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Abstract
Background—Cigarette smoking is associated with esophageal adenocarcinoma (EAC),
esophagogastric junctional adenocarcinoma (EGJA) and esophageal squamous cell carcinoma
(ESCC), and alcohol consumption with ESCC. However, no analyses have examined how delivery
rate modifies the strength of odds ratio (OR) trends with total exposure, i.e., the impact on the OR
for a fixed total exposure of high exposure rate for short duration compared with low exposure
rate for long duration.

Methods—The authors pooled data from 12 case-control studies from the Barrett’s Esophagus
and Esophageal Adenocarcinoma Consortium (BEACON), including 1,242 (EAC), 1,263 (EGJA)
and 954 (ESCC) cases and 7,053 controls, modeled joint ORs for cumulative exposure and
exposure rate for cigarette smoking and alcohol consumption, and evaluated effect modification
by sex, body mass index (BMI), age and self-reported acid reflux.
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Results—For smoking, all sites exhibited inverse delivery rate effects, whereby ORs with pack-
years increased, but trends weakened with increasing cigarettes/day. None of the examined factors
modified associations, except for ESCC where younger ages at diagnosis enhanced smoking
effects (P<0.01). For EAC and EGJA, ORs with drink-years exhibited inverse associations in <5
drinks/day consumers and no association in heavier consumers. For ESCC, ORs with drink-years
increased, with trends strengthening with greater drinks/day. There was no significant effect
modification, except for EAC and EGJA where acid reflux mitigated the inverse associations
(P=0.02). For ESCC, younger ages at diagnosis enhanced drinking-related ORs (P<0.01).

Conclusions—Patterns of ORs by pack-years and drink-years, delivery rate effects and effect
modifiers revealed common as well as distinct etiologic elements for these diseases.

Keywords
alcohol drinking; risk model; smoking

1. Introduction
Cigarette smoking is an established risk factor for esophageal adenocarcinoma (EAC),
esophagogastric junctional adenocarcinoma (EGJA) and esophageal squamous cell
carcinoma (ESCC), while alcohol consumption is a risk factor only for ESCC [1]. Studies
have investigated other potential risk factors, such as obesity, gastroesophageal reflux and
diet [1]; however, no previous analysis has considered how delivery rate impacts odds ratio
trends (OR) with total exposure for smoking and for drinking.

Studies have typically estimated joint ORs by exposure rate (cigarettes/day [CPD] or drinks/
day [DPD]) and exposure duration. Interpretation is however problematic, since ORs with
increasing exposure rate for a fixed duration embed effects of increasing total exposure [2].
For example, for 30 years smoking, comparisons of ORs at 20 CPD and 30 CPD include
different total exposures, i.e., 30 and 45 pack-years, respectively, where pack-years is the
product of mean CPD and years of cigarette smoking. Thus, ORs for exposure rate and
duration cannot be interpreted as separate effects. In contrast, we consider total exposure
(pack-years or drink-years, defined as the product of mean DPD and years of alcohol
consumption) and exposure rate (CPD or DPD), which reformulates analysis in terms of OR
trends with total exposure and the modifying effects of delivery rate, where delivery rate
represents the relative effects on the OR for an equal total exposure of a high exposure rate
for a short duration compared with a low exposure rate for a long duration. For various
environmental factors, e.g., cigarette smoking, alcohol consumption and inhaled arsenic, this
approach enabled relatively simple characterizations of the joint ORs and generated novel
etiologic insights [2–7]. Previous modeling of EAC, EGJA and ESCC data focused on a
single factor, CPD or DPD, using splines or general additive models [8,9].

