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Abstract 

Introduction:  Kyphoplasty is gaining in popularity as a treatment for painful osteoporotic 

vertebral body fracture.  It has the potential to restore vertebral shape and reduce spinal 

deformity, but the actual clinical and mechanical benefits of kyphoplasty remain unclear.  In 

a cadaveric study, we compare the ability of vertebroplasty and kyphoplasty to restore spine 

mechanical function, and vertebral body shape, following vertebral fracture. 

Methods:  Fifteen pairs of thoracolumbar “motion-segments” (two vertebrae with the 

intervening disc and ligaments) were obtained from cadavers aged 42-96 yrs.  All specimens 

were compressed to induce vertebral body fracture.  Then one of each pair underwent 

vertebroplasty and the other kyphoplasty, using 7 ml of polymethylmethacrylate cement.  

Augmented specimens were compressed for 2 hr to allow consolidation.  At each stage of the 

experiment, motion segment stiffness was measured in bending and compression, and the 

distribution of loading on the vertebrae was determined by pulling a miniature pressure 

transducer through the intervertebral disc.  Disc pressure measurements were performed in 

flexed and extended postures with a compressive load of 1.0-1.5 kN.  They revealed the 

intradiscal pressure (IDP) which acts on the central vertebral body, and they enabled 

compressive load-bearing by the neural arch (FN) to be calculated.  Changes in vertebral 

height and wedge angle were assessed from radiographs.  The volume of leaked cement was 

determined by water displacement. 

Results:  Vertebral fracture reduced motion segment compressive stiffness by 55%, and 

bending stiffness by 39%.  IDP fell by 61-88%, depending on posture.  FN increased from 

15% to 36% in flexion and from 30% to 58% in extension (P<0.001).  Fracture reduced 

vertebral height by an average 0.94 mm and increased vertebral wedging by 0.95o (P<0.001).  

Vertebroplasty and kyphoplasty were equally effective in partially restoring all aspects of 
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mechanical function (including stiffness, IDP, and FN) but vertebral wedging was reduced 

only by kyphoplasty (p<0.05).  Changes in mechanical function and vertebral wedging were 

largely maintained after consolidation, but height restoration was not.  Cement leakage was 

similar for both treatments. 

Conclusions:  Vertebroplasty and kyphoplasty were equally effective at restoring mechanical 

function to an injured spine.  Only kyphoplasty was able to reverse minor vertebral wedging. 
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Introduction  

Vertebral compression fractures are the most common type of osteoporotic fracture, and their 

relatively early onset compared to other types of fragility fracture [1] makes them a major 

health concern.  In recent years, vertebral augmentation by vertebroplasty or kyphoplasty has 

been used increasingly to treat such fractures.  Vertebroplasty involves the percutaneous 

injection of bone cement into the fractured vertebral body in order to stabilise the fracture and 

alleviate symptoms [7].  Kyphoplasty involves inflating a balloon inside the fractured 

vertebral body in order to reduce the fracture and create a cavity into which cement is then 

injected [8].  Kyphoplasty appears to reduce the incidence of cement leakage during injection 

[9,10], and it leads to compaction of bone around the balloon, elevating the fractured end-

plate and restoring vertebral body height [11-16].  However, despite these potential 

advantages, the relative merits of kyphoplasty compared to vertebroplasty remain uncertain, 

especially when the greater costs of kyphoplasty are considered.  Only one randomised 

controlled trial has compared these techniques clinically, finding only small differences 

between them [17].  A recent systematic review reported a lower incidence of cement leakage 

with kyphoplasty, but levels of pain relief, restoration of vertebral height, and risk of adjacent 

level fracture were similar with both procedures [18]. 

Some other aspects of kyphoplasty and vertebroplasty have been compared in experiments on 

cadaveric spines.  Intravertebral pressures were lower during kyphoplasty than vertebroplasty 

[19], and this may partly explain the lower incidence of cement leakage reported clinically 

[9,10,18].  Studies on isolated vertebral bodies showed that kyphoplasty achieves 

significantly greater restoration of vertebral body height than vertebroplasty [20,21].  

However it is not easy to extrapolate this information to an intact spine, because the height of 

the anterior column (vertebral bodies and intervertebral discs) influences load-sharing 

between it and the posterior column of neural arches [22].  Increasing vertebral body height is 
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likely to increase loading of the anterior column, and this could explain why height 

restoration in-vitro is not maintained during subsequent repetitive loading [23].  Other 

problems with experiments on isolated vertebral bodies are that they are not loaded in a 

natural manner by intervertebral discs, and the results can not be used to explain subsequent 

fracture at adjacent vertebral levels. 

In order to avoid these difficulties, we have developed techniques for performing cement 

augmentation on cadaveric “motion segments” (two whole vertebrae and the intervening disc 

and ligaments) and then assessing the mechanical consequences in terms of specimen 

stiffness in bending and compression, and load-sharing between the augmented vertebra and 

adjacent structures [24-26].  These techniques have shown that vertebroplasty produces large 

and consistent changes that largely reverse the adverse changes caused by fracture.  However, 

normal mechanical function is not entirely restored by vertebroplasty, even when large 

volumes of cement are used [26], suggesting that the shape of the augmented vertebra must 

be restored as well as its mechanical properties.  Kyphoplasty may be better at achieving this 

than vertebroplasty. 

