUSCRIP

T



8 

properties of the blended coating films based on, e.g., peas starch/ethylcellulose (Karrout et al., 

2011), high-amylose starch/Surelease® (Freire, Podczeck, Veiga & Sousa, 2009), and 

amylose/Ethocel® (Milojevic et al., 1996). Yet, motivated by the low cost and nontoxicity of starch, 

few studies have concerned the preparation of starch-only coating films for effective colon-specific 

delivery based on, for example, chemically modified resistant starch acetate (RS4) (Chen, Li, Li & 

Guo, 2007; Chen, Li, Pang, Li, Zhang & Yu, 2007; Chen, Pu, Li & Yu, 2011; Li, Liu, Chen & Yu, 

2011; Pu, Chen, Li, Xie, Yu & Li, 2011). Moreover, retrograded (recrystallized) starch (RS3) was 

also reported as a film coating material with a high potential for oral colon-specific delivery (Situ, 

Chen, Wang & Li, 2014). From this point, a colon-specific starch coating can be achieved merely by 

physically modified starch (retrograded RS3). Meanwhile, native starch granules can be a good 

source of RS2, which show high enzymatic resistance and can be hydrolyzed slowly by α-amylases 

(Chen, Liang, Li, Chen & Xie, 2016). The addition of particles to the coating may enhance its 

mechanical strength (Hari & Nair, 2016), which can help to counter intensive gastric digestion to 

avoid unwanted early release. Regarding this, if microparticles (MPs) loaded with bioactive 

compounds are coated with RS2/RS3 by an aqueous suspension film coating process, where the 

gelled starch molecules can aggregate with native starch particles that are suspended in the starch 

paste upon dehydration and drying, a colon-specific controlled-release system with high performance 

may be achieved. In this aqueous suspension system, native starch particles can maintain the high 

solid content while decreasing the viscosity of the suspension, thus reducing energy consumption 

(Borgquist, Zackrisson, Nilsson & Axelsson, 2002). In addition, due to the large size range of native 

RS2 particles, RS3 paste can also act as a binder to avoid the sediment of RS2 particles during the 

film coating process, and the reinforcement by RS2 granules has the high potential to allow the 
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formation of firm and compact films.  

The present investigation attempts to develop a colon-specific controlled-release system in the 

form of RS2/RS3 film-coated MPs (RS@MPs) by an aqueous suspension film coating process. The 

approach consisted of two key parts. The first part is the preparation of RS2/RS3 film, which could 

be achieved simultaneously by the aqueous film coating technique using suspensions consisting of 

raw starch particles (RS2) and RS3 pastes. RS3 pastes can be prepared by a 

high-temperature/pressure (HTP) treatment, followed by enzymatic debranching, and retrogradation. 

An attempt was also made to estimate the resistance of RS2 and RS3 to the acidic gastric pH or 

intestinal enzymes in the upper GIT by studying their characteristics and the digestion resistibility. 

The second part is about release tests to verify the potential of colon-specific controlled release. 

5-aminosalicylic acid (5-ASA) was chosen as an active compound to evaluate the release behavior of 

RS@MPs in in vitro experiments (i.e., under the conditions of simulated human GIT). Besides, to 

understand the biocompatibility, the in vivo effectiveness of RS@MPs was also evaluated by an in 

vivo imaging system (IVIS) and tissue histospectroscopy in mice. 

 

2. Materials and methods 

2.1. Materials 

Six commercially available cornstarches with different amylose/amylopectin ratios were used in 

this experimental work: (1) Gelose 80 (G80), supplied by Penford Australia Ltd. (Jannali, NSW, 

Australia); (2) Gelose 50 (G50), supplied by Penford Australia Ltd. (Jannali, NSW, Australia); (3) 

High-amylose cornstarch (HACS), supplied by Heilongjiang Huaneng Specialized Cornstarch Co., 

Ltd. (Heilongjiang, China); (4) Hylon V, supplied by National Starch and Chemical Co., Ltd. 
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(Bridgewater, NJ, USA); (5) Normal cornstarch (NCS), supplied by Inner Mongolia Yu Wang 

Biological Science Technology Co., Ltd. (Inner Mongolia, China); and (6) Waxy cornstarch (WCS), 

supplied by Qinhuangdao Lihua Starch Co., Ltd. (Hebei, China). 

Potato amylose was purchased from the Heilongjiang Academy of Agricultural Sciences (Harbin, 

China); Pepsin and pancreatin from Sigma-Aldrich Co., LLC (Santa Clara, CA, USA); D-Glucose 

from Sigma Chemical Co. (St. Louis, MO, USA); Porcine pancreatic α-amylase and 

amyloglucosidase from Sigma-Aldrich (St. Louis, MO, USA); Glucose-oxidase peroxidase assay kit 

from Megazyme International Ireland Ltd. (Wicklow, Ireland); Pullulanase from Yulibao Biology and 

Technology Co., Ltd. (Guangzhou, China); 5-ASA from Yuancheng Technology Development Co., 

Ltd. (Wuhan, China); Microcrystalline cellulose from Anhui Shanhe Medicinal Accessary Material 

Co., Ltd. (Huainan, China); Medicinal starch from Defeng Starch Sugar Co., Ltd. (Shunde District, 

Foshan, China); Povidone (PVP) k 30 and hydroxypropyl methylcellulose (HPMC) from Guangzhou 

Feibo Botechnological Co., Ltd. (Guangzhou, China); Fluorescein isothiocyanate (FITC) from 

Biotium Inc. (Fremont, California, USA); Optimum cutting temperature (OCT) compound 

(McCormick Cryo-STAT) from Changzhou Philas Instrument Co., Ltd. (Jiangshu, China); and 

4’,6-diamidino-2-phenylindole (DAPI) from Seajet Scientific Inc. (Beijing, China). 