Using pooled data from the Barrett’s and Esophageal Adenocarcinoma Consortium
(BEACON), we extend previous analyses of the associations of EAC and EGJA with
smoking [10] and alcohol consumption [11], and include additional data on ESCC.
Specifically, we consider: (i) trends in ORs by pack-years and drink-years and the influence
of CPD and DPD; and (ii) effect modification of smoking patterns and drinking patterns by
sex, body mass index (BMI=weight [kg]/height [m]2), occurrence of acid reflux and age, as
well as the joint effects of smoking and drinking.
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2. Material and methods
2.1 Study data

Data derived from 10 population-based case-control studies [12–21] and two case-control
studies nested within cohorts [22–24] of EAC and EGJA (see Table 1 in Cook [10]). We
additionally included data from seven BEACON studies which also enrolled ESCC cases
[12–15,21–23]. Prior to the implementation of data restrictions (see below), there were
5,427 cases and 12,769 controls available for analysis. For additional study-specific
information, see Supplement A.

The population-based studies ascertained amount and duration of cigarette use and smoking
status at or within 2 years of diagnosis for cases or the index date for controls. For the two
nested case-control studies, the baseline questionnaires administered at cohort enrollment
provided exposure variables. The two nested studies ascertained CPD in categories [22,23],
while one study ascertained duration of smoking in categories [23]. We assigned midpoint
values for the categories. One study did not have duration information [22] which we
estimated using either attained age or age at smoking cessation and 17 years as the age at
smoking initiation. We minimized the influence of smoking cessation by restricting analysis
to never, current and recent (<2 years) former cigarette smokers, thereby omitting 2,183
cases and 4,542 controls who were former smokers.

For alcohol consumption, all studies defined never-drinkers as lifelong abstainers, except
four studies which ascertained drinking status one [22,23], five [20] or 20 years [15] before
enrollment. We assigned midpoints for one study which collected DPD in categories [23].
Analyses included all subjects, since drinking cessation information was not available for all
studies. We standardized DPD by equating one 12 ounce beer, 5 ounce glass of wine and 1.5
ounce of liquor.

Four studies (with 1,859 cases and 6,189 controls) lacked information on duration of alcohol
consumption [15,19,20,22], and were not included in drinking analyses. However, we
included these studies in smoking analyses by imputing drinking duration. For the eight
studies with duration, we cross-classified control drinkers by sex, age (4 levels) and DPD (8
levels) and calculated cell-specific frequencies for duration using cell-specific decile cut-
points. For each subject missing duration, we identified the appropriate sex, age and DPD
category, randomly sampled a duration category using frequency weights and assigned mean
duration. Inference for smoking analyses was similar using either single or multiple
imputations, and we therefore present results for a single imputation. Analyses indicated that
the inclusion of these four studies did not affect estimates of smoking-related parameters, as
results were similar with these studies omitted.

BMI derived from self-reported height and weight, using usual adult weight [12,14,18,19],
or, if unavailable, weight one year [13,17,21], five years [20] or 20 years [15] prior to the
referent age. One study ascertained weight at age 20 and maximum adult weight (excluding
pregnancies), for which we used the latter assuming it better reflected usual adult weight
[16]. For the nested case-control studies, we used weight at cohort entry [22,23].

The Institutional Review Board or Research Ethics Committee for each study approved data
collection and, if required, participation in the pooling.

2.2 Statistical models
We used binary logistic regression to estimate ORs for each category of smoking and
alcohol consumption, as appropriate. For continuous pack-years, d, and CPD, x, the standard
logistic model with exponentially increasing ORs across the full exposure range provided a
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poor fit to the data. We therefore fitted the model OR(z, d, x) = exp(α z) OR(d, x), where α
and z were vectors of adjustment parameters and covariates, respectively, and

(1)

where β represented the excess odds ratio per pack-year (EOR/pack-year) and g(.) described
variations of the EOR/pack-year with CPD, i.e., changes in strength with delivery rate [2,4].
After assessing alternatives, we set g(x)=exp{ϕ1 ln(x) + ϕ2 ln(x)2}, with g(0)=0. ORs by
pack-years were approximately linear within a CPD category, i.e., OR(d) = 1 + γi d for the
ith CPD category, where γi was the EOR/pack-year. We compared the fitted β g(x) with the
γi estimates from the model:

(2)

where di equaled d within the ith CPD category and zero otherwise.