In the present study, we use our techniques to make a comprehensive assessment of the 

mechanical and shape changes induced by vertebroplasty and kyphoplasty.  The specific aim 

of the study was to compare the immediate effects of the two techniques on restoring a) shape, 

b) stiffness, and c) load-sharing to an injured spine.  Cement leakage was also compared.  In 

order to maximise sensitivity, a matched-pair design was employed in which vertebroplasty 

and kyphoplasty were applied to adjacent motion segments from the same cadaveric spine. 

Materials and methods 

Cadaveric material  Four male and eight female thoracolumbar spines were obtained from 

cadavers aged 42-96 years (mean 70 years) that were donated for medical research.  Spines 
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were stored at -20 C in sealed plastic bags until required for testing.  Subsequently each 

spine was thawed at 3C and dissected into two or four motion segments.  All spinal levels 

between T7-8 and L3-L4 were used (Table 1) with the choice of level being determined by 

the need to avoid large osteophytes (which interfere with disc stress measurement) and to 

maximise use of scarce human tissue.  After testing, the intervertebral disc was sectioned in 

the transverse plane and graded for degeneration, using points 1 (non-degenerated) to 4 

(severely degenerated) on the scale defined by Adams et al.[27].  

Overview of experiments  One of each pair of motion segments from the same spine was 

assigned to kyphoplasty or vertebroplasty.  The upper specimen from each pair was 

alternately assigned to one or other of the procedures to avoid bias due to specimen size or 

level.  Prior to testing, verterbral body BMD was assessed using dual energy x-ray 

absorptiometry, as described previously [25].  Each motion segment was then set in plaster 

and radiographed in the sagittal and frontal planes.  An initial “creep” test (1.0 kN 

compression for two hours) was performed after which the motion segment was fractured and 

its yield strength determined.  A second set of radiographs was taken to allow the fractured 

vertebra to be identified.  Vertebroplasty or kyphoplasty was performed on the fractured 

vertebra and a third set of radiographs was obtained to demonstrate the area of cement filling.  

The motion segment was then creep-loaded for a further 2 hrs at 1.0 kN to allow cement 

consolidation, after which a fourth and final set of radiographs was obtained.  The following 

mechanical properties were compared at each stage of the experiment: compressive and 

bending stiffness of the motion segment, and the distribution of compressive “stress” within 

the intervertebral disc.  The latter was used to calculate neural arch load-bearing.  Changes in 

vertebral shape (vertical height and anterior wedging angle) were determined from 

radiographs.  Where the mechanical testing procedures have been described previously 

[24,25], they are described only briefly here. 
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The study was approved by the Frenchay Research Ethics Committee.  

Mechanical testing apparatus  Each motion segment was secured in two metal cups 

containing dental plaster (Ultrahard Die Stone Iso-Type IV, Kerr S.p.A, Italy).  The cups 

were attached to metal mounting plates which enabled the specimen to be loaded on a 

computer-controlled, hydraulic materials testing machine (Dartec-Zwick-Roell, Leominster, 

UK).  The testing rig allowed complex loading to be applied by means of one or two low-

friction rollers (Figure 1), the height of which could be adjusted to apply either pure 

compression (rollers of equal height) or compression combined with flexion (posterior roller 

lower) or extension (posterior roller higher) [28]. 

Initial “creep” test  When discs lose fluid and height over the course of a day, ligaments 

become lax reducing the resistance to bending, and nucleus pressure falls so that compressive 

load-bearing by the annulus and neural arch increases [30-32].  All these effects are reversed 

when discs are unloaded overnight.  However, in post-mortem specimens, which have been 

unloaded for variable periods following death, excessive disc hydration may lead to abnormal 

spinal mechanics.  At the start of testing, all specimens are therefore subjected to a pure 

compressive force of 1.0 kN for 2 hr to simulate the diurnal change in intervertebral disc 

water content and height that occur in life so that disc hydration is brought within the normal 

physiological range [29].   

Stiffness in compression and bending  To determine compressive stiffness, each motion 

segment was compressed at 0.6 kN/s while positioned in 2º of flexion.  The maximum 

compressive load applied was either 1.2 kN or 1.5 kN, depending on specimen size and bone 

mineral density (BMD).  Compressive stiffness was measured as the slope of the tangent to 

the load-deformation graph at 1 kN.  For two specimens from spine #10 that had a 

particularly low BMD, the maximum compressive load was reduced to 0.75 kN and 

compressive stiffness was measured at 0.5 kN, to reduce the risk of premature damage.  This 
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approach was justified by the very low yield strength observed in these specimens when they 

were subsequently loaded to failure (Table 1).  

