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Abstract   

Familial malignant mesothelioma clusters are ideal candidates to explore BAP1 genomic status as a 

predisposing risk factor. We report data on BAP1 analysis in four families with multiple mesothelioma 

cases to investigate possible BAP1 alterations associated with an inherited cancer syndrome. We also 

recorded family history of cancer and assessed asbestos exposure. By genomic direct sequencing, we 

found no evidence of a BAP1 germline mutation in tumor DNA samples (one mesothelioma per family: 

n=3 epithelioid; n=1 biphasic). On the other hand, we identified a novel BAP1 somatic alteration 

(c.329_335delinsTC) in exon 5 (n=1 biphasic), and we hypothesized the occurrence of somatic 

inactivating events not identifiable by sequencing in the other cases (n=3 epithelioid), as 

demonstrated by the loss of nuclear BAP1 immunostaining. History of other cancers was in sites not 

typical of the BAP1 cancer syndrome. Asbestos exposure was occupational (n=2 clusters), household 

(n=1), and unknown (n=1). These family units without inheritance of a BAP1 predisposing mutation 

expand the number of unmutated germline BAP1 families with multiple mesothelioma cases. This 

suggests that besides the exposure to asbestos other currently unknown genetic or epigenetic factors 

may be responsible for the high incidence of mesothelioma in BAP1-unmutated families.  

 

Key words: malignant mesothelioma; asbestos; familial cancer; BAP1 germline mutation; BAP1 

somatic mutation 
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Introduction 

 Malignant mesothelioma (MM) occurs as sporadic cancer (one affected individual in the family) 

generally in association with asbestos exposure. Its occurrence as clusters among blood-relatives (two 

or more individuals are affected) suggests increased genetic susceptibility.  

BAP1 (BRCA1-associated protein 1) is a tumor suppressor gene located on chromosome 3p21.1, 

encoding for a deubiquitinating enzyme that requires nuclear localization [1]. BAP1 regulates cell 

cycle control, target genes transcription, and DNA damage repair [2]. The germline mutation in the 

BAP1 gene is associated with a hereditary tumor predisposition syndrome (BAP1-TPDS, 

OMIM#614327) that occurs in family members with several cancer types: MM, uveal/cutaneous 

melanoma, renal cell carcinoma, basal cell carcinoma and other cancers [3-16]. As of March 2016, 

forty-six families with multiple cases of MM have been analyzed for BAP1 germline alterations. Some 

families were proven to carry BAP1 germline alterations in association with family history of either 

typical BAP1-TPDS cancers [9, 10, 17] or not typical BAP1-TPDS cancers [9, 10, 18, 19]. In addition, 

families with multiple cases of MM without inheritance of a predisposing germline BAP1 mutation 

have been reported [20]. Germline mutations described to date are nucleotide-level mutations.  

 Germline BAP1 alterations are a rare event in sporadic MM [10, 18, 21-23]. The majority are 

benign polymorphisms (SNPs) or variants of unknown significance (VUS) [4, 5, 23]. Those of 

pathogenic significance have been described in association with BAP1-TPDS malignancies [4, 21, 24-

28]. On the other hand, somatic mutations of BAP1 are a frequent event in MM [26, 28, 29], with a 

variable rate of occurrence depending on the molecular assay used. Somatic mutations described to 

date are both nucleotide-level and chromosomal mutations [30].   

