

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Synthesis and antiviral evaluation of acyclic azanucleosides developed from sulfanilamide as a lead structure

Rafał Gawin ${ }^{\text {a }}$, Erik De Clercq ${ }^{\text {b }}$, Lieve Naesens ${ }^{\text {b }}$, Mariola Koszytkowska-Stawińska ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warszawa, Poland
${ }^{\mathrm{b}}$ Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium

ARTICLE INFO

Article history:

Received 28 April 2008
Revised 6 August 2008
Accepted 20 August 2008
Available online 26 August 2008

Keywords:

Azanucleosides
Nucleoside analogs
Antiviral agents
Sulfonamides

Abstract

The acyclic azanucleosides with 2-, 3-, or 4-aminobenzenesulfonyl function at the nitrogen atom of the sugar mimic were prepared by coupling of $2-$, $3-$, or 4 -nitro- N -(2-pivaloyloxyethyl)- N -(pivaloyloxymethyl)benzenesulfonamide with the silylated pyrimidine nucleobases followed by the reduction of the nitro group with sodium dithionite in aqueous solution or the palladium-catalysed transfer hydrogenation. The azanucleosides were evaluated for, but found to be devoid of, activity against several RNA- and DNAviruses in vitro.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Nucleoside analogs constitute a very important class of therapeutics used in the treatment of various diseases, mostly viral infections and cancer. ${ }^{1}$ However, their clinical usefulness can be sometimes limited by toxic side effects, poor oral bioavailability or the emergence of drug resistance. ${ }^{2}$ Therefore, much attention is still focused on the synthesis and biological activities of novel nucleoside analogs, including acyclonucleosides. ${ }^{3}$ The introduction of the sulfonamido group [$\left.\mathrm{R}-\mathrm{SO}_{2}-\mathrm{N}\left(\mathrm{H} / \mathrm{R}^{1}\right)-\right]$ into a sugar ${ }^{4-6}$ or a nucleobase ${ }^{7}$ moiety of the parent nucleoside is one of the reported modifications. Among the sulfonamido nucleosides, however, only a few derivatives with the sulfanilamido group (4- $\mathrm{NH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{SO}_{2}-$ $\mathrm{NH}-$) have been reported so far. This pharmacophore, found in many biologically active compounds (such as an inhibitor of HIV1 protease amprenavir), ${ }^{8}$ is present in 5^{\prime}-deoxy- 5^{\prime}-sulfanilamidofuranosyl nucleosides A (Fig. 1). ${ }^{4 \mathrm{~b}}$ To the best of our knowledge, their biological properties have not been examined.

Therefore, continuing our research program on azanucleosides, ${ }^{9}$ we decided to synthesize the pyrimidine aza-derivatives \mathbf{B} with $2-$, 3 -, or 4-aminobenzenesulfonyl function at the nitrogen atom of the sugar mimic (Fig. 1). These compounds can be considered as derivatives of sulfanilamide $\left(4-\mathrm{NH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{SO}_{2}-\mathrm{NH}_{2}\right)$. We prepared azanucleosides \mathbf{B} in the form of the corresponding pivaloyl esters and/ or amides ($\mathrm{R}=\mathrm{acyl}$) in order to improve their lipophilicity

[^0]determining the physiological activity of biologically active compounds. ${ }^{10}$

2. Results and discussion

In view of the commercial availability of the nitro- or the acet-amido-substituted benzenesulfonyl chlorides 2, we decided to prepare the nitro and the acetamido precursors 5, 6, and $\mathbf{7}$ (Scheme 1, $\mathrm{R}=\mathrm{NO}_{2}$ or NHAc), and then to transform them into the corresponding amino derivatives by reduction or hydrolysis, respectively.

The key substrates for the synthesis of $\mathbf{5}, \mathbf{6}$, and $\mathbf{7}$, that is, the corresponding N-(pivaloyloxymethyl)sulfonamides 4, were obtained from the reaction of 2-pivaloyloxyethylamine hydrochloride $\mathbf{1}$ with benzenesulfonyl chlorides $\mathbf{2}$ followed by the alkylation of $\mathbf{3}$ with chloromethyl pivalate (Scheme 1). N -(Pivaloyloxymethyl)sul-

(RH)N- = 2-, 3-, 4$\mathrm{R}^{1}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{~F}$

Figure 1. Nucleoside analogs containing 2-, 3-, or 4-aminobenzenesulfonyl function.

