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Graphical Abstract: 

          

Abstract: A series of azetidin-2-ones substituted at positions 2, 3 and 4 of the azetidinone ring scaffold 

were synthesised and evaluated for antiproliferative, cytotoxic and tubulin binding activity. In these 

compounds, the cis double bond of the vascular targeting agent combretastatin A-4 is replaced with the 

azetidinone ring in order to enhance the antiproliferative effects displayed by combretastatin A-4 and 

prevent the cis/trans isomerization that is associated with inactivation of combretastatin A-4. The series 

of azetidinones was synthetically accessible via the Staudinger and Reformatsky reactions. Of a diverse 

range of heterocyclic derivatives, 3-(2-thienyl) analogue 28 and 3-(3-thienyl) analogue 29 displayed the 

highest potency in human MCF-7 breast cancer cells with IC50 values of 7 nM and 10 nM respectively, 

comparable to combretastatin A-4. Compounds from this series also exhibited potent activity in MDA-

MB-231 breast cancer cells and in the NCI60 cell line panel. No significant toxicity was observed in 

normal murine breast epithelial cells. The presence of larger, bulkier groups at the 3-position, for 

example 3-naphthyl derivative 21 and 3-benzothienyl derivative 26, resulted in relatively lower 

antiproliferative activity in the micromolar range. Tubulin-binding studies of 28 (IC50=1.37 �M) 

confirmed that the molecular target of this series of compounds is tubulin. These novel 3-(thienyl) �-

lactam antiproliferative agents are useful scaffolds for the development of tubulin-targeting drugs. 

Key words: Combretastatin A-4 analogues, colchicine, �-lactam, azetidinone, antiproliferative, 
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cytotoxicity, tubulin, structure-activity, Staudinger reaction, Reformatsky reaction.  

 

Abbreviations 

BBB   Blood-brain barrier 

CA-4   Combretastatin A-4 

CA-4P   Combretastatin A-4 phosphate 

DAMA-colchicine N-Deacetyl-N-(2-mercaptoacetyl)-colchicine 

DCM   Dichloromethane 

GTP   Guanidine triphosphate 

HRMS              High Resolution Molecular Ion Determination 

IR              Infra Red 

LDA   Lithium diisopropylamide 

MTT   3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NCI   National Cancer Institute 

NMR   Nuclear magnetic resonance 

SAR                  Structure-Activity Relationship 

TBAF   Tetrabutylammonium fluoride 

TBDMS  tert-Butyldimethylchlorosilane 

TLC   Thin layer chromatography 

THF   Tetrahydrofuran 

TMCS   Trimethylchlorosilane 

TMS   Tetramethylsilane 
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1. Introduction 

The mitotic phase of cell division relies on assembly of the mitotic spindle. Microtubules are the main 

constituent of the mitotic spindle and are composed of the �-� heterodimeric protein tubulin.1 They are 

highly dynamic structures that alternate between periods of growing and shrinking through the addition 

or removal of tubulin subunits at the ends of microtubules.2 Microtubules are a highly-validated target in 

cancer therapy and a large number of chemically diverse substances bind to tubulin and alter 

microtubule polymerization and dynamics in diverse ways.3 These ligands can be broadly divided into 

two categories: those that inhibit the formation of the mitotic spindle, e.g. colchicine (1, Figure 1) and 

the vinca alkaloids, and those that inhibit the disassembly of the mitotic spindle once it has formed, e.g. 

paclitaxel and epothilone.4 Tubulin-binding compounds, such as paclitaxel and vinblastine, are in 

widespread clinical use for various types of cancer.3 

The combretastatins are a group of tubulin-binding diaryl stilbenes isolated from the stem wood of the 

South African tree Combretum Caffrum.5 There is no written evidence of use of the plant for treating 

cancer amongst the indigenous people of Africa.6 A number of constituent stilbenes were found to 

inhibit the growth of colon cancer cells and were strong inhibitors of tubulin polymerisation.5 

Combretastatin A-4 (2a, Figure 1) and combretastatin A-1 (2b, Figure 1) exhibited potent anticancer 

activity against a panel of human cancer cell lines from diverse origins, including leukaemic, breast and 

multi-drug resistant cancers.4 Stilbenes 2a and 2b inhibit the formation of the mitotic spindle by binding 

to the colchicine-binding site of tubulin and were also shown to exhibit anti-vascular properties in vivo, 

probably by increasing tumor-vessel permeability.7, 8 However, 2a and 2b display poor water solubility 

rendering them unsuitable for clinical use and water-soluble prodrugs, including combretastatin A-4-

phosphate (2c, Figure 1), are in clinical trials, for example evaluation of 2c for advanced anaplastic 

thyroid cancer and in combination with chemotherapy for advanced solid tumours.9-11 2c displays 

excellent water solubility, good stability and cell growth inhibitory activity comparable to that of 2a.11  
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However, the biological activity of 2a is lost if isomerization to the inactive trans form occurs, for 

example during storage.12, 13 Many conformationally restricted analogues of 2a are known, in which the 

cis double bond is replaced by a heterocycle, thereby locking the two aryl rings in a cis-like 

configuration relative to each other. A diverse range of heterocycles as replacements for the double bond 

have been reported including benzoxepins,14 oxadiazolines,15 imidazoles,16 combretoxazolones,17 

combretocyclopentenones13 and thiophenes,18 and are the subject of many reviews.4, 12, 19 Previously, �-

lactam containing compounds were reported to have anticancer activity20, 21 and the �-lactam ring 

scaffold has been investigated as a template for analogues of 2a.22-24 We have recently reported a series 

of antiproliferative, tubulin-binding �-lactam compounds, where 3a, 3b and 3c (Figure 1) emerged as 

the most potent agents with activity comparable to 2a.24 A 3-phenyl ring substituent improved the 

potency of this series of �-lactam compounds compared to either 3-methyl or 3,3-dimethyl substitution 

or �-lactams unsubstituted at C-3. �-Lactam 3b was shown to induce rapid apoptosis in vitro in 

leukaemic HL-60 cells and also induced apoptosis in ex vivo samples from patients with chronic 

myeloid leukaemia, including those positive for the T315I mutation displaying resistance to imatinib 

mesylate and dasatinib.25 Due to the potency of the 3-phenyl substituted compounds 3a and 3b, a series 

of novel analogues with diverse carbocycles and heterocycles to replace the phenyl ring were developed 

and evaluated for their antiproliferative activity and tubulin effects. These novel compounds reported 

herein contain carbocyclic, heterocyclic or modified aryl substituents at position 3 of the �-lactam ring 

while the aryl rings A and B present in 2a are retained at positions 1 and 4 of the azetidinone scaffold. 

The rigid �-lactam ring structure facilitates a similar spatial arrangement between the two aryl rings at 

N-1 and C-4 as is observed for the cis configuration of 2a. 

Insert Figure 1 
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2. Results and Discussion 

2.1 Chemistry 

The synthetic routes for target �-lactam preparation are illustrated in Schemes 1 – 6. The compounds 

chosen for initial investigation all contained the 3,4,5-trimethoxyphenyl (mimicking ring A of 2a) as the 

�-lactam N-1 substituent, together with the 4-methoxyphenyl ring as the �-lactam C-4 substituent. Two 

routes for the �-lactam ring-forming reaction were employed. The Staudinger reaction requires 

appropriately substituted acetic acids or acid chlorides and imines26 (Scheme 3; Routes I, II and III), 

while the Reformatsky reaction requires an organozinc species (derived from an �-bromoester) and an 

imine (Scheme 6).27 In two cases, the desired acetic acid precursors for �-lactam preparation were not 

commercially available. To prepare selected 2-thienyl containing derivatives, the appropriately 

substituted 2-thienyl aldehydes were converted to the corresponding acetic acids through the use of 

tetraethyl dimethylaminomethylenediphosphonate (4, Scheme 1).28 It was previously reported that the 

most convenient and efficient method to produce this aminodiphosphonate reagent was the reaction of 

dimethylchloroformiminium chloride with 2.2 equivalents of triethyl phosphite.29 The in-situ generated 

iminium ion reacts with triethyl phosphite to generate 4 in high yields of up to 76% (Scheme 1). This 

reagent reacts with the aldehyde of interest to form an enamine phosphonate, which is hydrolysed with 

strong acid to produce the substituted acetic acids 5a and 5b (Scheme 1). 

Substituted acetic acids were required in the Staudinger reaction for the preparation of �-lactams in 

two procedures. Firstly, the acid chloride could be generated from the acid for use in a traditional 

Staudinger reaction. Alternatively, direct preparation of �-lactams from substituted acetic acids by the 

Staudinger route using an acid-activating agent is possible (see below). In the first option, generation of 

the acid chloride (6a, 6b) from the corresponding substituted acetic acid was achieved by chlorination 

with thionyl chloride. The chlorination reactions were monitored by IR until absorption was observed 

between � 1780 cm-1 and � 1815 cm-1, due to carbonyl stretching in the acid chloride. Acid chlorides 6a 

and 6b were synthesised in high yield and were immediately used in the following �-lactam forming 
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reaction without further purification (Scheme 3). 

The preparation of imine precursors 8a – 8f is achieved in high yield by condensation of the 

appropriately substituted aldehydes and anilines (Scheme 2).30 In the case of 3-hydroxy-4-

methoxybenzaldehyde, the hydroxyl group was first protected using the TBDMS silyl ether group and 

then used for the preparation of Schiff base 8b.31  

The preparation of target �-lactams 10 – 27 is illustrated in Scheme 3. �-Lactam synthesis was 

primarily carried out using the Staudinger reaction, which is a cycloaddition reaction between a ketene 

and an imine under basic conditions, where the ketene can be generated from an acid chloride.32 �-

Lactams 10 – 18 were prepared by this method (Scheme 3, route I). A modified procedure for 

preparation of the 3-thienyl compound 19 was employed, as the standard Staudinger reaction conditions 

were unsuccessful. �-Lactam 19 was obtained in 48% yield using milder conditions with overnight 

stirring at room temperature (Scheme 3, route II).33 The stereochemistry of products from the Staudinger 

reaction depends on numerous factors, including the reaction conditions, the order of addition of the 

reagents and the substituents present on both the imine and on the acid chloride.20, 32, 34 The trans 

products were isolated exclusively in all but one case, as evident from the representative 1H NMR 

spectrum of compound 13 where the H-3 and H-4 were identified at � 4.47 ppm and � 4.90 ppm 

respectively as a pair of coupled doublets, J3,4 = 2.5 Hz. The formation of the trans isomer is likely due 

to steric hindrance when two aryl rings present in the �-lactam structure at C-3 and C-4. The sole 

exception in this series of compounds was the 3-methyl-3-phenyl substituted �-lactam 11, which was 

obtained as a mixture of cis/trans isomers (ratio 1:1.13 cis:trans) and separated by crystallization from 

ethanol. The presence of structural isomers was confirmed by X-ray crystal structures of both isomers of 

11 (Figure 2). Both enantiomers of 11 can be seen in the crystal structure of the trans isomer (Figure 

2b).  The X-ray crystal structure of 3,3-diphenyl �-lactam 12 is illustrated in Figure 3.  

Insert Figures 2 and 3 

The �-lactam ring scaffold could also be generated directly from the appropriately substituted acetic 
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acid and imine precursors using an acid-activating agent in a one-step reaction, without generation and 

isolation of the acid chloride (Scheme 3, route III). Many acid-activating agents are known in literature, 

e.g. Mukaiyama’s reagent, p-toluene-sulfonyl chloride and various phosphorous derived reagents.32 

Triphosgene has been reported for the synthesis of �-lactams and was employed as an acid-activating 

agent in synthesis of compounds 20 - 27.35, 36  

The phenolic products 28 and 29 were obtained on treatment of the silyl ethers 14 and 27 respectively 

with tetrabutylammonium fluoride at 0 ˚C (Scheme 4).31 Separation of the silylated �-lactams 14 and 27 

from the silylated imine in the final reaction mixture was difficult and hence removal of the silyl 

protecting group was carried out before subsequent purification. Reduction of the nitro group in 

compound 19 to the corresponding amine 30 was achieved by treatment with zinc dust and glacial acetic 

acid (Scheme 5).37   

Preliminary biochemical assessments of �-lactams 10 – 30 in MCF-7 human breast cancer cells 

revealed potent antiproliferative activity for thiophene containing compounds 13, 24, 28, 29 and 30 

(Table 2). On the basis of these results, further sulfur-containing �-lactam analogues were prepared. 3-

Unsubstituted �-lactam 9 was used as a precursor for a variety of substitution reactions at C-3. 

Compound 9 was obtained by Reformatsky reaction of imine 8a with ethylbromoacetate and zinc using 

microwave technology and TMCS as the zinc-activating agent as we have previously reported.24, 27 

Deprotonation of 9 with LDA at -78 °C followed by reaction with aldehydes32, 38 was successful for the 

preparation of secondary alcoholic derivatives 31 – 34 (Scheme 6). Further treatment of compounds 32 

and 33 by oxidation with pyridinium chlorochromate39 yielded ketone analogues 35 and 36 (Scheme 7). 

Transformation of alcoholic derivatives 32 and 34 by dehydration with tosyl chloride in pyridine38 

delivered corresponding vinylogous analogues 37 and 38 (Scheme 8). Although formation of E/Z 

isomers at the 3-position double bond is possible for 37 and 38, only one isomer was obtained in each 

case, possibly due to steric hindrance between the thiophene ring and aryl substituents at positions 3 and 

4 of the azetidinone ring. The  products 37 and 38 were assigned the Z configuration, by comparison of 
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the signal for H-� in the 1H NMR spectrum (� 6.45 ppm and � 6.38 ppm for compounds 37 and 38 

respectively) with reported values for H� in related E and Z 3-methylenesubstituted azetidin-2-ones.21 

All �-lactam compounds 10 – 27 were obtained as enantiomeric mixtures and separation by chiral 

liquid chromatography was demonstrated for selected compounds 13 and 33, indicating a 1:1 mixture of 

the two enantiomers for both compounds (Figure 10, Supplementary Information). We have previously 

demonstrated stability of 3-phenyl �-lactams over the pH range 4 – 9.24 Preliminary stability studies of 

3-(2-thienyl) �-lactams with aryl, naphthyl and thienyl substituents at C-4 (compounds 13, 16, 17 and 

18) were carried out in acidic, neutral and basic pH conditions. The half-lives for these compounds were 

determined to be greater than 24 hours at pH values of 4, 7.4 and 9, with the compounds being least 

stable at pH 4 for all four analogues assessed. 

