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Abstract 
 
We present a novel methodology to synthesize two-dimensional (2D) lateral heterostructures 

of graphene and MoS2 sheets with molecular carbon nanomembranes (CNMs), which is based 

on electron beam induced stitching. Monolayers of graphene and MoS2 were grown by chemical 

vapor deposition (CVD) on copper and SiO2 substrates, respectively, transferred onto gold/mica 

substrates and patterned by electron beam lithography or photolithography. Self-assembled 

monolayers (SAMs) of aromatic thiols were grown on the gold film in the areas where the 2D 

materials were not present. An irradiation with a low energy electron beam was employed to 

convert the SAMs into CNMs and simultaneously stitching the CNM edges to the edges of 

graphene and MoS2, therewith forming a heterogeneous but continuous film composed of two 

different materials. The formed lateral heterostructures possess a high mechanical stability, 

enabling their transfer from the gold substrate onto target substrates and even the preparation 

as freestanding sheets. We characterized the individual steps of this synthesis and the structure 

of the final heterostructures by complementary analytical techniques including optical 

microscopy, Raman spectroscopy, atomic force microscopy (AFM), helium ion microscopy 

(HIM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron 

microscopy (HRTEM) and find that they possess nearly atomically sharp boundaries.  
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1. Introduction 

Recent developments in the synthesis and applications of atomically or molecular thin two-

dimensional (2D) materials, such as graphene, hexagonal boron nitride (hBN), transition metal 

dichalcogenides (TMDs) or molecular nanosheets (see e.g. [1-4]), pave the way towards their 

use in ultrathin integrated circuitry, required for novel electronic [5], optoelectronic [6] and 

energy storage devices [7]. For such implementations, it is essential to develop methods for the 

integration of various 2D materials with metallic, semiconducting and insulating properties into 

complex in-plane architectures, i.e. lateral heterostructures, with precise spatial control and 

sufficient mechanical and thermal stability. In comparison to the vertical heterostructures of 

2D materials [8-10], which can be assembled by simple mechanical stacking of the individual 

layers, much less work has been reported on lateral heterostructures so far [10]. Such a 

difference is most likely due to the necessity to employ more sophisticated synthetic approaches 

to induce stitching of the individual nanosheets within a plane.  

One of the first reports on the growth of lateral heterostructures of 2D materials demonstrated 

the synthesis of graphene and hBN (graphene-hBN) lateral heterostructures by two-step 

chemical vapor deposition (CVD) on Ru(0001) [11]. In this method, graphene islands were 

initially grown on the single crystal surface using ethylene as a precursor and in the second 

CVD step the interisland area was filled with hBN employing borazine for the growth. The 

obtained graphene-hBN heterostructures were composed of nanometer sized and randomly 

oriented domains of both 2D materials. To enable the implementation of graphene-hBN 

heterostructures in devices, a methodology to produce heterostructures with controlled domain 

sizes was proposed soon after [12, 13]. In this approach, a large area graphene or hBN layer is 

grown on a metal foil in the first CVD step, then this layer is patterned in a desirable shape 

using conventional lithography methods and finally the second CVD step is performed to grow 

the heterostructure. CVD methodology employing a single step [14] or a modulated [15] 

deposition of the precursors was demonstrated to grow randomly oriented lateral 

heterostructures of different transition metal dichalcogenides including MoS2, WS2 and WSe2. 

In this way, it was possible to synthesize atomically thin p-n junctions and to study their 

performance in electronic and optoelectronic devices [14, 15]. 

A prerequisite for the CVD based synthesis of 2D lateral heterostructures is a crystallographic 

similarity of the corresponding material pairs, as it is the case for hBN-graphene or TMD1-

TMD2 heterostructures. In case of the material pairs with very different crystallographic 

structure, like e.g. graphene and TMDs or hBN and TMDs, their CVD based stitching seems to 
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be unfeasible and therefore new alternative approaches have to be developed for the synthesis. 

Here we present a novel method to stitch 2D sheets of various materials to form lateral 

heterostructures by electron irradiation induced chemical reactions. We demonstrate the 

fabrication and characterization of the lateral heterostructures made of graphene and carbon 

nanomembranes (graphene-CNM) as well as MoS2 and carbon nanomembranes (MoS2-CNM) 

with well-defined domains of either of these 2D materials (see Fig. 1). CNMs are dielectric 

molecular nanosheets synthesized by electron irradiation induced crosslinking of aromatic self-

assembled monolayers (SAMs) [16]. CNMs can be produced on a large scale from various 

molecular precursors, which enables the tuning of their functional properties: thickness, 

chemical composition, mechanical properties, etc. [17-19]. Combining CNMs with graphene, 

we produce heterostructures consisting of insulating and metallic domains and using the 

combination with MoS2, the heterostructures consist of semiconductor and insulator domains. 

By employing conventional lithographic techniques, it is possible to produce heterostructures 

with complex geometries and with nearly atomically sharp grain boundaries. The lateral 

resolution corresponds to the resolution of the applied lithography. The mechanical robustness 

of graphene-CNM and MoS2-CNM lateral heterostructures enables their transfer onto arbitrary 

substrates as well as the preparation of freestanding sheets. We characterized properties of the 

produced heterostructures in detail, employing a number of complementary spectroscopy and 

microscopy techniques including optical microscopy (OM), scanning electron microscopy 

(SEM), helium ion microscopy (HIM), high-resolution transmission electron microscopy 

(HRTEM), atomic force microscopy (AFM), Raman and X-ray photoelectron spectroscopy 

(XPS). 

