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OA Diagnosis: Imaging
Characterized by degenerative changes in the bones, cartilage, menisci, ligaments, and
synovial tissue, osteoarthritis (OA) has evolved to be considered a disease of the whole
joint. Using imaging, OA has traditionally been diagnosed with radiographs that
demonstrate joint space width (JSW) and osteophytes. Recently, additional modalities such
as magnetic resonance imaging (MRI), ultrasound (US), and optical coherence tomography
(OCT), have enhanced OA diagnosis and management through improvements in soft tissue
depiction.

Early identification of OA is crucial to improving clinical decision-making and advancing
the understanding of disease progression and treatment options. This article will review the
various modalities available for OA imaging and assessment, focusing on their utility as
tissue-specific diagnostic tools for OA of the knee.

Modality Overview
Radiography

Despite the development of newer imaging techniques, the radiograph remains the most
accessible tool in the evaluation of the OA joint. The knee joint is typically evaluated using
the extended-knee radiograph, which is a bilateral anteroposterior image acquired while the
patient is weight-bearing, with both knees in full extension. More recently, flexed-knee
radiographs with varying degrees of flexion and x-ray beam angles have been employed to
improve intra-articular visualization. Radiographs are used to evaluate osteophyte formation
and joint space narrowing (JSN); grading schemes such as the Kellgren-Lawrence grading
scheme [1] and the Osteoarthritis Research Society International classification score
establish guidelines for the diagnosis of OA progression [2].
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MRI
MRI manipulates image contrast to highlight different tissue types. Common contrast
methods include 2D or multi-slice T1-weighted, proton density (PD), and T2-weighted
imaging [3]. Spin echo (SE) and Fast-spin echo (FSE) imaging techniques are useful in
evaluating focal cartilage defects. Recent improvements in hardware, software, gradients,
and radiofrequency (RF) coils have led to the use of fast or turbo-spin echo imaging, fat
saturation and water excitation [3] to improve tissue contrast. Several semiquantitative,
morphologic MRI scoring systems have been developed for evaluation of the knee joint in
OA. Modified forms of the Outerbridge scale are routinely used for assessment of cartilage
lesions, specifically with regard to defect depth. Whole-organ assessment, however, has
proven increasingly useful, as it allows thorough evaluation of articular features.
Furthermore, whole organ assessment has shown reliability, specificity, and sensitivity and
an ability to identify lesion progression [4–7]. The Whole-Organ Magnetic Resonance
Imaging Score [7], the Knee Osteoarthritis Scoring System [6], and the Boston Leeds
Osteoarthritis Knee Score [5] are the three published systems available for evaluation of the
whole knee joint.

OCT
Optical coherence tomography (OCT) captures cross-sectional echographs of infrared light
and acquires near-real time images of articular cartilage [8]. This method requires placement
of the endoscope immediately on the cartilage, so is done at the time of arthroscopy. OCT is
incorporated into arthroscopes and generates cross-sectional images of articular cartilage at
resolutions comparable to low-power histology [9–11]. Consequently, OCT can provide
quantitative information about the disease state of articular cartilage [12]. OCT has been
shown to be sensitive to collagen structural changes resulting from acute trauma and
degeneration [9, 13, 14] and OA-associated changes in cartilage birefringence [13].

US
Current US technology offers many advantages, including multiplanar image acquisition,
the ability to image dynamic structures in real-time, lack of ionizing radiation [15], and
utility in interventional procedures [16, 17]. Furthermore, US is cost-effective and can be
used without contrast enhancement (CE) to visualize various tissues involved in OA [18].

Tissue-Specific Imaging
Subchondral bone

Radiography—Bony changes in OA have traditionally been assessed using radiographs.
In the early stages of disease onset, developments such as osteophytes, subchondral
sclerosis, or subchondral cysts are well visualized with this modality. As OA progresses,
radiography is used to assess JSW, which provides an indirect measure of the integrity of
both hyaline and fibrocartilage. OA severity is often classified by subsequent JSN and the
simultaneous appearance of subchondral bone abnormalities such as cysts or sclerosis [1, 19,
20].