Scheme 1. Reagents and conditions: (i) pyridine, dichloromethane, room temperature, overnight; (ii) $\mathrm{PivOCH}_{2} \mathrm{Cl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$, room temperature, 5 days; (iii) a-nucleobase, BSA, acetonitrile, room temperature, 1 h ; b-TMSOTf, acetonitrile, room temperature, 2 days. (iv) a-5-fluorouracil, BSA, acetonitrile, room temperature, 1 h ; $\mathrm{b}-\mathrm{SnCl}_{4}$, acetonitrile, dichloromethane, room temperature, 2 days.
fonamides $\mathbf{4}$ were transformed into 5, 6, or $\mathbf{7}$ by the one-pot base silylation/nucleoside coupling methodology (Scheme 1). ${ }^{11}$ Derivatives $\mathbf{4}$ reacted with the silylated thymine, uracil or 5 -fluorouracil in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) to give the corresponding azanucleosides 5, 6, and $\mathbf{7}$ in $54-89 \%$ yields. The only exception was the coupling of the acetamido derivative $\mathbf{4 d}$ with 5 -fluorouracil; instead of the desired 7d, 4-acetamido- N -(2-pivaloyloxyethyl)- N -(acetamidomethyl)benzenesulfonamide ${ }^{12}$ (not shown) was formed as the only product under these conditions. This compound resulted from the reaction of $\mathbf{4 d}$ with N -monosilylated or free acetamide, which are formed during silylation of the nucleobase with N, O-bis(trimethylsilyl)acetamide (BSA). ${ }^{13}$ Replacement of TMSOTf with $\operatorname{tin}(\mathrm{IV})$ chloride let us to prepare 7d in 52% yield.

The ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC correlations observed for $\mathbf{5 a}$, and the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY correlations for $\mathbf{5 b}$ or $\mathbf{5 d}$ confirmed the $\mathrm{N}-1$ substitution pattern of azanucleosides 5-7 (Fig. 2).

Nucleoside analogs with the nitro group in a sugar moiety ${ }^{14}$ (mostly derivatives of uracil ${ }^{14 \mathrm{a}-\mathrm{e}}$) have been reduced to the corresponding amino derivatives by the heterogeneous catalytic hydrogenation (in the presence of Raney-Nickel, ${ }^{14 \mathrm{a}-\mathrm{c}}$ palladium on charcoal, ${ }^{14 f, 14 \mathrm{~g}}$ or platinum(IV) oxide ${ }^{14 \mathrm{~h}}$), or with the following reducing agents: sodium dithionite, ${ }^{4 \mathrm{~b}}$ tin in acetic acid, ${ }^{14 \mathrm{~d}}$ or sodium borohydride (in the presence of nickel(II) chloride ${ }^{14 \mathrm{e}}$ or palladium on charcoal $\left.{ }^{14 g}\right) .{ }^{15}$ The number of reports on the reduction of the 5 -fluorouracil nitro nucleosides is limited. They have been reduced by heterogeneous catalytic hydrogenation in the presence
of palladium on charcoal, or with sodium borohydride/palladium on charcoal mixture; unfortunately yields of the reaction products have not been given. ${ }^{14 \mathrm{~g}}$

Considering the presence of the 4-nitrobenzenesulfonamido function in a molecule, the reduction conditions of 5^{\prime}-deoxy- 5^{\prime} -(4-nitrobenzenesulfonamido)thymidine (i.e., sodium dithionite in alkaline medium) has attracted our considerable attention. ${ }^{4 \mathrm{bb}}$ To the best of our knowledge, this reducing agent has not been employed for the reduction of nucleoside nitro analogs being derivatives of uracil or 5 -fluorouracil so far. Therefore, we decided to examine this method for the transformation of the nitro derivatives 5, 6, and $\mathbf{7}$ into the amino azanucleosides B. Initially, the reduction of the thymine derivatives $\mathbf{5 a - c}$ was examined (Scheme 2). Taking into account the NO_{2}-isomerism of $\mathbf{5 a - c}$, the reaction was found to be not general. The reduction of $\mathbf{5 a}\left(4-\mathrm{NO}_{2}\right)$ or $\mathbf{5 b}\left(3-\mathrm{NO}_{2}\right)$ with sodium dithionite in alkaline solution at $90^{\circ} \mathrm{C}$ was accompanied by hydrolysis of the ester group to give the hydroxy derivatives $\mathbf{8 a}(59 \%)$ or $\mathbf{8 b}(52 \%$), respectively (Scheme 2 , conditions (i). Reduction of the $2-\mathrm{NO}_{2}$ isomer $5 \mathbf{c}$ under the same conditions afforded a complex mixture, from which the amino derivative $\mathbf{8 c}$ was isolated in 5% yield. Modification of the literature procedure by the use of aqueous sodium dithionite at $90^{\circ} \mathrm{C}$ resulted in the formation of all isomers 9a-c as pivaloyl esters in yields exceeding 50% (Scheme 2, conditions (ii). The $2-\mathrm{NH}_{2}$ isomer 9c was treated with ammonium hydroxide at $70^{\circ} \mathrm{C}$ to obtain $8 \mathbf{c}$ in 79% yield (Scheme 2 , conditions (iii)).