 

2. Experimental section 

2.1 Sample preparation 

2.1.1 Growth of graphene 

Graphene samples were grown by CVD on copper foils [20, 21] (25 µm thickness, 99.8%, 

Alpha Aesar) in a tube furnace (Gero F40-200, base pressure 110-3 mbar). First, the copper 

foils were cleaned in acetic acid (97%, 15 min), rinsed with isopropanol and blown dry in an 

argon stream. Then they were introduced to a tube furnace and annealed for 3 hours at 1015 °C 

in a hydrogen flow of 50 cm³/min in order to remove the oxide layer from the substrate. 

Subsequently, a CH4/H2 mixture with 70 cm³/min CH4 (purity 4.5) and 10 cm³/min H2 (purity 

5.3) was introduced to the furnace for 15 minutes. After the growth, the substrates were cooled 
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down fast by moving the heating zone of the oven away from the sample region while keeping 

the flow of the precursor gases constant. This procedure results in the growth of a continuous 

single layer graphene film on a copper foil with some inclusions of graphene double layers, Fig. 

S1a.   

2.1.2 Growth of MoS2 

Monolayers of MoS2 single crystals were grown by a CVD process [22]. Silicon substrates with 

a thermally grown SiO2 layer of 300 nm were used as the growth substrate (Siltronix, roughness  

0.3 nm RMS). The growth was carried out in a two-zone tube furnace with a tube diameter of  

55 mm. The substrates were cleaned initially by ultrasonication in acetone for 5 minutes 

followed by washing in isopropanol and blown dry with argon. An alumina boat containing 200 

mg of sulfur powder (99.98%, Sigma Aldrich) was placed in the center of the first zone of the 

tube furnace. The substrates were placed with the SiO2 facing down on top of an alumina boat 

containing ~1 µg MoO3 powder (99.97%, Sigma Aldrich) and loaded to the center of the second 

zone of the furnace. Then the quartz tube was evacuated to 510-2 mbar pressure and refilled 

with argon. The growth was carried out at atmospheric pressure under an argon flow of 50 

cm³/min. The second zone containing the MoO3 and the substrates were heated to the growth 

temperature of 750 °C at a rate of 40 °C/min and held at that temperature for 15 minutes. The 

sulfur temperature was adjusted to reach 200 °C when the second zone reaches 750 °C. After 

the growth, the furnace was turned off and allowed to cool down under an argon flow of 50 

cm³/min until 350 °C were reached. Then the tube furnace was opened to rapidly cool down to 

room temperature (RT). This procedures result in the growth of mainly monolayer MoS2 

crystals of triangular shape with a typical size of about 100 µm, Fig. S1b 

2.1.3 Transfer of graphene and MoS2 monolayers    

We have employed a poly(methyl methacrylate) (PMMA) assisted transfer protocol to transfer 

graphene and MoS2 [23]. To transfer graphene, first a PMMA layer (100 nm, 50 kDa, All-

Resist, AR-P 671.04) was spin coated onto the graphene on copper foil and hardened for 10 

min at 90 °C. Subsequently, a thicker layer of PMMA (200 nm, 950 kDa, All-Resist, AR-P 

679.04) was spin coated on top of the first one and hardened for 10 min at 90 °C. Then the 

copper foil was kept floating on top of a bath containing ammonium persulfate solution (Sigma 

Aldrich, 2.5%, 3 h) to etch the copper foil and release the graphene. Subsequently, the graphene 

supported with PMMA was washed several times in ultrapure water (18.2 MΩcm, 

Membrapure) to remove any residual etching solution and placed on top of a gold/mica 
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substrate (300 nm, Georg Albert PVD). After baking at 90 °C for 10 min., the samples were 

immersed in acetone for 2 hours to remove the stabilizing PMMA layer. 

To transfer MoS2, a PMMA layer of 200 nm (950kDa, All-Resist, AR-P 679.04) was spin 

coated onto the SiO2 substrate with CVD grown MoS2 crystals and hardened for 10 min at 90 

°C. Then the substrate was kept floating on top of a bath of KOH solution to etch away the SiO2 

layer and to release the MoS2 crystals supported by PMMA followed by washing several times 

with ultrapure water (18.2 MΩcm, Membrapure) to remove any residual KOH. Then the 

PMMA supported MoS2 was placed on a gold/mica substrate (300 nm, Georg Albert PVD) and 

baked at 90 °C for 10 min, followed by immersion in acetone for 2 hours to remove the PMMA 

support. 

2.1.4 Transfer of graphene-CNM and MoS2-CNM heterostructures 

For further characterization, graphene-CNM heterostructures as well as MoS2-CNM 

heterostructures were transferred onto Si wafers with 300 nm of SiO2 (Siltronix, roughness 0.3 

nm RMS). The transfer was carried out in the same way as for the graphene on copper, however, 

a different etching solution (I2/KI/H2O in mass proportion of 1:4:10) was used to remove the 

gold layer. The gold layer itself was separated from mica by a slight dipping into water of one 

of the edges/corners of the sample as described in detail in [21]. To obtain freestanding 

heterostructures, the same transfer protocol was applied to transfer the structures to TEM grids 

(copper grids, 400 mesh, different support films, Plano) with the exception that in this process 

to remove the PMMA support layer the acetone was exchanged with CO2 in a critical point 

dryer (Autosamdri 815, Tousimis). This avoids ruptures in the samples, which otherwise might 

occur due to the surface tension of the evaporating solvent. 