Spinal flexion was induced by applying an off-centre compressive force to the motion 

segment [33].  In these tests, the posterior roller (Figure 1) was removed to enable the 

specimen to flex forwards about its own natural centre of rotation, without prohibiting 

shearing movements or coupled rotations [33].  Vertebral rotation was measured by attaching 

5 mm diameter reflective markers to the apparatus and to pins inserted into the lateral aspect 

of each vertebral body.  Bending moments acting on the specimen were calculated by 

multiplying the applied compressive force (measured by the Dartec load cell) by the lever 

arm of that force relative to the geometric centre of the disc [25].  Bending moment-rotation 

angle graphs were then plotted, and bending stiffness calculated as the slope of the tangent to 

the graph at 5 Nm. 

Stress profilometry and compressive load-sharing  A miniature pressure transducer (Gaeltec, 

Dunvegan, Scotland), side-mounted in a 1.3-mm diameter needle, was used to measure the 

distribution of compressive stress along the mid-sagittal diameter of the intervertebral disc 

(Figure 1).  During “stress profilometry”, each motion segment was subjected to a 

compressive force of either 1.0 kN or 1.5 kN depending on specimen size and BMD [25,28].  

(For the two specimens from spine #10, the compressive force during stress profilometry was 

reduced to 0.75 kN, for reasons given above.)  Stress profiles were obtained with the 

specimen positioned in 2º of extension, to simulate the erect standing posture [30], and in 2-

6º of flexion (depending on specimen mobility) to simulate the flexed postures typically 

found in light manual work [34]. 

Stress profiles were analysed to determine the intradiscal pressure (IDP) and the size of 

anterior (SPA) and posterior (SPP) stress peaks (Figure 1).  A stress “integration” technique 

[22] was used to compute the overall  compressive force acting on the anterior half of the disc 
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and vertebral body (FA) and on the posterior half (FP).  These two forces were subtracted 

from the applied force in order to calculate the compressive force resisted by the neural arch 

(FN) [22]. 

Vertebral fracture  Each motion segment was positioned in flexion (2-10º depending on 

flexibility) to simulate a stooped posture.  It was then compressed at 3 mm/s while a graph of 

compressive load against vertical displacement was plotted in real time.  This enabled the 

compressive load to be removed immediately at the first sign of damage, which was indicated 

by a reduction in gradient (stiffness).  The compressive force applied at this point was 

recorded as the yield strength.  The location of fracture was confirmed from radiographs 

taken before and after damage. 

Vertebral body shape  Vertebral body dimensions were assessed for the fractured vertebra 

from lateral radiographs taken at each of the four experimental stages: pre-fracture, post-

fracture, post-treatment, and post-creep.  Radiographs containing a linear scale were scanned 

to create digital images which were analysed using Image J software (National Institute of 

Health, USA).  Vertebral body height was measured at three locations (Figure 2).  Because 

the superior and inferior surfaces of the motion segment were secured in plaster, it was not 

possible to visualise the entire height of the vertebral bodies.  Therefore, all height 

measurements were relative to a horizontal line represented on the radiograph by the metal 

plate to which the cup holding the specimen was attached (Figure 2).  Care was taken to 

ensure that the metal plate was always in the same relative position compared to the X-ray 

source.  Anterior vertebral body height was measured from the most anterior-superior point 

of the superior endplate margin, and posterior height was measured from the most posterior-

superior point of the superior endplate margin.  The middle height was measured equidistant 

between anterior and posterior heights, again at the superior endplate margin [35].  The 
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“wedge angle” of each fractured vertebral body was measured as the angle between the 

horizontal reference line and the endplate that was adjacent to the disc (Figure 2). 

Vertebroplasty  Two 11 G vertebroplasty needles were gently tapped into the fractured 

vertebra via the transpedicular route, one needle being introduced through each pedicle.  A 

radiograph was taken in the sagittal plane to confirm that the tips of the needles were located 

in the anterior-inferior quadrant of the vertebral body.  A frontal plane radiograph, confirmed 

that the tips of both needles were located in the centre of the vertebral body.  

Polymethylmethacrylate (PMMA) bone cement (Spineplex, Stryker Instruments, 

Howmedica International, Limerick, Ireland) was prepared by mixing 20 g of powder with 10 

ml of monomer liquid, after which 3.5 ml of cement was injected through each needle into 

the vertebral body.  Both needles were then removed, and cement was left to set for 1 hr 

before another radiograph was taken.  This demonstrated the placement of the cement and 

any leakage.  Leaking cement was collected at the end of the experiment and its volume 

measured by water displacement. 