Since the 1970s, the standard view for radiographic assessment of the tibiofemoral joint has
been the extended-knee radiograph, which is a bilateral anteroposterior image acquired
while the patient is weight-bearing, with both knees in full extension [21] (Figure 1). More
recently, alternative imaging protocols have proposed imaging of the flexed knee to address
the shortcomings of the extended-knee radiograph, which is suboptimal for longitudinal
joint assessment [22]. These protocols utilize different degrees of knee flexion, x-ray beam
angles, and positioning strategies, but all create a contact point between the tibia and
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posterior aspect of the femoral condyle for improved visualization of the joint space [23–
26].

The primary utility of radiography in the diagnosis of OA is for evaluation of JSW. JSW and
subsequent JSN were originally assessed using manual techniques that required minimal
additional equipment or processing software [27, 28]. However, these methods were time
consuming and subjective and have since been largely abandoned in favor of automated
assessment, which provides quick and precise measurements of JSW. In addition to
improving reproducibility of semi-quantitative scoring or manual measurements, automated
assessment has also sparked additional characterizations of joint space, including minimum
JSW, mean JSW, joint space area, and location-specific JSW [29]. Several studies have
shown minimum JSW to be most reproducible and most sensitive to OA-related changes
[30, 31].

Currently, the Kellgren-Lawrence (KL) grading scheme is the most-widely used and
accepted standard for diagnosis of radiographic OA [1, 32]. A KL grade of 0 indicates no
radiographic features of OA are present while a KL grade of 1 is defined as doubtful JSN
and possible osteophytic lipping [1]. Radiographic OA receives a KL grade of 2, denoting
the presence of definite osteophytes and possible JSN on anteroposterior weight-bearing
radiograph [1] (Figure 1). Further disease progression is graded as KL 3, characterized by
multiple osteophytes, definite JSN, sclerosis, possible bony deformity and KL grade 4,
which is defined by large osteophytes, marked JSN, severe sclerosis and definitely bony
deformity [1]. The KL grading scheme has been criticized for characterizing the progression
of OA as a linear process and combining osteophyte and JSN measurements [29]. More
recently, the Osteoarthritis Research Society International atlas has developed OA
classification scores that evaluate tibiofemoral JSN and osteophytes separately in each
compartment [2, 33].

While radiography is useful for evaluation of JSW, a 2005 study by Amin et al. revealed that
a significant number of symptomatic patients show cartilage loss on MRI even when JSN or
disease progression is not visualized using radiography [34]. In this study, radiographic
progression was 91% specific but only 23% sensitive for cartilage loss [34]. Consequently,
MRI is regarded as an important modality for bone imaging because it can provide contrast
that improves the assessment of subchondral bone integrity and lesions.

MRI—Changes in subchondral bone composition are important to note in the progression of
OA and well-visualized using MRI. In particular, bone marrow edema-like lesions (BMLs),
subchondral cyst-like lesions, and subchondral bone attrition are notable features indicating
disease progression.

BMLs are degenerative lesions consisting of edema, bone marrow necrosis, fibrosis, and
trabecular abnormalities [35, 36]. They are often detected in conjunction with neighboring
cartilage damage [37, 38] and several recent studies have demonstrated a correlation
between BMLs and progressive cartilage damage [39–41] (Figure 2). They are best
visualized on MRI using PD-weighted, intermediate-weighted, T2-weighted, or short tau
inversion recovery and appear as hypointense regions on T1-weight SE images [36, 42–44].

The exact origin of subchondral cyst-like lesions remains to be elucidated, but it is currently
thought that they result either from synovial fluid intrusion as a consequence of elevated
intra-articular pressure [45, 46] or from traumatic bone necrosis following impact of
articular surfaces [47, 48]. Recent studies have shown that subchondral cyst-like lesions
appear in regions without full-thickness cartilage defects approximately 50% of the time
[49] and are strongly associated with BMLs in the same subregion [49, 50]; together these
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findings support the bony contusion theory. Subchondral cyst-like lesions appear as areas of
well-defined fluid-like signal intensity on non-enhanced imaging sequences.

Subchondral bone attrition is frequently observed in patients with advanced OA but has also
been viewed in patients with mild OA who do not exhibit JSN on standard radiographs [51].
It may be caused by altered mechanical loading resulting in subchondral remodeling and is
associated with concomitant BMLs [52]. On MRI, subchondral bone attrition appears as
depression or flattening of the subchondral surface. Changes in subchondral bone are seen
on MRI long before changes are seen on radiographs.