 

2.2. Characterization of native starches 

2.2.1. Amylose content analysis 

The amylose contents of native starches (G80, HACS, Hylon V, G50, NCS, and WCS) were 

determined using a modified method of ISO 6647-2:2007 of the International Standardization 

Organization (ISO, 2007). Specifically, 0.1 g (dry basis) of the starch was weighed and dissolved in 1 
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mL of ethanol and 9 mL of sodium hydroxide solution (1 mol/L), which was then heated in boiling 

water for 10 min. After cooling off, this solution was diluted to 100 mL in a volumetric flask with 

deionized water. An aliquot (2.50 mL) of this solution was then diluted with 25.00 mL of water, 0.50 

mL of acetic acid solution (1 mol/L), 0.50 mL of I2/KI solution (0.0025 mol/L I2, and 0.0065 mol/L 

KI). The absorbance of this solution was read at 620 nm using an Evolution UV/vis 

spectrophotometer (Thermo Scientific, Waltham, USA). The amylose from potato (amylose content: 

97.0%) was used for the calibration curve (R2 = 0.9962). 

 

2.2.2. Digestion resistibility in the upper GIT 

The in vitro digestibility of six native starches (G80, HACS, Hylon V, G50, NCS, and WCS) was 

determined following the reported method (Thompson, Button & Jenkins, 1987) with modification. 

Duplicate 1 g (dry basis) of six native starches were weighed, suspended in 20 mL of simulated 

gastric fluid (SGF, pH 1.2) (Pu, Chen, Li, Xie, Yu & Li, 2011), and immediately placed in a dialysis 

bag (Spectra/Pro CE 131276T, molecular weight cutoff 8×103–10×103 g/mol), dialyzing against 500 

mL of SGF in a beaker at 37 °C for 2 h. During this time, the loaded dialysis bag was shaken every 

15 min to avoid starch sedimentation. After 2 h, a duplicate dialyzed starch sample was centrifuged, 

dried, ground and passed through a sieve (0.15 mm mesh size) for further use. These samples 

obtained from different starches were named as G80-SGF, HACS -SGF, Hylon V-SGF, G50-SGF, 

NCS-SGF, and WCS-SGF, respectively. While 1 mL of the dialysate samples were taken and 

analyzed for sugar release by the phenol-sulfuric acid method (Masuko, Minami, Iwasaki, Majima, 

Nishimura & Lee, 2005). Another duplicate sample was centrifuged, suspended in 20 mL of SIF. 

Then, the same procedure of the previous dialysis experiment was followed, except that SGF was 
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replaced by the simulated intestinal fluid (SIF, pancreatin, pH 6.8) (Pu, Chen, Li, Xie, Yu & Li, 2011) 

and the dialysis time was extended to 6 h. After that, these starch samples were mixed with ethanol to 

quench the enzyme activity, and then the dispersion was centrifuged at 3,000 g three times for 20 

min. The sediments, named G80-SIF, HACS-SIF, Hylon V-SIF, G50-SIF, NCS-SIF, and WCS-SIF, 

respectively, were centrifuged, dried, ground for further use. The dialysate samples were also used 

for sugar release analysis. D-Glucose was used for the calibration curve in SGF (R2 = 0.9991) and 

SIF (R2 = 0.9995). 

Granule morphology of six native starches and its hydrolyzed starch residues after 2 h of SGF 

and 6 h of SIF dialysis was studied using an EVO18 scanning electron microscope (SEM) (ZEISS, 

Germany) operated at a high voltage of 10.0 kV. Before SEM examination, the samples were coated 

with a gold thin film. 

 

2.3. Preparation of RS3 samples 

The modification involved the HTP treatment and the subsequent debranching of starch chains, 

according to our previously reported method (Situ, Chen, Wang & Li, 2014; Zhang, Chen, Zhao & Li, 

2013). Considering the greater recrystallization tendency of amylose in gelled starch pastes (Whistler 

& BeMiller, 1997) and the requirement of the debranching treatment of amylopectin by pullulanase, 

Hylon V, with the amylose content of about 51%, was chosen.  

50 g (dry basis) of Hylon V was dispersed in 200 mL water and cooked in a sealed reactor (Parr 

4545, Parr Instrument Co., USA) at 110 °C under a pressure of 12.4 MPa with stirring at 200 rpm for 

30 min. Then, the dispersion was cooled to 60 °C, and its pH value was adjusted to 5.0 using 10% 

(w/v) citric acid. Subsequently, different amounts of pullulanase (0, 50, 75, 100 and 200 ASPU/g dry 
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starch) were added for debranching the starch molecules at 60 °C under atmospheric pressure with 

stirring at 20 rpm for 2 h. The debranched starch was cooked at 100 °C for 10 min to stop the 

enzymatic hydrolysis, diluted to different concentrations of Hylon V paste (5%, 8%, 10%, 15%, and 

20%, w/w), and then stored at 4 °C for 36 h (during which retrogradation occurred) for further use.  

 

2.4. Characteristics of RS3 samples 

2.4.1. In vitro digestibility of RS3 samples 

The digestibility of RS3s was determined following a previously reported method (Chen, Liang, 

Li, Chen & Xie, 2016). Based on the rate of hydrolysis, starch was defined as rapidly-digestible 

starch (RDS, digested within 20 min), slowly-digestible starch (SDS, digested between 20 min and 

120 min), and RS (undigested within 120 min).  