 MM familial clusters among blood-relatives are ideal candidates to identify BAP1 germline 

carriers associated with the putative BAP1 cancer syndrome. Familial mesothelioma is defined by the 

diagnosis of two or more blood-relatives affected by MM. Over the past 30 years, we have detected 13 

MM familial clusters in a population-based study [19]. One of these, an asbestos-exposed family with 

multiple cases of pleural MM and without inheritance of a predisposing BAP1 mutation has been 

recently reported [30]. We have decided to investigate further if additional MM clusters are associated 

or not with inheritance of a BAP1 germline mutation. 
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Materials and Methods 

Familial cases and Samples 

 Families were identified through a regional section of the Italian network of the Mesothelioma 

Registry (www.deplazio.net) and a pathology-based archive. We selected 4 clusters (family C, D, G, and 

O) whose pedigrees were previously reported [30] on the basis of availability of samples from at least 

two first-degree relatives with MM.  Peripheral blood samples were unavailable, and only limited 

formalin-fixed paraffin-embedded (FFPE) tissues specimens were available for mutational and 

immunohistochemical (IHC) studies. As indicator of a genetic predisposition to cancer, we assessed 

personal and family history of other primary malignancies that was positive in 3 families (stomach, 

pancreas, lung, prostate, colon). Asbestos exposures were assessed by interviewing patients and/or 

the next of kin through a standard questionnaire and coded according to a classification relating to 

modalities of exposure as ‘occupational (n=2 families) household (n=1) and unknown (n=1)’ 

(https://www.inail.it).   

 Sequencing analysis 

 BAP1 mutational analysis was performed on one case for each family considering the index 

cases [31]. Since DNA was not available from peripheral blood, genomic DNA was obtained from FFPE 

tissues (3 epithelioid and 1 biphasic MM), using the QIAamp DNA FFPE Tissue Kit (QIAGEN, Valencia, 

CA) according to the manufacturer’s protocol. Neoplastic tissue was selected to be analyzed separately 

from the normal tissue portions. For all samples, we made sure that the neoplastic cell population was 

above 80%. Furthermore, the biphasic MM was manually microdissected in the two neoplastic 

populations (epithelioid and sarcomatoid) that were analyzed separately.   

The rationale of the molecular approach was the following: 1) to analyze the tumor-only 

population in the index case since tumor-only testing can reveal germline mutation [26, 28]; 2) in the 

case of a BAP1 mutation detection, to expand the mutational analysis, matching normal and tumor 

DNA for a correct assessment of a somatic versus a germline mutation; 3) in the case of a germline 

BAP1 mutation, to expand the mutational analysis, sequencing normal DNA of the blood-relative.  

The entire BAP1 coding sequence was amplified with primers designed on the flanking 

intronic/exonic regions using Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/) Because of the 
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fragmentation of DNA fixed in formalin, 32 amplicons were used to amplify small DNA fragments. 

Primers and PCR conditions are available on request. Bidirectional Sanger sequencing was performed 

by an external commercial service using standard protocols (Eurofins MWG Operon, Ebesberg, 

Germany). Eletropherogram results were analyzed by using FinchTV software (Geospiza, Seattle, WA) 

and BLASTN tool for alignment analyses to the human reference genome 

(https://blast.ncbi.nlm.nih.gov/). Putative BAP1 variants were validated via bidirectional re-

sequencing of an independent PCR amplification. Variants were annotated according to the longest 

isoform RefSeqs from the Genome Reference Consortium Human Build 37.3 (NM_004656.3) and 

described according to the Human Genome Variation Society guidelines (HGVS, 

http://www.hgvs.org/mutnomen/). Putative genetic alterations were classified as polymorphism 

(neutral or germinal) or somatic pathogenic (or of unknown pathogenicity) by considering the 

following: (1) the reported frequency in the following polymorphic databases: dbSNP (build 131; 

http://www.ncbi.nlm.nih.gov/projects/ SNP/), 1000 Genomes (http://www.1000genomes.org/), 

NHLBI GO ESP (evs.gs.washington.edu/EVS/); 

 (2) the presence in somatic mutational COSMIC databases (http://cancer.sanger.ac.uk/cosmic); (3) 

evolutionary conservation of the involved residue at both nucleotide and amino acid level, calculated 

by multiple alignments of 46 vertebrate species and (4) in-silico prediction of functional effect by SIFT 

(http://sift.jcvi.org/), PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), SNPs3D 

(http://www.snps3d.org/) , Panther  (www.pantherdb.org/) , MutPred (http://mutpred.mutdb.org/),  

NetGene (http://www.cbs.dtu.dk/services/NetGene2/). 