5a
$\begin{array}{ll}\delta_{\mathrm{H}}\left(1^{\prime}\right)=5.13 & \delta_{\mathrm{C}}\left(1^{\prime}\right)=60.32 \\ \delta_{\mathrm{H}}(6)=7.40 & \delta_{\mathrm{C}}(6)=139.92 \\ & \delta_{\mathrm{C}}(2)=150.83\end{array}$

Figure 2. ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC correlations observed for $\mathbf{5 a}$, and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY correlations for $\mathbf{5 b}$ and $\mathbf{5 d}$.

Scheme 2. Reagents and conditions: (i) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}, 4 \% \mathrm{NaOH}$ aq, $90^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (ii) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ aq, $90^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (iii) NH_{3} aq, $\mathrm{MeOH}, 70^{\circ} \mathrm{C}, 1$ day.

Taking into account a kind of nucleobase present in the nitro compounds tested, the dithionite reduction was not general as

Scheme 3. Reagents and conditions: (i) cyclohexene, $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 60^{\circ} \mathrm{C}, 1$ day.
well. In contrast to the thymine derivatives $\mathbf{5 a} \mathbf{a} \mathbf{c}$, treating of the nitro derivatives of uracil or 5-fluorouracil, that is, $\mathbf{6 a}$ or $\mathbf{7 a}$, respectively, with sodium dithionite in alkaline medium or in aqueous solution did not afford the corresponding amino azanucleosides at all.

Although the heterogeneous catalytic hydrogenation is one of the most often used methods for the reduction of nucleoside nitro analogs, the palladium-catalysed hydrogenation $\left(\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}\right.$, ambient pressure) of $\mathbf{6 a - c}$ or $\mathbf{7 a - c}$ did not give the expected results; multi-component mixtures (by TLC) were produced. Therefore, we applied the palladium-catalysed transfer hydrogenation ${ }^{16}$ to achieve the amino analogs $\mathbf{1 0}$ and $\mathbf{1 1}$ (Schemes 3 and 4). Treating of the uracil derivatives 6a-c with cyclohexene $/ 10 \% \mathrm{Pd} / \mathrm{C}$ mixture in ethanol at $60^{\circ} \mathrm{C}$ gave the corresponding amino derivatives 10a-c in $58-89 \%$ yields (Scheme 3).

Scheme 4. Reagents and conditions: cyclohexene, $10 \% \mathrm{Pd} / \mathrm{C}, 60^{\circ} \mathrm{C}, 1$ day: (i) EtOH ; 11a:10a $=3: 2\left({ }^{1} \mathrm{H} \mathrm{NMR}\right.$); (ii) MeOH; (iii) 1,4 -dioxane.

Scheme 5. Reagents and conditions: (i) NH_{3} aq, $\mathrm{MeOH}, 70^{\circ} \mathrm{C}, 1$ day; (ii) NaOH aq (4%), $90^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

The reduction of the 5 -fluorouracil derivatives 7 by the palla-dium-catalysed transfer hydrogenation was more complex and its outcome depended on the solvent used (Scheme 4). The reduction of 7a in ethanol provided an inseparable mixture of the expected amino derivative 11a and the uracil derivative 10a in a 3:2 ratio ${ }^{17}$ (Scheme 4, conditions (i)); 10a was a product of hydrogenolysis of the carbon-fluorine bond. ${ }^{18}$ The formation of $10 a$ was not observed when the reaction was carried out in methanol at $60^{\circ} \mathrm{C}$ (Scheme 4, conditions (ii)), but 11a was the minor product
 one $\mathbf{1 3}(15 \%)$ were also obtained. We assume that $\mathbf{1 2}$ and $\mathbf{1 3}$ were formed from the reductive methylation of 11a or 12 with formaldehyde, respectively, which was produced from the catalytic dehydrogenation of methanol. ${ }^{16 \mathrm{a}}$ All difficulties with the reduction of 7 were solved when 1,4-dioxane was used as the reaction medium (Scheme 4, conditions (iii)); all isomers 11a-c were prepared in the yields of 57-64\%.