2.2 Biological Results and Discussion 

2.2.1 Antiproliferative effects 

The series of �-lactam analogues of 2a were initially evaluated for their antiproliferative activity in 

human MCF-7 breast cancer cells using the MTT cell viability assay.40 The previously reported lead 

compound, 3a, showed potent activity in this cancer cell line with an IC50 of 0.034 �M and further 

investigation established 3a and 3b as potential lead development candidates for the treatment of 

leukaemia.24, 25 To establish a more detailed SAR and further examine the effects of 3-substitution on 

antiproliferative activity, the phenyl ring at the 3-position of 3a was replaced with a wide variety of 

carbocyclic and heterocyclic substituents, while retaining the N-1, C-4 substituents of 3a (Table 1).  

The most potent �-lactams in MCF-7 cells were those with 3-(2-thienyl) (13) and 3-(3-thienyl) (24) 

substituents with IC50 values of 64 nM and 60 nM respectively. Replacement of the sulfur atom of 24 

with oxygen (furan analogue 23) led to a two-fold decrease in activity. Introduction of multiple and/or 

larger substituents at this position led to substantial decrease in activity compared to substitution with a 

phenyl ring, for example diphenyl 12 (IC50 of 43.17 �M), 1-naphthyl 20 (11.32 �M), 2-naphthyl 21 

(2.47 �M) and methyl indole 22 (6.59 �M). The bulky benzothiophene analogue 26 has a much greater 
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IC50 value of 0.85 �M than the corresponding thiophene derivative 13 (IC50 value of 0.064 �M). This is 

in line with previous observations that poly-substitution of the C-3 phenyl ring led to decreased 

activity.24 A cyclohexane ring at position 3 of the �-lactam (10) showed decreased activity of over 100-

fold compared to the 3-phenyl substituted compound 3a. Cyclohexane-substituted 10 has a higher cLogP 

value of 4.87 compared to 3.88 for 3a, indicating a marked increase in hydrophobicity. It is possible that 

this property contributes to its relative lack of antiproliferative activity. Disubstitution at the 3-position 

yielded the two compounds with the least antiproliferative activity in MCF-7 cells, 3-methyl-3-phenyl 

substituted 11 (IC50 of 43.45 �M; evaluated as a mixture of cis/trans isomers) and 3,3-diphenyl 

substituted 12 (IC50 of 43.17 �M). From these results, it can be deduced that substituents larger than a 

phenyl ring at the 3-position are detrimental to the antiproliferative activity of this series of compounds.  

Compounds 28 (IC50 = 7 nM) and 29 (IC50 = 10 nM) with additional hydroxyl groups at the 3-position 

of the 4-phenyl ring, analogous to 2a, displayed increased potency in MCF-7 cells over their respective 

parent compounds, 13 and 24, of 9-fold and 10-fold respectively. A dose response graph for 13, 29 and 

2a is shown in Figure 4. �-Lactam 30, in which the phenolic moiety of 28 is replaced with an amino 

substituent, was marginally more potent than 13 but less active than 28 (IC50 values of 42 nM, 64 nM 

and 7 nM respectively). Both 28 and 30 offer the possibility of further modification to form ester or 

amide prodrugs via their phenolic and amino groups. 

Insert Figure 4 

The effect of introduction of a carbon spacing atom between the thiophene ring and C-3 of the �-

lactam ring was investigated (compounds 14, 32 – 37). Secondary alcohols 32 and 33 and ketone 

derivatives 35 and 36 (IC50 values = 1.17 �M, 0.99 �M, 0.95 �M and 0.47 �M respectively) were over 

16-fold less potent than 13 and 24. Methylene 14 and alkene 37 have IC50 values of 1.64 �M and 4.05 

�M respectively, confirming that extension of the distance between the thiophene and �-lactam ring has 

a detrimental effect on the potency of this series.  

Analogues of 2a with a thiophene ring at the 3-position and naphthyl substituents at the 4-position (16 
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and 17) in place of the 3-hydroxy-4-methoxyphenyl moiety were assessed for antiproliferative activity as 

the naphthyl moiety has been previously shown to be a good replacement for the B-ring of 2a.37 

However both 4-(2-naphthyl) �-lactam 16 and 4-(1-naphthyl) �-lactam 17 displayed decreased IC50 

values of 0.12 �M and 0.62 �M compared to 0.007 �M for 28. Replacement of the 4-position 

substituted phenyl ring with a thiophene ring (18) led to decreased activity (IC50 value = 0.91 �M) 

indicating that, while a C-3 thiophene ring is advantageous for activity, such a substitution is not 

tolerated at C-4. 

The most active analogues in the MCF-7 antiproliferative studies (13, 28, 29 and 30) were 

subsequently evaluated against human MDA-MB-231 breast cancer cells and exhibited submicromolar 

IC50 values. Of the four compounds tested, 3-(3-thienyl) �-lactam 29 was the most potent (IC50 = 49 

nM) and showed improved activity compared to the lead compound 3a (IC50 = 78 nM) (Table 3).  

2.2.2 Further biochemical assessment: NCI60 cell line screen, cytotoxicity and tubulin 

polymerisation 

   Compounds 13, 28 and 30 were chosen for specific analysis and further development (screening in the 

National Cancer Institute (NCI) 60-cell line panel, determination of cytotoxicity, tubulin binding and 

molecular modelling) based on the analysis of their drug-like properties from a Tier-1 profiling screen 

(based on experimentally determined solubility and chemical stability together with together with 

predictions of permeability, metabolic stability, Pgp substrate status, blood-brain barrier partition, 

plasma protein binding and human intestinal absorption properties which indicated the suitability of 

these compounds for further development). These compounds satisfy Lipinski’s ‘rule of five’ for drug-

like properties e.g. molecular weights of 13, 28 and 30 are less than 500, the number of oxygen/nitrogen 

atoms is less than 10, the number of hydrogen bond donors is less than 5 and the cLogP values are 2.78, 

1.88 and 1.95 respectively (<5), implying that they are moderate lipophilic-hydrophobic drugs and are 

suitable candidates for further investigation.  

  3-Thienyl �-lactam 13 was screened using the NCI60 panel of cell lines (Table 5, supplementary 
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information)41 and exhibited IC50 values of less than 10 nM in 25 of the 56 cell lines, and IC50 values of 

less than 51 nM in 47 of the cell lines. The mean GI50 value for 13 across all cell lines is 27.54 nM [log 

GI50=(-7.56M)]. The anti-proliferative activity of 13 was particularly potent for all three leukaemic cell 

lines (<10 nM) and for CNS, melanoma and breast cell lines, indicating a wide-range of potential 

therapeutic applications. The mean LC50 for 13 across the range of cell lines is >100 �M indicating 

minimal cytotoxicity. In addition, matrix COMPARE analysis42, 43 (measuring the correlation between 

two compounds with respect to their differential antiproliferative activity) demonstrated good 

correlation between 13, 3b and 2a (r=0.76 and 0.61 respectively). However, this algorithm does not 

distinguish between different tubulin-based mechanisms of action.44 The COMPARE algorithm was 

also used to compare the differential antiproliferative activities of 13 to compounds with known 

mechanisms of action in the NCI Standard Agent Database4 and showed correlations to vincristine, 

paclitaxel, maytansine and rhizoxin, all of which affect microtubule polymerization (Table 4). 

2.2.3 Evaluation of toxicity in normal murine mammary epithelial cells 

   Further toxicity measurements were carried out on 3-(2-thienyl) �-lactam 28, the most potent 

antiproliferative �-lactam in antiproliferative assessment with MCF-7 cells. Toxicity studies in healthy 

mouse mammary epithelial cells at two different cell concentrations were carried out (25,000 cells/mL 

and 50,000 cells/mL harvested from mid- to late- pregnant CD-1 mice and cultured as described 

previously45, 46). These results indicate a favorable toxicity profile for 28 in comparison to 2a. The IC50 

value for both compounds was greater than 10 �M indicating minimal toxicity for this compound 

(Figure 5) (Table 7 and Figure 12, Supplementary Information).  

Insert Figure 5 

2.2.4 Tubulin polymerization studies 

The effects of representative �-lactam CA-4 analogue (compound 28) which demonstrated potent 

antiproliferative effects in vitro was assessed on the assembly of purified bovine tubulin. The ability 
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of 2a to effectively inhibit the assembly of tubulin was assessed as a positive control. Tubulin 

polymerisation was determined by measuring the increase in absorbance over time at 340 nm. The Vmax 

value offers the most sensitive indicator of tubulin/ligand interactions and hence fold-changes in Vmax 

values for polymerisation curves of the compound with reference to ethanol control were calculated. 

Tubulin polymerization studies on 28 showed a 3.2-fold reduction in the Vmax at 10 �M compared to a 

6-fold reduction for 2a tested as a control. The IC50 value for 28 for the inhibition of Vmax was 

calculated to be 1.37 ± 0.85 �M, while an IC50 value of 6.25 ± 2.53 �M was obtained for the effect in 

overall polymer mass (calculated from area under the polymerization curve) (Figure 6). This confirms 

that the molecular target of these antiproliferative �-lactams is tubulin. 

Insert Figure 6 

2.3 Structural Studies, Molecular Modeling and Rationalization of Biochemical Activity 

   Based on the 3D structural similarity between the ligands 1, 2a and the �-lactam analogues reported in 

this study, we propose that the binding site for these compounds is most likely to be the colchicine site, 

as it has been demonstrated that 2a and many reported examples of the structurally related 

conformationally constrained 2a analogues bind at the colchicine site.47-49 The colchicine-binding site in 

tubulin is mainly buried in the �-subunit of tubulin, whilst maintaining some limited interactions with 

the �-subunit. The H7 and H8 �-helices, the T7 loop and the S8 and S9 �-strands contribute to the 

binding site and interact with the colchicine-site ligand.50 Two of the most important residues for 

colchicine-binding are Val318 and Cys241. Val318 tubulin variants have reduced sensitivity to 1, and 1 

substituted with more reactive groups instead of the methoxys can be crosslinked with Cys241.51, 52 The 

Thr179 residue has also been highlighted as being important, though not critical, for binding.53 

Previously reported �-lactams 3a and 3b both show interactions with Val318 and Cys241, while 3b has 

an additional hydrogen-bonding interaction with Thr179.24  

The antiproliferative assessment of the �-lactam compounds 10 – 38 (Table 2) established a clear 
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trend, where 2- and 3-thiophene substituents at C-3 proved extremely potent (e.g. compounds 13, 28, 29 

and 30). In contrast, bulkier substituents at the 3-position of the azetidinone ring (e.g. 3,3-diphenyl 

substituted analogue 12) led to a substantial decrease in activity, even though the required substitution 

pattern of rings A and B were preserved. To rationalize this observation, molecular structures of 

compounds 11 and 12, determined by single-crystal X-Ray crystallography, were examined (Figures 2 

and 3). The structures revealed a conformation for the azetidinones 11 and 12 in which the two aromatic 

rings located at N-1 and C-4 are not coplanar. The observed dihedral angle between Ring A and Ring B 

in the X-ray crystal structures of these analogues is -61.7° for compound 12 (Figure 3). For compound 

11, a dihedral angle of 73.4° is observed for the cis isomer while values of 62.7° and -66.1° are 

calculated for the two enantiomers of the trans isomer (Figure 2). These values are very different to the 

dihedral angle previously observed for 3a of 46.9°,24 and are also higher than the values for 1 (55°)51 

and 2a (53°)54. It is possible that this difference in orientation between the two rings is one of the factors 

leading to the decreased antiproliferative activity observed for 11 and 12. When these compounds 11 

and 12 are docked computationally in the colchicine-binding site of tubulin, the reason for the decreased 

biochemical activity in vitro becomes apparent. The docked conformations of both 3a and 12 and of 1 

and 12 (Figure 7) reveal that 12 is predicted to be orientated differently to both 3a and 1 within the 

binding site. The N-1 trimethoxyphenyl rings of 3a and 12 adopt similar positions in the binding site but 

the C-4 4-methoxyphenyl ring lies in a different plane, projecting backwards for 1 and 3a, but forward 

for 12. The 3,3-diphenyl rings of analogue 12 occupy the same part of the binding site as the 4-(4-

methoxyphenyl) ring of 3a, indicating that this part of the colchicine-binding site of tubulin can 

accommodate a larger volume and explains the relative switch in orientation for 12 compared to 1 and 

3a. This may account for the loss in antiproliferative activity seen with 12 and any other related 

analogues with a bulky substitution pattern at this position (e.g. compounds 11 20, 21 and 22), as the 

potential for forming a binding interaction with Thr179 is lost and microtubule dynamics may not be as 

dramatically affected. However, interactions between the N-1 trimethoxyphenyl ring of 12 and both 
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Val318 and Cys241 are maintained, accounting for the residual antiproliferative activity of this 

compound. 

Insert Figure 7 

In contrast to 3,3-diphenyl �-lactam 12, virtual molecular docking of the most potent �-lactam from 

this series, 3-(2-thienyl) �-lactam 28, predicts a docked conformation similar to that previously predicted 

for 3b (Figure 8, also figure 11 in supplementary information).24 The dihedral angle between the N-1 

and C-4 phenyl rings of 28, calculated from the energy minimized structure rather than a crystal 

structure, is 61.8°. The predicted 2D interactions of the ligand with the protein are shown in figure 9.55 

Residues Cys241 and Val318 interact with the trimethoxyphenyl ring of 28. Hydrogen bonding of the 

phenolic group of ring B to Thr179 and Lys352 contributes to the strong tubulin binding of this 

compound observed in vitro and is suggested to account for the increased antiproliferative activity seen 

with the phenolic compounds 28 and 29. Further hydrophobic interactions between the 3-(2-thienyl) ring 

and the colchicine site residues (Figure 9) reinforce the binding to the protein, for example with Val181, 

Leu248 and Ala250. These interactions, in contrast to those of �-lactam 12, may stabilize the binding of 

28 and provide a rational basis for the potent antiproliferativea nd tubulin-binding activity displayed by 

these compounds. 

Insert Figures 8 and 9 

Summary and conclusion 

Building on previous work where the �-lactam ring scaffold was utilized to replace the isomerisable 

double-bond of 2a, further investigations to determine a comprehensive SAR of antiproliferative �-

lactams has led to the new discovery of novel analogues with significant antiproliferative and tubulin-

binding activity. A trend for small ring heterocyclic systems at the 3-position ring leading to increased 

potency was determined, with larger ring systems such as naphthyl, indole and benzothiophene leading 

to significantly less potent anti-proliferative activities. 3-(2-Thienyl) and 3-(3-thienyl) derivatives 28 and 

29 displayed the most potent antiproliferative activity in MCF-7 and MDA-MB-231 breast cancer cell 
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lines with low nanomolar antiproliferative IC50 values, and 28 was shown to be minimally toxic to 

normal murine epithelial cells. The molecular target of �-lactam 28 was confirmed to be tubulin, and 

this compound displayed an IC50 value of 1.37 �M for inhibition of tubulin polymerization. The 2-

thienyl and 3-thienyl containing compounds reported herein will be evaluated in further in vitro and in 

vivo studies to develop their potential vascular targeting and antiangiogenic applications. 