Immunohistochemical analysis 

 IHC detection of BAP1 was performed using a primary anti-human BAP1 antibody (C-4, 1:200, 

Santa Cruz Biotechnology, Santa Cruz, CA, USA) and an automated immunostainer (BenchMark, 

Ventana Medical System, Tucson, AZ) on FFPE tumor sections in 8 out 9 MM cases (6 epithelioid, 1 

sarcomatoid, and 1 biphasic MM). One case (1 sarcomatoid, G-II-9) was not available. Tumor tissues 

were assessed as positive or negative on the basis of the presence or absence of BAP1 nuclear staining. 

It was also assessed the staining of the cytoplasm (and intensity, as strong or faint). The fraction of 
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BAP1 positive stained cells was evaluated for nuclear and cytoplasmic sub-cellular localization (<25%, 

25-75% or >75%). Normal stromal endothelial or lymphoid cells served as positive internal control. 
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Results  

 BAP1 sequencing and IHC findings are summarized in Table 1 and illustrated in Figures 1 and 

2. Sequencing analysis showed no BAP1 gene mutation neither in heterozygosis nor in homozygosis in 

three of the four index cases analyzed (C-II-2, G-II-6 and O-III-1, all epithelioid MM). Conversely, in the 

fourth index case (D-II-4, biphasic MM), a complex non-frameshift insertion/deletion (InDel) in exon 5 

(c.329_335delinsTC) was detected in heterozygosis, as shown in Figure 2C. This leads to the loss of 

two aminoacids (p.Pro110_Ser111del) resulting in a shorter BAP1 protein of 727 aminoacids, and 

involves the UCH (Ubiquitin carboxyl-terminal hydrolase, UniProtKB - Q92560) catalytic domain. This 

alteration was identified both in the epithelioid and in the sarcomatoid component with two different 

allelic frequencies. The electropherogram relating to sarcomatoid cells showed clear-cut peak heights 

lower than those of epitheliod cells (Figure 2C). The mutational analysis of normal tissue from this 

case lacked the BAP1 alteration, indicating a somatic origin (Figure 2C). 

 By IHC, a complete loss of nuclear BAP1 staining was seen in all epithelioid MM (C-II-1, C-II-2, 

D-II-3, G-II-6 and O-III-1) and in the epithelioid cells of biphasic MM (D-II-4). BAP1 nuclear 

immunoreactivity was retained only in the sarcomatoid MM (G-II-8) and in sarcomatoid cells of the 

biphasic MM (D-II-4), with a variable percentage of stained cells. BAP1 cytoplasmic staining was 

observed in all epithelioid tumors, with a variable number of stained cells, uneven intensity and a 

coarse granular pattern. Similarly, BAP1 cytoplasmic staining was observed in the fraction of 

sarcomatoid cells that lost their nuclear reactivity.  
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Discussion 

 In the present study, we demonstrated that no germline BAP1 alterations could be identified in 

the tissues of four families affected by multiple MM, thus speculating that in these individuals there is 

no evidence of an inheritance linked to BAP1 mutations. The absence of a germline mutation in coding 

regions and intron-exon boundaries of BAP1 gene was proven in the normal tissue DNA belonging to 

one index case (D-II-4) and by excluding single point mutations and small InDels in tumor DNA 

belonging to the other three index cases (C-II-2, O-III-1, G-II-6). We cannot exclude large deletions of 

BAP1 that are undetectable by Sanger sequencing [3, 9, 11, 19]. However, large deletions of BAP1 have 

never been detected in germline configuration in families either with multiple MM [3, 9, 11, 32-37] or 

without MM [26, 28, 29]. The loss of nuclear BAP1 immunostaining suggests that these tumors may 

harbor somatic alterations of the BAP1 gene, a frequent event in sporadic epithelial MM [21, 24, 26, 

27]. Although most BAP1 somatic mutations are nucleotide-level mutations, additional technical 

approaches would have been necessary to detect gross deletions at exon level. Unfortunately, a limit of 

the present study includes the unavailability of sufficient amount of tumor DNA to perform a 

comprehensive analysis of BAP1 gene alterations. 