An alternative approach toward azanucleosides B consisted in ammonolysis or an alkaline hydrolysis of the 4-acetamido derivatives (Scheme 5). Ammonolysis of $\mathbf{5 d}$ or $\mathbf{6 d}$ with ammonium hydroxide at $70^{\circ} \mathrm{C}$ resulted in the selective cleavage of the pivaloyl ester; azanucleosides 14a or 14b were obtained in 94% or 85% yield, respectively. Both the O- and N-protecting groups were removed when the thymine derivative $\mathbf{5 d}$ was treated with aqueous sodium hydroxide at $90^{\circ} \mathrm{C}$ to provide 8a in 39% yield. The latter conversion was much less effective than the previously performed reduction of the nitro derivative $\mathbf{5 a}$ with sodium dithionite under alkaline conditions (Scheme 2).

3. Antiviral evaluation

All azanucleosides with nitro, amino, or acetamido group were evaluated for activity against several RNA- and DNA-viruses, using the following cell-based assays: (a) Vero cells infected with parain-fluenza-3 virus, reovirus-1, Sindbis virus, Coxsackie B4 virus, or Punta Toro virus; (b) Crandell-Rees Feline Kidney (CRFK) cells infected with feline corona virus or feline herpes virus; (c) human embryonic lung (HEL) fibroblasts infected with herpes simplex virus-1 (KOS), herpes simplex virus-2 (G), acyclovir-resistant herpes simplex virus-1 (TK^{-}KOS ACV ${ }^{\mathrm{r}}$), vaccinia virus, or vesicular stomatitis virus; (d) HeLa cells infected with vesicular stomatitis virus, coxsackie B4 virus or respiratory syncytial virus; and (e) Madin Darby canine kidney (MDCK) cells infected with influenza virus, subtype A/H1N1, A/H3N2 or B.

The cytotoxicity of the test compounds toward the uninfected host cells was expressed as the minimal compound concentration (MCC) that caused a microscopically detectable alteration of normal cell morphology, or 50% cytotoxic concentration $\left(\mathrm{CC}_{50}\right)$, causing a 50% decrease in cell viability, as determined by a colorimetric formazan-based MTS assay. ${ }^{19,20}$ None of the tested compounds displayed cytotoxicity on HEL cells or HeLa cells at concentrations up to $100 \mu \mathrm{M}$. Among the tested compounds, 5d and $\mathbf{6 d}$ (the O-pivaloylated 4-NHAc derivatives of thymine or ura-
cil, respectively) showed cytotoxicity against Vero cells at the concentration of $200 \mu \mathrm{M}$; with the MCC value of $40 \mu \mathrm{M}, \mathbf{1 4 a}$ (analog of $\mathbf{5 d}$ with the hydroxy group instead of the O-pivaloyloxy one at the sugar mimic) was found to be much more cytotoxic than 5d, while the cytotoxicity of $\mathbf{1 4 b}$ (the hydroxy analog of $\mathbf{6 d}$) was not detected at concentrations up to $100 \mu \mathrm{M}$. The remaining compounds showed no cytotoxicity for Vero cells at concentrations up to $100 \mu \mathrm{M}$. The nitro azanucleosides, and among them mainly derivatives of 5-fluorouracil, proved cytotoxic for MDCK cells and CRFK cells. The following cytotoxic concentration values were determined for the nitro derivatives of the 5 -fluorouracil series: (i) $7 \mathbf{a}$ (the $4-\mathrm{NO}_{2}$ isomer): $\mathrm{MCC}=20 \mu \mathrm{M}$ (MDCK cells), $\mathrm{CC}_{50}=69 \mu \mathrm{M}$ (MDCK cells), $\mathrm{CC}_{50}=44 \mu \mathrm{M}$ (CRFK cells); (ii) $7 \mathbf{b}$ (the $3-\mathrm{NO}_{2}$ isomer): MCC $\geqslant 100 \mu \mathrm{M}$ (MDCK cells), $\mathrm{CC}_{50}>100 \mu \mathrm{M}$ (MDCK cells), $\mathrm{CC}_{50}=95 \mu \mathrm{M}$ (CRFK cells); and (iii) 7 c (the $2-\mathrm{NO}_{2}$ isomer): $\mathrm{MCC}=4 \mu \mathrm{M} \quad(\mathrm{MDCK} \quad$ cells $), \quad \mathrm{CC}_{50}>100 \mu \mathrm{M} \quad$ (MDCK cells), $\mathrm{CC}_{50}=14 \mu \mathrm{M}$ (CRFK cells). ${ }^{21}$ The thymine 4- NO_{2} derivative 5a $\left(\mathrm{CC}_{50}=53 \mu \mathrm{M}\right)$ and the uracil 4- NO_{2} derivative $\mathbf{6 a}\left(\mathrm{CC}_{50}=49 \mu \mathrm{M}\right)$ displayed cytotoxicity on CRFK cells. The remaining compounds tested did not show cytotoxicity toward MDCK or CRFK cells at concentrations up to $100 \mu \mathrm{M}$.