2.1.5 Patterning of graphene 

To produce graphene patterns on gold/mica substrates, photolithography as well as electron 

beam lithography (EBL) was employed. For the photolithography a positive tone resist (AR-P 

3510, Allresist, 2.0 µm) was exposed in a mask aligner (mercury arc lamp, Süss MicroTec) and 

developed in TMAH based solution (AR300-35, Allresist, 60 seconds). To obtain smaller 

feature sizes, a negative tone resist was used (AZ 5214 E, Microchemicals, 1.8 µm), exposed 

in a mask alignment system (EVG 620 TP, 30 mJ/cm²) and developed in a TMAH based 

solution (AZ 726 MIF, 45 seconds). For the smallest structures, a PMMA resist layer was 

spincoated on top of the samples, patterned by EBL (Vistec EBPG 5000plus) and subsequently 

developed. Pattern transfer to the graphene layer was achieved by reactive ion etching of the 

unprotected areas in an oxygen/argon plasma (Leybold Z401, Sentech Etchlab 200, 20-30 W, 
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30 seconds). The dissolution of the resist layer in acetone (2 hours) results in the fabrication of 

the desired graphene structures. 

2.1.6 Formation of self-assembled monolayers (SAMs) 

Structured graphene layers and MoS2 crystals on gold substrates were introduced for 72 h to a  

~1 mM solution of 4’-nitro-1,1’-biphenyl-4-thiol (NBPT, 99%, Taros) or biphenyl-4-thiol 

(BPT, 97%, Sigma Aldrich, individual graphene samples) dissolved in N,N-

dimethylformamide (DMF, Alfa Aesar, 99.8%, water free) resulting in the formation of a SAM 

of aromatic thiols in the bare gold areas [24, 25]. After formation of the SAM, the samples were 

rinsed with DMF several times and blown dry in a nitrogen stream. 

2.1.7 Electron irradiation of graphene-SAM and MoS2-SAM patterns 

When a SAM has been formed on the gold areas, the respective graphene-SAM and MoS2-

SAM samples were irradiated with electrons of 100 eV kinetic energy at a dose of 50 mC/cm² 

under high vacuum conditions (1x10-8 mbar). This converts the SAM into a CNM by an 

established electron induced crosslinking process [4, 26] and, as we demonstrate in this study, 

induces their stitching with the edges of graphene or MoS2. This process is described in detail 

in the results section. 

2.2 Microscopy characterization 

2.2.1 Optical microscopy 

The optical microscopy images were taken with a Zeiss Axio Imager Z1.m microscope 

equipped with a 5 megapixel CCD camera (AxioCam ICc5) in bright field operation. For 

optimal absorption contrast of the 2D materials, silicon substrates with 300 nm of oxide layer 

were used. 

2.2.2 Scanning electron microscopy 

The SEM images were taken with a Zeiss Sigma VP at a beam energy of 15 kV and use of the 
in-lens detector of the system. 

2.2.3 Helium ion microscopy 

The HIM images were taken with a Carl Zeiss Orion plus at 35 kV with 10 µm aperture, an 

integration time of 1 µs per pixel and line averaging with 64 lines. The HIM provides high 

material contrast on the 2D materials with very low charging effects. 

2.2.4  Atomic force microscopy 

The AFM measurements were performed with a Ntegra (NT-MDT) system in contact mode at 

ambient conditions using n-doped silicon cantilevers (CSG001, NT-MDT) with a typical tip 

radius of 6 nm and a typical force constant of 0.03 N/m. 
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2.2.5 Transmission electron microscopy 

Transmission electron microscopy was carried out using an image-side corrected FEI Titan 80-

300. To reduce the damage by electron irradiation, the samples were investigated at a low 

voltage of 80 kV. For enhancement of the image contrast and information limit, the extraction 

voltage of the Schottky-type electron source was lowered to 2000 V instead of the typical 4000 

V [27]. The images were acquired using a Gatan Ultrascan 1000XP CCD camera with exposure 

times of 0.5 to 2.0 seconds with frame sizes of 20482048 pixels, and electron doses of about 

5·106 e-/nm2. For more clear visualization between amorphous and crystalline regions in the 

HRTEM images, we Fourier-filter the HRTEM image and calculate an filtered image from the 

masked crystalline reflections, following the protocol described in [28]. In the filtered TEM 

image, similar to a dark-field image, the crystalline area appears bright and the amorphous area 

appears dark. Thus, the processed image easily allows to discriminate between regions 

consisting of CNM (amorphous) and of graphene (see Fig. 3b) or MoS2,(see Fig. 8f). Electron 

energy-loss spectroscopy (EELS) and energy-filtered TEM (EFTEM) experiments on the 

MoS2/CNM heterostructure were carried out with a Gatan GIF Quantum post-column energy 

filter. For the identification of the CNM and the MoS2, we used the carbon K-edge (284 eV) 

and the sulfur L-edge (165 eV) signals, respectively. The shown C-K and S-L2,3 elemental maps 

were obtained via the three-window background subtraction method,[29] with a 20 eV energy-

selecting slit. Thickness maps showing the relative thickness of the membrane were calculated 

from zero-loss filtered and unfiltered TEM images using the log-ratio method. 