We also used model (1) for continuous drink-years and DPD after preliminary analysis
revealed approximately linear relationships for ORs by drink-years within DPD categories.
For ESCC, we used the same g(.). For EAC and EGJA, variations with DPD were complex
and we modeled g(.) with restricted cubic splines (Supplement B), with the Akaike
Information Criterion (AIC) advising on the number and placement of knots [25].

We considered effect modification by a categorical factor (f) with levels 1,…,S using

(3)

where distinct βs parameters and gs (.) functions replaced β and g(.), and where ds equaled d
and xs equaled x within level s and zero otherwise. We used deviances to compare model fit
and evaluate whether effect modification derived from total exposure (different β’s),
exposure rate (different g(.)’s) or both. Starting with model (3), we constrained the β’s and/
or g(.) functions to be equivalent across f and examined degradation in model fit. This
approach, in contrast to starting with model (1) and enlarging the model, allowed the
evaluation of the interaction of f and one factor (e.g., pack-years) while minimizing
influence of the interaction of f and its closely related correlate (e.g., CPD).

Software for polytomous regression under model (1) to evaluate differences in the
magnitude of associations between smoking and alcohol consumption across the three
disease outcomes (EAC, EGJA, ESCC) was not available. As an alternative, we created one
dataset with three “strata” consisting of EAC cases and controls, EGJA cases and controls
and ESCC cases and controls and applied model (3) to test homogeneity across outcome.
The approach was anti-conservative, since controls were replicated, but was generally
comparable to use of categorical variables and standard polytomous logistic regression.

Analyses adjusted for the cross-classification of study (12 levels), age (<60, 60–64, 65–69,
70+ years) and sex, and for education (less than high school, high school graduate, more
than high school, missing/not available) and BMI (<25, 25–29.9, 30.0–34.9, 35.0+ kg/m2).
For smoking analyses, we further adjusted for drink-years and DPD categories, and for
drinking analyses we adjusted for pack-years and CPD categories. Since results were
similar, we did not adjust for race or occurrence of acid reflux, which was available in five
studies only.
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Cigarette smoking analyses included 927, 990 and 915 cases of EAC, EGJA and ESCC,
respectively, 7,431 controls for EAC and EGJA and, due to fewer studies, 6,212 controls for
ESCC. Alcohol consumption analyses included 1,103, 1,118 and 896 cases, respectively,
and 5,719 controls for EAC and EGJA and 3,973 controls for ESCC.

Previous analyses of cigarette smoking suggested that <10 CPD smokers increased model
instability due to a limited range for pack-years. We therefore repeated analyses in never and
10+ CPD smokers, which included 89.7% of cases and 89.1% of controls. For alcohol
consumption, the relatively few heavy drinkers were highly influential. We repeated
analyses in never and ≤10 DPD drinkers, which included 94.6% of cases and 98.4% of
controls.

We fit the various models using the Epicure computer package[26].

3.0 Results
3.1 Marginal and joint odds ratios by pack-years and cigarettes/day

ORs by pack-years increased significantly for all outcomes, with ESCC exhibiting the
strongest association (Table 1). Adjusted for pack-years, ORs by CPD increased, leveled,
then even decreased, suggesting variations with delivery rate. The test of no linear trend
with CPD rejected only for ESCC, although a test of no linear-quadratic variation rejected
for EAC (P=0.02) and EGJA (P=0.05).

For joint categories of pack-years and CPD, ORs relative to never-smokers increased
approximately linearly with pack-years within CPD categories (Figure 1). Four of 15 tests
rejected linearity at the 0.05-level (for EAC <10 CPD, for EGJA 20–29 and 40+ CPD, and
for ESCC 40+ CPD). A sensitivity analysis revealed that after omitting two studies [17,21]
only one of 15 tests rejected linearity (for EGJA 20–29 CPD), consistent with expectation.

The EOR/pack-year estimates from model (2), i.e., slopes, were generally larger for ESCC
than for EAC and EGJA, which were themselves similar (Table 2). EOR/pack-year
estimates (square symbol) and the fitted model (1) (solid line) declined at higher CPDs,
indicating a decreasing strength of association (Figure 2). For each outcome, the variation of
the pack-years association with CPD, g(.), was significant (Supplement Table C1).