The antiviral activity was expressed as the 50% effective concentration, or concentration producing 50% inhibition of virus-induced cytopathic effect, as determined by visual scoring of the CPE , or by measuring the cell viability with the colorimetric forma-zan-based MTS assay. Antiviral effect of the tested compounds was examined at the following concentration values: assays (a), (i) $40 \mu \mathrm{M}$ for $\mathbf{5 d}$ and $\mathbf{6 d}$, (ii) $8 \mu \mathrm{M}$ for $\mathbf{1 4 a}$, or (iii) $100 \mu \mathrm{M}$ for other compounds; assays (b), (i) $20 \mu \mathrm{M}$ for $\mathbf{5 a}$, 6a, 7a, and $\mathbf{7 b}$, (ii) $4 \mu \mathrm{M}$ for $\mathbf{7 c}$, or (iii) $100 \mu \mathrm{M}$ for other compounds; and assays (c)-(e), $100 \mu \mathrm{M}$ for all tested compounds. In evaluations (a), both $\mathbf{5 c}$ (the thymine $2-\mathrm{NO}_{2}$ derivative) and $\mathbf{7 b}$ (the 5 -fluorouracil $3-\mathrm{NO}_{2}$ derivative) displayed $\mathrm{EC}_{50}=100 \mu \mathrm{M}$ against Coxsackie B4 virus and Punta Toro virus; activity of the compounds in other viruses was not detected at concentration of $100 \mu \mathrm{M}$. No antiviral effects were detected for any of the remaining compounds against any of the viruses evaluated.

4. Conclusion

Acyclic azanucleosides with 2-, 3-, or 4-aminobenzene-sulfonyl function at the nitrogen atom of the sugar mimic were obtained via reduction of the corresponding nitro precursors; depending on the nucleobase present in the molecule of the nitro derivative, sodium dithionite or cyclohexene-10\% Pd/C mixture was employed as the reducing agent. The studies showed that nitro analogs sensitive to reduction conditions, such as 5 -fluorouracil derivatives, could be transformed into the corresponding amines by the palladium-catalysed transfer hydrogenation with good yields. Generally, our findings on the reduction of the nucleoside nitro analogs by the heterogeneous transfer hydrogenation may be of help in synthesizing of many amino nucleosides from nitro precursors.

5. Experimental

5.1. Materials and methods

Pre-coated Merck silica gel 60 F-254 plates were used for both thin-layer chromatography ($\mathrm{TLC}, 0.2 \mathrm{~mm}$), and the preparative thin-layer chromatography (2 mm); the spots were detected under UV light (254 nm). Column chromatography was performed using silica gel (200-400 mesh, Merck). High Resolution Mass Spectra (Electrospray Ionisation, ESI) were performed on a Mariner ${ }^{\circledR}$ spectrometer in positive ionization mode. The IR spectra were recorded on a Perkin-Elmer System 2000 spectrometer in KBr disc; resolution was $2 \mathrm{~cm}^{-1}$; absorption maxima ($v_{\text {max }}$) are given in cm^{-1} and quoted as 's' strong, ' m ' medium, 'br' broad. In the case of highly overlapped IR bands deconvolution with Grams Research software was preformed. The ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Varian Gemini-200BB at 200 MHz or on a Varian Mercury400BB spectrometer at 400 MHz . The ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Gemini-200BB spectrometer at $50 \mathrm{MHz} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (δ) are reported in parts per million (ppm) relative to the solvent signals: $\mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$ (residual CHCl_{3}) $7.26 \mathrm{ppm}, \delta_{\mathrm{C}} 77.16 \mathrm{ppm}$; or DMSO- $d_{6}, \delta_{\mathrm{H}}$ (residual DMSO- d_{5}) $2.50 \mathrm{ppm}, \delta_{\mathrm{C}} 39.52 \mathrm{ppm}$; signals are quoted as 's' (singlet), 'd’ (doublet), ' t ' (triplet), ' m ' (multiplet), and 'br s' (broad singlet). Coupling constants J are reported in Hertz. The ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC (Heteronuclear Multiple Bond Correlation) spectrum of 5a was measured on a Varian Mercury-400BB spectrometer in DMSO- d_{6}. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY (Rotating frame Overhause Effect Spectroscopy) spectra of $\mathbf{5 b}$ or 5d were measured on a Varian Mercury-400BB spectrometer in CDCl_{3} or DMSO- d_{6}, respectively. Anhydrous MgSO_{4} was employed as a drying agent. Solvents were distilled off under reduced pressure on a rotating evaporator.