 

2.4.2. X-ray diffraction (XRD) 

XRD analysis was performed with an Xpert PRO diffractometer (PANalytical, Netherlands), 

according to the earlier method (Chen, Liang, Li, Chen & Xie, 2016). The relative crystallinity (RC) 

of each sample was calculated using a previous method of Hermans (Hermans & Weidinger, 1948). 

The ratio of the upper area (crystalline portion) to the total diffraction area (based on a linear baseline) 

was taken as the RC with the software MDI Jade 6.0. 

 

2.4.3. Gel permeation chromatography (GPC) coupled with multi-angle light scattering (MALS) 

A GPC system coupled with a MALS detector (632.8 nm, DAWN HELEOS, Wyatt Technology, 

Santa Barbara, CA, USA) and a refractive index (RI) detector (Optilab rex, Wyatt Technology) was 
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used to determine the weight-average molecular weight (Mw), number-average molecular weight 

(Mn), and molecular weight distribution. The GPC system consisted of a pump (1515, Waters, 

Milford, MA, USA), an auto-injector with a 0.1mL loop (717, Waters), and three columns (Sytyragel 

HMW7 GPC column, Sytyragel HMW6E GPC column, Sytyragel HMW2 GPC column, respectively, 

7.8 × 300 mm, Waters). The data of light scattering was measured, collected and analyzed according 

to our earlier method (Situ, Chen, Wang & Li, 2014). 

 

2.5. Preparation of the RS2/RS3 film-coated MPs (RS@MPs) 

5-ASA-loaded MP cores (containing microcrystalline cellulose and medicinal starch in the ratio 

of 3:1 and the 5-ASA in the content of 16%, w/w) were obtained via extrusion–spheronization 

(Mini-250, Xinyite Co., Ltd., Shenzhen, China) (Pu, Chen, Li, Xie, Yu & Li, 2011). Different content 

of native starch particles (HACS, 3%, 5%, and 10%, w/w) were added to 5% (w/w) polymer pastes 

(RS3, PVP and HPMC), and 5% (w/w) triethyl citrate was added into the suspensions, which were 

then stirred for 8 h by a magnetic stirrer to form stable starch-based aqueous coating suspensions. 

The 5-ASA-loaded MP cores were coated using a bottom-spray fluid-bed coater (Mini-XYT; 

Xinyite Technology Co., Shenzhen, China) to achieve the coated-film thickness of 16–50% (w/w, the 

dry weight gain of MPs) (Pu, Chen, Li, Xie, Yu & Li, 2011). The process parameters were as follows: 

motor speed at 1500–2000 rpm; inlet temperature at 55–60 °C; temperature of bioactive 

component-loaded MPs at 28–31 °C; spray rate of coating dispersion at 1–1.5 mL/min; atomization 

pressure at 0.15–0.2 MPa; and fluidization pressure at 0.04 MPa.  
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2.6. In vitro release testing  

The release of 5-ASA from the different film-coated MPs (PVP, HPMC, and RS2/RS3) was 

carried out using a dissolution rate test apparatus (RCZ-8B, Tianda Tianfa Co., Ltd., Tianjin, China) 

(100 rpm, 37 °C) according to the USP23 dissolution method (Labastie, Solange, Brandão & Cumps, 

1998). The MPs were incubated in SGF for the first 2 h, then in SIF for another 6 h. 5 mL of each 

sample was taken at appropriate time intervals and analyzed for 5-ASA content using a UV 

spectrophotometer (Unico, UV-3802, Shanghai, China). The calibration curves of 5-ASA for SGF 

(R2 = 0.9999) and SIF (R2 = 0.9990) were used for the determination of 5-ASA release percentage. 

 

2.7. In vivo release testing in mice and the related morphological observation 

The FITC-loaded RS@MPs (loaded content: 2%, w/w) were prepared by the method described 

in Section 2.5 with minor modifications to fit the GIT transition time in mice. According to our 

preliminary tests, the gastric residence time in mice was 2 min, and the small intestinal residence 

time in mice was 42 min. After 44 min, RS@MPs entered the colon physiological environment. 

Three eight-week-old male nude mice (NO.11400700045743, Beijing Vital River Laboratory 

Animal Technology Co., Ltd., Beijing, China), each weighing 18–22 g, were fasted for 24 h before 

the test. FITC-loaded RS@MPs (80 mg/kg of rat) in 0.1 mol/L phosphate buffered saline (PBS) 

buffer (pH 7.4) were injected into one mouse by intragastric administration via polyethylene tubing 

(experiment group). The other two mice were injected with an equivalent amount of PBS solution 

(blank control group) and uncoated FITC-loaded MPs in PBS buffer (reference group), respectively. 

Then, the three treated mice were anesthetized with isoflurane immediately and subject to 

spatiotemporal detection of FITC transition along the GIT using an IVIS (IVIS 200, Xenogen Co., 
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Ltd., Alameda, Canada). In vivo fluorescent images (the excitation spectrum: 445-490nm; the 

emission spectrum: 515-575nm) were captured at the predetermined time points (10 min, 20 min, 50 

min, 80 min, 120 min, and 180 min) after the intragastric administration of FITC-loaded MPs to the 

experimental mice.  