Kyphoplasty  Two Kyphon® 11 G needles were inserted via the transpedicular route into the 

fractured vertebra to a point about 2 mm past the posterior wall.  A guide wire was inserted in 

the stylus of each 11 G needle to a point about 2-3 mm beyond the tip of the stylus.  The 11 G 

needles were then removed leaving the wires in position.  The KyphX®  Osteo Introducer® 

was then positioned over one of the guide wires, and advanced forward until it was at least 4 

mm past the posterior wall of the vertebral body.  The guide wire and the stylet of the 

KyphX®  Osteo Introducer® were then removed and the KyphX® precision drill used to create 

a space in the vertebral body to facilitate the insertion of an inflatable bone tamp (KyphX 

Xpander® Inflatable Bone Tamp, 20/3) which was positioned under the fracture zone.  This 

procedure was repeated on the other side of the vertebra using the second of the guide wires 

to insert a second inflatable bone tamp.  Once both tamps were in place, the balloons were 
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inflated until their volume reached 3.5 ml, or the maximal pressure of 400 psi was achieved.  

A radiograph was taken in the sagittal plane to confirm that the balloons were inflated and 

positioned correctly.  Balloons were then deflated and withdrawn from the vertebral body.  

The PMMA cement was prepared as for vertebroplasty, and 7 ml was injected bi-pedicularly 

(3.5 ml on each side) into the void in the vertebral body using 5 ml syringes and KyphX® 

bone-filler devices.  After injection, the bone-filler devices were removed from the vertebra, 

and the cement left to set for 1hr.  Another radiograph was taken to demonstrate the 

placement of the cement and any leakage.  Cement leakage was measured as for 

vertebroplasty. 

Statistical analysis  Intra-observer and inter-observer reliability of vertebral shape 

measurements obtained from radiographs were evaluated from the intraclass correlation 

coefficient (ICC).  Repeated measures analysis of variance (ANOVA) was used to compare 

measurements following each intervention, with treatment as a between-subjects factor.  

Where a significant main effect or interaction effect was found, post-hoc paired comparisons 

with appropriate Bonferroni adjustment were employed to identify where the differences 

arose.  BMD, degree of disc degeneration, and amount of cement leakage were compared in 

the two groups using matched pair t-tests.  SPSS 14.0® was used for all statistical analyses.  

Results 

Disc degeneration and BMD  All discs were grade 2 or 3 on the scale defined by Adams et 

al.[27] where 1 is non-degenerated and 4 is severely degenerated.  BMD values ranged from 

0.063 g/cm3  to 0.242 g/cm3  in the kyphoplasty group, and from 0.079 g/cm3  to 0.244 g/cm3  

in the vertebroplasty group.  There were no significant differences in grade of disc 

degeneration or BMD between the two groups (Table 1). 
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Vertebral fracture  Compressive (yield) strengths ranged from 0.9 - 5.8 kN (Table 1).  

Radiographs showed that 26/28 specimens sustained a fracture of the lower vertebral body 

and 2 sustained a fracture of the upper vertebral body.  

Cement leakage  Vertebroplasty and kyphoplasty were successfully completed in all 

specimens.  Cement leakage was observed in 6 kyphoplasty specimens and 5 vertebroplasty 

specimens (Table 1).  Leakage volumes ranged from 0.5 - 3.5 ml but did not vary 

significantly between the two groups. 

Vertebral body shape  Methods used to assess vertebral shape were reproducible, with ICCs 

ranging from 0.96 - 0.98 for intra-observer error, and from 0.75 - 0.97 for inter-observer error.  

Anterior (P<0.001), middle (P<0.001) and posterior (P<0.001) vertebral heights, as well as 

vertebral wedge angle (P<0.001), all changed during the various stages of the experiment, 

although there was no main effect of treatment group (i.e. vertebroplasty vs kyphoplasty) on 

these parameters.  Post-hoc paired comparisons showed that mean vertebral body heights 

(averaged for the three sites) decreased significantly after fracture, by an average 0.94 mm for 

all 30 specimens (Figure 3).  This is equivalent to 3-4% of average vertebral body height.  

Wedge angle also increased significantly, by an average 1.07o and 0.82o in the vertebroplasty 

and kyphoplasty groups, respectively, or by 0.95o overall (Figure 4).  Anterior and middle 

vertebral body heights were partially restored following both kyphoplasty (P<0.05) and 

vertebroplasty (P<0.05) but most of this improvement was lost after creep loading (Figures 

3A and 3B).  Vertebral wedge angle was reduced significantly by kyphoplasty, by an average 

0.66o (n=15, P<0.05) but not by vertebroplasty.  The restoration of wedge angle following 

kyphoplasty averaged 80%, and this was largely maintained after creep loading (Figure 4). 

Motion segment stiffness  Both compressive stiffness (P<0.001) and bending stiffness 

(P<0.001) varied significantly across the various stages of the experiment, although there was 

no main effect of treatment group.  Fracture reduced compressive stiffness by 53% and 55% 
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and bending stiffness by 38% and 39%, in kyphoplasty and vertebroplasty groups 

respectively.  Both treatments partially restored compressive and bending stiffness, but there 

was no significant difference between their effects (Table 2). 