The methodology used for measuring the antiviral activity has been described previously. ${ }^{22}$

5.2. 2-Pivaloyloxyethylamine hydrochloride (1)

A mixture of ethanolamine hydrochloride ($10.30 \mathrm{~g}, 105 \mathrm{mmol}$) and pivaloyl chloride ($105 \mathrm{mmol}, 13.0 \mathrm{~mL}$) was heated on an oil bath at $90^{\circ} \mathrm{C}$ until the production of hydrogen chloride ceased (ca. 4 h); after this time the mixture solidified. The residual hydrogen chloride was removed under reduced pressure. The residue was kept at a vacuum desiccator over KOH overnight to give the crude $\mathbf{1}(18.26 \mathrm{~g})$ as a pale yellow, amorphous solid. An analytical sample was obtained by crystallization from dry acetone. $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; DMSO- d_{6}) 1.17 ($\mathrm{s}, 9 \mathrm{H}$), $3.06(\mathrm{~m}, 2 \mathrm{H}), 4.17\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.6,2 \mathrm{H}\right), 8.29$ (br $\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{NH}_{3}{ }^{+}\right) . \delta_{\mathrm{H}}\left(50 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 26.83,37.65,40.61,60.79$, 177.36. $v_{\text {max }}(\mathrm{KBr}) 2916-3112 \mathrm{br} \mathrm{s}\left(\mathrm{NH}_{3}{ }^{+}\right), 1724 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1575 \mathrm{~m}$ $\left(\mathrm{NH}_{3}{ }^{+}\right), 1500\left(\mathrm{NH}_{3}^{+}\right)$. LRMS m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 146.1$, found 146.1.

5.3. General method for the synthesis of \boldsymbol{N}-(2 pivaloyloxyethyl)benzenesulfonamides (3)

A mixture of the crude 1, dry pyridine and dry dichloromethane, in the ratio of $10 \mathrm{mmol} / 30 \mathrm{mmol} / 18 \mathrm{~mL}$, respectively, was cooled in an ice-water bath and the corresponding benzenesulfonyl chloride 2 (11 mmol) was added in one portion. The mixture was kept overnight at room temperature and then washed with water, diluted hydrochloric acid (5\%), brine, and dried. The solvent was distilled off. The residue was purified by column chromatography or crystallization to afford 3; the solvents are given in parentheses below.

5.3.1. 4-Nitro- \mathbf{N}-(2-pivaloyloxyethyl)benzenesulfonamide (3a)

 According to the general procedure, 3a was obtained from 1 $(5.0 \mathrm{~g}, 27.5 \mathrm{mmol})$ and 4-nitrobenzenesulfonyl chloride 2a (6.7 g ,30.3 mmol). Crystallization (hexane/ethyl acetate, $2: 1$, v/v) gave 3a $(6.17 \mathrm{~g}, 68 \%)$ as a white solid; mp $134-135^{\circ} \mathrm{C} . \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.17(\mathrm{~s}, 9 \mathrm{H}), 3.29-3.33(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.15(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 6.0,1 \mathrm{H}, \mathrm{NH}\right), 8.04-8.09(\mathrm{~m}, 2 \mathrm{H}), 8.36-8.40(\mathrm{~m}, 2 \mathrm{H}) . \delta_{\mathrm{C}}$ ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 27.11, 38.80, 42.74, 62.63, 124.56, 128.33, 145.93, 150.18, 178.62. $v_{\max }(\mathrm{KBr}) 3248 \mathrm{~m}(\mathrm{NH}), 1702 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, 1533s $\left(\mathrm{NO}_{2}\right), 1350 \mathrm{~s}\left(\mathrm{NO}_{2}\right), 1341 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1174 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+} 353.0778$, found 353.0767.