36 thirteen-week-old Institute of Cancer Research (ICR) mice (NO.11400700045743, Beijing 

Vital River Laboratory Animal Technology Co., Ltd., Beijing, China), half male and half female, 

each weighing 18–22 g, were fasted for 24 h before the test. The FITC-loaded RS@MPs (80 mg/kg 

of rat, the experiment group) and uncoated FITC-loaded MPs (80 mg/kg of rat, the reference group) 

were orally administered to the stomach via polyethylene tubing. At certain times after their oral 

administration (10 min, 20 min, 40 min, 80 min, 4 h, and 24 h), the rats were sacrificed by cervical 

dislocation, and the tissues of the stomach, small intestine, and colon were obtained. Then, the OCT 

compound (McCormick Cryo-STAT)-embedded tissue sections of the stomach, small intestine, and 

colon of the rats were sliced into 6 µm depth by a cryostat microtome (Shandon cryotoZFE, Thermo 

Fisher Scientific Co., Ltd., Waltham, USA) at −20 °C. Afterwards, the section slides were dyed with 

DAPI for histospectroscopy using a two-photon confocal laser scanning microscope (Zeiss 710 NLO, 

Zeiss, Germany). The process parameters were as follows: wavelength filter: 491–545 nm; objective 

lens: Plan-Apochromat 20x/0.8 M27; pinhole detector: 150 µm; pixel dwell: 1.58 µs; repeated 

scanning time: line 2. 

 

2.8. Statistical analysis 

The mean values and differences were analyzed using Duncan’s multiple-range test. Analysis of 

variance (ANOVA), followed by the least significant difference test (LSD-test), was performed using 
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SPSS (Version 22.0) software. The significance level was set at p < 0.05. 

 

3. Results and discussion 

3.1. Characteristics and in vitro digestion analysis of native starches 

Being administrated orally, DDSs face several physiological challenges such as the acidic pH in 

the stomach and the digestive enzymes in the intestine (Hamman, Enslin & Kotzé, 2005), which 

could require the resistance of drug carrier materials to protect the carried pharmacologically active 

agents. As seen from Table 1, regardless of amylose content, all native starches showed high 

enzyme-resistance (Undigested starches: 85.6–89.6%), suggesting they are good sources of RS2. 

Still, there was a significant difference in RS content among native starches with different amylose 

contents. Specifically, native starches with a high amylose content (≥ 50%) were less susceptible to 

acid or enzymes than others with high amounts of amylopectin (NCS and WCS). This difference can 

be explained by the higher amount of B-type crystalline structure with an increase in amylose 

content (Cheetham & Tao, 1998), which was intrinsically resistant to acid (Gérard, Colonna, Buléon 

& Planchot, 2002; Vermeylen, Goderis, Reynaers & Delcour, 2004) or enzymatic degradation (Jane, 

Wong & McPherson, 1997). Depending on the packing of the amylopectin side chains into double 

helices, the starch crystalline structure can be normally described as either A, B, or C (Luengwilai & 

Beckles, 2009). Compared with A-type crystalline structure in NCS and WCS (Cheetham & Tao, 

1998), B-type crystallites have been proposed to be accompanied by a higher amount of long chains 

and more branch points in non-crystalline regions, leading to high-density amorphous regions and 

stable crystallites, which resist enzymatic hydrolysis (Jane, Wong & McPherson, 1997). Besides, the 

B type has been assumed to contain larger blocklets supposedly arrange in a peripheral ring of starch 
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granules, which acts as a barrier to hydrolytic enzymes (Oates, 1997). However, as H3O
+ ions can 

diffuse easily within the granule, this organization could not account for the behavior of acid 

hydrolysis. The acid resistance of B-type crystallites may result from their intrinsic stability, 

three-dimensional size, their size along the c-axis, and/or a greater perfection (Planchot, Colonna & 

Buleon, 1997). Furthermore, especially after 6 h of incubation in SIF, their resistance decreased with 

a higher amylose content with the same crystalline type among native starches. Since the amount of 

double-helical order in native starches should be strongly correlated to the amylopectin content, the 

granule’s crystallinity decreased with amylose content (Gernat, Radosta, Anger & Damaschun, 1993), 

thus, higher susceptibility to enzymatic degradation. 

 

 

Table 1 Amylose content and in vitro digestion of native starches 

Native 

starches 

Amylose 

(%) 

Digested starch in SGF (%) Digested 

starch in 

SIF (%) 

Undigested 

starch (%) 

G80 80±2a 0.25±0.02b 11.5±0.2c 88.3±0.2c 

HACS 72±2b 0.23±0.01b 11.3±0.2cd 88.5±0.3cd 

Hylon V 51±2c 0.23±0.02bc 11.1±0.1d 88.7±0.1d 

G50 50±2c 0.24±0.01b 10.1±0.1e 89.6±0.1e 

NCS 28±1d 0.32±0.01a 14.1±0.2a 85.6±0.2a 

WCS 1±0.3e 0.26±0.01b 12.5±0.1b 87.3±0.1b 

Values are means of three determinations (±standard deviation); values followed by the different letters within a column 

differ significantly (p < 0.05). 