3. Experimental Section 

3.1 Chemistry: Experimental Methods 

All reagents were commercially available and were used without further purification unless otherwise 

indicated.  Tetrahydrofuran (THF) was distilled immediately prior to use from Na/Benzophenone under 

a slight positive pressure of nitrogen, toluene was dried by distillation from sodium and stored on 

activated molecular sieves (4 Å) and dichloromethane was dried by distillation from calcium hydride 

prior to use.  IR spectra were recorded as thin films on NaCl plates or as KBr discs on a Perkin-Elmer 

Paragon 100 FT-IR spectrometer. 1H and 13C NMR spectra were obtained on a Bruker Avance DPX 400 

instrument at 20 oC, 400.13 MHz for 1H spectra, 100.61 MHz for 13C spectra, in CDCl3 (internal 

standard tetramethylsilane) by Dr. John O’Brien and Dr. Manuel Ruether in the School of Chemistry, 

Trinity College Dublin.  Low resolution mass spectra were run on a Hewlett-Packard 5973 MSD GC–

MS system in an electron impact mode, while high resolution accurate mass determinations for all final 

target compounds were obtained on a Micromass Time of Flight mass spectrometer (TOF) equipped 

with electrospray ionization (ES) interface operated in the positive ion mode at the High Resolution 

Mass Spectrometry Laboratory by Dr. Martin Feeney in the School of Chemistry, Trinity College 

Dublin. Elemental analysis was carried out in the microanalytical laboratory, University College Dublin, 

Belfield, Dublin 4. Thin layer chromatography was performed using Merck Silica gel 60 TLC 

aluminium sheets with fluorescent indicator visualizing with UV light at 254 nm. Flash chromatography 

was carried out using standard silica gel 60 (230-400 mesh) obtained from Merck. All products isolated 

were homogenous on TLC. Analytical high-performance liquid chromatography (HPLC) to determine 
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the purity of the final compounds was performed using a Waters 2487 Dual Wavelength Absorbance 

detector, a Waters 1525 binary HPLC pump, a Waters In-Line Degasser AF and a Waters 717plus 

Autosampler. The column used was a Varian Pursuit XRs C18 reverse phase 150 x 4.6 mm 

chromatography column. Samples were detected using a wavelength of 254 nm. All samples were 

analyzed using acetonitrile (70%): water (30%) over 10 min and a flow rate of 1 mL/min. Unless 

otherwise indicated, the purity of the final products was � 95% (see table 6, supplementary information). 

Chiral liquid chromatography was carried out on selected compounds using a Chiral-AGPTM 150x4.0 

mm column supplied by ChromTech Ltd. (now supplied by Chiral Technologies Europe) with a Chiral- 

AGPTM guard column and the same Waters hardware as used above for purity testing. Gradient elution 

was used beginning with 10% of organic phase and finishing with 90% of organic phase over a period of 

20 minutes. The organic mobile phase was 2-propanol and the aqueous phase was a sodium phosphate 

buffer. The sodium phosphate buffer, consisting of 10 mM sodium dihydrogen orthophosphate dihydrate 

(NaH2PO4) in HPLC-grade water, was made up to pH 7.0 using sodium hydroxide. The flow rate was 

0.5 mL/min and detection was carried out at 225 nm.  

3.1.1 3-(tert-Butyldimethylsilanyloxy)-4-methoxybenzaldehyde. To a solution of 3-hydroxy-4-

methoxybenzaldehyde (0.02 mol) and dimethyl-tert-butylchlorosilane (0.024 mol) in dry CH2Cl2 (60 

mL) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.032 mol). The resulting mixture was 

stirred at room temperature under a nitrogen atmosphere until complete on thin layer chromotagraphy. 

The solution was then diluted with CH2Cl2 (80 mL) and washed successively with water (60 mL), 0.1M 

HCl (60 mL) and saturated aqueous NaHCO3 (60 mL). The organic layer was removed and dried by 

filtration through anhydrous sodium sulphate, Na2SO4. 3-(tert-Butyldimethylsilanyloxy)-4-

methoxybenzaldehyde was isolated as a brown oil (yield 93.8%)56; 1H NMR (400 MHz, CDCl3) � 0.19 

(s, 6H, -SiCH3), 1.02 (s, 9H, -CH3), 3.91 (s, 3H, OCH3), 6.97 (d, 1H, J=8.52 Hz, ArH), 7.39 (s, 1H, 

ArH), 7.48 – 7.50 (m, 1H, ArH), 9.83 (s, 1H, -CHO); 13C NMR (100 MHz, CDCl3) � 18.43 (-SiCH3), 

25.65 (-CH3), 55.58 (OCH3), 111.19, 120.05, 126.39, 130.17, 145.57, 156.65 (ArC), 191.01 (CHO); 
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HRMS (M++H):  C14H22O3S requires 266.1338; found: 266.1349 

3.1.2 Tetraethyl dimethylaminomethylenediphosphonate (4):  To a chilled solution of 

dimethylformamide (97.9 mmol) in diethyl ether (150 mL) was added dropwise with stirring a solution 

of oxalyl chloride (97.9 mmol) in diethyl ether (20 mL). Following addition, the mixture was allowed to 

warm to room temperature and stirred for 1 hour. Triethyl phosphite (215 mmol) was then added 

dropwise with stirring. After one hour the mixture was concentrated under reduced pressure. The 

product was obtained as a yellow oil in 75.5% yield.28; � 0.92 (m, 12H, 4xCH3), 2.19 (s, 6H, 2xCH3), 

2.90 (t, 1H, 4xCH), 3.68 – 3.80 (m, 8H, CH2); HRMS (M++Na): C11H27NNaO6P2 requires 354.1211; 

found: 354.1218  

3.1.3 General method for preparation of enamine phosphonate 

To a suspension of NaH (33 mmol) in dry toluene (20 mL) was added dropwise with stirring a 

solution of 4 (16.7 mmol) in dry toluene (20 mL). After one hour, a solution of the appropriate aldehyde 

(16.7 mmol) in dry toluene (20 mL) was added. The mixture was stirred at 50 ˚C for one hour and then 

concentrated. The residue was partitioned between ethyl acetate and water and the aqueous layer was 

extracted with ethyl acetate three times. The residue was purified by column chromatography (hexane: 

ethyl acetate gradient) to afford the clean product. 

3.1.3.1 (2-Benzo[b]thiophen-2-yl-1-dimethylaminovinyl)phosphonic acid diethyl ester was 

obtained by reaction of benzo[b]thiophene-2-carbaldehyde with tetraethyl 

dimethylaminomethylenediphosphonate (4). The product was obtained as a dark orange oil (56.7% 

yield).28, 29 1H NMR (400 MHz, CDCl3) � 1.36 (t, 6H, 2xCH3), 2.69 (s, 6H, 2xCH3), 4.12 – 4.22 (m, 4H, 

2xCH2), 7.31 – 7.40 (m, 3H, ArH), 7.73 – 7.78 (m, 2H, ArH) ; HRMS (M++Na): C16H22NNaO3PS 

requires 362.0956; found: 362.0946  

3.1.3.2 [1-Dimethylamino-2-(5-methylthiophen-2-yl)vinyl]phosphonic acid diethyl ester was 

obtained by reaction of 5-methyl-thiophene-2-carbaldehyde with tetraethyl 

dimethylaminomethylenediphosphonate (4). The product was obtained as a dark orange oil (22.5% 
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yield); 1H NMR (400 MHz, CDCl3) � 1.32 (t, 6H, 2xCH3), 2.45 (s, 3H, CH3), 2.60 (s, 6H, 2xCH3), 4.06 

– 4.13 (m, 4H, 2xCH2), 6.63 (s, 1H, CH), 6.98 (d, 1H, J=3.52, ArH), 7.18 (d, 1H, J=12.04, ArH); 

HRMS (M++Na): C13H22NNaO3PS requires 326.0956; found: 326.0972 

3.1.4 General procedure for hydrolysis of enamine phosphonates: The appropriate enamine 

phosphonate was refluxed in 10M HCl (50 mL) for 30 minutes. The mixture was poured onto ice water 

(200 mL) and extracted with ethyl acetate (twice).  The combined organic extracts were dried over 

anhydrous Na2SO4 and concentrated to give the desired product.  

3.1.4.1 Benzo[b]thiophen-2-yl-acetic acid (5a) was obtained from (2-benzo[b]thiophen-2-yl-1-

dimethylamino-vinyl)phosphonic acid diethyl ester as a light brown powder (61.2% yield); Mp: 130°C 

(lit. 140 - 142°C29); IR (KBr disk) �max: 1715.55 cm-1 (-C=O); 1H NMR (400 MHz, CDCl3) � 3.99 (s, 

2H, CH2), 7.24 – 7.37 (m, 3H, ArH), 7.74 – 7.76 (m, 1H, ArH), 7.81 – 7.83 (m, 1H, ArH); 13C NMR 

(100 MHz, CDCl3) � 35.39 (CH2), 122.18, 123.36, 124.06, 124.19, 124.39, 135.03, 139.60, 140.03 

(ArC), 175.87 (C=O) 

3.1.4.2 (5-Methylthiophen-2-yl)acetic acid (5b) was obtained as a brown oil from [1-dimethylamino-

2-(5-methylthiophen-2-yl)-vinyl]-phosphonic acid diethyl ester (1% yield) and was used immediately in 

the subsequent reaction without further purification29; IR (KBr disk) �max: 1705.90 cm-1 (-C=O); 1H 

NMR (400 MHz, CDCl3) � 2.49 (s, 3H, CH3), 3.83 (s, 2H, CH2), 6.65 (d, 1H, J=2.52, ArH), 6.77 (d, 1H, 

J=2.52, ArH); 13C NMR (100 MHz, CDCl3) � 15.29 (CH3), 35.25 (CH2), 124.99, 127.19, 131.63, 

139.95, 177.04 (C=O) 

3.1.5 General method for chlorination of acetic acid derivatives: The appropriate acetic acid (10 

mmol) was brought to reflux with thionyl chloride (12 mmol) in chloroform (30 mL). The reaction was 

monitored by I.R. until absorption appeared between 1780cm-1 and 1815cm-1. The solvent was 

evaporated under reduced pressure. 

3.1.5.1 2-Phenylpropionyl chloride (6a)57 was prepared from phenylpropionic acid in 92.2% yield as 

a pale yellow oil and was used immediately in the subsequent reaction without further purification; IR 
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(KBr) �max: 1784.17 cm-1 (-C=O, acid chloride). 

3.1.5.2 3-Thiophen-2-yl-propionyl chloride (6b)58 was prepared from 3-thiophen-2-yl-propionic 

acid (10 mmol) and was used immediately in the subsequent reaction without further purification (pale 

yellow oil, 90.9% yield); IR (KBr) �max: 1782.84 cm-1 (-C=O, acid chloride) 

3.1.6 General method for imine formation 

The appropriate amine (10 mmol) was heated at reflux with the appropriate aldehyde (10 mmol) in 

ethanol (50 mL) for 3 hours. The reaction mixture was reduced in vacuo and the resulting solution was 

left to stand until solid product crystallised. The resulting imine was recrystallised from ethanol. 

3.1.6.1 N-(4-Methoxybenzylidene)-3,4,5-trimethoxybenzenamine (8a) was synthesised by reacting 

3,4,5-trimethoxybenzenamine with 4-methoxybenzaldehyde. The product was obtained as pale yellow 

crystals (yield 87%); mp: 120 °C;24 IR (KBr disk) �max: 1604.66 cm-1 (C=N); 1H NMR (400 MHz, 

CDCl3)  � 3.86 (s, 3H, OCH3), 3.87 (s, 3H, OCH3), 3.90 (s, 6H, 2x OCH3)  6.47 (s, 2H, ArH)  6.98 (d, 

2H, J=9.2 Hz, ArH)  7.84 (d, 2H, J=9.2 Hz, ArH)  8.40 (s, 1H, -CH=N); 13C NMR (100 MHz, CDCl3)  � 

55.35 (OCH3), 56.00 (OCH3), 60.94 (OCH3), 98.00, 114.13, 128.97, 130.39, 135.97, 148.22, 153.45, 

159.03(ArC), 162.20 (CH=N); Elemental analysis: Found: C, 67.73; H, 6.35; N, 4.63; C17H19NO4 

requires C, 67.76; H, 6.36; N, 4.65%. 

 3.1.6.2 [3-(tert-Butyldimethylsilanyloxy)-4-methoxybenzylidene](3,4,5-trimethoxyphenyl)amine 

(8b) was synthesised by reaction of 3-(tert-butyldimethylsilanyloxy)-4-methoxybenzaldehyde with 

3,4,5-trimethoxybenzenamine. The product was obtained as a yellow solid. Yield 64%, mp: 105 °C;24 IR 

(KBr disk) �max 1619.77 cm-1, 1579.73 cm-1 (C=N); 1H NMR (400 MHz, CDCl3) � � 0.20 (s, 6H, 

2xCH3), 1.03 (s, 9H, C(CH3) 3), 3.87 – 3.91 (m, 12H, 4xOCH3), 6.48 (s, 2H, ArH), 6.93 (d, 2H, J=8.04 

Hz, ArH), 7.43 – 7.47 (m, 1H, ArH), 8.35 (s, 1H, CH=N); 13C NMR (100 MHz, CDCl3) � –5.04(CH3-

Si-CH3), 18.03(CH3-C-CH3), 25.27(C(CH3)3), 54.98(OCH3), 55.63(OCH3), 97.62, 110.94, 119.71, 

123.48, 128.95, 135.53, 144.87, 147.94, 153.05, 153.59 (ArC), 158.84(C=N); HRMS (M++H): 

C23H34NO5Si requires 432.2206; found: 432.2213  
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3.1.6.3 (4-Methoxy-3-nitrobenzylidene)(3,4,5-trimethoxyphenyl)amine (8c) was synthesised by 

reaction of 3,4,5-trimethoxyphenylamine and 4-methoxy-3-nitrobenzaldehyde. The product was 

obtained as a yellow powder (yield 88%); mp: 162 – 163 °C;24 IR (KBr disk) �max 1616.90cm-1, 1580.79 

cm-1 (C=N); 1H NMR (400 MHz, CDCl3) � 3.89 (s, 3H, OCH3), 3.93 (s, 6H, 2x OCH3), 4.06 (s, 3H, 

OCH3), 6.52 (s, 2H, ArH),  7.21 (d, 1H, J=8.52 Hz, ArH),  8.13 (dd, 1H, J=8.52 Hz, J=2.48 Hz, ArH),  

7.39 (d, 1H, J=2.48 Hz, ArH),  8.45 (s, 1H, (C=N); 13C NMR (100 MHz, CDCl3) � 55.70 (OCH3), 56.40 

(OCH3), 60.59 (OCH3), 97.75, 113.20, 125.59, 128.52, 133.29, 146.59, 153.19, 154.41 (ArC), 155.66 

(C=N). Elemental analysis: Found: C, 58.91; H, 5.25; N, 7.95; C17H18N2O6 requires C, 58.96; H, 5.24; 

N, 8.09%. 