5.3.2. 3-Nitro- N-(2-pivaloyloxyethyl)benzenesulfonamide (3b)

According to the general procedure, $\mathbf{3 b}$ was obtained from $\mathbf{1}$ ($6.0 \mathrm{~g}, 33 \mathrm{mmol}$) and 3-nitrobenzenesulfonyl chloride 2b $(8.04 \mathrm{~g}$, 36.3 mmol). Crystallization (hexane/ethyl acetate, $2.5: 1$, v/v) gave 3b $(6.87 \mathrm{~g}, 63 \%)$ as a white solid; mp $91-92^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.17(\mathrm{~s}, 9 \mathrm{H}), 3.30-3.34(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.15(\mathrm{~m}, 2 \mathrm{H}), 5.02\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 6.0\right.$, $1 \mathrm{H}, \mathrm{NH}), 7.74-7.79(\mathrm{~m}, 1 \mathrm{H}), 8.19-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.44-8.46(\mathrm{~m}, 1 \mathrm{H})$, $8.70-8.73(\mathrm{~m}, 1 \mathrm{H}) . \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 27.15,38.86,42.60,62.61$, $122.28,127.37,130.81,132.61,142.43,148.47,178.72 . v_{\max }(\mathrm{KBr})$ $3260 \mathrm{~m}(\mathrm{NH}), 1705 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1527 \mathrm{~s}\left(\mathrm{NO}_{2}\right), 1350 \mathrm{~s}\left(\mathrm{NO}_{2}\right), 1345 \mathrm{~s}$ $\left(\mathrm{SO}_{2}\right), 1165 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$ 353.0778 , found 353.0763 .

5.3.3. 2-Nitro- N-(2-pivaloyloxyethyl)benzenesulfonamide (3c)

According to the general procedure, 3c was obtained from 1 $(6.0 \mathrm{~g}, 33 \mathrm{mmol})$ and 2-nitrobenzenesulfonyl chloride $2 \mathrm{c}(8.04 \mathrm{~g}$, 36.3 mmol). Chromatographic purification (chloroform/acetone, $98: 2, \mathrm{v} / \mathrm{v})$ gave $3 \mathrm{c}(7.58 \mathrm{~g}, 70 \%)$ as a colorless oil. $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.14(\mathrm{~s}, 9 \mathrm{H}), 3.33-3.42(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.15(\mathrm{~m}, 2 \mathrm{H}), 5.77\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.8\right.$, $1 \mathrm{H}, \mathrm{NH}), 7.70-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.87(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.15(\mathrm{~m}, 1 \mathrm{H}) . \delta_{\mathrm{C}}$ ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 27.16, 38.86, 42.94, 62.49, 125.60, 131.00, 133.14, $133.73,133.95,148.15,178.31$. $v_{\max }(\mathrm{KBr}) 3242 \mathrm{~m}(\mathrm{NH}), 1704 \mathrm{~s}$ $(\mathrm{C}=\mathrm{O}), 1536 \mathrm{~s}\left(\mathrm{NO}_{2}\right), 1351 \mathrm{~s}\left(\mathrm{NO}_{2}\right), 1344 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1171 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}, 353.0778$, found 353.0794.

5.3.4. 4-Acetamido- N-(2-pivaloyloxyethyl)benzenesulfonamide

 (3d)According to the general procedure, 3d was obtained from 1 ($5.0 \mathrm{~g}, 27.5 \mathrm{mmol}$) and 4-acetamidobenzenesulfonyl chloride 2d ($7.07 \mathrm{~g}, 30.3 \mathrm{mmol}$). Chromatographic purification (chloroform/acetone, $95: 5, \mathrm{v} / \mathrm{v})$ gave $\mathbf{3 d}(4.7 \mathrm{~g}, 50 \%)$ as a white solid; mp $90-91^{\circ} \mathrm{C} . \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.17(\mathrm{~s}, 9 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.24(\mathrm{~m}, 2 \mathrm{H}), 4.08-$ $4.10(\mathrm{~m}, 2 \mathrm{H}), 4.78\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 6.0,1 \mathrm{H}, \mathrm{NH}\right), 7.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.61-7.65$ (m, 2H), 7.63-7.77 (m, 2H). $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.80,27.25,38.92$, $42.46,62.84,119.69,128.30,134.49,142.30,169.24,178.72 . v_{\max }$ (KBr) $3307 \mathrm{~m}(\mathrm{NH}), 3269 \mathrm{~m}(\mathrm{NH}), 1725 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1676 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, 1594s, 1533br s, 1327s $\left(\mathrm{SO}_{2}\right), 1158 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+} 365.1142$, found 365.1159 .