2.6 Spectroscopy characterization 

2.6.1 Raman spectroscopy 

Most of the Raman spectra and mapping were acquired using a Bruker Senterra spectrometer 

operated in backscattering mode. Measurements at 532 nm were obtained with a frequency-

doubled Nd:YAG Laser, a 50x objective and a thermoelectrically cooled CCD detector. The 

spectral resolution of the system is 2-3 cm-1. Some spectra (see figure captions for details) were 

obtained using a Labram Aramis spectrometer at 473 nm with a 50x objective, a grating with 

2400 lines/mm and a spectral resolution of 1 cm-1. For all spectra, the Si peak at 520.7 cm-1 was 

used for peak shift calibration of the instrument. The Raman spectroscopy maps were obtained 

using a motorized XY stage. For analysis of the characteristic MoS2 and graphene peaks the 

background was subtracted and the data were fitted with Lorenzian functions using a LabVIEW 

script to determine the peak position, FWHM and maximum intensity of the peaks. 
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2.6.2 X-ray photoelectron spectroscopy 

X-ray photoelectron spectra were taken in a Multiprobe UHV system (Omicron), using a 

monochromatic X-ray source (Al Kα) and an electron analyzer (Sphera) with a resolution of  

0.9 eV. 

 

3. Results and discussions 

3.1 Engineering of lateral graphene-CNM and MoS2-CNM heterostructures 

In Fig. 1 we schematically present the steps involved in the fabrication of graphene-CNM and 

MoS2-CNM lateral heterostructures. First, graphene and MoS2 sheets are grown by CVD on Cu 

foils or SiO2/Si wafers, respectively, as described in Sections 2.1.1 and 2.1.2. After the growth 

they are transferred onto gold/mica samples. To induce patterns in the graphene sheets 

photolithography or electron beam lithography is employed (Section 2.1.5). As the MoS2 

monolayers (Section 2.1.2) form discontinuous films consisting of triangles with lateral 

dimensions of ~100 µm (Fig. S2b), no patterning was employed here. In the next step, the 

SAMs of aromatic biphenyl-thiols (BPT or NBPT, see Section 2.1.6) were grown on the gold 

areas free of graphene or MoS2. Finally, to form the heterostructures, large area electron 

irradiation with an energy of 100 eV and a dose of 50 mC/cm2 was employed (see Section 

2.1.7). Upon this treatment, the SAMs are crosslinked forming the CNMs [4] whose edges are 

stitched with the edges of the graphene or MoS2 sheets resulting in the formation of continuous 

2D lateral heterostructures. The formed graphene-CNM and MoS2-CNM heterostructures show 

significant mechanical stability and employing the polymer assisted transfer (see Section 2.1.4) 

can be transferred onto target substrates such as e.g. SiO2/Si wafers or suspended on grids. In 

Sections 3.2 and 3.3 we present their detailed characterization by complementary microscopy 

and spectroscopy techniques. 

3.2 Characterization of lateral graphene-CNM heterostructures 

In Figs. 2a-b optical microscopy (OM) images of graphene-CNM heterostructures transferred 

onto a 300 nm SiO2/Si wafer are shown. Fig. 2a presents a heterostructure with a regular pattern 

of graphene stripes with a width of 5 µm embedded in a CNM matrix and in Fig. 2b, a square 

array of 2.52.5 µm2 graphene dots in a CNM matrix is presented. In the OM images, graphene 

areas appear darker, as they have a higher optical contrast in comparison to 
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Fig. 1. (a) Scheme of the preparation of a lateral graphene-CNM heterostructure. A graphene 
layer grown on a copper foil is transferred to a gold substrate and lithographically patterned. 
Then a SAM of BPT or NBPT molecules (see Experimental for details) is grown in the bare 
gold areas and subsequently crosslinked by electron irradiation. This results in a continuous, 
heterogenous graphene-CNM layer, which then can be transferred to form a freestanding 
heterostructure or to an arbitrary substrate. (b) Scheme of the preparation of a lateral MoS2-
CNM heterostructure. Here, CVD grown monolayer crystals are used as MoS2 structures. The 
other necessary steps are the same as in (a). 
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Fig. 2. Graphene-CNM heterostructures. (a-b) Optical microscopy (OM) images of lateral 
graphene-CNM heterostructures on a 300 nm SiO2/Si substrate. The color are slightly adjusted 
to provide higher contrast. BPT SAM was used to form CNMs. Graphene appears darker than 
the CNM. The graphene stripes in (a) are 5 µm wide. The graphene square dots in (b) have a 
width of 2.5 µm. Only few defects are visible on a large scale. The whole sample has a size of 

1010 mm². (c) AFM lateral force image of the heterostructure presented in (a). The 
corresponding topography image is available in SI Fig. S3. (d) SEM image of a suspended 
graphene-CNM heterostructure with 2.5 µm wide stripes transferred to a Quantifoil TEM grid 
with circular holes. (e) HIM image of a graphene-CNM heterostructure suspended on a TEM 
grid. The CNM nanocircles of 500 nm in diameter are embedded in a large graphene monolayer. 
The hole pattern was induced in the graphene sheet by electron beam lithography (EBL). (f) 
HIM image showing the graphene-CNM heterostructure boundary. It is prepared freestanding 
on a holey carbon support film. The conducting graphene area has a higher secondary electron 
rate in comparison to insulating CNM and appears brighter in the image.[31] A ruptured CNM 
was chosen to provide better contrast between the two materials and free space. NBPT SAM 
was used to form CNMs in (d-f). 
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the surrounding CNM [30]. Both heterostructures are continuous within the whole 

microfabricated area, which corresponds to 1010 mm² in total. Some rupture defects are 

visible in Figs. 2a-b enabling to differentiate clearly between the bare SiO2 surface and the 

heterostructure areas. Note that some darker inclusions within the graphene patterns correspond 

to graphene double layers resulting from the CVD growth (see Fig. S1a). The subsequent 

preparation steps of the graphene-CNM heterostructures on gold/mica were characterized by 

helium ion microscopy (HIM). The pattern transfer into graphene sheets, the formation of 