Stress profilometry and compressive load-sharing  Most stress profile and load-sharing 

parameters varied significantly across the different stages of the experiment (Table 2) but 

there was no significant main effect of treatment group.  Therefore data was pooled for the 

two groups.  Averaged pooled data showed that fracture reduced intradiscal pressure (IDP) by 

61% in flexion and 88% in extension.  Fracture also reduced compressive load-bearing by the 

anterior half of the disc/vertebral body (FA), from 52% to 25% in flexion, and from 26% to 

9% in extension.  Compressive load-bearing by the posterior half of the disc/vertebral body 

(FP) was reduced only in extension, from 44% to 33%.  As a result of reduced load-bearing 

by the anterior column, load bearing by the neural arch (FN) increased after fracture, from 

15% to 36% in flexion, and from 30% to 58% in extension.  Stress peaks in the posterior disc 

also increased after fracture, from 0.18 to 1.97 MPa in flexion and from 1.01 to 2.64 MPa in 

extension. 

All of these fracture-induced changes were partially reversed by both kyphoplasty and 

vertebroplasty, and with the exception of neural arch load-bearing (FN), these treatment 

effects were maintained or enhanced following 2 hr of creep loading (Table 2).  There were 

no significant interaction terms, indicating that restoration of mechanical properties following 

cement augmentation was not significantly different for vertebroplasty and kyphoplasty. 

Discussion 

Summary of findings  Compressive fracture reduced vertebral body height and increased 

anterior wedging.  Fracture also reduced motion segment stiffness in compression and 

bending, decompressed the nucleus pulposus of the adjacent intervertebral disc, and 
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transferred compressive load-bearing from the anterior column to the neural arch.  

Vertebroplasty and kyphoplasty were equally effective in partially reversing these fracture-

induced changes, although vertebral wedge angle was restored only by kyphoplasty.  Cement 

leakage during injection was similar for vertebroplasty and kyphoplasty. 

Strengths and weaknesses of the study  The matched-pair design, in which paired motion 

segments from the same spine were allocated to vertebroplasty or kyphoplasty, minimised the 

influence of confounding factors such as age, gender, bodymass, genetic inheritance, 

vertebral level and BMD.  This increased statistical power, enabling small differences to be 

detected with fewer specimens.  Our techniques used to assess the spines’ mechanical 

properties have been validated previously [22,33,36], and the limitations of cadaveric 

experiments have been considered in detail [37].  Methods to assess vertebral height and 

wedge angle were shown to have good inter-observer and intra-observer reliability.  Vertebral 

fractures were induced using physiologically-reasonable complex loading in bending and 

compression that simulated moderately stooped postures in living people [34], and these 

loading regimes were applied to elderly human spines with ages and BMD similar to the 

patient population that normally receives cement augmentation.  Both vertebroplasty and 

kyphoplasty were carried out as recommended clinically, and except for the use of the 

inflatable bone tamp during kyphoplasty, the protocol was standardised so that the same 

cement volume and bipedicular approach was used in all specimens. 

Methodological limitations include measuring height and wedging of vertebral bodies that 

had one surface embedded in dental plaster.  This was done to allow sequential changes to be 

evaluated without having to remove the specimen from plaster, but it assumes that no 

changes occur at the embedded endplate.  This is a reasonable assumption because the plaster 

protects the adjacent endplate, so that compressive damage nearly always affects the vertebral 

body adjacent to the intervertebral disc [24-26].  Cement was injected without the aid of 
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fluoroscopic imaging, so the experimental cement leakage would have been greater than that 

seen clinically, where injection is stopped as soon as leaking begins.  Nevertheless, the 

experiment did demonstrate that, when other factors are kept constant, there is no inherent 

difference in the incidence or amount of cement leakage between vertebroplasty and 

kyphoplasty. 

Another limitation is the relatively small changes in height and wedge angle resulting from 

fracture.  In life, damaged vertebrae can continue to be loaded immediately after fracture, 

exacerbating height loss and vertebral wedging.  We have demonstrated this in-vitro when 

old motion segments were subjected to sustained loading following fracture [38,39].  These 

findings showed that creep deformity was greatly accelerated following fracture especially in 

vertebrae with low BMD.  In order to minimise any confounding effects of fracture severity 

on the outcome of the two augmentation procedures, we therefore removed the load from the 

specimen at the first sign of damage to ensure that the extent of damage was similar in all 

specimens.  However, this meant that the fracture-induced changes in vertebral shape were 

often less marked than those reported clinically.  It would be reasonable to suppose that if the 

injuries had been greater, then the restoration of shape following vertebroplasty and 

kyphoplasty would also have been greater, but it is not clear how this might have changed the 

relative ability of the two techniques to restore vertebral body shape.  

Relationship to other studies  Figure 3 shows that vertebroplasty and kyphoplasty increased 

vertebral height by a similar amount, whereas previous in-vitro studies found kyphoplasty to 

be superior in this respect [20,21,23].  As suggested in the Introduction, the previous results 

could have been distorted by using isolated vertebral bodies [20,21] or disc-vertebral body 

units [23] rather than motion segments.  Also, the previous studies used digital calipers to 

measure heights around the vertebral rim [20,23], or CT to assess mid-sagittal heights [21], 

whereas the present study assessed vertebral height changes from sagittal radiographs.  
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Specimens tested previously were all from female donors with a higher average age than in 

the present study, so specimen size and BMD could have been lower.  Cement volumes 

varied between the two procedures [20,21] and tended to be greater than in the present study.  