 

 

The degree of hydrolysis can be influenced by both the granule parameters (size and surface 

features) and internal structure of starch. From SEM micrographs (Fig. 1), all native cornstarch 
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granules were irregular in shape and displayed a similar range of sizes (3-26 µm). In addition, the 

surfaces of high amylose starches (G80, HACS, Hylon V, and G50) were comparatively smooth 

without scratches, whereas small pores and pits were found randomly distributed on the surface of 

NCS and WCS granules. These surface pores were suggested to be openings to channels that 

penetrate in a roughly radial direction through the granule (Fannon, Shull & BeMiller, 1993).  
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Fig. 1. SEM images of native and hydrolyzed starch residues. 
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The susceptibility of starch granules can be classified by the manner and degree by which the 

granules are eroded and corroded. As seen from SEM images, the surface erosion of all six 

hydrolyzed starch granules was marginal, which was in accordance with the high resistance of native 

starches (Table 1). Yet, the degree of hydrolysis varied among different starch granule features and 

was intensified by the subsequent enzymatic degradation after acidic hydrolysis. After 2 h in SGF 

and 6 h in SIF of incubation, no apparent hydrolysis of G80 and HACS was seen, with the surfaces 

becoming slightly rougher with some pitting (G80-SIF and HACS-SIF in Fig. 1) but still resembling 

those of the native starch granules. In contrast, more apparent hydrolysis of G50 and Hylon V was 

observed as more rugged granule surfaces with increased pinholes and furrows after incubation in 

SGF and SIF. This difference existed despite that G50 and Hylon V had a higher resistance than G80 

and HACS. However, compared with high amylose starches (G80, HACS, Hylon V, and G50), the 

erosion profiles of NCS and WCS were much obvious from the increased surface roughness and the 

formation of hole depressions in many granules (NCS-SIF, WCS-SGF, and WCS-SIF in Fig. 1). For 

high-amylose starches, the intensity of digestion could be tempered due to the smooth surface 

without pores as the amylose molecules fill the gaps/spaces (Bertoft & Manelius, 1992), which was 

another reason for lower susceptibility to digestion. Thus, high-amylose starches (G80, HACS, 

Hylon V, and G50) with high acid/enzyme-resistance can be good choices as suspension particles in 

the film-coating process. Also, with the consideration of comparatively low price and low 

susceptibility to corrosion, HACS was finally chosen as suspension particles to increase the RS 

content of RS@MPs. 
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3.2. Preparation and characteristics of RS3 samples. 

Owing to the necessary resistibility of starch-based films to realize the colon-specific delivery by 

the coated MPs, RS3s with different characteristics have been prepared by physical modification. 

Because of the significant roles of pullulanase activity and the starch concentration of paste in the 

formation of RS3s (Situ, Chen, Wang & Li, 2014; Zhang, Chen, Zhao & Li, 2013), these two 

parameters were exclusively investigated to compare the preparation and characteristics of RS3 

samples. Fig. 2 A-B show the RDS, SDS, and RS results of modified starch samples. Compared with 

native Hylon V, an apparent increase in RS content and a decrease in RDS content were observed for 

all the modified samples. These results demonstrated that the digestion resistibility of starch could be 

improved by the HTP and debranching treatments and the following retrogradation and drying 

processes. Through the process of recrystallization, the gelatinized starch (amylose and debranched 

short starch molecules) can be transformed from an amorphous state to a more ordered or crystalline 

state, which has a high enzymatic resistance (Sajilata, Singhal & Kulkarni, 2006). However, no 

apparent increase in SDS content was seen for these samples, and in most cases, there was a lower 

SDS content than that of Hylon V (SDS: 9.8±0.6%). This trend of SDS variation was not surprising 

since amylopectin had a major impact on the inherent slow digestion property of starches (Zhang, Ao 

& Hamaker, 2006). After treatment, the branched structure of amylopectin was destroyed, so less 

SDS chains were recrystallized and formed.  
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Fig. 2. Effect of enzymatic activity (A) and starch concentration of paste (B) on the RDS, SDS, and RS contents of 

the debranched HTP-treated Hylon V; and XRD of different RS3 samples (C). The standard deviations of (A) and 

(B) were within 1.9% and 1.4%, respectively. 

 

 

Fig. 2A shows the effect of enzymatic activity on the formation of RDS, SDS, and RS when the 

starch concentration was fixed at 5% (w/w). As seen in Fig. 2A, debranching could further increase 

the RS content compared with the samples with only HTP treatment (0 ASPU/g). Regarding this, 

debranching would give starch chains a greater chance to align and aggregate to form ordered 

structures, thereby leading to a higher RS content. Increasing the pullulanase activity raised the RS 

content until a maximum of 76.6% (±1.1%) RS was reached at 100 ASPU/g. When the pullulanase 
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content was increased to 200 ASPU/g, the RS content was reduced to 59.5% (±1.9%). The HTP and 

debranching treatments with a suitable amount of pullulanase could lead to the gelatinization and 

destruction of starch granules, resulting in an irreversible swelling and degradation of starch 

molecules. Then, during retrogradation, some of the degraded starch chains of suitable molecular 

weight could reassociate to form tightly packed structures stabilized by hydrogen bonding, which 

would render α-1,4 glucosidic linkages inaccessible to enzymes to hydrolyze, leading to a higher 

RS3 content. However, with a further increase in pullulanase activity, the starch molecules could be 

degraded further, and these molecules could not preferably form tightly-packed ordered aggregations; 

thus, a decrease in RS content resulted (Pongjanta, Utaipattanaceep, Naivikul & Piyachomkwan, 

2009).  