3.1.6.4 3,4,5-Trimethoxy-N-(naphthalen-2-ylmethylene)aniline (8d) was synthesised using 3,4,5-

trimethoxyphenylamine and 2-naphthaldehyde as a yellow solid (78% yield); mp:: 132-136 °C; IR (KBr 

disk) �max: 1626.22 and 1581.26 cm-1 (C=N); 1H NMR (400 MHz, CDCl3): � 3.91 (s, 3H, OCH3), 3.95 

(s, 6H, 2xOCH3), 6.29 (s, 2H, ArH), 7.58 (m, 2H, ArH), 7.94 – 7.96 (m, 3H, ArH), 8.84 (m, 2H, ArH),  

8.67 (s, 1H, HC_N); Elemental analysis: Found: C, 74.68; H: 6.02; N: 4.31; C20H19NO9 requires C, 

74.65, H, 5.98, N, 4.26 

3.1.6.5 3,4,5-Trimethoxy-N-(naphthalen-1-ylmethylene)aniline (8e) was synthesised using 3,4,5-

trimethoxyphenylamine and 2-naphthaldehyde as a yellow solid (77% yield); mp: 108-116 °C; IR (KBr 

disk) �max: 1625.74, 1610.62 and 1583.40 cm-1 (C=N); 1H-NMR (400 MHz, CDCl3): � 3.92 (s, 3H, 

OCH3), 3.96 (s, 6H, 2xOCH3), 6.61 (s, 2H, ArH), 7.59 – 7.67 (m, 3H, ArH), 7.96 (d, 1H, J=8.52 Hz, 

ArH), 8.02 (d, 1H, J=8 Hz, ArH), 8.12 (m, 1H, ArH), 9.05 (d, 1H, J=8.52 Hz, ArH), 9.15 (s, 1H, HC_N); 

Elemental analysis: Found: C, 74.67, H, 5.97, N, 4.30; C20H19NO9 requires C, 74.65, H, 5.98, N, 4.26 

3.1.6.6 3,4,5-Trimethoxy-N-(thiophen-2-ylmethylene)aniline (8f) was synthesised from 3,4,5-

trimethoxyphenylamine and thiophene-2-carbaldehyde as a yellow solid (81% yield); mp: 92-98 °C; IR 

(KBr disk) �max: 1617.78 and 1584.53 cm-1  (C=N); 1H-NMR (400 MHz, CDCl3): � 3.88 (s, 3H, OCH3), 

3.92 (s, 6H, 2xOCH3), 6.52 (s, 2H, ArH), 7.16 – 7.18 (m, 1H, ArH), 7.52 – 7.55 (m, 2H, ArH), 8.61 (s, 
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1H, HC=N); Elemental analysis: Found: C, 60.62; H, 5.44; N, 5.01;  C14H15NO3S requires C, 60.63; H, 

5.45; N=5.05 

3.1.7 4-(4-Methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (9): Zinc powder (0.927g, 15 

mmol) was activated using trimethylchlorosilane (0.65 mL, 5 mmol) in anhydrous benzene (5 mL), by 

heating for 15 minutes at 40 °C and subsequently for 2 minutes at 100 °C in a microwave. After cooling, 

N-(4-methoxybenzylidene)-3,4,5-trimethoxybenzenamine (8a) (10 mmol) and ethyl 2-bromoacetate (12 

mmol) were added to the reaction vessel and the mixture was placed in the microwave for 30 minutes at 

100°C. The reaction mixture was filtered through Celite to remove zinc, then diluted with CH2Cl2 (50 

mL). This solution was washed with saturated ammonium chloride solution (20 mL) and 25% 

ammonium hydroxide (20 mL), and then with dilute HCl (40 mL), followed by water (40 mL). 4-(4-

Methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (9) was obtained as green crystals (yield 

43%); mp: 70-71 °C; IR (NaCl film) �max: 1747.5 cm-1 (C=O, �-lactam); 1H NMR (400 MHz, CDCl3): � 

2.85 (dd, 1H, J= 2.48 Hz, 12.56 Hz, H-3), 3.48 (dd, 1H, J=5.52 Hz, J=9.56 Hz, H-4), 3.65 (s, 6H, 

2xOCH3), 3.70 (s, 3H, OCH3), 3.73 (s, 3H, OCH3), 4.88 (d, 1H, J= 2.76 Hz, H-4), 6.53 (s, 2H, ArH), 

6.86 (d, 2H, J=8.56 Hz, ArH), 7.26 (d, 2H, J=8.56 Hz, ArH);  13C NMR (100 MHz, CDCl3): � 46.36 (C-

3), 53.56 (OCH3), 54.78 (OCH3), 55.23 (OCH3), 55.49 (OCH3), 60.36 (C-4), 93.92, 113.58, 126.83, 

129.48, 133.62, 133.68, 152.94, 159.29 (ArC), 164.14 (C=O); HRMS (M++Na): Found 366.1330; 

C19H21NO5Na requires 366.1317. 

3.1.8 General method I for �-lactam preparation: The appropriate imine (5 mmol) and 

triethylamine (15 mmol) were added to dry CH2Cl2 (50 mL) and the mixture was brought to reflux at 

60°C. Once refluxing, the appropriately substituted acid chloride (7.5 mmol) was injected dropwise 

through a rubber stopper. This mixture was refluxed for 3 hours. The mixture was washed firstly with 

distilled water (50 mL) (twice) and then with saturated aqueous sodium bicarbonate solution (50 mL). 

The organic layer was dried by filtration through anhydrous sodium sulfate. The organic layer containing 

the product was reduced in vacuo. The pure product was isolated by flash column chromatography over 
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silica gel (hexane: ethyl acetate gradient). 

3.1.8.1 3-Cyclohexyl-4-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (10) was 

obtained from 2-cyclohexylacetyl chloride  and N-(4-methoxybenzylidene)-3,4,5-

trimethoxybenzenamine (8a)  as a white powder (15.0% yield); Mp: 144 ºC; IR (NaCl film) �max: 

1744.47cm-1 (C=O, �-lactam); 1H NMR (400 MHz, CDCl3) � 1.14 – 1.32 (m, 5H, CH2), 1.68 - 1.78 (m, 

3H, CH2), 1.82 – 1.90 (m, 2H, CH2), 2.05 – 2.09 (m, 1H, CH), 2.96 (m, 1H, H-3), 3.71 (s, 6H, 

2xOCH3), 3.77 (s, 3H, OCH3), 3.81 (s, 3H, OCH3), 4.69 (d, 1H, J=2.52 Hz, H-4), 6.54 (s, 2H, ArH), 

6.89 – 6.93 (m, 2H, ArH), 7.28 – 7.31 (m, 2H, ArH); 13C NMR (100 MHz, CDCl3) � 25.77 (CH2), 25.92 

(CH2), 26.22 (CH2), 30.71 (CH2), 30.92 (CH2), 38.28 (CH), 55.31 (OCH3), 55.94 (OCH3), 58.93 (C-3), 

60.93 (OCH3), 66.11 (C-4), 94.45, 114.51, 127.23, 130.28, 134.05, 134.08, 153.42, 159.57 (ArC), 

167.47 (C=O); HRMS (M++Na): C25H31NO5Na requires 448.2100; found 448.2101 

3.1.8.2 4-(4-Methoxyphenyl)-3-methyl-3-phenyl-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (11) was 

obtained from 2-phenylpropionyl chloride (6a) and N-(4-methoxybenzylidene)-3,4,5-

trimethoxybenzenamine (8a) as a white powder (29.4% yield); Mp: 183 ºC; IR (NaCl film) �max: 

1737.24 cm-1 (C=O, �-lactam); 1H NMR (400 MHz, CDCl3) (cis isomer) � 1.91 (s, 3H, CH3), 3.72 – 

3.73 (m, 9H, 3xOCH3), 3.79 (s, 3H, OCH3), 5.00 (s, 1H, H-4), 6.66 (d, 2H, J=7 Hz, ArH), 6.94 (d, 2H, 

J=8 Hz, ArH), 7.09 – 7.13 (m, 5H, ArH); 13C NMR (100 MHz, CDCl3) (cis isomer) � 24.34 (CH3), 

54.68 (OCH3), 55.52 (OCH3), 60.50 (OCH3), 64.01 (C-3), 68.32 (C-4), 94.53, 113.23, 126.28, 126.81, 

127.59, 128.10, 133.60, 133.87, 137.32, 152.96, 158.84 (ArC), 168.80 (C=O); 1H NMR (400 MHz, 

CDCl3) (trans isomer) � 1.91 (s, 3H, CH3), 3.73 (s, 6H, 2xOCH3), 3.80 (s, 3H, OCH3), 3.85 (s, 3H, 

OCH3), 5.19 (s, 1H, H-4), 6.64 (d, 2H, J=7 Hz, ArH), 6.97 (d, 2H, J=8 Hz, ArH), 7.12 (m, 1H, ArH), 

7.28 – 7.34 (m, 3H, ArH), 7.40 – 7.44 (t, 2H, ArH), 7.55 – 7.56 (m, 2H, ArH); 13C NMR (100 MHz, 

CDCl3) (trans isomer) � 19.20 (CH3), 54.86 (OCH3), 55.52 (OCH3), 55.58 (OCH3), 60.53 (OCH3), 

62.13 (C-3), 66.56 (C-4), 94.68, 113.23, 113.80, 125.43, 126.08, 126.81, 126.90, 127.59, 127.82, 

128.10, 128.47, 133.24, 141.43, 153.01, 159.13 (ArC), 168.77 (C=O); HRMS (M++H): C26H28NO5 
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requires 434.1967; found 434.1953 

3.1.8.3 4-(4-Methoxyphenyl)-3,3-diphenyl-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (12) was 

obtained 2,2-diphenylacetyl chloride and N-(4-methoxybenzylidene)-3,4,5-trimethoxybenzenamine (8a) 

as a white crystalline material (70.3% yield); Mp: 167 ºC; IR (KBr disk) �max: 1729.20 cm-1 (C=O, �-

lactam); 1H NMR (400 MHz, CDCl3) � 3.72 – 3.74 (m, 9H, 3xOCH3), 3.78 (s, 3H, OCH3), 5.74 (s, 1H, 

H-4), 6.68 – 6.72 (t, 4H, ArH), 7.06 – 7.09 (m, 5H, ArH), 7.16 – 7.18 (m, 2H, ArH), 7.29 – 7.32 (t, 1H, 

ArH), 7.39 – 7.43 (m, 2H, ArH), 7.67 (d, 2H, J=7.52 Hz, ArH); 13C NMR (100 MHz, CDCl3) � 54.74 

(OCH3), 55.53 (OCH3), 58.06 (OCH3), 60.50 (OCH3), 66.94 (C-4), 71.53 (C-3), 94.70, 113.35, 126.33, 

126.38, 126.78, 127.00, 127.54, 127.91, 128.35, 128.44, 133.26, 134.02, 136.77, 140.44, 152.94, 159.00 

(ArC), 166.70 (C=O); HRMS (M++Na): C31H29NO5Na requires 518.1943; found 518.1962 

3.1.8.4 4-(4-Methoxyphenyl)-3-thiophen-2-yl-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (13) was 

obtained from 2-(thiophen-2-yl)acetyl chloride and N-(4-methoxybenzylidene)-3,4,5-

trimethoxybenzenamine (8a) as a white powder (4.6% yield); Mp: 115 ºC; IR (NaCl film) �max: 

1756.78cm-1 (C=O, �-lactam); 1H NMR (400 MHz, CDCl3) � 3.72 (s, 6H, 2xOCH3), 3.77 (s, 3H, 

OCH3), 3.82 (s, 3H, OCH3), 4.47 (d, 1H, J=2.5 Hz, H-3), 4.90 (d, 1H, J=2.5 Hz, H-4), 6.59 (s, 2H, 

ArH), 6.95 (d, 2H, J=8.56 Hz, ArH), 7.01 – 7.03 (t, 1H, ArH), 7.08 (d, 1H, J=3.48 Hz, ArH), 7.26 (d, 

1H, ArH, J=5 Hz), 7.36-7.38 (d, 2H, ArH, J=8.52 Hz); 13C NMR (100 MHz, CDCl3) � 54.93 (OCH3), 

55.58 (OCH3), 59.78 (C-3), 60.52 (OCH3), 64.12 (C-4), 94.46, 113.86, 114.27, 124.43, 124.87, 125.29, 

126.82, 126.90, 128.29, 133.19, 134.11, 135.70, 148.98, 153.06, 159.60 (ArC), 163.98 (C=O); HRMS 

(M++Na): C23H23NO5NaS requires 448.1195; found 448.1186 

3.1.8.5 4-(3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)-3-(thiophen-2-yl)-1-(3,4,5-

trimethoxyphenyl)azetidin-2-one (14) was obtained from 2-(thiophen-2-yl)acetyl chloride and [3-(tert-

butyldimethylsilanyloxy)-4-methoxybenzylidene](3,4,5-trimethoxyphenyl)amine (8b) as a brown oil and 

was desilylated to form 33 without further purification (crude yield: 4.3%). 