Fracture severity was also greater in previous studies, with vertebral body height loss ranging 

from 2.8 mm [20] to 6.6 mm [21] compared to 0.94 mm (approximately 3%) in the present 

study.  The mechanical effects of vertebroplasty depend on BMD [25,40-42], percentage 

cement fill [26,43-45] and fracture severity [25,46], so methodological differences between 

the present and previous studies could explain why they reported different effects on height 

restoration. 

Augmented specimens in the present study lost much of the newly-restored height during 

subsequent compressive loading.  This consolidation effect has been observed before in-vitro 

when augmented disc-vertebral body units were subjected to cyclic loading, and 

consolidation was found to be greater in specimens treated with kyphoplasty [23].  The 

authors speculated that consolidation is encouraged by compaction of trabecular bone 

adjacent to the cement-filled cavity created by the tamp in kyphoplasty; but consolidation is 

discouraged in vertebroplasty because injected cement can flow between trabeculae to form a 

single load-bearing column between the end-plates.  This latter effect was not evident in the 

present study, possibly because cement volume was limited to 7 ml (equivalent to 25% 

cement fill [26]) so that unfilled voids would be left near the endplates, which then allow 

consolidation during subsequent loading.  The similar amount of consolidation following 

both procedures in the present experiment may be attributable to using the same volume of 

cement (7 ml).  Consolidation effects could be magnified in living patients who suffer more 

severe fractures, so any restoration of vertebral height and shape following augmentation in-

vivo should be followed-up over time. 
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The mechanical effects of kyphoplasty proved to be remarkably similar to those of 

vertebroplasty, with both procedures restoring motion segment stiffness and spinal load-

sharing by a similar amount (Table 2).  Previous studies likewise reported no differences in 

restoration of bending stiffness [47] and intradiscal pressure [48] following the two 

procedures.  However, the effects on compressive stiffness appear to be more variable, with 

one study reporting larger increases following kyphoplasty [20] and another reporting larger 

increases following vertebroplasty [23].  These conflicting results may reflect differences in 

the method used to determine specimen stiffness, or differences in the volume of cement 

injected because cement volume strongly influences compressive stiffness [40,43,45]. 

Where kyphoplasty did perform better than vertebroplasty in our study was in reducing the 

small vertebral body anterior wedge angle, and this advantage was maintained after 

consolidation.  A similar (non-significant) trend was reported in a study on isolated vertebral 

bodies [21].  The lack of any significant change in vertebral body shape following 

vertebroplasty confirms our previous experience in cadaver motion segments [25].  Clinical 

studies suggest that vertebroplasty can improve vertebral shape and spinal kyphosis [49,50] 

but this could be because shape is measured in-vivo with the spine under load, so the injected 

cement is actually preventing further load-induced wedging rather than restoring (unloaded) 

shape.  The combined evidence from clinical and cadaveric studies indicates that kyphoplasty 

is better than vertebroplasty in restoring vertebral shape under zero load, but the advantage is 

smaller under load-bearing conditions, and may be diminished subsequently by consolidation. 

Explanation of results   Mechanical changes following vertebral fracture arise from the 

increased deformability of damaged bone, which allows increased vertical deflection of the 

vertebral endplates under load [51] and a consequent loss of intradiscal pressure (IDP) in the 

nucleus pulposus of adjacent intervertebral discs [24,25,52].  Reduced IDP causes 

compressive load-bearing to be transferred to the annulus fibrosus [52], leading to high 
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concentrations of compressive stress acting on the vertebral body margins.  Reduced IDP also 

allows the annulus to bulge radially, like a “flat tyre” [53], reducing disc height and 

increasing compressive load-bearing by adjacent neural arches [54].  All these changes in 

motion segment mechanics (Table 2, columns 1-4) would probably be exaggerated in vivo if 

more severe fractures were sustained [25].  Vertebroplasty and kyphoplasty both support the 

vertebral endplates, restoring IDP and neural arch load-bearing back towards normal levels 

[24,25,55].  These mechanical effects depend largely on the volume of injected cement, and 

so were similar in the present study for vertebroplasty and kyphoplasty.  In contrast, the extra 

ability of kyphoplasty to restore vertebral shape (for the same volume of injected cement) 

could be due to the inflated tamp creating space for cement to be injected more anteriorly, 

where height loss is greatest.  In the present study, the slightly greater anterior height 

restoration following kyphoplasty, although not significant, may have contributed to the 

observed reduction in vertebral wedging. 