Articular Cartilage
Multiple imaging modalities are used to study articular cartilage, as its degeneration is often
regarded as the structural hallmark of OA progression. Conventional radiography provides
an indirect measure of articular cartilage through evaluation of JSW but is unable to detect
early chondral damage. Arthrography combined with either x-ray or computed tomography
(CT) is used to assess cartilage surface contour [53], but does not provide soft tissue
information. Many recent studies including the Osteoarthritis Initiative (OAI) utilize MRI
for cartilage examination, as it provides exquisite contrast and enables both morphologic and
physiologic imaging techniques. Major techniques in morphological imaging of cartilage
include spin-echo (SE) and gradient-recalled echo (GRE) sequences, fast SE, and 3D SE and
GRE. Physiological imaging techniques such as T2 mapping, delayed gadolinium enhanced
MR imaging of cartilage (dGEMRIC), T1rho mapping, sodium MRI, and diffusion-
weighted imaging (DWI) provide insight into the molecular composition of cartilage.

MRI- Morphology—Morphological assessment of cartilage provides information about
tissue size and structural integrity. Many techniques enable imaging of fissuring and focal or
diffuse cartilage loss.

Three-dimension spoiled gradient recalled echo imaging with fat suppression (3D-SPGR) is
the current standard for morphological imaging of cartilage [54, 55]. In 3D-SPGR, contrast
similar to T1-weighted sequences is obtained by spoiling the transverse steady state with
semi-random RF phase alterations. SPGR acquires nearly isotropic voxels, producing
excellent resolution images with high cartilage signal and low signal from adjacent joint
fluid. Instead of using T1-weighted contrast, driven equilibrium Fourier transform (DEFT)
imaging generates contrast by exploiting the T2/T1 ratio of tissues. DEFT returns
magnetization to the z-axis with a 90-degree pulse that results in enhanced signal in tissues
with long T1 relaxation times. In cartilage imaging, DEFT heightens synovial fluid signal
and preserves cartilage signal, resulting in bright synovial fluid at a short TR, high cartilage
SNR, and improved imaging of full cartilage thickness [56]. Similarly, three dimensional
dual-echo steady-state (DESS) imaging results in high signal intensity in both cartilage and
synovial fluid, which enables morphological assessment of cartilage. 3D-DESS acquires two
or more gradient echoes, separates each pair of echoes with a refocusing pulse, and
combines image data to obtain higher T2* weighting. 3D-DESS has been validated for
clinical use [57, 58] and affords advantages such as high SNR, high cartilage-to-fluid
contrast, near-isotropic sections, and reduced scan time when compared to 3D-SPGR
(Figure 3). This is the sequence of choice for the Osteoarthritis Initiative [59].

Another group of methods hallmarked by excellent synovial fluid-cartilage contrast is
steady-state free precession (SSFP) MRI techniques. Balanced steady-state free precession
(bSSFP) is otherwise known as true fast imaging with steady-state precession (true FISP),
fast imaging employing steady-state acquisition (FIESTA), and balanced fast field echo
imaging. In all of these techniques, fluid is depicted with increased signal, while cartilage
signal intensity is preserved, resulting in excellent contrast and diagnostic utility. Several
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derivatives of SSFP exist. Fluctuating equilibrium MR (FEMR) is particularly useful for
morphological assessment of cartilage of the knee [60]. FEMR generates contrast based on
the ratio of T1/T2 in tissues. In the case of the knee, FEMR produces bright synovial fluid
signal while maintaining high signal in cartilage and high SNR. Another SSFP derivative,
Vastly undersampled Isotropic Projection (VIPR) imaging, combines bSSFP imaging with
3D radial k-space acquisition using isotropic spatial resolution and T2/T1 weighted contrast
[61]. The advantages of VIPR are substantial; banding artifacts are reduced, high SNR is
obtained, high contrast between tissues is achieved, and short acquisition times are possible
[61]. Finally, 3D-FSE techniques obtain isotropic images with PD or T2-weighted contrast.
3D FSE (Cube by GE Healthcare, VISTA by Philips, and SPACE by Siemens) utilizes a
restore pulse and variable-flip-angle RF pulses applied along an echo train to produce a
pseudo steady state. 3D-FSE has been shown to demonstrate improved SNR and better SNR
efficiency [62–64].