On the other hand, for the samples subject to the HTP and branching treatments at 100 ASPU/g, 

a paste starch concentration of 5% could lead to the maximum RS content. The RS content just 

declined slightly with the increased starch concentration (Fig. 2B), which suggested that a high 

starch concentration might hinder the formation of RS. This result can be explained by the diffusion 

of starch molecules during retrogradation. When the starch concentration was low, despite the less 

chance of starch molecules to reassociate, there could be more free space for starch chains to 

entangle and orientate for more perfect crystalline structures, leading to high enzymatic resistibility 

(Ottenhof & Farhat, 2004). In contrast, a higher starch concentration resulted in an increased 

viscosity, which could hinder the movement and orientation of starch chains. In this way, imperfect 

crystallites tended to form, resulting in a lower RS content. Since a starch concentration of 5% was 

favorable for RS3 formation, this concentration of RS3 paste was selected for the further preparation 

of RS2/RS3 film-coating suspension. 
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The enzymatic resistibility of RS3 was related to the molecular structure (linear or branching, 

and molecular weight) of starch during retrogradation and the ordered structure of retrograded RS3. 

Here, RS3 samples with different degrees of pullulanase activity were characterized for molecular 

weight and crystalline structure. Fig. 2C shows the XRD patterns of native and RS3 samples. Their 

calculated RC values are shown in Table 2. It can be seen that all the samples (Hylon V and RS3s) 

displayed a B+V type hybrid polymorph, with main diffraction peaks of a typical B-type crystalline 

structure at around 5.6°, 17°, 22.0°, 23.4°, and 26.0° (Luengwilai & Beckles, 2009), and one peak at 

19.8°, which was related to the V-type crystalline structure (Buléon, Colonna, Planchot & Ball, 

1998). The V-type crystalline was caused by amylose–lipid complex, which has been proposed to 

hinder the enzymatic hydrolysis by covering the starch granule surface, leading to an increased 

content of RS (Crowe, Seligman & Copeland, 2000; Cui & Oates, 1999; Tufvesson, Skrabanja, 

Björck, Elmståhl & Eliasson, 2001). Compared with the XRD pattern of native Hylon V starch, most 

of the peaks (B+V) of RS3 samples became clearer. Their intensity was slightly enhanced after only 

HTP treatment and increased gradually as the degree of debranching increased. However, when the 

pullulanase activity reached 200 ASPU/g, the intensity of XRD pattern was slightly decreased. These 

results were further revealed and supported by RC data. The RC of native Hylon V was 10.30%, and 

increased after the HTP treatment and further increased by debranching. The maximum RC was 

78.34% at 100 ASPU/g pullulanase activity. The result of the crystalline structure is consistent with 

the analysis of RS content (Fig. 2A).  
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Table 2. GPC-MALS results and crystallinity of debranched HTP-treated RS3 samples 

Pullulanase 

activity (ASPU/g) 

Mw (g/mol) Mw/Mn < 105B (%) 105–106 (%) 106–107 (%) >107 (%) RC 

(%) 

Hylon V 6.385×106 (1% A) 4.085 (2%) 0 31.62 50.16 18.22 10.30 

0 1.567×106 (1%) 2.991 (2%) 0 71.79 25.38 2.83 36.55 

50 3.516×105 (0.7%) 2.030 (1%) 0 95.84 4.16 0 71.06 

75 2.175×105 (0.7%) 1.987 (2%) 36.40 61.26 2.34 0 72.20 

100 2.067×105 (1%) 1.534 (2%) 21.81 76.74 1.45 0 78.34 

200 1.329×105 (1%) 1.369 (2%) 33.22 66.78 0 0 76.59 

A Precision of global fit. B means the molecular distribution of Mw with units (g/mol). 

 

 

Table 2 shows the GPC-MALS results of native Hylon V and modified starches. After the HTP 

treatment, the Mw of Hylon V was reduced sharply from 6.385×106 to 1.567×106 g/mol. The Mw of 

HTP-treated samples was further reduced distinctly with debranching, and this value was even lower 

with more intensive debranching. This result confirmed the degradation of starch molecules by HTP 

and debranching. With the branching process, the Mw/Mn value, which reflects the polydispersity of 

molecular weight, was also seen to be decreased, suggesting the increased uniformity of molecular 

weight of modified starches. Moreover, Table 2 shows that with increased debranching, the high 

molecular fractions (Mw >107 g/mol and 106 < Mw < 107 g/mol) gradually decreased to nil, while the 

low molecular fraction (Mw <105 g/mol) was substantially increased. Combined with the RS content 

and Mw parameters, it can be concluded that the starch molecules with Mw = 2.067×105 g/mol 

favored the alignment and arrangement of double helices to form ordered structures during 

retrogradation. Moreover, the large amounts of ordered crystalline structure (B+V type) could be the 

main reason for the enhanced starch resistance to enzymatic digestion. 
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3.3. RS2 as the suspended particles and RS3 paste as the binder for RS2/RS3 film-coated MPs 

(RS@MPs) 

According to the results in Section 3.2, 5% concentration of RS3 paste with Mw = 2.067×105 

g/mol was selected for the preparation of RS2/RS3 aqueous film-coating suspension. To study the 

potential of RS3 starch paste as a binder to prepare a compact and firm film, the release behavior of 

5-ASA-loaded RS@MPs was compared with those MPs coated by films using two typical binder 

polymers (PVP and HPMC) incorporated with RS2 granules. 

As seen in the Fig. 3A, the release behavior of RS@MPs was similar to those film-coated MPs 

with PVP or HPMC, suggesting that the binding capability of RS3 paste was comparable to that of 

typical polymer binders. However, all of three film-coated MPs (with RS2/RS3, RS2/PVP, or 

RS2/HPMC) showed a rapid release, especially in the case of RS3 paste as the binder. The release 

percentage of 5-ASA from RS@MPs was up to 68.6 % (±2.6%) at the end of 2 h in SGF, indicating 

the inability for colon-targeted delivery. To inhibit the rapid release of bioactive component, the film 

coating process was improved by a double-coating method, i.e., 50% of suspension used for film 

firstly, and then the left 50% of suspension used for coating on top of the prior formed film. 