In life, increased vertebral wedging as a result of fracture would act to increase the force 

vector acting anteriorly on the spine leading to increased extensor muscle forces in order to 

maintain spinal stability in upright postures.  The resulting increase in spinal loading may 

accelerate vertebral wedging at the fractured level [38] and induce anterior wedging at 

adjacent levels, especially where vertebral BMD is low {Pollintine, 2009 #7780}.  Over time, 

this may result in progressive spinal deformity and all its associated problems.  If cement 

augmentation can reduce or reverse vertebral wedging then it may help to avoid these 

mechanical changes and to prevent the development of kyphotic deformity.  

Unanswered questions and future research  The present experiments reveal only the short-

term mechanical effects of cement augmentation.  Clinical studies are required to assess how 

long-term cement consolidation, and bone remodelling, can influence longer term responses. 
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Figure legends 

Figure 1.  Apparatus used for the mechanical testing of motion segments.  The height of the 

rollers could be adjusted to compress the specimen at various angles of flexion or extension. 

The posterior roller was removed for tests of bending stiffness.  Stress profilometry was 

performed by pulling a pressure transducer along the mid-sagittal diameter of the loaded disc. 

A typical stress profile is shown to demonstrate how IDP, SPA, and SPP were measured. (A: 

anterior; P: posterior.) 

Figure 2.   Measurement of anterior (A), middle (M), and posterior (P) vertebral body height 

and wedge angle (W) from a lateral radiograph. Vertebral body height was measured relative 

to a horizontal reference line (H) represented by the baseplate. 

Figure 3.   Mean anterior (3A), middle (3B) and posterior (3C) vertebral body heights at 

different stages of the experiment.  Post-hoc paired comparisons indicate significant 

differences from pre-fracture (* p<0.05) and post-fracture (+ p<0.05) values.  Error bars 

indicate the standard error of the mean. 

Figure 4.   Mean vertebral wedge angles at different stages of the experiment.  Positive 

values indicate vertebral body height is lower anteriorly.  Post-hoc paired comparisons 

indicate significant differences from pre-fracture (* p<0.05) and post-fracture (+ p<0.05) 

values. Error bars indicate the standard error of the mean. 
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In life, a reversal of vertebral wedging may have mechanical benefits in helping to restore 

segment stiffness and stability.  In a recent study, we found that creep and elastic 

deformations of the vertebral body in older spines were exaggerated in the anterior vertebral 

body where bone mineral density was lowest [Pollintine Bone 09] and that such regional 

deformations were even more marked following vertebral fracture [38].  Increased vertebral 

wedging at one level would act to increase the force vector acting anteriorly on the spine 

leading to increased extensor muscle forces in order to maintain spinal stability in upright 

postures.  The resulting increase in spinal loading may induce anterior wedging at adjacent 

levels with low anterior BMD leading to progressive spinal deformity and a loss of sagittal 

balance.  Restoration of vertebral shape following fracture may therefore help to improve 

segmental stiffness and stability and help to avoid the development of progressive kyphotic 

deformity. 
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Table 1.   Details of the 15 pairs of motion segments tested. 

V = vertebroplasty, K = kyphoplasty.  + BMD is shown for the fractured vertebra from each 

motion segment.  

 

Spine Gender Age 

(years) 

Spinal level     Disc 

Degeneration  

BMD (g/cm3) +    Yield strength 

(kN)     

Cement 

leakage 

(ml)  

K V K V K V K V K V 

1 Female 80 L2-

L3 

T12-

L1 

2 2 0.164 0.191 5.3 4.9 1.5 1.5 

2 Male 61 L1-

L2 

L3-

L4 

2 3 0.146 0.244 4.5 3.7   

   T9-

T10 

T11-

T12 

2 2 0.107 0.101 3.3 2.9   

3 Female 58 T7-

T8 

T9-

T10 

2 2 0.120 0.176 3 3.2 3.5 0.5 

4 Male 84 T9-

T10 

T7-

T8 

2 2 0.128 0.126 1.8 2.3  1.5 

5 Female 76 T9-

T10 

T7-

T8 

3 3 0.147 0.127 2.7 2.5   

6 Female 42 L3-

L4 

L1-

L2 

2 2 0.131 0.114 3.2 2.3 1 3 

   T9-

T10 

T11-

T12 

2 2 0.123 0.118 2 2.3 3 3.5 

7 Male 86 T12-

L1 

T10-

T11 

3 3 0.242 0.136 2.2 2.1   

8 Female 85 L1-

L2 

L3-

L4 

3 3 0.161 0.136 4.2 3.7   

9 Female 54 T9-

T10 

T12-

L1 

2 2 0.135 0.121 1.9 2.1 2  

10 Female 90 L1-

L2 

T10-

T11 

3 2 0.063 0.079 0.9 1.1   

11 Female 56 T12-

L1 

L2-

L3 

2 2 0.152 0.176 5.3 5.8 3  

   T10-

T11 

T8-

T9 

2 3 0.157 0.171 4.9 4.6   

12 Male  96 L2-

L3 

T12-

L1 

3 3 0.111 0.128 2.6 2.1   

Mean (SD) 70(16)     0.141 

(0.039) 

0.144 

(0.043) 

3.2(1.4) 3.0(1.3) 0.9 

(1.3) 

0.7 

(1.2) 
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Table 2.  Average (SD) results from mechanical tests. 