MRI- Physiology—More recently, MR technology has evolved to provide quantitative
information about the physiological content of articular cartilage. These developments have
been useful in identifying early damage and breakdown. In OA, proteoglycan and collagen
content are reduced [65]. This disrupts the collagen network and results in increased water
content and matrix degradation. Newer methods of MRI exploit these macromolecule
changes to provide a quantitative understanding of the breakdown process.

In cartilage, changes in transverse relaxation times (T2) are dependent upon the quantity of
water and the integrity of the proteoglycan-collagen matrix. By measuring the spatial
distribution of T2 relaxation times throughout articular cartilage, areas of increased or
decreased water content (which generally correlate with cartilage damage) can be identified.
Generally, a multi-echo spin-echo is used to shorten scan time and signal levels are fitted to
one or more decaying exponentials, depending upon whether more than one T2 distribution
is anticipated in the tissue [66]. T2 mapping software is currently commercially available,
allowing for simple implementation on most imaging systems (Figure 4).

T1rho mapping is sensitive to the macromolecule content of tissue and therefore very
effective in visualizing early changes in OA [67, 68]. In T1rho, magnetization is tipped into
the transverse plane and “spin-locked” by a constant RF field. When proteoglycan depletion
occurs in the earliest phases of OA, the physio-chemical interactions in the macromolecule
environment are disrupted and T1rho allows measurement of the interaction between
motion-restricted water molecules and their extracellular environment [69]. Elevated T1rho
relaxation times have been measured in osteoarthritic knee cartilage when compared with
normal cartilage [70–72] (Figure 5).

Sodium MRI exploits the concept of negative fixed charged density within the extracellular
matrix of cartilage. In healthy cartilage, high concentrations of positively charged 23Na are
associated with the negatively charged glycosaminoglycan (GAG) side chains, which
contain a plethora of negatively charged carboxyl and sulfate groups. When proteoglycan
depletion occurs in cartilage damage, GAGs are damaged and sodium signals decline [73–
75]. As such, 23Na imaging represents a potentially useful means of differentiating early
stage degenerated cartilage and normal tissue [73] (Figure 6).

Delayed Gadolinium-Enhanced MRI (dGEMRIC), like sodium imaging, also relies on the
principle of fixed charge density. Ions in the extracellular fluid are distributed in relation to
the concentration of negatively charged GAGs, which is a reflection of the quantity of
proteoglycan content in cartilage. The negatively charged Gd(DTPA)2- molecules
accumulate in high concentration in areas lacking in GAG and in low concentrations in
GAG-rich regions. Subsequent imaging using 3D SPGR pulse sequences with variable flip

Braun and Gold Page 5

Bone. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



angles [76], bSSFP, or T1 generates a GAG distribution. This T1 measurement is referred to
as the dGEMRIC index; regions with low T1 signal correspond to a low dGEMRIC index,
which indicates high Gd(DTPA)2- penetration and greater GAG depletion (Figure 7).

Finally, diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) exploit the
orientation of water molecules to offer unique insight into articular cartilage structure and
organization. In DWI, multiple diffusion-sensitizing gradients are applied. Diffusion
weighting, expressed as the b-value, depends on the amplitude and timing of these gradients.
In response to these gradients, water accrues a random amount of phase and does not
refocus, resulting in signal loss in tissues where diffusion occurs [77]. In healthy cartilage,
the apparent diffusion coefficient (ADC) is low and diffusion times are long because intact
cartilage components restrict the motion of water. When the matrix is disrupted, however,
water molecules move more freely, increasing the ADC of cartilage [78]. Following
acquisition, an ADC map is generated. DTI is a more advanced form of DWI, capable of
obtaining directionality and magnitude measurements of water diffusion. In DTI, diffusion
anisotropy effects are obtained, characterized, and employed to provide information about
tissue microstructure; this has been particularly useful in determining articular cartilage
degeneration [79].