Compared with the single-coating method, the double-coating method of RS@MPs significantly 

reduced the release rate, with reduced release percentage in SGF (40.1±0.6%) and reduced total 

release percentage (54.5±1.0%) after another 6 h in SIF, showing a good potential of colon-specific 

delivery. Still, there was a burst release from 5-ASA loaded RS@MPs with the release percentage up 

to 35.0 % (±2%) at the end of 1 h in SGF. This fast release could be ascribed to the bioactive 

component molecules that were mostly loaded at or near the surface of the MPs (Woo, Jiang, Jo & 

DeLuca, 2001). In the following experiments, the double-coating method was used for a better 
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release behavior of RS@MPs.  

 

 

 

Fig. 3. Effects of polymers (PVP, HPMC, and RS3) (A), RS2 granule content (B) of RS2/RS3 coating film, and 

film coating thickness (C) on the release behavior. The standard deviations of (A), (B) and (C) were within 2.6%, 

3.9% and 2.5%, respectively. 

 

 

Concentration of polymers: 5% (w/w); concentration of HACS: 5% 

(w/w); 5-ASA load: 16% (w/w); thickness of film coating: 50% (w/w) 

Concentration of Hylon V paste: 5% (w/w); concentration of HACS: 

10% (w/w); 5-ASA load: 16% (w/w) 

Concentration of Hylon V paste: 5% (w/w); 5-ASA load: 16% (w/w); 

thickness of film coating: 50% (w/w) 
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3.4. In vitro 5-ASA release from RS@MPs 

To optimize the colon-specific release property of 5-ASA loaded RS@MP delivery system 

further, the effects of RS2 (HACS) granule content and film coating thickness on the 5-ASA release 

behavior from the RS@MPs in the simulated human GIT were investigated, with the results 

presented in Fig. 3. As another main film component, the content of RS2 granules may play a vital 

role in the film quality. Therefore, the in vitro release of 5-ASA from RS@MPs containing different 

content (3–10%, w/w) of HACS granules were evaluated, and the results are shown in Fig. 3B. It can 

be seen that the 5-ASA release in SGF and SIF decreased with the increased HACS granules content. 

This can be explained by the high acidic and enzymatic resistance of HACS granules (Table 1) and 

the enhanced mechanical strength of RS2/RS3 film by the addition of HACS granules (Hari & Nair, 

2016). With the increased content of HACS granules, the RS2/RS3 film was much firmer and 

suffered less erosion in SGF and SIF. Thus, the diffusion of 5-ASA was hindered and less released 

from RS@MPs with a higher RS2 content. When the content of HACS granules was 10%, the 

release percentage from RS@MPs was 40.7% (±2.3%) for 8 h in the upper GIT, indicating that these 

RS@MPs could target the bioactive components to the colon. Therefore, a HACS granule content of 

10% should be suitable for preparing RS@MPs with good colon-targeted controlled-release 

performance.  

The coating film thickness could also be an important parameter to control the release behavior 

of RS@MPs. Fig. 3C shows the percentages of release from RS@MPs with different thicknesses of 

film coating (13.8%–50%) when the content of HACS granules was fixed at 10%. As expected, the 

release percentage decreased with increasing the film-coating thickness. This was because the 

increased film-coating thickness could significantly increase the length of the diffusion pathways for 
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the bioactive component. With the consideration of colon-targeted release performance, a 

film-coating thickness of 50% was preferable. The results discussed above (Fig. 3) have shown that 

the colon-targeted release behavior of RS@MPs could be well adjusted by the formulation of 

suspensions and process parameters. 

 

3.5. In vivo release fluorescein from RS@MPs 

We also assessed the in vivo behavior of RS@MPs in terms of the residence time of formulation 

in different parts of the GIT. By IVIS, the FITC release behavior from RS@MPs in mice was studied. 

Fig. 4 shows the in vivo images of FITC distribution at different times in nude rats after 

administration of PBS solution (left), FITC-loaded uncoated MPs (middle), and RS@MPs (right). It 

can be seen that there was no fluorescent spot found on the nude mice injected by PBS solution for 

the whole experiment period (from 10 to 180 min), indicating no autofluorescence phenomenon 

occurred in nude mice under IVIS. As for uncoated MPs, large and bright fluorescent spot was found 

on the stomach of mice at 10 min after intragastric administration (Fig. 4A), showing a rapid release 

of FITC from uncoated MPs. From 20 to 50 min after intragastric administration, the fluorescence 

spot enlarged and moved from the stomach to the small intestine and colon part of the nude mice 

(Fig. 4B-C). This observation indicated a continuous release of FITC from uncoated MPs along the 

whole GIT. The released FITC could be absorbed into the gastrointestinal tissue and then into the 

blood circulation system gradually. Thus, from 80 to 180 min after intragastric administration, it can 

be seen that the fluorescence was spreading with the blood circulation throughout the body (Fig. 

4D-F), and the intensity was decreasing due to the metabolism of FITC.  