3.1.8.6 4-(4-Methoxyphenyl)-3-(thiophen-2-ylmethyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one 
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(15) was obtained from 3-thiophen-2-yl-propionyl chloride (6b) and N-(4-methoxybenzylidene)-3,4,5-

trimethoxybenzenamine (8a) and isolated as a yellow oil in 0.6% yield; IR (NaCl film) �max: 1746.67 

cm-1 (C=O, �-lactam); 1H NMR (400 MHz, CDCl3) � 3.30 – 3.36 (m, 1H, CH2), 3.40 – 3.44 (m, 1H, 

CH2), 3.49 – 3.54 (m, 1H, H-3), 3.72 (s, 6H, 2xOCH3), 3.78 (s, 3H, OCH3), 3.81 (s, 3H, OCH3), 4.71 (d, 

1H, J=2.5 Hz, H-4), 6.54 (s, 2H, ArH), 6.86 – 6.89 (m, 3H, ArH), 6.94 – 6.97 (m, 1H, ArH), 7.16 – 7.19 

(m, 3H, ArH); 13C NMR (100 MHz, CDCl3) � 28.32 (CH2), 54.84 (OCH3), 55.56 (OCH3), 60.25 (C-3), 

60.49 (C-4), 94.33, 113.99, 123.71, 125.32, 126.63, 126.85, 128.89, 133.37, 139.45, 153.01, 159.23 

(ArC), 165.95 (C=O); HRMS (M++Na): C24H25NO5NaS requires 462.1351; found 462.1333 

3.1.8.7 1-(3,4,5-Trimethoxyphenyl)-4-(naphthalen-2-yl)-3-(thiophen-2-yl)azetidin-2-one (16) was 

obtained from 2-(thiophen-2-yl)acetyl chloride and 3,4,5-trimethoxy-N-(naphthalen-2-

ylmethylene)aniline (8d) as a brown oil (9.1% yield); IR (KBr disk) �max: 1754.84 cm-1 (C=O); 1H-NMR 

(400 MHz, CDCl3): � 3.70 (s, 6H, 2xOCH3), 3.78 (s, 3H, OCH3), 4.59 (d, 1H, J=2.0 Hz, H-3), 5.15 (d, 

1H, J=2.0 Hz, H-4), 6.66 (s, 2H, ArH), 7.07 – 7.08 (m, 1H, ArH), 7.13 – 7.14 (m, 1H, ArH), 7.29 (s, 1H, 

ArH), 7.34 – 7.35 (m, 1H, ArH), 7.54 – 7.57 (m, 2H, ArH), 7.88 – 8.03 (m, 4H, ArH); 13C-NMR (400 

MHz, CDCl3): � 55.59 (OCH3), 59.75 (OCH3), 60.51 (OCH3), 64.12 (C-3), 64.64 (C-4), 94.46, 114.27, 

122.35, 125.02, 125.07, 125.47, 126.26, 126.41, 126.96, 127.46, 129.17, 132.89, 133.06, 133.25, 

133.94, 135.55, 153.13 (ArC), 163.88 (C=O); HRMS (M++Na): C23H23NO5NaS requires 468.1245; 

found 468.1227 

3.1.8.8 1-(3,4,5-Trimethoxyphenyl)-4-(naphthalen-1-yl)-3-(thiophen-2-yl)azetidin-2-one (17) was 

obtained from 2-(thiophen-2-yl)acetyl chloride and 3,4,5-trimethoxy-N-(naphthalen-1-

ylmethylene)aniline (8e) as a brown oil (15.2% yield); IR (KBr disk) �max: 1755.27 cm-1 (C=O); 1H 

NMR (400 MHz, CDCl3): � 3.71 (s, 6H, 2xOCH3), 3.83 (s, 3H, OCH3), 4.54 (d, 1H, J=2.5 Hz), 5.77 (d, 

1H, J=2.5 Hz), 6.69 (s, 2H, ArH), 7.07 (m, 1H, ArH), 7.14 (s, 1H, ArH), 7.38-7.40 (m, 1H, ArH), 7.49 – 

7.59 (m, 4H, ArH), 7.88 – 7.98 (m, 3H, ArH); 13C NMR (100 MHz, CDCl3): � 55.70 (OCH3), 55.77 

(OCH3), 59.51 (OCH3), 60.55 (C-3), 61.86 (C-4), 94.71, 122.39, 125.12, 125.22, 125.81, 126.29, 
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126.37, 127.06, 128.50, 128.73, 130.01, 131.89, 133.33, 133.49, 134.30, 135.96, 153.21 (ArC), 164.17 

(C=O); HRMS (M++Na): C26H23NO4NaS requires 468.1245 found 468.1269 

3.1.8.9 1-(3,4,5-Trimethoxyphenyl)-3,4-di(thiophen-2-yl)azetidin-2-one (18) was obtained from 2-

(thiophen-2-yl)acetyl chloride and 3,4,5-trimethoxy-N-(thiophen-2-ylmethylene)aniline (8f) as a brown 

oil (6.7% yield); IR (KBr disk) �max: 1755.61 cm-1 (C=O); 1H NMR (400 MHz, CDCl3): � 3.78 (s, 6H, 

2xOCH3), 3.81 (s, 3H, OCH3), 4.68 (d, 1H, J=2 Hz), 5.23 (d, 1H, J=2 Hz), 6.67 (s, 2H, ArH), 7.06- 7.09 

(m, 1H, ArH), 7.08 (d, 1H, J=3.52 Hz, ArH), 7.23 -7.24 (m, 1H, ArH), 7.33 (m, 1H, ArH), 7.42 (m, 2H, 

ArH); 13C NMR (100 MHz, CDCl3): � 56.07 (OCH3), 60.98 (C-3), 61.07 (C-4), 94.9, 98.33, 125.58, 

125.97, 126.20, 126.37, 127.41, 127.48, 133.44, 135.60, 140.69, 153.57 (ArC), 163.96 (C=O); HRMS 

(M++Na): C26H23NO4NaS requires  424.4889; found 424.0628 

3.1.9 General method II for �-lactam preparation: The appropriate imine (10 mmol) and acetyl 

chloride (10 mmol) were added to CH2Cl2 (50 mL) under nitrogen and the mixture was left stirring for 2 

hours. Triethylamine (10 mmol) was added dropwise. The mixture was left to stir overnight. The 

mixture was washed firstly with distilled water (50 mL) (twice) and then with saturated aqueous sodium 

bicarbonate solution (50 mL). The organic layer was dried by filtration through anhydrous sodium 

sulfate. The organic layer containing the product was collected and reduced in vacuo. The pure product 

was isolated by flash column chromatography over silica gel (hexane: ethyl acetate gradient). 

3.1.9.1 4-(4-Methoxy-3-nitrophenyl)-3-thiophen-2-yl-1-(3,4,5-trimethoxyphenyl)azetidin-2-one 

(19) was obtained from 2-(thiophen-2-yl)acetyl chloride and (4-methoxy-3-nitrobenzylidene)(3,4,5-

trimethoxyphenyl)amine (8c) as a brown powder (48.4% yield); Mp: 123 ºC; IR (KBr disk) �max: 

1742.06cm-1 (C=O, �-lactam); 1H NMR (400 MHz, CDCl3) � 3.76 (s, 6H, 2xOCH3), 3.79 (s, 3H, 

OCH3), 4.00 (s, 3H, OCH3), 4.49 (d, 1H, J=2.5 Hz, H-3), 4.98 (d, 1H, J=2.5 Hz, H-4), 6.57 (s, 2H, 

ArH), 7.03 – 7.05 (m, 1H, ArH), 7.10 (d, 1H, J=3 Hz, ArH), 7.18 (d, 1H, J=8.52 Hz, ArH), 7.33 (d, 1H, 

J=5 Hz, ArH), 7.60 – 7.63 (dd, 1H, ArH), 7.94 (s, 1H, ArH); 13C NMR (100 MHz, CDCl3)  � 55.78 

(OCH3), 56.31 (OCH3), 59.75 (C-3), 60.52 (OCH3), 62.92 (C-4), 94.48, 114.25, 123.13, 125.28, 125.66, 
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127.07, 128.82, 130.78, 132.59, 134.56, 134.77, 139.45, 152.80 (ArC), 163.33 (C=O); HRMS (M++Na): 

C23H22N2O7NaS requires 493.1045; found 493.1047 

3.1.10 General method III for �-lactam preparation: The appropriate acetic acid (15 mmol) was 

refluxed for 30 minutes with triphosgene [bis(trichloromethyl) carbonate] (5 mmol) in dry CH2Cl2 (50 

mL). A solution of the appropriately substituted imine (10 mmol) in dry CH2Cl2 (10 mL) was added 

dropwise to the refluxing solution. Triethylamine (30 mmol) was added. The reaction mixture was 

heated at reflux for 5 hours and stirred at room temperature overnight. The mixture was washed firstly 

with distilled water (twice) (50 mL) and then with saturated aqueous sodium bicarbonate solution (50 

mL). The organic layer was dried over anhydrous sodium sulphate. The pure product was isolated by 

flash column chromatography over silica gel (hexane:ethyl acetate gradient). 

3.1.10.1 4-(4-Methoxyphenyl)-3-naphthalen-1-yl-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (20) 

was obtained from 2-(naphthalen-1-yl)acetic acid and N-(4-methoxybenzylidene)-3,4,5-

trimethoxybenzenamine (8a) as a pale yellow crystalline powder (6.9% yield); Mp: 164 ºC; IR (NaCl 

film) �max: 1741.44 cm-1 (C=O, �-lactam); 1H NMR (400 MHz, CDCl3) � 3.72 (s, 6H, 2xOCH3), 3.77 (s, 

3H, OCH3), 3.87 (s, 3H, OCH3), 4.78 (d, 1H, J=2.4 Hz, H-3), 4.98 (d, 1H, J=2.4 Hz, H-4), 6.63 (s, 2H, 

ArH), 7.00 (d, 2H, J=8.52 Hz, ArH), 7.36 – 7.46 (m, 6H, ArH), 7.77 (d, 1H, J= 7.04 Hz, ArH), 7.84 (d, 

1H, J=8.52 Hz, ArH), 7.89 (d, 1H, J=8.04 Hz, ArH); 13C NMR (100 MHz, CDCl3) � 54.94 (OCH3), 

55.54 (OCH3), 60.51 (OCH3), 62.00 (C-3), 63.33 (C-4), 94.39, 114.30, 123.29, 123.82, 125.28, 125.58, 

125.96, 127.47, 128.00, 128.46, 128.97, 131.16, 131.21, 133.29, 133.44, 134.01, 153.05, 159.65 (ArC), 

165.27 (C=O); HRMS (M++Na): C29H27NO5Na requires 492.1787; found 492.1774 

3.1.10.2 4-(4-Methoxyphenyl)-3-naphthalen-2-yl-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (21) 

was obtained from 2-(naphthalen-2-yl)acetic acid and N-(4-methoxybenzylidene)-3,4,5-

trimethoxybenzenamine (8a) as a white solid (2.5% yield); Mp: 150ºC; IR (NaCl film) �max: 1739.65 

cm-1 (C=O, �-lactam); 1H NMR (600 MHz, CDCl3) � 3.73 (s, 6H, 2xOCH3), 3.78 (s, 3H, OCH3), 3.84 

(s, 3H, OCH3), 4.45 (d, 1H, J=2.52 Hz, H-3), 4.94 (d, 1H, J=2.48 Hz, H-4), 6.64 (s, 2H, ArH), 6.95 – 
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6.97 (m, 2H, ArH), 7.36 – 7.42 (m, 3H, ArH), 7.48 – 7.50 (m, 2H, ArH), 7.80 – 7.88 (m, 4H, ArH); 13C 

NMR (100 MHz, CDCl3) � 55.41, 56.06 (OCH3), 61.00 (OCH3), 63.94 (C-3), 65.27 (C-4), 94.89, 

114.75, 125.04, 126.23, 126.52, 127.39, 127.74, 127.88, 128.97, 129.30, 132.14, 132.87, 133.48, 

133.76, 134.51, 153.55, 160.02 (ArC), 165.65 (C=O); HRMS M++Na): C29H27NO5Na requires 

492.1787; found 492.1790 

3.1.10.3 4-(4-Methoxyphenyl)-3-(1-methyl-1H-indol-2-yl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-

one (22) was obtained from 2-(1-methyl-1H-indol-2-yl)acetic acid and N-(4-methoxybenzylidene)-

3,4,5-trimethoxybenzenamine (8a) as a yellow solid (11.9% yield); Mp: 77 – 78 ºC; IR (NaCl film) �max: 

1747.66 cm-1 (C=O, �-lactam); 1H NMR (400 MHz, CDCl3) � 3.75 (s, 6H, NCH3, OCH3), 3.80 (s, 3H, 

OCH3), 3.81 (s, 3H, OCH3), 3.87 (s, 3H, OCH3), 4.52 (d, 1H, J=2.0 Hz, H-3), 4.94 (d, 1H, J=2.0 Hz, H-

4), 6.66 (s, 2H, ArH), 6.99 (d, 2H, J=8.52 Hz, ArH), 7.17 (m, 2H, ArH), 7.29 (m, 1H, ArH), 7.40 – 7.42 

(m, 4H, ArH); 13C NMR (100 MHz, CDCl3) � 32.34 (NCH3), 54.92 (OCH3), 55.56 (OCH3), 57.49 (C-

3), 60.52 (OCH3), 63.22 (C-4), 94.32, 107.51, 109.67, 114.21, 118.51, 119.16, 121.72, 126.33, 126.59, 

126.92, 129.36, 133.61, 133.90, 136.84, 153.07, 159.39 (ArC), 166.09 (C=O); HRMS (M++H): 

C28H29N2O5 requires 473.2076; found 473.2075 

3.1.10.4 3-Furan-3-yl-4-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (23) was 

obtained from 2-(furan-3-yl)acetic acid and N-(4-methoxybenzylidene)-3,4,5-trimethoxybenzenamine 

(8a) as brown crystals (4.9% yield); Mp: 127 ºC; IR (NaCl film) �max: 1743.69 cm-1 (C=O, �-lactam); 1H 

NMR (400 MHz, CDCl3) � 3.75 (s, 6H, 2xOCH3), 3.80 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 4.34 (d, 1H, 

J=2.5 Hz, H-3), 5.06 (d, 1H, J=2.5 Hz H-4), 6.35 (d, 1H, J=3.28 Hz, ArH), 6.41 (t, 1H, ArH), 6.62 (s, 

2H, ArH), 6.96 (d, 2H, J=4.52 Hz, ArH), 7.36 – 7.38 (m, 2H, ArH), 7.45 (d, 1H, J=0.76 H, ArH); 13C 

NMR (100 MHz, CDCl3) � 55.38 (OCH3), 56.05 (OCH3), 58.67 (C-3), 60.97 (OCH3), 61.43 (C-4), 

94.93, 108.75, 110.69, 114.68, 127.37, 128.82, 133.75, 134.58, 142.86, 147.50, 153.53, 160.03 (ArC), 