OCT—While conventional MRI is extremely useful in identifying full or partial-thickness
changes of articular cartilage in OA, it does not reliably differentiate between healthy
cartilage and diseased cartilage with an intact surface [80]. Arthroscopic evaluation is the
current clinical standard for evaluating chondrosis, or pre-OA chondral lesions that do not
involve bone and are not visible on radiographs [12], but this method of assessment is
subjective. Optical coherence tomography (OCT) can provide quantitative information about
the disease state of articular cartilage [12]. OCT is incorporated into arthroscopes and
generates cross-sectional images of articular cartilage at resolutions comparable to low-
power histology [9–11] (Figure 8). OCT is sensitive to collagen structural changes resulting
from acute trauma and degeneration [9, 13, 14] and OA-associated changes in cartilage
birefringence [13]. In 2010, Chu et al. demonstrated that OCT evaluation of cartilage
correlated with both arthroscopy and T2 MRI measurements, making OCT a powerful
potential tool for diagnosis of early chondral changes [12]. However, as with any modality,
OCT has limitations, including the invasive procedure required to directly access the
articular surface and the heavy dependence on operator-use and image postprocessing.

Menisci
Injury to the menisci is often viewed as a predisposing factor for OA. These
fibrocartilaginous structures are positioned between the femur and tibia in the medial and
lateral joint compartments and provide shock absorption and load transmission in both
active and static loading [81–83]. Partial or total meniscectomies increase the strain on
articular cartilage in the absence of meniscal shock absorbers, which causes dynamic
deformation in knee joint areas. Loss of meniscus has been identified as a contributor to OA
[84, 85].

Despite low signal from the menisci, MRI is the best imaging modality. The sagittal plane is
most frequently used to evaluate meniscal pathology but recent studies have shown that
imaging in the coronal [86, 87] or axial planes [88, 89] may improve diagnosis of specific
tear types. A variety of sequences can be used for diagnostic imaging, but it is important to
keep echo times (TE) short in order to reduce scan time, improve signal-to-noise ratio
(SNR), acquire more slices per scan, and decrease susceptibility and artifact [90].
Commonly used sequences include PD-weighted SE or FSE with or without fat saturation,
T1-weighting, and gradient echoes (GRE) [90]. The ideal sequence for diagnostic imaging
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of the menisci should have a short TE and optimize SNR; PD-weighted imaging achieves
these aims [91]. The sensitivity and specifity PD-weighted sequences is 88% to 90% and
87% to 90%, respectively [92–94]; when FSE is added to PD sequences, the sensitivity and
specificity drop to 82% to 96% and 84% to 94%, respectively [93, 95–97]. Addition of fat
saturation to PD sequences is increasingly more common [90, 96]; In 2005, Blackmon et al.
reported 93% sensitivity and 97% specificity for diagnosing meniscal tears using a fat-
saturated conventional SE PD–weighted sequence [98].

Recent advancements in MRI of the meniscus have improved structural visualization.
Higher field strengths (1.5 and 3.0T) improve SNR while maintaining comparable
sensitivity and specificity [99–101]. Parallel imaging methods use multiple channels to
extend the imaging field of view without increasing scan time by exploiting the spatially-
varying sensitivity profiles of the phased array coil elements. These techniques have been
shown to reduce scan time by nearly 50% [102] while retaining diagnostic sensitivity,
specificity, and accuracy [103]. The use of ultrashort TE (uTE) imaging has also aided
imaging of the menisci. uTE imaging sequences use TEs that are 20–50 times shorter than
conventional T2 sequences [104–106]. The advantages here are two-fold: 1) high signal is
acquired from tissues that typically produce little to no signal and 2) increased signal
sensitivity allows detection of changes that indicate layers or defects of articular cartilage
and identification of meniscal zones (Figure 9).

Ligaments
Damage to ligaments such as the anterior cruciate ligament (ACL) can often predispose to
early OA [107, 108]. While not the most commonly implicated structures, disease-related
degeneration and damage to the ligaments of the knee probably still occur in OA initiation
and progression. These abnormalities have been documented in OA and detected with the
use of ultrasound [109] and MRI. Imaging of the medial collateral ligament (MCL) and
lateral collateral ligament (LCL) is often complicated by concomitant pathologies and can
be limited by the complex anatomy of the posterolateral corner and posteromedial corner.
The anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) are well-
visualized in sagittal, coronal, and axial planes but may also be obscured by intra-articular
pathologies. Despite these limitations, MRI is still the modality of choice given its exquisite
soft tissue contrast.