SAMs on gold and finally the formation of graphene-CNM heterostructures can be followed by 

this technique from the respective changes in the contrast, (see Fig. S2). Next, we characterized 

the heterostructures after their transfer onto SiO2 by atomic force microscopy (AFM). Fig. 2c 

shows a lateral force AFM image of the heterostructure presented in Fig. 2a. The chemically 

more homogeneous graphene areas reveal a lower contrast in the lateral force image in 

comparison to the CNM areas consisting of crosslinked biphenyl-thiols. The corresponding 

topography image (see Fig. S3) is in agreement with the thickness of both materials, which is 

0.4 nm and 0.9 nm for graphene and BPT CNMs [18], respectively, and shows that the graphene 

areas have a lower height in comparison to the CNM areas. Some inhomogeneities are observed 

within CNM and graphene areas both in the topography and lateral force images, which most 

probably result from non-perfect adhesion of the heterostructure to the substrate and PMMA 

residuals. The HIM characterization of the samples on the growth gold/mica substrates and 

OM/AFM characterization of the samples transferred onto SiO2/Si substrates demonstrate the 

electron-beam induced stitching of CNM and graphene and the formation of continues 

graphene-CNM heterostructures on a large scale. 

To characterize the mechanical robustness of the formed heterostructures, they were prepared 

as suspended sheets on TEM grids, Figs. 2d-f. Fig. 2d presents a SEM image of a similar 

graphene-CNM heterostructure as in Fig. 1a, which was transferred to a Quantifoil TEM grid 

with a square array of circular holes. In this image, the conductive graphene appears brighter 

than the insulating CNM. It can be seen that the suspended heterostructure preserves its 

mechanical integrity and has a sharp boundary between CNM and graphene. In Fig. 2e a HIM 

image of a suspended graphene-CNM heterostructures with a dot pattern is shown. This 

heterostructure was prepared by inducing a square array of circular holes into a graphene sheet. 

The dots with a diameter of 500 nm consist of CNM embedded into a matrix of graphene. This 

graphene-CNM heterostructure demonstrates an inverse material contrast in comparison to Fig. 

2b, where a graphene dot pattern is embedded into a CNM matrix. Because of the higher 

secondary electron yield of graphene in comparison to CNM [4], similar to the SEM imaging 
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(Fig. 2d), in HIM the bright areas correspond to graphene while the darker areas correspond to 

CNM. As shown in Fig. S4, suspended graphene-CNM heterostructures can be prepared on the 

millimeter scale with a low defect density. In our experiments, the maximum lateral size of the 

suspended heterostructures was restricted simply to the diameter of TEM grids (2.9 mm) with 

holey carbon film serving as a support for the suspended sheets. To characterize the grain 

boundary between CNM and graphene, high-resolution HIM imaging was employed, Fig. 2f. 

As seen from Fig. 2f, the width of the grain boundary, i.e. the stitching region between CNM 

and graphene appears to be very narrow, below the resolution of the applied microscopy 

technique. Therefore, aberration-corrected high-resolution transmission electron microscopy 

(AC-HRTEM) at 80 keV was employed to characterize this region in more detail.  

The characterization of the boundary between CNM and graphene in a suspended 

heterostructure by AC-HRTEM is presented in Fig. 3. Fig. 3a shows an atomically resolved 

3030 nm2 micrograph of the boundary region. Left to the drawn red line the typical graphene 

structure [18, 32] can be recognized, whereas to the right the disordered CNM [4] is imaged. In 

the filtered TEM image (Fig. 3b) from the AC-HRTEM image in Fig. 3a, the areas of crystalline 

graphene (bright contrast) and amorphous CNM (dark contrast) are easily visualized; the 

boundary is also marked in the AC-HRTEM image by the red line. The interface between 

graphene and CNM is straight within an accuracy of few nm, and appears to be molecularly 

sharp. It is known that the formation of a CNM from aromatic molecular precursors via electron 

irradiation includes the cleavage of carbon-hydrogen bonds and the crosslinking of the adjacent 

molecular backbones [26]. Since the edges of graphene sheets are terminated with hydrogen of 

other chemical groups, a similar crosslinking mechanism including cleavage of the terminal 

chemical groups and formation of new covalent bonds between carbon atoms in graphene and 

CNM most probably takes place during the electron irradiation induced stitching.  