163.38 (C=O); HRMS (M++H): C23H24NO6 requires 410.1604; found 410.1605 

3.1.10.5 4-(4-Methoxyphenyl)-3-thiophen-3-yl-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (24) was 
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obtained from 2-(thiophen-3-yl)acetic acid and N-(4-methoxybenzylidene)-3,4,5-

trimethoxybenzenamine (8a)  as a off-white powder (19.2% yield); Mp: 130 ºC; IR (KBr disk) �max: 

1750.82 cm-1 (C=O, �-lactam); 1H NMR (400 MHz, CDCl3) � 3.74 (s, 6H, 2xOCH3), 3.79 (s, 3H, 

OCH3), 3.85 (s, 3H, OCH3), 4.35 (d, 1H, J=2.52 Hz, H-3), 4.87 (d, 1H, J=2.52 Hz, H-4), 6.61 (s, 2H, 

ArH), 6.96 – 6.98 (m, 2H, ArH), 7.09 – 7.11 (m, 1H, ArH), 7.29 – 7.30 (m, 1H, ArH), 7.36 – 7.40 (m, 

3H, ArH); 13C NMR (100 MHz, CDCl3) � 54.93 (OCH3), 55.56 (OCH3), 60.09 (OCH3), 60.52 (C-3), 

62.89 (C-4), 94.34, 114.25, 122.01, 125.85, 126.42, 126.85, 133.33, 134.20, 153.05, 159.52 (ArC), 

164.89 (C=O); HRMS (M++Na): C23H23NO5NaS requires 448.1195; found 448.1189 

3.1.10.6 4-(4-Methoxyphenyl)-3-(5-methylthiophen-2-yl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-

one (25) was obtained from 2-(5-methylthiophen-2-yl)acetic acid (5b) and N-(4-methoxybenzylidene)-

3,4,5-trimethoxybenzenamine (8a) as a brown oil (3.1% yield); IR (NaCl film) �max: 1736.68 cm-1 (C=O, 

�-lactam); 1H NMR (400 MHz, CDCl3) � 2.50 (s, 3H, CH3), 3.74 (s, 6H, 2xOCH3), 3.84 – 3.87 (m, 6H, 

2xOCH3), 4.41 (d, 1H, J=2.5 Hz, H-3), 4.89 (d, 1H, J=2.5 Hz, H-4), 6.60 (s, 2H, ArH), 6.67 – 6.71 (m, 

3H, ArH), 6.86 (d, 1H, ArH, J=3.52 Hz), 6.96 (d, 2H, ArH, J=8.76 Hz); 13C NMR (100 MHz, CDCl3) � 

15.36 (CH3), 55.38 (OCH3), 56.04 (OCH3), 60.51 (OCH3), 60.97 (C-3), 61.00 (OCH3), 64.62 (C-4), 

94.93, 114.70, 125.30, 125.73, 127.26, 128.89, 133.73, 140.03, 153.45, 153.52, 160.02 (ArC), 164.71 

(C=O); HRMS (M++H): C24H26NO5S requires 440.1532; found 440.1535 

3.1.10.7 3-Benzo[b]thiophen-2-yl-4-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one 

(26) was obtained from 2-(benzo[b]thiophen-2-yl)acetic acid (5a) and N-(4-methoxybenzylidene)-3,4,5-

trimethoxybenzenamine (8a) as a white solid (5.6% yield); Mp: 118 ºC; IR (NaCl film) �max: 1747.58 

cm-1 (C=O, �-lactam); 1H NMR (400 MHz, CDCl3) � 3.75 (s, 6H, 2xOCH3), 3.81 (s, 3H, OCH3), 3.86 

(s, 3H, OCH3), 4.56 (d, 1H, J=2.0 Hz, H-3), 5.02 (d, 1H, J=2.0 Hz, H-4), 6.63 (s, 2H, ArH), 6.99 (d, 2H, 

J=8.52 Hz, ArH), 7.35 – 7.41 (m, 5H, ArH), 7.76 (d, 1H, J=7.04 Hz, ArH), 7.83 (d, 1H, J=7.52, ArH); 

13C NMR (100 MHz, CDCl3) � 54.95 (OCH3), 55.60 (OCH3), 60.35 (OCH3), 60.53 (C-3), 63.60 (C-4), 

94.48, 114.33, 121.82, 121.99, 123.16, 124.10, 124.17, 126.84, 128.16, 133.13, 134.20, 136.49, 139.11, 
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153.10, 159.68 (ArC), 163.36 (C=O); HRMS (M++H): C27H26NO5S requires 476.1532; found 476.1537 

3.1.10.8 4-(3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)-3-(thiophen-3-yl)-1-(3,4,5-

trimethoxyphenyl)azetidin-2-one (27) was obtained from 2-(thiophen-3-yl)acetic acid and  [3-(tert-

butyldimethylsilanyloxy)-4-methoxybenzylidene](3,4,5-trimethoxyphenyl)amine (8b) as a brown oil and 

was desilylated to form 29 without further purification (crude yield: 79.5%). 

3.1.11 General method IV for preparation of �-lactams 28 – 29: To a solution of the appropriately 

protected phenol (10 mmol) in THF (50 mL) was added 1.5 equivalents of 1M tetrabutylammonium 

fluoride. The solution was stirred in an ice-bath for 15 minutes. The reaction mixture was diluted with 

ethyl acetate (100 mL) and quenched with 10% HCl (100 mL). The layers were separated and the 

aqueous layer was extracted with ethyl acetate (2 x 50 mL). The organic layer was then washed with 

water (100 mL) and brine (100 mL) and was dried with sodium sulphate. The pure product was isolated 

by flash column chromatography over silica gel (hexane: ethyl acetate gradient). 

3.1.11.1 4-(3-Hydroxy-4-methoxyphenyl)-3-thiophen-2-yl-1-(3,4,5-trimethoxyphenyl)azetidin-2-

one (28) was obtained from 4-(3-((tert-butyldimethylsilyl)oxy)-4-methoxyphenyl)-3-(thiophen-2-yl)-1-

(3,4,5-trimethoxyphenyl)azetidin-2-one (14) as brown crystals (1.3% overall yield); Mp: 113-114 ºC; IR 

(KBr disk) �max: 1721.07cm-1 (C=O, �-lactam); 1H NMR (400 MHz, CDCl3) � 3.76 (s, 6H, 2xOCH3), 

3.80 (s, 3H, OCH3), 3.94 (s, 3H, OCH3), 4.48 (d, 1H, J=2.5 Hz, H-3), 4.87 (d, 1H, J=2.5 Hz, H-4), 5.75 

(s, 1H, OH), 6.62 (s, 2H, ArH), 6.89 – 6.95 (m, 2H, ArH), 7.01 – 7.03 (m, 3H, ArH), 7.31 – 7.32 (m, 

1H, ArH); 13C NMR (100 MHz, CDCl3) � 55.58 (OCH3), 55.61 (OCH3), 59.70 (OCH3), 60.51 (C-3), 

64.07 (C-4), 94.50, 110.60, 111.46, 117.36, 124.86, 125.28, 126.87, 129.54, 133.18, 134.15, 135.68, 

145.93, 146.53, 149.32, 153.06 (ArC), 163.90 (C=O); HRMS (M++Na): C23H23NO6SNa requires 

464.1144; found 464.1124 

3.1.11.2 4-(3-Hydroxy-4-methoxyphenyl)-3-thiophen-3-yl-1-(3,4,5-trimethoxyphenyl)azetidin-2-

one (29)  was obtained from 4-(3-((tert-butyldimethylsilyl)oxy)-4-methoxyphenyl)-3-(thiophen-3-yl)-1-

(3,4,5-trimethoxyphenyl)azetidin-2-one (27) as a pale pink solid (18.6% yield); Mp: 151 – 152ºC; IR 
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(KBr disk) �max: 1739.65 cm-1 (C=O, �-lactam), 3187.91 cm-1  (-OH); 1H NMR (400 MHz, CDCl3) � 

3.76 (s, 6H, 2xOCH3), 3.80 (s, 3H, OCH3), 3.93 (s, 3H, OCH3), 4.34 (d, 1H, J=2.2, H-3), 4.82 (d, 1H, 

J=2.2 Hz, H-4), 5.77 (s, 1H, OH), 6.63 (s, 2H, ArH), 6.89 – 6.96 (m, 2H, ArH), 7.02 (m, 1H, ArH), 7.09 

– 7.11 (m, 1H, ArH), 7.29 – 7.31 (m, 1H, ArH), 7.39 – 7.41 (m, 1H, ArH); 13C NMR (100 MHz, CDCl3) 

� 56.05 (OCH3), 56.09 (OCH3), 60.48 (C-3), 60.98 (OCH3), 63.32 (C-4), 94.87, 111.06, 111.98, 117.81, 

122.44, 126.33, 126.85, 130.43, 133.78, 134.65, 146.39, 146.93, 153.53 (ArC), 165.28 (C=O); HRMS 

(M++Na): C23H23NO6SNa requires 464.1144; found 464.1153 

3.1.12 4-(3-Amino-4-methoxyphenyl)-3-thiophen-2-yl-1-(3,4,5-trimethoxyphenyl)azetidin-2-one 

(30): To 4-(4-methoxy-3-nitrophenyl)-3-thiophen-2-yl-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (19) 

(10 mmol) in glacial AcOH (5 mL) was added metallic zinc dust (10 equiv.). The mixture was stirred for 

6 days at room temperature under nitrogen until TLC indicted formation of product. The residue was 

filtered through Celite and was extracted with dichloromethane. The amino compound was isolated 

using a hexane and ethyl acetate gradient column. and was obtained as a brown residue (48.5% yield); 

IR (NaCl film) �max: 1749.94 cm-1 (C=O, �-lactam); 1H NMR (400 MHz, CDCl3) � 3.76 (s, 6H, 

2xOCH3), 3.80 (s, 3H, OCH3), 3.89 (s, 3H, OCH3), 4.49 (d, 1H, J=2 Hz, H-3), 4.83 (d, 1H, J=2.52 Hz, 

H-4), 6.64 (s, 2H, ArH), 6.78 – 6.81 (m, 3H, ArH), 7.03 – 7.05 (m, 1H, ArH), 7.08 – 7.09 (m, 1H, ArH), 

7.29 – 7.31 (m, 1H, ArH) ; 13C NMR (100 MHz, CDCl3) � 55.59 (OCH3), 56.07 (OCH3), 60.13 (C-3), 

60.98 (OCH3), 64.84 (C-4), 94.93, 110.53, 111.56, 116.43, 125.25, 125.70, 127.31, 129.34, 133.81, 

134.50, 136.36, 136.96, 147.76, 153.50 (ArC), 164.60 (C=O); HRMS (M++H): C23H25N2O5S requires 

441.1484; found 441.1471 

3.1.13 General procedure for synthesis of �-lactams 31 – 34. A solution of 4-(4-methoxyphenyl)-1-

(3,4,5-trimethoxyphenyl)azetidin-2-one 9 (2.5 mmol) in dry THF (20 mL) was stirred at -78 ˚C under a 

nitrogen atmosphere. A 2M lithium diisopropylamide (5 mmol) solution was added quickly and the 

mixture was stirred for 5 minutes at -78 ˚C. A solution of the appropriate aldehyde (3.75 mmol) in dry 

tetrahydrofuran (5 mL) was added slowly to the reaction mixture. The reaction was stirred at -78 ˚C for 
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30 minutes after which the reaction mixture was allowed to heat up to room temperature. It was poured 

into a saturated sodium chloride solution (50 mL). This solution was extracted with ethyl acetate, the 

organic layer was separated and was dried over anhydrous sodium sulphate. The pure product was 

isolated by flash column chromatography over silica gel (hexane: ethyl acetate gradient).  

3.1.13.1 3-(Furan-3-yl-hydroxymethyl)-4-(4-methoxyphenyl)-1-(3,4,5-

trimethoxyphenyl)azetidin-2-one (31) was obtained as a yellow oil by reaction of furan-3-

carbaldehyde and 4-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (9) in 50.2% yield; IR 

(NaCl film) �max: 1740.12 cm-1 (C=O, �-lactam), 3453.40 cm-1 (-OH); 1H NMR (400 MHz, CDCl3) � 

3.44 – 3.49 (m, 1H, H-3), 3.77 (s, 6H, 2xOCH3), 3.81 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 4.84 (d, 0.6H, 

J=2.52 Hz, H-3), 5.08 (d, 0.4H, J=2 Hz, H-4), 5.14 (t, 0.6H), 6.55 (m, 3H, ArH), 6.86 – 6.91 (m, 2H, 

ArH), 7.18 – 7.25 (m, 2H, ArH), 7.39 – 7.41 (m, 1.3H, ArH); 13C NMR (100 MHz, CDCl3) � 53.00 

(OCH3), 54.83 (C-4), 54.88 (OCH3), 55.51 (OCH3), 55.59 (OCH3), 55.83 (OCH3), 57.32 (C-3), 59.98 

(OCH3), 60.48 (OCH3), 63.31, 64.52, 64.79, 65.14 (CH), 94.26, 94.32, 108.16, 108.81, 114.02, 114.12, 

125.25, 125.83, 126.97, 127.00, 128.48, 128.81, 133.15, 133.97, 139.00, 139.81, 143.19, 143.23, 

153.00, 159.17, 159.39 (ArC), 164.79 (C=O), 164.81 (C=O); HRMS (M++Na): C24H25NO7Na requires 

462.1529; found 462.1509 

3.1.13.2 3-(Hydroxythiophen-2-yl-methyl)-4-(4-methoxyphenyl)-1-(3,4,5-

trimethoxyphenyl)azetidin-2-one (32) was obtained as a light yellow powder from thiophene-2-

carbaldehyde and 4-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (9) in 12.4% yield by 

the above method; Mp: 96ºC; IR (KBr disk) �max: 1745.90 cm-1 (C=O, �-lactam), 3436.73 cm-1 (-OH); 

1H NMR (400 MHz, CDCl3) � 3.53 – 3.56 (m, 1H, H-3), 3.71 (s, 6H, 2xOCH3), 3.77 – 3.81 (m, 6H, 

2xOCH3), 4.83 (d, 0.6H, J=2.5 Hz, H-4), 5.20 (d, 0.4Hz, J=2.5 Hz, CH), 5.41 (d, 0.6H, J=6.52 Hz, CH), 

5.61 (d, 0.4H, J=3.92 Hz, CH), 6.55 (d, 2H, J=6 Hz, ArH), 6.83 – 6.89 (m, 2H, ArH), 6.92 – 6.96 (m, 