Cigarette smoking patterns for EAC, EGJA and ESCC differed significantly (P<0.01) (Table
C1). Relative to model (3) with outcome-specific βs and gs(.), there was less degradation in
fit with common β (P=0.09 and P=0.17 in the full and restricted data, respectively) than with
common g(.) (P=0.04 and P=0.07), suggesting the greater EORs for ESCC derived from
differential smoking rate effects, g(.). A similar evaluation indicated homogeneity of
smoking-related parameters for EAC and EGJA (P=0.63) (not shown).

3.2 Marginal and joint odds ratios by drink-years and drinks/day
Using binary logistic regression ORs for EAC and EGJA by drink-years were <1.0, while
ORs by DPD adjusted for drink-years were about 1.0 for <5 DPD and >1.0 for 5+ DPD
(Table 1). These patterns, based on marginal effects, suggested a protective association with
drink-years in low DPD consumers but a deleterious association in high DPD consumers.
For ESCC, ORs by drink-years increased significantly. After adjustment for drink-years,
ORs by DPD increased. Although the test of no linear trend did not reject (P=0.39), the test
of no linear-quadratic trend did reject (P<0.01).

For joint categories of drink-years and DPD, ORs relative to never-drinkers increased
approximately linearly with drink-years within DPD categories (Figure 3). Two of 15 tests
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(for EGJA 5.0–9.9 and ESCC 10+ DPD) significantly rejected linearity. For EAC and
EGJA, ORs with drink-years declined in <5 DPD categories. For the five categories, p-
values for a test of no trend with drink-years were <0.01, 0.06, 0.33, 0.85 and 0.30 for EAC,
respectively, and 0.10, <0.01, 0.04, 0.62 and <0.01 for EGJA.

Expanding DPD categories and fitting model (2), there were inverse associations with drink-
years for <5 DPD drinkers (Table 3 and Figure 4), with EOR/drink-year estimates (×10)
increasing monotonically from −0.085 to 0.016 for <20 DPD for EAC and from −0.046 to
0.002 for <7 DPD for EGJA. Applying model (1), there were significant associations with
alcohol consumption for EAC (P=0.06) and for EGJA (P=0.03), with DPD significantly
modifying the EOR/drink-year estimates (P=0.04 and P=0.02) (Table C3).

For ESCC, EOR/drink-year estimates tended to increase with DPD then decrease (Table 3
and Figure 4). We fitted model (1) with g(x)=exp{ϕ1 ln(x) + ϕ2 ln(x)2} for all data and with
g(x)=exp{ϕ1 ln(x)}for ≤10 DPD since inclusion of ln(x)2 did not improve fit (P=0.94). For
all data, the 3-parameter model (β, ϕ1 and ϕ2) underestimated the EOR/drink-year at lower
DPD (solid line), while the 2-parameter model (β and ϕ1) provided a good fit for ≤10 DPD
(dash line).

3.3 Effect modification of cigarette smoking and alcohol consumption excess odds ratios
Using model (3), we evaluated effect modification of cigarette smoking ORs by sex, BMI,
age, acid reflux and drink-years. For EAC and EGJA, there was no significant effect
modification (Tables 2 and C2). For ESCC, there was significant modification by attained
age, with smoking patterns enhanced at younger ages (P=0.01) (Figure C1). The
enhancement at younger ages derived primarily from the interaction of CPD and age
(P=0.03) and not pack-years and age (P=0.57) (Table C2). There was a suggestion of
enhanced smoking effects at lower BMIs (Table 2, P=0.08, with P=0.06 in the restricted
data), but relationships were not consistent across CPD categories.