Furthermore, we identified -at the somatic level only- a complex InDel p.Pro110_Ser111del 

(exon 5) in case D-II-4 that has never been previously reported. This subject had a history of 

occupational asbestos exposure as his brother (Table 1, case D-II-3). Somatic mutations in exon 5 

occur in about 5% of all tumors (COSMIC; http://cancer.sanger.ac.uk/cosmic) and in 6% considering 

sporadic MM, only [38]. This novel BAP1 alteration leads to a probably impaired deubiquitinase 

activity of BAP1 protein, suggesting its pathogenic role. This hypothesis is supported by in-silico 

function predictions and by the absence of such BAP1 variant in control populations (MAF<0.01). 

Interestingly, the same mutation is present in the DNA of both epithelial and sarcomatoid MM 

components, with a heterogeneous allelic frequency. Loss of nuclear BAP1 and presence of 

cytoplasmic staining in epithelial cells is in line with our identified mutation in the UCH domain, which 

promotes BAP1 cytoplasmic retention [39]. Instead, the retaining of BAP1 nuclear staining in a 

prevailing fraction of neoplastic spindle cells (Figure 2C and Table 2) is in line with a lower allelic 

frequency of mutant alleles in sarcomatoid MM DNA compared to that of the epithelial DNA, that might 
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be due to an heterogeneous population of mutated and wild type sarcomatoid cells. Alternatively, loss 

of heterozygosity (LOH) could be taken into account. Indeed, Nasu and co-workers found different and 

sometimes-coexisting mechanisms of gene alteration in their MM series, depending on the assay used. 

In two samples, they detected large deletions in one allele by MLPA and nucleotide-level mutations in 

the other allele by Sanger sequencing, in association with loss of BAP1 nuclear protein by IHC, thus 

supporting LOH [26]. Cigognetti and co-workers provided evidence of homozygous deletions in 

association with heterozygous deletions of the BAP1 locus by FISH analysis in a few cases among their 

IHC BAP1-negative MM series [40]. Intra-tumor differences in BAP1 LOH were recently reported in 

sarcomatoid and carcinomatous elements in clear renal cell carcinomas [41].   

We were not able to find any somatic mutations in the other tumors. However, BAP1 IHC 

results give us some further information. Loss of BAP1 nuclear staining in association with a 

cytoplasmic staining could indicate a mutant BAP1 allele [42, 43]. The accumulation of BAP1 mutant 

protein in the cell could inactivate the wild-type protein with a consequently altered protein 

localization and/or loss of function. This is likely due to a dominant-negative effect of the mutant 

protein, a distinctive characteristic of somatic events of tumor suppressor genes [44], in the same way 

as also discussed for BAP1 [26].  Failing to detect this mutation by Sanger sequencing is not a surprise, 

based on the results of Nasu et al. [26] There are several possible explanations. First of all, a large 

BAP1 deletion (or insertion) which can involve the portion of gene codifying the nuclear localization 

signal (exons 16-17) or the UCH domain. On the other hand, this large deletion (or insertion) could be 

associated with LOH of the other allele thus leading to a cytoplasmic accumulation of the BAP1 deleted 

protein.  BAP1 could be modified by post-translational modifications inhibiting its 

autodeubiquitination activity that lead to a cytoplasmic sequestration of BAP1 mediated by regulatory 

proteins, without any export signal in BAP1 gene. As a matter of fact, several ubiquitination sites of 

BAP1 were identified in vitro study by Mashtalir and coworkers [38]. 