1H, ArH), 7.00 – 7.02 (m, 0.6H, ArH), 7.14 – 7.17 (m, 2.5H, ArH), 7.26 – 7.29 (m, 1H, ArH); 13C NMR 

(100 MHz, CDCl3) � 54.81 (OCH3), 54.86 (OCH3), 55.51 (C-4), 55.54, 55.59, 55.63, 57.54 (C-3), 60.49 
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(OCH3), 65.50, 65.94, 66.04, 68.02 (CH), 94.31, 94.39, 94.63, 113.58, 113.91, 114.04, 123.55, 124.55, 

124.91, 125.34, 126.42, 126.44, 126.85, 127.05, 128.26, 128.80, 133.09, 133.12, 133.92, 134.01, 

143.48, 144.59, 152.96, 153.00, 153.05, 159.11, 159.33 (ArC), 164.64 (C=O); HRMS (M++Na): 

C24H25NO6NaS requires 478.1300; found 478.1292 

3.1.13.3 3-(Hydroxythiophen-3-yl-methyl)-4-(4-methoxyphenyl)-1-(3,4,5-

trimethoxyphenyl)azetidin-2-one (33) was obtained from thiophene-3-carbaldehyde and 4-(4-

methoxyphenyl)-1-(3,4,5-trimethoxy-phenyl)azetidin-2-one (9) as a yellow powder (43.6% yield) by the 

above method; Mp: 69 ºC; IR (NaCl film) �max: 1745.08 cm-1 (C=O, �-lactam), 3438.10 cm-1 (-OH); 1H 

NMR (400 MHz, CDCl3) � 2.85 (broad s, 0.4H), 3.01 (broad s, 0.4H), 3.48 – 3.52 (m, 1H, H-3), 3.71 (s, 

6H, 2xOCH3), 3.77 (m, 6H, 2xOCH3), 4.82 (d, 0.6H, J=2 Hz, H-4), 5.08 (d, 0.6H, J=2 Hz, H-4), 5.25 (d, 

0.5H, J=6 Hz), 5.45 (s, 0.5H),  6.55 (s, 2H, ArH), 6.81 – 7.02 (m, 2H, ArH), 7.02 (m, 1H, ArH), 7.15 – 

7.17 (m, 2H, ArH), 7.28 – 7.41 (m, 2H, ArH); 13C NMR (100 MHz, CDCl3) � 54.80 (OCH3), 54.87 

(OCH3), 55.56 (C-4), 55.59, 57.44 (C-3), 59.22, 60.49, 65.12, 65.64, 66.34, 66.45, 67.96 (CH), 76.81, 

94.28, 94.34, 94.60, 113.59, 113.91, 114.07, 120.70, 122.41, 125.00, 125.97, 126.14, 126.19, 126.72, 

126.84, 128.48, 128.89, 133.20, 133.91, 133.96, 141.61, 142.25, 152.99, 153.05, 159.01, 159.32 (ArC), 

164.97 (C=O), 165.53 (C=O); HRMS (M++Na): C24H25NO6NaS requires 478.1300; found 478.1282 

3.1.13.4 3-[Hydroxy-(5-methylthiophen-2-yl)-methyl]-4-(4-methoxyphenyl)-1-(3,4,5-

trimethoxyphenyl)azetidin-2-one (34) was obtained by reaction of 5-methylthiophene-2-carbaldehyde 

and 4-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (9) as a white powder (16.5% yield) 

by the above method; Mp: 186 ºC; IR (KBr disk) �max: 1736.68 cm-1 (C=O, �-lactam), 3500 cm-1 (-OH); 

1H NMR (400 MHz, CDCl3)  � 2.48 (s, 3H, CH3), 2.79 (s, 1H, OH), 3.53 – 3.55 (dd, 1H, H-3), 3.73 (s, 

6H, 2xOCH3), 3.78 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 4.83 (d, 0.8H, J=2.52 Hz, H-4), 5.19 (d, 0.2H, 

J=2 Hz, CH), 5.31 (d, 0.8 Hz, J=6.56 Hz, CH), 5.50 (s, 0.2H), 6.56 (s, 2H, ArH), 6.65 (m, 1H, ArH), 

6.87 – 6.95 (m, 3H, ArH), 7.17 – 7.20 (m, 1H, ArH), 7.29 (s, 1H, ArH); 13C NMR (100 MHz, CDCl3)  � 

14.95 (CH3), 54.86 (OCH3), 55.54 (OCH3), 57.61 (C-3), 60.50 (OCH3), 65.34 (C-4), 68.21 (CH), 94.30, 
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113.94, 114.04, 124.41, 125.02, 126.90, 128.38, 133.20, 140.24, 140.82, 153.01 (ArC), 163.54 (C=O); 

HRMS (M++Na): C25H27NO6NaS requires 492.1457; found 492.1473 

3.1.14 General procedure for oxidation of alcohols 32 and 33: Pyridinium chlorochromate (10 

mmol) was suspended in anhydrous dichloromethane (15 mL). The appropriate alcohol (32, 33) (15 

mmol, 1.5 equiv.) was dissolved in anhydrous dichloromethane (20 mL) and was added to the 

pyridinium chlorochromate suspension. The solution became briefly homogenous before depositing the 

black insoluble reduced reagent and was stirred for a further 2 hours. The reaction mixture was then 

diluted with 5 volumes of anhydrous ether. The solvent was decanted and the black residue was further 

washed with ether until the entire oxidised product was removed. The solvent was removed in vacuo 

and the product was isolated by flash column chromatography over silica gel using a hexane: ethyl 

acetate gradient elution. 

3.1.14.1 4-(4-Methoxyphenyl)-3-(thiophene-2-carbonyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-

one (35) was prepared from 3-(hydroxythiophen-2-yl-methyl)-4-(4-methoxyphenyl)-1-(3,4,5-

trimethoxyphenyl)azetidin-2-one (32) as a yellow powder (27.3% yield); Mp: 123 ˚C; IR (KBr disk) 

�max: 1751.87 cm-1 (�-lactam -C=O), 1655.95 cm-1 (C=O); 1H NMR (400 MHz, CDCl3) �  3.73 (s, 6H, 

2xOCH3), 3.78 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 4.71 (d, 1H, J=2.52 Hz, H-3), 5.65 (d, 1H, J=2.52 

Hz, H-4), 6.57 (s, 2H, ArH), 6.96 (d, 2H, J=8.56, ArH), 7.21 – 7.23 (t, 1H, ArH), 7.41 (d, 2H, J=8.52 

Hz, ArH), 7.76 (d, 1H, J=4.52 Hz, ArH), 8.01 (d, 1H, J=4 Hz, ArH); 13C NMR (100 MHz, CDCl3) � 

54.92 (OCH3), 55.41 (OCH3), 55.54 (C-4), 60.51 (OCH3), 68.20 (C-3), 94.39, 114.24, 127.20, 127.87, 

128.19, 132.94, 134.21, 134.58, 135.02, 142.35, 153.03 (ArC), 159.51 (C2=O), 159.61 (C2=O), 182.86 

(C=O); HRMS (M++Na): C24H23NO6NaS requires 476.1144; found 476.1141 

3.1.14.2 4-(4-Methoxyphenyl)-3-(thiophene-3-carbonyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-

one (36) was prepared from 3-(hydroxythiophen-3-yl-methyl)-4-(4-methoxyphenyl)-1-(3,4,5-

trimethoxyphenyl)azetidin-2-one (33) as a white solid (18.6% yield); Mp: 143 – 144 ˚C; IR (KBr disk) 

�max: 1735.14 cm-1 (�-lactam -C=O), 1673.80 cm-1 (C=O); 1H NMR (400 MHz, CDCl3) � 3.74 (s, 6H, 
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2xOCH3), 3.79 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 4.68 (d, 1H, J=2.44 Hz, H-3), 5.67 (d, 1H, J=2.44 

Hz, H-4), 6.58 (s, 2H, ArH), 6.96 (d, 2H, J=8.32, ArH), 7.37 – 7.43 (m, 3H, ArH), 7.70 (d, 1H, J=1 Hz, 

ArH), 8.43 – 8.44 (m, 1H, ArH); 13C NMR (100 MHz, CDCl3) � 55.38 (OCH3), 55.69 (OCH3), 56.00 

(C-4), 60.98 (OCH3), 69.45 (C-3), 94.85, 114.70, 126.64, 127.12, 127.64, 128.45, 133.45, 134.69, 

135.34, 140.91, 153.51 (ArC), 160.05 (-C2=O), 160.25 (-C2=O), 184.60 (-C=O); HRMS (M++Na): 

C24H23NO6NaS requires 476.1144; found 476.1124 

3.1.15 General procedure for dehydration of alcohols 32 and 34: A solution of appropriate alcohol 

(32, 34) (10 mmol) and tosyl chloride (20 mmol) in dry pyridine (50 mL) was heated at reflux for 5 

hours under a nitrogen atmosphere. After cooling, ice/water (50 mL) was added and the mixture was 

extracted twice with chloroform (50 mL). The combined organic extracts were washed twice with dilute 

hydrochloric acid (50 mL) and once with water (50 mL), dried with anhydrous sodium sulfate and 

solvent evaporated in vacuo.  The pure product was isolated by flash column chromatography over silica 

gel (hexane: ethyl acetate gradient). 

3.1.15.1 (Z)-4-(4-Methoxyphenyl)-3-thiophen-2-ylmethylene-1-(3,4,5-trimethoxyphenyl)azetidin-

2-one (37) was prepared from 3-(hydroxythiophen-2-yl-methyl)-4-(4-methoxyphenyl)-1-(3,4,5-

trimethoxyphenyl)azetidin-2-one (32) in 30.0% yield as a yellow oil; IR (KBr disk) �max: 1721.18 cm-1 (-

C=O); 1H NMR (400 MHz, CDCl3) � 3.77 (s, 6H, 2xOCH3), 3.80 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 

5.37 (s, 1H, H-4), 6.45 (s, 1H, CH), 6.68 (s, 2H, ArH), 6.95 (d, 2H, J=9.04 Hz, ArH), 7.08 – 7.10 (m, 

1H, ArH), 7.39 – 7.42 (m, 2H, ArH), 7.45 (d, 1H, J=4.52 Hz, ArH), 7.71 (d, 1H, J=3.52 Hz, ArH); 13C 

NMR (100 MHz, CDCl3) � 54.90 (OCH3), 55.54 (OCH3), 60.53 (OCH3), 62.01 (C-4), 93.96, 114.09, 

120.91, 127.51, 127.93, 128.23, 128.96, 131.16, 133.70, 136.99, 137.60, 153.06 (ArC), 159.67 (C=O), 

159.82 (C=O); HRMS (M++Na): C24H23NO5NaS requires 460.1195; found 460.1189 

3.1.15.2 (Z)-4-(4-Methoxyphenyl)-3-(5-methylthiophen-2-ylmethylene)-1-(3,4,5-

trimethoxyphenyl)azetidin-2-one (38) was prepared from 3-[hydroxy-(5-methylthiophen-2-yl)-

methyl]-4-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (34) as a brown oil (9.0% 
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yield); IR (KBr disk) �max: 1725.19 cm-1 (-C=O); 1H NMR (400 MHz, CDCl3) � 2.54 (s, 3H, CH3), 3.77 

– 3.84 (m, 12H, 4xOCH3), 5.35 (s, 1H, H-4), 6.38 (s, 1H, CH), 6.68 – 6.74 (m, 2H, ArH), 6.94 – 6.96 

(m, 2H, ArH), 7.35 – 7.41 (m, 3H, ArH); 13C NMR (100 MHz, CDCl3) � 15.69 (CH3), 55.35 (OCH3), 

56.05 (OCH3), 56.17 (OCH3), 58.67 (OCH3), 62.43 (C-4), 94.33, 94.93, 114.34, 114.52, 114.67, 118.58 

, 121.85 (-CH-), 126.19, 127.37, 128.39, 128.89, 132.28, 134.29, 135.59, 136.49, 145.21, 153.51 (ArC), 

160.08 (C=O), 160.51 (C=O); HRMS (M++H): C25H26NO5S requires 452.1532; found 452.1527 

3.2 Biochemistry: Experimental methods 

3.2.1 MTT assay procedure 

All assays were performed in triplicate for the determination of mean values reported. Compounds 

were assayed as the free bases isolated from reaction. The human breast tumour cell line MCF-7 was 

cultured in Eagles minimum essential medium in a 95%O2/5% CO2 atmosphere with 10% fetal bovine 

serum, 2 mM L-glutamine and 100 µg/mL penicillin/streptomycin. The medium was supplemented with 

1% non-essential amino acids. MDA-MB-231 cells were maintained in Dulbecco’s Modified Eagle’s 

medium (DMEM), supplemented with 10% (v/v) Fetal bovine serum, 2 mM L-glutamine and 100 

µg/mL penicillin/streptomycin (complete medium). Cells were trypsinised and seeded at a density of 2.5 

x 104 cells/mL in a 96-well plate and incubated at 37 oC, 95%O2/5% CO2 atmosphere for 24 h. After this 

time they were treated with 2 µL volumes of test compound which had been pre-prepared as stock 

solutions in ethanol to furnish the concentration range of study, 1 nM–100 µM, and re-incubated for a 

further 72 h. Control wells contained the equivalent volume of the vehicle ethanol (1% v/v). The culture 

medium was then removed and the cells washed with 100 µL phosphate buffered saline (PBS) and 50 

µL MTT added, to reach a final concentration of 1 mg/mL MTT added. Cells were incubated for 2 h in 

darkness at 37 oC. At this point solubilization was begun through the addition of 200 µL DMSO and the 

cells maintained at room temperature in darkness for 20 min to ensure thorough colour diffusion before 

reading the absorbance. The absorbance value of control cells (no added compound) was set to 100 % 

cell viability and from this graphs of absorbance versus cell density per well were prepared to assess cell 
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viability using GraphPad Prism software59. 

3.2.2 Cytotoxicity assay using murine mammary epithelial cells 

Mammary glands from 14-18 day pregnant CD-1 mice were used as source and primary mammary 

epithelial cell cultures were prepared from these. Mammary epithelial cells were isolated as described by 

us previously.24 The isolated mammary epithelial cells were seeded at two concentrations. After 24 

hours, they were treated with 2 µL volumes of test compound which had been pre-prepared as stock 

solutions in ethanol to furnish the concentration range of study, 1 nM–100 µM, and re-incubated for a 

further 72 h. Control wells contained the equivalent volume of the vehicle ethanol (1% v/v). The 

cytotoxicity was assessed using alamar blue dye as reported previously.60 

3.2.3 Tubulin polymerization:  Tubulin polymerisation was carried out using a kit supplied by 

Cytoskeleton.  It is based on the principal that light is scattered by microtubules to an extent that is 

proportional to the concentration of the microtubule polymer. Compounds that interact with tubulin will 

alter the polymerisation of tubulin, and this can be detected using a spectrophotometer. The absorbance 

at 340nm at 37°C is monitored. The experimental procedure of the assay was performed as described in 

version 8.2 of the tubulin polymerisation assay kit manual61. 