We evaluated effect modification of ORs for alcohol consumption (Tables 3 and C4). For
EAC and EGJA, we found no significant effect modification by sex, BMI, age or pack-
years, but did observe a suggested modification by acid reflux (P=0.03 for EAC and P=0.14
for EGJA). EOR/drink-year estimates for <7 DPD categories were greater for those
reporting acid reflux, except in the <1 DPD category for EAC, suggesting acid reflux
mitigated the inverse drink-years association (Table 3). Combining EAC and EGJA cases,
acid reflux significantly modified alcohol consumption patterns (P=0.02) (not shown). For
ESCC, there was significant modification only by attained age, with drinking patterns
enhanced at younger attained ages (P<0.01) (Figure C2). The modification of ORs by sex in
the restricted data (P=0.05), which was suggested in Table 3, was due to <1 DPD drinkers
and omission of those subjects resulted in P=0.37 for the test of homogeneity. Finally, BMI
significantly modified drinking patterns (P=0.04), but results were not consistent, with
reduced EOR/drink-year estimates for 30+ BMI subjects but only in <5 DPD categories.

3.4 Consistency of smoking and drinking results by study
Using model (3) within the restricted data, tests of homogeneity of smoking effects across
studies did not reject for EAC (p=0.08) or for EGJA (p=0.13), but did reject for ESCC
(p=0.02). The latter test was influenced by one study (23), which, when omitted, resulted in
no rejection of homogeneity (p=0.16) (not shown). ORs for ESCC by pack-years for the
Kaiser-Permanente Study (23) were smaller than the other studies, and may have been
influenced by the few ESCC smokers (70 of 92 total ESCC cases) and the limited number of
distinct values for pack-years due to the use of category mid-points for duration and CPD.
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Using model (3) with a restricted cubic spline for g(.), tests for homogeneity of drinking
effects for EAC and for EGJA across studies did not reject (p=0.99 and p=0.98,
respectively). Seven BEACON studies contributed cases for ESCC analyses. With the
additional requirement of information for duration of drinking, ESCC analyses were limited
to four studies (12–14, 21). The test of homogeneity of drinking effects was rejected
(p<0.01), although it was not rejected (p=0.24) after omitting the Australian study (21). The
Australian study had a similar pattern of increasing EOR/drink-year estimates for ESCC;
however, the EOR/drink-year parameter (β) was lower.

4.0 Discussion
Our analysis of BEACON data revealed distinct associations for EAC, EGJA and ESCC
with cigarette smoking and alcohol consumption and differential effect modification. For
cigarette smoking, each outcome exhibited similar inverse delivery rate patterns above 10–
15 CPD, whereby for equal pack-years smoking more CPD for shorter duration was less
deleterious than fewer CPD for longer duration. This pattern has occurred consistently with
smoking-related cancers, including lung, oral cavity, pharynx, larynx, bladder, kidney, liver
and pancreas [2,3,5,7,27], and may reflect saturation of activation pathways [28–30],
increased detoxification [31] or enhanced DNA repair [32,33]. These patterns may also have
reflected CPD-dependent inhalation, whereby heavier smokers inhaled less vigorously and
thereby ingested fewer carcinogens per cigarette. However, a sensitivity analysis based on
the association between urinary cotinine and CPD for a smoking and lung cancer study
concluded that CPD-dependent inhalation did not explain the inverse delivery rate pattern
[34].

Previous studies have reported greater smoking-related ORs for ESCC than for EAC and
EGJA [1]; however, our analysis went further and suggested that these differences derived
from delivery rate effects, i.e., different g(.) functions, and not pack-years, i.e., similar β’s.
This implied that factors which stochastically influence pathways that predispose towards a
specific histology were not related to the carcinogenic impact of lifetime cigarette
consumption but to the relative modulating influence of delivery rate. In particular, the
greater smoking-related ORs for ESCC derived from heightened responsiveness to differing
delivery rates.