During the subsequent production steps of graphene-CNM heterostructures, we characterized 

the graphene by Raman spectroscopy. The corresponding spectra are presented in Fig. 4a. For 

the samples measured on gold/mica substrates the background intensity, due to the metal 

substrate, was subtracted from the respective spectra. The lowest spectrum in Fig. 4a represents 

a typical graphene sample transferred onto a gold/mica substrate. The characteristic 2D- and G-

peaks at 2680 cm-1 and 1593 cm-1 respectively, have an intensity ratio of I(2D)/I(G)=2.0; in the 

wave number range typical for the D-peak (~1350 cm-1) some intensity 
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Fig. 3. (a ) AC-HRTEM image showing the boundary between CNM (top right) and graphene 
(bottom left) marked by the dotted red line. (b) Filtered image of (a) showing the crystalline 
graphene area by bright contrast and the amorphous CNM area by dark contrast. The inset in 
(b) shows the Fourier Transform of (a) with the masked graphene reflection for the filtered 
image in (b).  
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Fig. 4. (a) Raman spectra of graphene (black), an area where the graphene has been removed 
by reactive ion etching (red), a SAM (blue) and the CNM (green) on gold substrates (lower 
spectra) and on SiO2 (uppermost spectrum), respectively. For the spectra taken on gold samples, 
a background subtraction was performed. (b) Optical microscopy image of a lateral graphene-
CNM heterostructure (left). The graphene stripes appear darker than the CNM. The same area 
was chosen for a Raman mapping (right); the intensities of the graphene D, G and 2D peaks are 
presented.   
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increase is observed, which is difficult to quantify due to the noisy background. For similar 

graphene samples studied on SiO2/Si substrates, a typical I(D)/I(G)-ratio of 0.1 was observed 

indicating a low defect density in the graphene (Fig. S1c) [33]. After patterning the graphene 

into an array with the line width of 5 µm, the I(2D)/I(G)-ratio decreases to 1.1 and the position 

of the 2D-peak shifts to the higher wave numbers (2700 cm-1). This observation is indicative 

for a change in the electron density in graphene [33] caused most probably by the doping of the 

graphene at the edges or/and on the graphene surface resulting from the processing by 

photolithography (EBL) and reactive ion etching (RIE) (see Section 2.1.5). The red line in Fig. 

4a represents the signal from an area where the graphene was removed by RIE; here no 

characteristic 2D- and G-peaks are detected and the spectral shape near the D-peak is similar to 

that observed for the non-patterned graphene on gold. Next, after the formation of a BPT SAM 

on the graphene free gold areas no additional changes are observed in the graphene spectra 

indicating that the structure and the electron density remain unaffected. As seen from the 

magenta spectrum, the SAM itself does not show any Raman signal in the studied spectral 

range. By crosslinking the SAM into a CNM with electron irradiation and formation of the 

graphene-CNM heterostructure, the D-peak appears in the spectrum. Finally, after the transfer 

of this heterostructure onto SiO2 substrate, because of the much lower background intensity, 

the D, G and 2D peaks can be analyzed in more detail (see the upper spectra in Fig. 4a). Thus 

we find that the I(2D)/I(G)-ratio decreases to 0.8 and the I(D)/I(G)-ratio has a value of 0.3 

demonstrating an increased defect density in the graphene. Fig. 4b shows an OM image and the 

respective Raman maps of the graphene-CNM heterostructure on SiO2. Raman active graphene 

areas and the non-active CNM areas can be clearly distinguished. In the CNM areas, the Raman 

signals of defective graphene occasionally are observed, most probably resulting from some 

graphene residuals after its removal by RIE. 

Next, we studied the effect of the electron irradiation on graphene by complementary Raman 

and X-ray photoelectron spectroscopy (XPS) measurements, Fig. 5. To this end, graphene 

sheets from the same CVD growth were transferred onto SiO2 substrates and exposed to 

electron irradiation (Ekin=50 eV) in ultra-high vacuum (UHV, 210-9 mbar) with electron doses 

of 10 mC/cm², 25 mC/cm² and 50 mC/cm². After the irradiation they were characterized by 

Raman spectroscopy at ambient conditions and subsequently by XPS in UHV. As seen from 

Fig. 5a, an increase of the D-peak is substantial only for the sample irradiated with 25 mC/cm2, 

whereas for the non-irradiated sample and for the samples irradiated with 10 mC/cm2 and 50 

mC/cm2 its intensity is comparable. The respective XP spectra show that 
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Fig. 5. (a) Raman spectra of graphene samples transferred to SiO2 and irradiated with different 
electron doses at a beam energy of 50 eV. (b) X-ray photoelectron spectra of the C1s core 
electrons of the graphene samples described in (a). The full width at half maximum (FWHM) 
of the respective peaks is included.  
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the core level electron C1s-signal for the 25 mC/cm2 sample has the widest full width at half 

maximum (FWHM) in comparison to the other samples, Fig. 5b. This observation is indicative 

for the presence of a higher surface density of the polymeric contaminations on this sample 

resulting from the PMMA based transfer. Thus, we attribute the observed increase in the D-

peak to the appearance of new defects in the graphene via the formation of new carbon-carbon 

bonds with the hydrocarbons adsorbed on its surface [34]. Besides that, the I(2D)/I(G)-ratio in 

all samples continuously decreases upon the irradiation from 3.0 to about 0.8 and the positions 

of the G-peak and the 2D-peak shifts by 16 cm-1 to higher wavenumbers. These changes in the 

Raman spectra can be due to an increase of the p-doping in graphene [34]. A similar effect was 

reported for graphene samples annealed in UHV on SiO2 and exposed to ambient conditions. 

Here, the observed p-doping was attributed to the physisorbtion of molecular adsorbates on the 

graphene surface [35]. Summarizing these findings, we conclude that upon electron irradiation 

induced stitching of graphene and CNMs the modification of the structural and electronic 

properties of graphene can take place. On the one hand, defects can be introduced into graphene 

if some hydrocarbons are present on its surface; on the other hand, an additional p-doping at 

ambient condition is induced most probably due to the physisorbtion of molecular adsorbates. 