Synovium
Synovitis, defined as inflammation of the synovial membrane, is increasingly regarded as a
key player in the OA disease process [110, 111]. Among other roles, the synovium
phagocytoses degraded cartilage and bone [112], and though the precise inflammatory
mechanism of synovitis remains to be elucidated [111, 113], it appears that synovitis may be
a secondary phenomenon in OA. Available evidence-based literature reveals inconsistencies.
A 2008 arthroscopic study by Rollin et al. found that proliferative and inflammatory changes
occurred in the synovium of up to 50% of OA patients [114] but there is debate as to
whether synovitis is well-correlated with pain in OA [115, 116]. Other studies have
demonstrated that synovitis in OA is likely to be associated with pain [116, 117], disease
progression [118] and severity [113, 119].

Although radiography is used for OA diagnosis, it is not suitable for visualization of the
synovium [120]. There is also limited applicability for computed tomography (CT) and
nuclear medicine; ultrasound (US) and MRI are the primary modalities currently used for
synovium assessment [121].
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US—The Outcome Measures in Rheumatoid Arthritis Clinical Trials Ultrasonography
Taskforce defines US-detected synovial hypertrophy as “abnormal hypoechoic (relative to
subdermal fat, but sometimes isoechoic or hyperechoic) intra-articular tissue that is
nondisplaceable and poorly compressible and which may exhibit Doppler” [122]. Though
this definition explicitly refers to rheumatoid arthritis synovial pathology, it has been
suggested that it may also be applied to OA because the difference in synovial inflammation
between the two diseases is largely quantitative [123, 124]. In the knee, the most commonly
imaged sites of synovial hypertrophy are the suprapatellar pouch and the medial and lateral
recesses [125]. Current US technology acquires images with wide fields of view using high
resolution probes operating at frequencies of up to 20 MHz [124]. This has allowed the
detection of synovial pathologies including hypertrophy, vascularity, and presence of
synovial fluid [18, 124] and the detection of synovitis in joints that appear otherwise
clinically quiescent [124] (Figure 10). Doppler techniques allow an indirect evaluation of
inflammatory activity via the assessment of vascularity [126, 127]. US-detected knee
synovitis has been correlated with advanced radiographic OA [128] and markers of joint
tissue metabolism [129]. Recently, CE-US has been proposed as a novel technique aimed at
quantifying synovial vascularization [125]. CE-US showed higher sensitivity (95%) in
imaging synovitis than CE-MRI (82%), power Doppler US (64%) or grayscale US (58%)
[125].

MRI—MRI is also used for assessment of the synovium. Unlike US, MRI is able to
visualize synovium located deep within joints such as the hip or the shoulder without being
obscured by bony structures. The two primary methods for MR detection of synovitis in OA
are the use of non-CE MRI and gadolinium (Gd)- based CE-MRI. Synovitis was first
correlated with hypointense signal alterations in Hoffa’s fat pad on sagittal, non-CE T1
weighted SE images [130]. Since then, hyperintense signal changes in Hoffa’s fat pad on
fat-suppressed PD or T2-weighted SE sequences have been suggested as surrogate markers
for joint-wide synovitis [131, 132] (Figure 11). Non-CE MRI has been a common and
effective tool for imaging of synovitis, but CE-MRI generally improves tissue visualization.
Though the administration of intravenous gadolinium is suboptimal, CE-MRI more clearly
differentiates inflamed synovium from joint effusion. In CE-MRI, synovium with
inflammatory activity is enhanced while effusion remains hypointense; on nonCE MRI, both
synovium and effusion are often depicted as signal hyperintensity. Recent studies have
shown that signal changes in Hoffa’s fat pad on non-CE MRI were less specific for
peripatellar synovitis than CE sequences [133] and that microscopic synovitis is not
correlated with non-CE MRI [134]. Additional investigations have shown that CE-MRI
detected synovitis correlates with histology [113, 134] and is more sensitive [125] and
specific [133] than non-CE MRI. These studies further the belief that Gd-based CE-MRI
improves imaging of the synovium. However, obvious drawbacks to intravenous gadolinium
administration exist, including prolonged scan time, increased cost, possible allergic
reactions, and a risk of nephrogenic systemic fibrosis. Finding a way to image synovial
tissue with non-CE MRI while maintaining sensitivity and specificity may represent an area
of interest for future research.