When RS@MPs were used for intragastric administration, the release rate of FITC was found to 
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be much slower than that of uncoated MPs. At 50 min after intragastric administration, the 

fluorescent spot remained small, suggesting a quite limited release of FITC from RS@MPs in the 

upper GIT of mice (Fig. 4C). From 80 to 120 min after intragastric administration, the fluorescent 

spot was at the colon part of mice and enlarged (Fig. 4D-E). The intensity of fluorescence increased 

but still not as bright as in the reference group, showing the comparatively slow release rate of FITC 

from RS@MPs. At 180 min after intragastric administration, the fluorescent spot had spread across 

the whole body.  

 

 

 

Fig. 4. FITC distribution in the gastrointestinal epithelial tissues for different times (from left to right: blank control, 

reference and experiment group): (A) 10 min; (B) 20 min; (C) 50 min; (D) 80 min; (E) 120 min; and (F) 180 min.  
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To further understand the release behavior of RS@MPs, the images showing the FITC 

distribution in the GIT epithelial tissues of mice after intragastric administration were studied by 

tissue histospectroscopy. Fig. 5 shows FITC distribution in the GIT epithelial tissues of mice after 

administration of the uncoated MPs for different times. At 10 min after administration, large and 

strong fluorescence were found on the stomach and the small intestine epithelial tissues of mice (Fig. 

5A-B), indicating the rapid release of FITC from uncoated MPs without the protection of a film. The 

fluorescence on the stomach and small intestine remained strong up to 40 min after administration 

(Fig. 5D-E and G-H) because of the continuous release of FITC in the upper GIT and absorption of 

FITC in epithelial tissues. Along this time, the intensity of fluorescence in the colon epithelial tissues 

still existed but was weak (Fig. 5C, F, and G), showing no release of FITC in the colon. Here, the 

weak fluorescence in the colon might be caused by some operation error. At 80 min after 

administration, the intensity of fluorescence in the colon epithelial tissues enhanced, suggesting the 

MPs was transported to the colon (Fig. 5L). From 80 min to 24 h, the fluorescence intensity at the 

colon gradually increased, while the fluorescence intensity of the stomach and small intestine of the 

mice gradually weakened (Fig. 5M-R). Yet, due to the massive release of FITC in the upper GIT, 

there was still high fluorescence in the stomach and small intestine tissues. 
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Fig. 5. FITC distribution in the gastrointestinal epithelial tissues of rats after administration of the reference group 

for different times: (A) stomach, 10 min; (B) small intestine, 10 min; (C) colon, 10 min; (D) stomach, 20 min; (E) 

small intestine, 20 min; (F) colon, 20 min; (G) stomach, 40 min; (H) small intestine, 40 min; (I) colon, 40 min; (J) 

stomach, 80 min; (K) small intestine, 80 min; (L) colon, 80 min; (M) stomach, 4 h; (N) small intestine, 4 h; (O) 

colon, 4 h; (P) stomach, 24 h; (Q) small intestine, 24 h; and (R) colon, 24 h. 

 

 

Fig. 6 shows the FITC distribution in the GIT epithelial tissues of mice after administration of 

RS@MPs for different times. Compared with the uncoated MPs (Fig. 5), at 10, 20 and 40 min after 

administration, the intensity of fluorescence in the stomach and small intestine was much weaker 

(Fig. 6A-B, D-E, and G-H), especially at 10 min after administration, suggesting the RS2/RS3 film 

had high resistibility and inhibited the FITC release in the upper GIT. Moreover, there was almost no 

fluorescence in the colon tissues (Fig. 6A-B, D-E, and G-H). Similar to the uncoated MPs, from 80 
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min to 24 h after administration, the colon epithelial tissues showed fluorescence and this 

fluorescence became more intense (Fig. 6L, O, and R). Moreover, compared with the uncoated MPs 

(Fig. 5L and O), the intensity of fluorescence was comparatively stronger (Fig. 6L and O). This 

observation clearly indicates the enhanced release of FITC from RS@MPs, which may be due to the 

fermentation of RSs by anaerobic microflora in the colon (Rubinstein, 1990). These results clearly 

demonstrate that RS@MP had a colon-targeted property and well-controlled release behavior. 
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Fig. 6. FITC distribution in the gastrointestinal epithelial tissues of the experiment group for different times: (A) 

stomach, 10 min; (B) small intestine, 10 min; (C) colon, 10 min; (D) stomach, 20 min; (E) small intestine, 20 min; 

(F) colon, 20 min; (G) stomach, 40 min; (H) small intestine, 40 min; (I) colon, 40 min; (J) stomach, 80 min; (K) 

small intestine, 80 min; (L) colon, 80 min; (M) stomach, 4 h; (N) small intestine, 4 h; (O) colon, 4 h; (P) stomach, 

24 h; (Q) small intestine, 24 h; and (R) colon, 24 h. 
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4. Conclusion 

The developed method based on RS2/RS3 film is safe and simple, aiming at 

starch-only-film-coated colon-specific DDSs by physical modification. RS2 came from 

high-amylose starch particles with a smooth surface and B-type crystalline structure. RS3 with high 

crystallinity was generated by the recrystallization of starch molecules with suitable Mw. Thus, the 

resistibility of the coating film was improved by RS2 and recrystallized RS3 to hinder the active 

compound release. Moreover, for the formation of RS2/RS3 film, RS3 paste acted as a binder. 

Importantly, for RS@MPs, desired colon-targeted release performance can be easily obtained by 

adjusting the content of RS2 and RS3 as well as the film-coating thickness of the coated RSA film. 

This study shows the ability of the newly developed starch-based coating to effectively delivery 

active compounds (e.g., 5-ASA) into the colon. 
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