3.3 Characterization of lateral CNM-MoS2 heterostructures 

In this section we present the characterization of lateral MoS2-CNM heterostructures formed 

by the procedure described in Section 3.1. An OM image of a MoS2-CNM heterostructure 

transferred onto a SiO2 substrate is shown in Fig. 6a. The NBPT precursor (see Section 2.1.6) 

was used for the generation of CNM, resulting in its termination with the amino groups [17]. In 

Fig. 6a the CNM, MoS2 and SiO2 regions can be clearly distinguished from the optical contrasts. 

The total area of this heterostructure is about 1×1 cm2. To prove the lateral stitching between 

MoS2 and CNM, we transferred the heterostructure onto a holey Quantifoil TEM grid and 

imaged by HIM, Fig. 6b. Due to the higher secondary electron yield from semiconducting MoS2 

in comparison to insulating CNM, the MoS2 area appears much brighter in this image than the 

CNM area. In the central part of Fig. 6b, in the suspended region, a hole in the CNM is visible. 

This defect helps to identify the free-standing boundary between MoS2 and CNM, that is, to 

confirm the successful stitching between both materials. The ability to transfer the MoS2-CNM 

heterostructures from their growth substrates onto new substrates as well as the preparation of 

the suspended sheets demonstrates their high mechanical robustness during the 

microfabrication.       
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Fig. 6. (a) Light microscopy image of a lateral MoS2-CNM heterostructure on a 300 nm SiO2/Si 
substrate. (b) HIM image of a freestanding MoS2-CNM heterostructure transferred to a 
Quantifoil TEM grid. (c) Raman spectrum recorded from the MoS2 region of the heterostructure 
after transfer to the SiO2.  
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Next, we employed Raman spectroscopy to analyze the influence of the electron irradiation, 

used for the stitching, on the structure of MoS2. Fig. 6c shows a Raman spectrum from the 

MoS2 area of the heterostructure transferred on SiO2 (see Fig. 6a). The spectrum reveals the 

characteristic for a MoS2 monolayer peaks at 386.8 ± 0.2 cm-1 (FWHM = 4.5 ± 0.2) and 404.9 

± 0.2 cm-1 (FWHM = 6.8 ± 0.3), which are due to the in-plane (E12g band) and out-of-plane 

(A1g band) vibrations in the sheet [36, 37], respectively. Within the experimental errors we do 

not find any noticeable change in this spectrum in comparison to the spectrum of as grown 

MoS2 on SiO2 (see Fig. S1d and SI Table 1) with an exception that the FWHM of A1g 

peakincreases from 4.9 ± 0.1 cm-1 for as grown MoS2 to 6.8 ± 0.3 cm-1 for the MoS2 in the 

heterostructure which is indicative for a change in the doping.[36] Thus the results suggest that 

no significant structural modification in the MoS2 monolayer occurs upon the electron 

irradiation.   

The MoS2-CNM heterostructures on SiO2 were characterized further by AFM in the contact 

mode. We have found that in topography imaging the MoS2 region appears about 2-3 nm higher 

than the CNM region, Fig. S5a. Its roughness has the root mean square (RMS) value of 1.7 nm, 

which is significantly higher than the RMS value of 0.3 nm typically observed for the as grown 

MoS2 monolayers on SiO2. Moreover, in disagreement with the expectation, only a weak 

contrast between the chemically and tribologically heterogeneous MoS2 and CNM regions of 

the heterostructure was observed in the lateral force image, Fig. S5b. These findings strongly 

indicate that an additional organic layer has been formed on top of the MoS2 during the 

heterostructure fabrication. This layer may result from physisorbed or/and covalently bound 

(e.g., to sulfur vacancies in the MoS2 [38-40]) NBPT molecules resulting from the SAM 

preparation. To prove this hypothesis, we performed AFM scans of the heterostructure with a 

slightly higher force than applied for imaging. In Figs. 7a-b an 88 µm² area of the MoS2-CNM 

heterostructure is shown, which was scanned in this way. As seen from the topography image 

in Fig. 7a, the adsorbate layer was removed by the AFM tip from the MoS2 surface revealing 

its typical topographic features like e.g. folds in this atomically thin sheet. The height difference 

between the MoS2 and CNM regions becomes to be negligible. On contrast, in the lateral force 

image, Fig. 7b, the MoS2 area becomes clearly distinguishable from the laterally stitched CNM. 

The SEM imaging of this area presented in Fig. 7c and Fig. S6 shows that the MoS2 region with 

the removed organic layer has a higher contrast and appears darker in comparison to the 

surrounding. Note that after removal of the adsorbed layer, no changes are observed in the area 

covered by CNM both in AFM 



21 
 

  

 
 

Fig. 7. AFM topography (a) and lateral force (b) image of a MoS2-CNM heterostructure on a 
SiO2 substrate. With increased force, the adsorbate weakly bound to the MoS2 could be removed 
(red box). The AFM tip did not induce any damage to the underlying MoS2 crystal or to the 
CNM layer laterally attached to it. (c) SEM image of the region shown in (a). (d) Light 
microscopy image of the heterostructure after the molecule removal with AFM. False colors 
are used to provide a higher contrast, the region where the adsorbate is removed can be 
recognized. (e) A Raman map of the investigated MoS2 edge shows a uniform intensity 
distribution for the E1

2g mode in the area covered with MoS2 and no signal in the area covered 
with CNM, proving that neither the electron irradiation nor the removal of weakly bound 
molecules damages the MoS2 layer. 
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topography and lateral force imaging demonstrating that the CNM remains unaffected by the 

scan with a higher force.  