Conclusion
Because OA is a complex disease of the whole joint, it is important to assess all
intraarticular structures to further understand disease pathogenesis and progression. Ideally,
one imaging modality would enable sensitive and specific depiction of all components of the
joint without utilizing intravenous contrast or ionizing radiation and with little dependence
on machine operator. Currently, non-CE MRI permits visualization of multiple joint
structures. However, in some tissues, additional supplemental imaging modalities may be
necessary to enhance depiction, especially in the synovium and in the absence of full
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thickness articular cartilage defects. Currently, a combination of imaging techniques
provides the most comprehensive assessment of the OA joint.
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Figure 1.
A) Antero-posterior weight bearing radiographs of a patient with joint space narrowing and
osteophyte formation consistent with bilateral medial osteoarthritis of the knee. Joint pace
narrowing is greater in the right knee (arrow) compare with the left knee. B) A magnified
view of the right knee joint. The arrow denotes medial JSN. Osteophyte formation can be
seen on the femur and tibia.
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Figure 2.
Bone marrow edema and bone marrow lesions depicted on the medial femur on a T2-
weighted fat suppressed MRI(A) and medial tibial plateau on an intermediate-weighted fat
suppressed MRI (B).
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Figure 3.
Diffusion-weighted imaging in patellar cartilage in vivo using a DESS technique. Figure 3A
uses low diffusion-weighting. Figure 3B uses high diffusion-weighting. Both imaging
techniques afford high resolution, high signal-to-noise ratios, and the ability to calculate
apparent diffusion coefficients. Cartilage (solid arrow) and joint fluid (dashed arrow) are
well seen on both images. Images courtesy of Ernesto Staroswiecki.
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Figure 4.
T2 mapping of articular cartilage in the medial femur of a patient with osteoarthritis at two
time points. Mapping software allows visualization of the spatial distribution; notice the
increased T2 relaxation times in Figure 4B. The T2 relaxation time is overlaid on the images
using a color map, with the scale in milliseconds.
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Figure 5.
T1rho mapping is a physiologic MRI method that has been shown to be sensitive to
proteoglycan (PG) changes in articular cartilage. In osteoarthritis, decreases in PG content
correspond with increases in T1rho relaxation times. This figure illustrates T1ρ maps of (A)
healthy control knee and (B) lateral side of ACL-injured knee at one year follow-up. Early
degeneration of articular cartilage is seen by the increased relaxation time in B. Images
courtesy of Li X et al. Radiology 2011;258:505–514.
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Figure 6.
Sodium maps of articular cartilage in a healthy volunteer (A) and a patient with OA (B)
overlaid onto proton images. The increased sodium signal in figure 5A correlates with
higher glycosaminoglycan (GAG) concentration. As cartilage degenerates and GAG
concentration decreases, sodium signal declines (5B).
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Figure 7.
Images of the medial and lateral mensici pre-surgery (A) and at two follow-up time points
(B,C). The use of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) imaging
permits quantitative assessment of cartilage integrity which appears to improve following
surgical intervention. Images courtesy of Deborah Burstein, PhD.
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Figure 8.
Correlation of arthroscopic images (top row), optical coherence tomography (middle row),
and T2 mapping (bottom row). Images courtesy of Constance R. Chu, MD.
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Figure 9.
Imaging of the meniscus using ultra-short echo time (uTE) MRI. Cartilaginous and fibrous
components, particularly at the tissue periphery, are unmasked with the use of uTE. Images
courtesy of Christine Chung, MD.
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Figure 10.
A) Sagittal grayscale ultrasound image of the suprapatellar pouch of an osteoarthritic knee
joint demonstrates synovial fluid (sf), patella (p), distal femur (df), quadriceps tendon (qt),
and synovial villi (v). (Image courtesy of Dr. Helen Keen, The University of Western
Australia, Australia.) B) Power Doppler ultrasound image of the lateral recess of an
osteoarthritic knee joint demonstrates synovial fluid (sf), distal femur (df), and the
vascularity within the region of synovial hypertrophy (s) as demonstrated by the flash of
color. (Image courtesy of Dr. Helen Keen, The University of Western Australia, Australia.)
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Figure 11.
Magnetic resonance imaging of synovitis in the medial (A) and lateral (B) compartments. In
both images, synovial pathology is hallmarked by the enhanced signal surrounding Hoffa’s
fat pad (arrows).
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