 

Differences between vertebroplasty (V) and kyphoplasty (K) were not significant for any 

measured parameters.  “p values” indicate differences between the four stages of the 

experiment (ANOVA).  Post-hoc paired comparisons indicate differences from pre-fracture (a 

p < 0.05; b p < 0.01; c p < 0.001) and post-fracture (A p < 0.05; B p < 0.01; C p < 0.001) values.  

 

 Pre-fracture Post-fracture Post-treatment Post-consolidation p  

K V K V K V K V  

IDP- flex 

(MPa) 

1.62 

(0.84) 

1.39 

(1.03) 

0.62 

(0.42)c 

0.54 

(0.59)c 

1.38 

(0.59)C 

1.29 

(0.51)C 

1.21 

(0.62)C 

1.18 

(0.42)C 

<0.001 

IDP- ext 

(MPa) 

1.61 

(0.81) 

1.53 

(0.79) 

0.14 

(0.20)c 

0.26 

(0.49)c 

1.14 

(0.68)cC 

0.90 

(0.93)cC 

0.88 

(0.53)cC 

0.80 

(0.86)cC 

<0.001 

SPA – flex 

(MPa) 

1.61 

(1.27) 

2.22 

(2.43) 

1.09 

(0.93) 

1.33 

(1.00) 

1.29 

(1.36) 

1.87 

(1.48) 

1.68 

(1.69) 

1.99  

(1.80) 

0.072 

SPA – ext 

(MPa) 

0.33 

(0.45) 

0.43 

(0.39) 

0.32 

(0.34) 

0.44 

(0.44) 

0.46 

(0.54) 

0.47 

(0.52) 

0.49 

(0.65) 

0.36  

(0.45) 

0.57 

SPP  - flex 

(MPa) 

0.06 

(0.11) 

0.30 

(0.33) 

1.72 

(1.25)c 

2.22 

(1.11)c 

0.38 

(0.60)C 

0.45 

(0.57)C 

0.25 

(0.28)C 

0.41 

(0.55)C 

<0.001 

SPP  - ext 

(MPa) 

0.79 

(1.46) 

1.24 

(1.14) 

2.43 

(1.52)c 

2.85 

(1.29)c 

1.51 

(1.31)a 

2.06 

(1.73)a 

1.44 

(1.14)B 

1.85  

(1.13)B 

<0.001 

FA - flex 

(%) 

53.2 

(11.4) 

51.0 

(18.8) 

25.5 

(11.8)c 

25.4 

(12.3)c 

41.9 

(11.2)aC 

45.6 

(13.7)aC 

44.6 

(14.6)C 

47.6 

(14.6)C 

<0.001 

FA - ext (%) 25.8 

(8.8) 

27.1 

(11.2) 

7.7 

(4.3)c 

10.3   

(7.7) c 

21.7 (9.6) 

cC 

17.6 

(11.9) cC 

18.3 (8.5) 

cC 

15.4  

(9.7) cC 

<0.001 

FP  - flex 

(%) 

33.9 

(10.6) 

32.6 

(14.1) 

34.4 

(12.4) 

41.9 

(13.1) 

36.6 

(12.1) 

33.9   

(9.6) 

31.8 

(13.3) 

29.2  

(7.9) 

0.069 

FP  - ext (%) 42.7 

(13.1) 

45.1 

(13.1) 

27.9 

(13.7)a 

38.0 

(19.2)a 

39.2 

(11.6)A 

45.0 

(15.4)A 

33.9 

(15.3) 

38.1 

(15.1) 

<0.001 

FN - flex 

(%) 

12.9 

(8.5) 

16.4 

(12.6) 

40.2 

(15.5)c 

32.6 

(16.5)c 

21.6 

(16.5)B 

20.3 

(12.7)B 

23.6 

(17.8)aA 

23.2 

(15.3)aA 

<0.001 

FN - ext (%) 31.5 

(11.9) 

27.8 

(15.6) 

64.4 

(14.6)c 

51.7 

(18.6)c 

39.0 

(11.4)C 

37.4 

(14.7)C 

47.7 

(18.3)cB 

46.5 

(15.6)cB 

<0.001 

Comp stiff 

(kN/mm)  

3.20 

(0.97) 

3.19 

(0.92) 

1.49 

(0.22)c 

1.44 

(0.27)c 

1.86 

(0.60)cC 

1.98 

(0.49)cC 

2.03 

(0.58)cC 

2.16 

(0.53)cC 

<0.001 

Bend stiff 

(Nm/deg)  

6.77 

(1.39) 

6.59 

(2.38) 

4.17 

(0.99)c 

4.02 

(1.15)c 

4.91 

(1.26)cA 

4.61 

(0.71)cA 

4.99 

(1.77)c 

4.26 

(0.72)c 

<0.001 
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