A detailed analysis of the SEM images (Figs. 7c and S6) shows that the adsorbed layer scanned 

by AFM with the imaging parameters, that is applying a low force, reveals some dark patches 

which are most probably due to the adsorbate removal. This observation indicates that the 

adsorbate layer is weakly bound to the MoS2 by physisorption. In order to verify this, we 

performed Raman spectroscopy and mapped the region where the adsorbed layer was removed 

by AFM as described in the previous paragraph, Figs. 7d-e and Fig. S7. This region in Figs. 7a-

c,e is marked with red squares. From the intensity of the Raman E1
2g mode in Fig. 7d and the 

respective OM image in Fig. 7e the MoS2 area can clearly be recognized. The statistical analysis 

of the obtained data (see SI Table 1) shows no differences in the spectral features inside and 

outside of the MoS2 area where the molecules were removed by AFM, which demonstrates that 

the structure of the MoS2 remains unaffected after the adsorbate removal. We conclude that the 

organic layer on top of the MoS2 is physisorbed and most likely consists of the NBPT molecules 

employed for the SAM growth. Note that the formation of this layer can be prevented in 

microfabrication by protecting the MoS2 areas with a polymeric film during the SAM growth 

on gold. 

Similar as for to the graphene-CNM heterostructures, the AFM, HIM and SEM data suggest 

the formation of sharp boundaries between MoS2 and CNM in the heterostructures. To study 

their structure on the nanoscale, HRTEM and chemical mapping by energy-filtered TEM 

(EFTEM) were applied. A TEM image and the respective carbon and sulfur maps of a free-

standing MoS2-CNM heterostructure transferred on a circular hole of the Quanifoil grid are 

presented in Fig. 8a-c. The uniform carbon content seen in Fig. 8b (C-K map) indicates the 

presence of a molecular carbonaceous layer on top of MoS2. As expected, the strongest carbon 

signal in the C-K map can be found on the Quantifoil film, due to its much higher thickness of 

about 10 nm, compared to the 1 nm thin heterostructure. From the sulfur map in Fig. 8c (S-L2,3 

map), the MoS2 region in the heterostructure is clearly recognized. An AC-HRTEM image and 

the respective Fourier transformation obtained from the MoS2 are presented in Fig. 8d. They 

demonstrate the crystalline atomic structure of the MoS2 monolayer; some disordered bright 

and dark fringes in the HRTEM image result most probably from the physisorbed molecular 

carbon layer. An AC-HRTEM image of a boundary between MoS2 and CNM is shown in Fig. 

8e. In the filtered image in Fig. 8f, the areas of crystalline MoS2 (bright contrast) and amorphous 

CNM (dark contrast) are visualized (applying the same procedure as described for Fig. 3.) The 

stitching region recognized from  
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Fig. 8.  (a) Overview TEM image of a MoS2-CNM heterostructure on a Quantifoil grid with a 

freestanding circular part of 2 µm diameter. The boundary of the MoS2 crystal is marked with 

a red line. (b) The EFTEM carbon map (C-K edge) of the same sample area shows a 
homogeneous carbon distribution on the free-standing heterostructure area showing the 
presence of an organic adsorbate on the MoS2. (c) A sulfur map (S-L2,3 edge) shows the  high 

sulfur content in the region composed of MoS2. (d) AC-HRTEM image and Fourier transform 

(inset) of the image obtained from a region with MoS2. (e) AC-HRTEM image showing CNM 

(top left) and MoS2 (bottom right) and the boundary between the two regions marked red. (f) 
Filtered image of (e) showing the crystalline MoS2 area (bright contrast) and the amorphous 
CNM area (dark contrast). 
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Figs. 8e-f appears to be nearly atomically sharp. We assume that the sulfur atoms in the CNM 

bind to the molybdenum atoms and/or fill the sulfur vacancies at the edge of the MoS2 [38-40] 

during the self-assembly and the electron irradiation; in parallel with the crosslinking of the 

aromatic cores in the SAM, this process results in the formation of a continuous MoS2-CNM 

heterostructure with a nearly atomically sharp boundary between these two materials. 

 

4. Summary 

We have presented a methodology for the synthesis of lateral heterostructures of 2D materials 

by the low electron energy irradiation induced stitching. The heterostructures composed of 

inorganic-organic atomically thin sheets - graphene-CNM and MoS2-CNM - were produced 

and characterized by a combined microscopy and spectroscopy study down to the nanoscale. 

Our results demonstrate that the formed heterostructures possess a high mechanical robustness, 

so that they can be transferred from the growth substrates onto new solid substrates or prepared 

and suspended sheets without mechanical damage. Moreover, the formed grain boundaries 

between the dissimilar materials appear to be nearly atomically sharp with a width below 2 nm. 

Our results show that the electron irradiation doses required for the stitching do not noticeably 

influence the pristine properties of the used graphene or MoS2 monolayers. Employing 

conventional lithography techniques, the heterostructures can be produced in any shape, which 

facilitates their potential for applications in electronic and optoelectronic devices. As the 

irradiation with low energy electrons can induce chemical reactions in a variety of materials 

(see e.g. [41]), we suggest that the developed methodology can potentially be applied to a broad 

family 2D organic and inorganic materials paving the way towards flexible synthesis of their 

lateral heterostructures with complex architectures incorporating into the atomically thin sheets 

some distinct electronic, optical and biochemical functions. 
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