3.3 Stability studies for compounds 13, 16, 17 and 18: Analytical high-performance liquid 

chromatography (HPLC) stability studies were performed using a Symmetry® column (C18, 5 µm, 

4.6×150 mm), a Waters 2487 Dual Wavelength Absorbance detector, a Waters 1525 binary HPLC pump 

and a Waters 717plus Autosampler.   Samples were detected at wavelength of 254 nm.   All samples 

were analysed using acetonitrile (80%): water (20%) as the mobile phase over 10 min and a flow rate of 

1 mL/min.   Stock solutions are prepared by dissolving 5mg of compound in 10 mL of mobile phase.   

Phosphate buffers at the desired pH values (4, 7.4, and 9) were prepared in accordance with the British 

Pharmacopoeia monograph 2010.   30 µL of stock solution was diluted with 1 mL of appropriate buffer, 

shaken and injected immediately. Samples were withdrawn and analysed at time intervals of  t=0 min, 5 

min, 30 min, 60 min, 90 min, 120 min and 21 hours. Retention times were 13: 2.70 mins; 16: 3.75 mins; 
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17: 3.74 mins; 18: 3.75 mins. 

3.4 Computational Procedures: For ligand preparation, all compounds were built using 

ACD/Chemsketch v10 to generate SMILES. A single conformer from each string was generated using 

Corina v3.4 and ensuring Omega v2.2.1 was subsequently employed to generate a maximum of 50 

conformations of each compound. For the receptor preparation, the PDB entries 1SA0 were downloaded 

from the Protein Data Bank (PDB). All waters were retained in both isoforms. Addition and 

optimisation of hydrogen positions for these waters was carried out using MOE 2007.09 ensuring all 

other atom positions remained fixed. Using the reported X-ray structure of tubulin co-crystallised with a 

colchicine derivative, DAMA-colchicine (PDB entry – 1SA0),51 possible binding orientations of the �-

lactam ligands were probed with the docking program FREDv2.2.3 (Openeye Scientific Software).62 

Docking was carried out using FREDv2.2.3 in conjunction with the PLP scoring function. 3D ligand 

conformations were enumerated using CORINAv3.4 (Molecular Networks GMBH)63 followed by 

generation of multiple conformations using OMEGAv2.2.1 (Openeye Scientific Software).64 Each 

conformation was subsequently docked and scored with PLP as outlined previously.14 The top binding 

poses were refined using the LigX procedure (MOE - Chemical Computing Group)65 together with 

Postdock analysis (SVL script; MOE) of the docked ligand poses.  

 

3.5 X-ray crystallography: The X-ray crystallography data for crystals was collected on a Rigaku 

Saturn 724 CCD Diffractometer. A suitable crystal was selected and mounted on a glass fiber tip and 

placed on the goniometer head in a 123K N2 gas stream. The data set was collected using Crystalclear-

SM 1.4.0 software and 1680 diffraction images, of 0.5° per image, were recorded. Data integration, 

reduction and correction for absorption and polarization effects were all performed using Crystalclear-

SM 1.4.0 software. Space group determination, structure solution and refinement were obtained using 

Crystalstructure ver. 3.8 and Bruker Shelxtl Ver. 6.14 software.66  
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Crystal Data for 11 (cis): C104H108N4 O20, MW 1733.94 (4 molecules).  Monoclinic, Space group P-1; 

a = 12.364(4), b= 13.084(4), c = 14.956(4)A˚, � = 82.867(11)o , � = 72.242(7)o, �  = 84.107(12) o ; U = 

2280.9) A˚; Z = 1; Dc = 1.262Mg m-3; m = 0.087 mm-1;  Range for data collection = 1.12–25.00; 

Reflections collected 35367, Unique Reflections 8025 [Rint= 0.0486]; Data/restraints/parameters 

8025/0/587; Goodness-of-fit  on F2 1215; R indices (all data) = R1 = 0.0728, wR2 = 0.1442; Final R 

indices [I > 2s(I)] = R1 = 0.0642, wR2 = 0.1393. CCDC deposition no. 778106. 

Crystal Data for 11 (trans): C104H108N4 O20, MW 1733.94 (4 molecules).  Monoclinic, Space group 

P21/c; a = 11.538(3), b= 12.295(3), c = 18.953(4)A˚, � = � = 90o, � = 123.08(12) o ; U = 2252.8(9) A˚; Z 

= 1; Dc = 1.278 Mg m-3; m = 0.088 mm-1;  Range for data collection = 1.12–25.00; Reflections 

collected 17982, Unique Reflections 3955 [Rint= 0.0441]; Data/restraints/parameters 3955/0/295; 

Goodness-of-fit  on F2 1244; R indices (all data) = R1 = 0.0674, wR2 = 0.1195; Final R indices [I > 

2s(I)] = R1 = 0.0616, wR2 = 0.1195. CCDC deposition no. 778108. 

Crystal Data for 12: C124H116N4 O20, Formula MW 1982.21 (4 molecules); Monoclinic, Space group 

P21/c; a = 10.349(3), b= 9.828(3), c = 26.547(8)A˚, � = � = 90o, � = 110.277(10) o ; U = 2532.8(13) A˚; 

Z = 1; Dc = 1.300 Mg m-3; m = 0.088 mm-1;  Range for data collection = 1.12–25.00; Reflections 

collected 30080, Unique Reflections 4457 [Rint= 0.0652]; Data/restraints/parameters 4457/0/338; 

Goodness-of-fit  on F2 1222; R indices (all data) = R1 = 0.0789, wR2 = 0.1389; Final R indices [I > 

2s(I)] = R1 = 0.0835, wR2 = 0.1410.CCDC deposition no. 778107.  
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molecular modeling for �-lactam 28 and cytotoxicity data for 2a and 28 in murine epithelial cells at 

50,000 cells/mL.  
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Figure, Scheme and Table captions 

Figure 1. Structures of small molecule tubulin-binding agents 

Figure 2a. Ortep representation of the X-ray crystal structure of �-lactam 11 (cis isomer) drawn with 

50% thermal ellipsoids 

Figure 2b. Ortep representation of the X-ray crystal structure of �-lactam 11 (trans isomer; 2 

enantiomers shown with relative stereochemistry) drawn with 50% thermal ellipsoids 

Figure 3. Ortep representation of the X-ray crystal structure of �-lactam 12 drawn with 50% thermal 

ellipsoids 

Figure 4: Antiproliferative effect of 2a and 3-(3-thienyl)-�-lactams 13 and 29 in MCF-7 human breast 

cancer cells. 

MCF-7 cells were seeded at a density of 2.5 x 104 cells per well in 96-well plates and left for 24 hours to 

allow the cells to adhere to the surface of the wells. A range of concentrations (0.01 nM-50 µM) of the 

compound were added in triplicate and the cells left for 72 hours. Control wells contained the equivalent 

volume of the vehicle ethanol:DMSO (70%:30%) (1% v/v). An MTT assay was performed to determine 

the level of anti-proliferation. The values represent the mean ± S.E.M (error values) for three 

experiments performed in triplicate.  

Figure 5. Cell viability in healthy murine epithelial cells  

Mouse mammary epithelial cells were harvested from mid- to late- pregnant CD-1 mice and cultured. 

The isolated mammary epithelial cells were seeded at two concentrations. After 24 hours, they were 

treated with 2 µL volumes of test compound which had been pre-prepared as stock solutions in ethanol 

to furnish the concentration range of study, 1 nM–100 µM, and re-incubated for a further 72 h. Control 

wells contained the equivalent volume of the vehicle ethanol (1% v/v). The cytotoxicity was assessed 
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using alamar blue dye. 

Figure 6. Inhibition of tubulin polymerisation for �-lactam 28 

Effects of compound 28 on in vitro tubulin polymerisation. Purified bovine tubulin and GTP were 

mixed in a 96-well plate. The reaction was started by warming the solution from 4 oC to 37oC. Ethanol 

(1%v/v) was used as a vehicle control. The effect on tubulin assembly was monitored in a Spectramax 

340PC spectrophotometer at 340nm at 30 second intervals for 60 minutes at 37 oC. The graph shows one 

representative experiment. Each experiment was performed in triplicate. 

Figure 7. Comparison of the docked conformations of �-lactams 3a, 12 and DAMA-colchicine.  

12 is shown in green; 3a (left) and DAMA-colchicine (right) are colored by atom with oxygen red, 

nitrogen blue, carbon grey and sulfur yellow. Protein residues are not shown for clarity. 

Figure 8. Docked pose of �–lactam 28 in the colchicine-binding site of tubulin 

Docked pose of �–lactam 28 in the colchicine-binding site of tubulin (PDB entry 1SA0). Significant 

binding residues Thr 179, Lys 241 and Val 318 are indicated. Hydrogens are not shown for clarity. 

Coloured by atom: Grey (carbon); red (oxygen); blue (nitrogen); yellow (sulfur). Residue numbers are 

those used by Ravelli et al51. 

Figure 9. 2D representation of binding interactions of �-lactam 28 in the colchicine-binding site of 

tubulin  

2-D rendering of ligand–protein interactions using LigX module of MOE used to create docked 

structures of 28 in the colchicine-binding site of tubulin55. Residue numbers are those used by Ravelli et 

al51. 

Scheme 1. Synthesis of substituted acetic acids 5a, 5ba 
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aReagents and conditions: (a) Diethyl ether, 0°C, 1 hour; (b) 20°C; (c) NaH, toluene, 50°C, 1 hour; (d) 

10M HCl, 50°C, 30 mins 

Scheme 2. Synthesis of imines 8a – 8fa 

aReagents and conditions: EtOH, reflux, 3 h 

Scheme 3. Synthesis of �-lactams 10 - 27a 

aReagents and conditions: (a) SOCl2, CHCl3, reflux, 3 h; (b) (Route I) triethylamine, CH2Cl2, reflux, 3 

h; (c) (Route II) triethylamine, CH2Cl2, 18 h; (d) (Route III) triphosgene, triethylamine, anhydrous 

CH2Cl2, reflux, 5 h, 18 h; TBMDS = tert-butyldimethylchlorosilyl 

Scheme 4. Synthesis of phenolic azetidinones 28, 29a  

aReagents and conditions: (a) TBAF, THF, 0 ˚C, 15 min; TBMDS = tert-butyldimethylchlorosilyl 

Scheme 5. Synthesis of amino-substituted azetidinone 30a  

aReagents and conditions: (a) Zn, CH3CO2H, 7 days 

Scheme 6. Synthesis of azetidinones 9, 31-33a 

aReagents and conditions: (a) Zn, TMCS, benzene, microwave; (b) LDA, dry THF, -78°C; (c) 

Pyridinium chlorochromate, CH2Cl2, 2 h; (d) Tosyl chloride, pyridine, reflux, 5 h 

Table 1. Azetidin-2-one combretastatin A-4 analoguesa 

aRoutes for synthesis were: compounds 10 – 18: route I; compound 19: route II; compounds 20 – 27: 

route III; Route I: triethylamine, CH2Cl2, reflux, 3 h; Route II: triethylamine, CH2Cl2, 18 h; Route III: 

triphosgene, triethylamine, anhydrous CH2Cl2, reflux, 5 h, 18 h; bTBMDS = tert-

butyldimethylchlorosilyl 
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Table 2. Antiproliferative activities of �-lactams in human MCF-7 breast cancer cells 

aIC50 values are half maximal inhibitory concentrations required to block the growth stimulation of 

MCF-7 cells. Values represent the mean ± S.E.M (error values x 10-6) for at least three experiments 

performed in triplicate.  

bThe IC50 value obtained for 2a in this assay is 0.0052 µM for MCF-7 which is in good agreement with 

the reported values for 2a using the MTT assay on human MCF-7 breast cancer cell line18, 47, 48, 67  

Table 3. Antiproliferative activities of �-lactams in human MDA-MB-231 breast cancer cells 

aIC50 values are half maximal inhibitory concentrations required to block the growth stimulation of 

MDA-MB-231 cells. Values represent the mean ± S.E.M (error values x 10-6) for at least three 

experiments performed in triplicate.  

bThe IC50 value obtained for 2a in this assay is 0.043 µM for MDA-MB-231 which is in good agreement 

with the reported values for 2a using the MTT assay on the human MDA-MB-231 breast cancer cell 

line68, 69  

Table 4: Standard COMPARE Analysis of �-lactam 13a 

 

a The target set was the standard agent database and the target set endpoints were selected to be equal to 

the seed end points. Standard COMPARE analysis was performed. Correlation values are Pearson 

correlation coefficients. Vincristine sulfate and rhizoxin appear at different concentrations as they have 

been tested by the NCI at multiple concentration ranges  
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number 
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IC50 (μM)
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10 0.58 ± 0.4 25 0.25 ± 0.2 

11 43.5 ± 15 26 0.85 ± 0.5 

12 43.2 ± 26 28 0.007 ± 0.002 

13 0.064 ± 0.02 29 0.01 ± 0.007 

15 1.64 ± 1.9 30 0.042 ± 0.02 

16 0.12 ± 0.07 31 1.1 ± 0.7 

17 0.62 ± 0.3 32 1.2 ± 0.8 

18 0.91 ± 0.3 33 0.99 ± 0.8 
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20 11.3 ± 7.0 35 0.95 ± 0.5 

21 2.5 ± 0.9 36 0.47 ± 0.07 

22 6.6 ± 4.1 37 4.05 ± 2.5 

23 0.15 ± 0.1 38 0.58 ± 0.2 

24 0.06 ± 0.03 3a
24

 0.034 ± 0.02 

  2a
 b
 0.0052 ± 0.002

 

 

Table 2



  

Compound number Antiproliferative activity
 

IC50 (μM)
a 

13 0.19 ± 0.2 
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24
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 Based on GI50 mean graph  
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2 Maytansine 0.531 

3 Vincristine sulfate (hiConc=10
-3

M) 0.495 
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-5

M) 0.457 

5 Trimetrexate 0.443 

   

 Based on TGI mean graph  
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-4
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 Based on LC50 mean graph  

1 Thioguanine 0.915 

2 Paclitaxel 0.854 

3 L-aspiriginase 0.84 

4 Morpholino-ADR 0.736 
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