Studies have linked increased alcohol consumption with ESCC, as well as cancers of the
oral cavity, pharynx, larynx, liver, colon/rectum and breast [35]. This association may derive
from the ethanol metabolite acetaldehyde, a possible human carcinogen (Group 2B) [36],
which may increase reactive oxygen species [37] or enhance cell permeability to
environmental carcinogens, e.g., tobacco smoke [35,38]. Our analysis observed a direct
delivery rate pattern for ≤10 DPD, whereby the drink-years association strengthened with
increasing DPD, suggesting that alcohol-related causal mechanisms were not rate limited.
Above 10 DPD, the drink-years association weakened, a pattern which also occurred for oral
cavity, pharyngeal and laryngeal cancers [4,5]. However, interpretation of results for heavy
drinkers may be problematic, since data at extreme levels of daily consumption were limited
and potentially subjected to increased misclassification. Nevertheless, the decreasing
strength of the drink-years association above 10 DPD was consistent, suggesting that this
“reduced potency” or “wasted exposure” pattern may not be an artifact.

In contrast to ESCC, studies of EAC and EGJA and alcohol consumption have been less
definitive, with reports of a decreasing association[14,16,39], no
association[9,14,15,17,22,40–43] and an increasing association[13,39,44,45]. A recent
BEACON analysis of EAC and EGJA reported suggestive evidence of an inverse
association in modest drinkers[11]. Our modeling found a significant inverse association
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with drink-years, but limited mainly to <5 DPD consumers, with no association in heavier
drinkers. We think it unlikely that increasing misclassification of DPD greatly influenced the
diminution of the inverse drink-years association. Assuming duration was accurate,
increasing DPD misclassification should have induced progressively greater curvilinearity of
the drink-years association, a pattern we did not observe (Figure 3).

Healthy lifestyle factors may have confounded results for EAC and EGJA through a link to
moderate drinking and reduced consequences of insulin resistance or elevated serum lipids
and lipoproteins or increased antioxidants [11]. However, alcohol-related ORs were similar
in never and current smokers and within BMI categories (not shown), which argues against
lifestyle confounding.

We evaluated effect modification of smoking ORs by sex, BMI, age, acid reflux and drink-
years and drinking ORs by sex, BMI, age, acid reflux and pack-years. For EAC, only the
occurrence of acid reflux significantly modified ORs for alcohol consumption. For <7 DPD,
inverse associations with drink-years were greater in those without reflux (P=0.01 for the
test of no association) than with reflux (P=0.29), suggesting acid reflux may dissipate any
health benefits from lower DPD. A similar pattern occurred for EGJA, with a significant
inverse drink-years association among those without (P=0.05), but not with (P=0.77), acid
reflux, although homogeneity was not rejected. This result needs corroboration, since
information on acid reflux in the pooled data were limited [19,46–48].

For ESCC, we found evidence of effect modification by BMI, with ORs for smoking and
drinking enhanced for those under 30 BMI. Confounding by reverse causation (disease-
related weight loss) may have influenced results[49]; however, such effects are thought
weak for most cancers[50] and moreover reverse causation would had to have been outcome
specific. In BEACON, the OR for ESCC by BMI <25 relative to 25+ was OR=1.27 (95%
confidence interval [CI] 0.98, 1.65) and OR=1.44 (95% CI 1.22, 1.69) in never and ever
smokers, respectively, an association consistent with other ESCC studies [13,23,42,51,52],
as well as studies of lung[53–56], oral cavity, pharyngeal and laryngeal cancers[5,57]. In
addition, the enhancement of ORs for smoking and drinking at lower BMIs was also
observed for oral cavity and pharyngeal cancers[5]. In contrast, ORs for EAC and EGJA
increased with greater BMI (not shown), and BMI did not modify smoking and drinking
ORs. Mechanisms that link lower BMIs with increased ORs for ESCC, lung, oral cavity and
pharynx cancers and with enhancement of smoking-related and drinking-related ORs are
unknown[57], but may involve altered caloric absorption and utilization, greater oxidative
stress or altered DNA repair[57–60].

We found no effect modification of smoking ORs by drinking or drinking ORs by smoking,
indicating consistency with a multiplicative joint association. This agreed with most
previous studies [12,14,43,45,61], although not all [9].