 Regarding family members with MM whose DNA was not sequenced (Table 1), by inference we 

can likely exclude BAP1 germline mutation being first-degree relatives affected by the same cancer of 

index cases whose tumor DNA was sequenced and found not mutated. IHC findings in three epithelioid 

MM cases (C-II-1, D-II-3, O-II-3) suggest that the loss of nuclear staining occurred via somatic mutation 
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(see Figure 1). BAP1 nuclear staining retained in one sarcomatoid MM (G-II-8) is in agreement with 

other studies reporting data of positive BAP1 staining on sarcomatoid MM [25] and on the absence of 

BAP1 mutation [9, 10, 18, 19]. Considering all families with multiple cases of MM analyzed to date for 

BAP1 germline mutations (see Table 2), those described in the present study without a predisposing 

germline BAP1 mutation are similar to those reported by other investigators [9, 10, 19]. Most familial 

clusters have asbestos exposure, and a family history of malignancies other than those typical of TPDS 

[9]. This suggests that other genetic or epigenetic factors may be responsible for the high incidence of 

MM in these families, besides asbestos exposure. By contrast, most families with multiple cases of MM 

and with BAP1 germline mutations have typical BAP1-TPDS malignancies (uveal melanoma, skin 

melanoma, renal cell carcinoma, basal cell carcinoma, etc.) and are heterogeneously linked to asbestos 

exposure. In our families, no TPDS syndrome malignancies were recorded. In the literature, there are 

significant differences between unmutated and mutated BAP1 gene families for history of TPDS 

malignancies (p=0.00, Fisher-Yates test), history of other cancer (p=0.014), and history of asbestos 

exposure (p=0.008). When asbestos exposure is unknown or when this information is missing [4, 6, 9, 

19], the differences are of borderline statistical significance (p=0.046). Heterogeneity of BAP1 status in 

familial MM (mutated versus unmutated BAP1) can be attributed to a bias in patient recruitment. 

Investigators have examined BAP1 in families: i) with high incidence of MM [3, 7, 9, 11, 14]; ii) referred 

to genetic or cancer centers for uveal melanoma [9, 12, 15] or other melanocytic tumors [13, 17]; iii) 

affected by basal cell carcinoma [16]; iv) having a family history suggestive of the BAP1 cancer 

syndrome [18]. Other families were examined as part of asbestos surveillance program [10]. Our 

families were actively searched based on the Italian Mesothelioma Registry, and detected because the 

proband (index case) and at least one blood-relative were diagnosed with MM according to the 

Registry available information. Therefore, the recruitment of cases is on a population basis, as those 

reported by other Italian investigators [10, 18, 19].  

   The present study contributes to understanding the role of BAP1 in familial MM, expanding the 

number of unmutated-BAP1 families, and to suggesting that other genes may determine cancer 

susceptibility in some familial clusters with multiple MM. Very recently, a large study analyzing 
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germline CDKN2A and BAP1 mutations in families with both melanoma and mesothelioma, melanoma 

(without mesothelioma), mesothelioma (without melanoma) has been published [45]. All BAP1 

sequenced families with mesothelioma (but without melanoma) showed a wild-type configuration of 

the gene and asbestos exposure, in agreement with our present findings. Moreover, the findings in the 

unmutated-BAP1 families described in this study and in others reported to date provide evidence of 

the importance of exposure to asbestos (Table 2 and [45]).  As far as BAP1 gene is concerned in 

somatic configuration, these familial MM cases should be considered equivalent to “sporadic” MM, 

because they harbor non-inherited genomic BAP1 alterations, a common event in MM, especially of the 

epithelial and biphasic types.  
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Legend to Figures 

Figure 1 BAP1 immunostaining (brown chromogen). A, B, and C) Epithelioid mesothelioma cells show 

the loss of nuclear expression associated with a granular staining of the cytoplasm (cases: C-II-1; C-II-

2; G-II-6). D) Sarcomatoid mesothelioma cells show staining heterogeneity: cells retaining nuclear 

staining are intermingled with others showing the loss of nuclear expression, and strong and diffuse 

cytoplasmic reactivity (Case: G-II-8).  