Our analysis had several strengths. We pooled original data from 12 studies conducted in
diverse settings, while similarities of study instruments allowed substantial harmonization of
variables for smoking, alcohol consumption and other important risk factors. The large
numbers of case patients increased our power to assess main effects, as well as more subtle
patterns, such as delivery rate effects and effect modifiers, and variations by histology and
site. The use of pooled data also enabled the direct assessment of the consistency of the
observed associations across independent studies.

Limitations in our results included potential recall bias from the retrospective collection of
information for the 10 case-control studies, although this was balanced by data from two
case-control studies which were nested in cohorts and which used data ascertained at
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enrollment and prior to disease incidence. Consistency of results across studies and
differential patterns by outcome types suggested that recall bias was not substantial.

In summary, smoking-related ORs exhibited an inverse delivery rate pattern, whereby for
equal pack-years smoking more CPD for shorter duration was less deleterious than smoking
fewer CPD for longer duration. For EAC and EGJA, there was a significant inverse
association with drink-years in <5 DPD drinkers, primarily in those reporting no acid reflux,
and no association in heavier drinkers. For ESCC, there was an increasing OR trend with
drink-years, which strengthened with greater DPD in light and moderate drinkers. Although
consistent across studies, our results require further confirmation, but provide important
guidance for the development of more directed hypotheses.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Odds ratios for esophageal adenocarcinoma (EAC), esophagogastric junctional
adenocarcinoma (EGJA) and esophageal squamous cell carcinoma (ESCC) by categories of
pack-years of cigarette smoking and number of cigarettes smoked per day (CPD) (solid
symbol) and fitted linear models in pack-years (see text). Bars represent 95% confidence
intervals. Data for never and current cigarette smokers from the Barrett’s Esophagus and
Esophageal Adenocarcinoma Consortium (BEACON).

Lubin et al. Page 14

Cancer Epidemiol. Author manuscript; available in PMC 2012 November 05.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 2.
Estimated excess odds ratios per pack-year for esophageal adenocarcinoma (EAC),
esophagogastric junctional adenocarcinoma (EGJA) and esophageal squamous cell
carcinoma (ESCC) within categories of cigarettes per day (CPD) (square symbol), plotted at
the category-specific mean CPD, and model (1) fitted to all data (solid line) and to never and
10+ CPD smokers (dash line). Bars represent 95% confidence intervals. Data for never and
current cigarette smokers from the Barrett’s Esophagus and Esophageal Adenocarcinoma
Consortium (BEACON).
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Figure 3.
Odds ratios for esophageal adenocarcinoma (EAC), esophagogastric junctional
adenocarcinoma (EGJA) and esophageal squamous cell carcinoma (ESCC) by categories of
drink-years and number of drinks per day (DPD) (solid symbol) and fitted linear models in
drink-years (see text). Bars represent 95% confidence intervals. Data from the Barrett’s
Esophagus and Esophageal Adenocarcinoma Consortium (BEACON).
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Figure 4.
Estimated excess odds ratios per drink-year for esophageal adenocarcinoma (EAC),
esophagogastric junctional adenocarcinoma (EGJA) and esophageal squamous cell
carcinoma (ESCC) within categories of drinks per day (DPD) (square symbol), plotted at the
category-specific mean DPD, for all data (left panels) and for #10 DPD (right panels). Bars
represent 95% confidence intervals. For EAC and EGJA, model (1) included DPD effects
estimated by restricted cubic splines with four interior knots at 0.2, 0.5, 3.0 and 10.5 DPD
for EAC and at 0.1, 1.0, 2.0 and 7.0 for EGJA (solid line), and at 0.1, 0.3, 1.3 and 2.0 DPD
for EAC and at 0.1, 0.2, 2.0 and 9.8 for EGJA for never and #10 DPD drinkers (dash line).
For ESCC, model (1) included DPD effects defined by an exponential function (see text)
fitted to all data (solid line) and to restricted data (dash line). Note the aspect ratio for EAC
and EGJA panels was 2-times the aspect ratio for the ESCC panels. Data from the Barrett’s
Esophagus and Esophageal Adenocarcinoma Consortium (BEACON).
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