 

Figure 2 BAP1 immunostaining and BAP1 sequencing in case D-II-4 (biphasic mesothelioma). A) 

Absence of nuclear staining in epithelioid cells. B) Retained nuclear staining in >75% of sarcomatoid 

cells. C) Forward electopherograms depicting a non-frameshifit InDel of BAP1 in heterozygosis (exon 

5: c.329_335delinsTC) in both epithelioid and sarcomatoid DNA with different allelic frequency. 

Normal patient’s tissue and wild-type sequences of exon 5 are shown for comparison. WT, wild-type 

sequence; N, normal tissue DNA; T-Epit, epithelial DNA; T-Sarc, sarcomatoid DNA.  
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 Table 1  Clinical information, histopathological and genetic findings in 4 families with multiple cases of malignant mesothelioma 

Familya Case 

 
Gender/Age 
at diagnosis 

Histology 

 
BAP1 tumor sequencing 

status 

BAP1 Immunostaining 

Nucleus 
% stained 

cells 
Cytoplasm % stained cells 

CO 
II-1 M-69 Epithelioid No testing done Negative - Positive-strong >75 

II-2 M-66 Epithelioid No mutation Negative - Positive-strong >75 

DO 

II-3 M-66 Epithelioid No testing done Negative - Positive-faint >75 

II-4 M-70 Biphasic 
epithelioid c.329_335delinsTC Negative - Positive-faint 25-75 

sarcomatoid c.329_335delinsTCb Negative 25c Positive-faint 25 

GH 

II-6 F-63 Epithelioid No mutation Negative - Positive-strong >75 

II-8 M-55 Sarcomatoid No testing done Negative 25-75d Positive-strong 25-75 

II-9 M-56 Sarcomatoid No testing donee 

OUk 
II-3 M-78 Epithelioidf No testing done Negative - Positive-faint >75 

III-1 F-45 Epithelioid No mutation Negative - Positive-faint >75 

 

 
aAscoli, et al 2014 [29]; Asbestos exposure circumstances: O, occupational; H, household; Uk, unknown (interview available) 
b Lower allelic frequency in respect to the epithelioid component of the same tumor (Figure 2C) 
c The fraction of cells with retained BAP1 nuclear staining showed negative cytoplasmic reactivity (Figure 2B) 
d The fraction of cells with retained BAP1 nuclear staining showed negative cytoplasmic reactivity (Figure 1D) 
e No tissue specimen was available 
f Peritoneal mesothelioma 
F, female; M, male  
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TABLE 2. Families with Multiple cases of Malignant Mesothelioma, History of Cancer and Asbestos Exposure 

Analyzed for BAP1 Germline Mutations 

 Families 
(n=46) 

BAP1 
unmutated 

(n=20) 
Reference(s) 

BAP1 
mutated 
(n=26) 

Reference(s) 

History of cancer  

Common TPDSa cancer 21 1 [8] 20 [2-6, 8, 10-16, 22] 

Other cancerb 12 9 
[8-9, 18] present study 3 [8-9,  22] 

Negative 5 2 [8-9] present study 3 [7-9] 

Missing data 8 8 [17] 0 - 

Asbestos Exposure  

Yes 23 16 [9, 17-18] present study 7 [3-4, 9, 13-14, 22] 

No 3 0 - 3 [5, 7, 15] 

Missing data 20 4 [8] present study  16 [2,6, 8, 10-12, 16] 

 

a TPDS, tumor predisposition syndrome (OMIM, #614327) 

b Leukemia, prostate, lung, thyroid, breast, larynx, colon, stomach, pancreas (BAP1 unmutated 

families);   Breast, salivary gland, stomach, throat (BAP1 mutated families). Some authors report breast 
cancer as potential BAP1 syndrome-related cancer [22] 
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