5.4. General method for the synthesis of N-(2-pivaloyloxyethyl) - N -(pivaloyloxymethyl)benzenesulfonamides (4)

Chloromethyl pivalate (15 mol) was added to a stirred mixture of N-(2-pivaloyloxyethyl)benznenesulfonamide 3 (5 mol) and anhydrous potassium carbonate (25 mmol) in dry DMF (10 mL) at room temperature. The mixture was stirred for 5 days at room temperature and then was poured into ice-cold water (50 mL). The organic phase was extracted with dichloromethane $(3 \times$ 50 mL). The extracts were combined and washed with water, and dried. The solvent was distilled off. The residue was purified by column chromatography or crystallization to give $\mathbf{4}$; the solvents are given in parentheses below.

5.4.1. 4-Nitro-N-(2-pivaloyloxyethyl)-N-(pivaloyloxymethyl) benzenesulfonamide (4a)

According to the general procedure, 4a was obtained from 3a ($5.0 \mathrm{~g}, 15 \mathrm{mmol}$). Crystallization (hexane/ethyl acetate, 3:1, v/v)
afforded 4a $(5.15 \mathrm{~g}, 76 \%)$ as a white solid; $\mathrm{mp} 105-107^{\circ} \mathrm{C} . \delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 0.99(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 3.49\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.6,2 \mathrm{H}\right)$, $4.29\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.6,2 \mathrm{H}\right), 5.58(\mathrm{~s}, 2 \mathrm{H}), 8.06-8.11(\mathrm{~m}, 2 \mathrm{H}), 8.34-8.39$ $(\mathrm{m}, 2 \mathrm{H}) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) 26.77,27.15,38.74,45.59,61.94$, 71.76, 124.33, 128.89, 145.68, 150.23, 177.62, 178.20. $v_{\max }(\mathrm{KBr})$ 1735s ($\mathrm{C}=\mathrm{O}$), 1725s ($\mathrm{C}=\mathrm{O}$), 1533s $\left(\mathrm{NO}_{2}\right), 1356 \mathrm{~s}\left(\mathrm{NO}_{2}\right), 1352 \mathrm{~s}$ $\left(\mathrm{SO}_{2}\right), 1152 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$ 467.1459, found 467.1458.

5.4.2. 3-Nitro-N-(2-pivaloyloxyethyl)-N-(pivaloyloxymethyl) benzenesulfonamide (4b)

According to the general procedure, $\mathbf{4 b}$ was obtained from 3b ($3.1 \mathrm{~g}, 9.2 \mathrm{mmol}$). Crystallization (hexane/ethyl acetate, 13:1, v/v) afforded $\mathbf{4 b}(2.42 \mathrm{~g}, 59 \%)$ as a white solid; $\mathrm{mp} 84-85^{\circ} \mathrm{C}$. δ_{H} ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $0.96(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 3.48\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.4,2 \mathrm{H}\right)$, 4.27 (t, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.4,2 \mathrm{H}\right), 5.57(\mathrm{~s}, 2 \mathrm{H}), 7.71-7.79(\mathrm{~m}, 1 \mathrm{H}), 8.20-8.24$ $(\mathrm{m}, 1 \mathrm{H}), 8.43-8.47(\mathrm{~m}, 1 \mathrm{H}), 8.69-8.71(\mathrm{~m}, 1 \mathrm{H}) . \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 26.84, 27.29, 38.81, 38.89, 45.69, 62.11, 71.93, 122.86, 127.58, $130.68,133.21,142.34,148.53,177.83,178.34 . v_{\text {max }}(\mathrm{KBr}) 1739 \mathrm{~s}$ ($\mathrm{C}=\mathrm{O}$), 1728s $(\mathrm{C}=0)$, 1537s $\left(\mathrm{NO}_{2}\right), 1359 \mathrm{~s}\left(\mathrm{NO}_{2}\right), 1353 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$, 1145s $\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$ 467.1459, found 467.1454.

5.4.3. 2-Nitro- N-(2-pivaloyloxyethyl)-N-(pivaloyloxymethyl) benzenesulfonamide (4c)

According to the general procedure, $\mathbf{4 c}$ was obtained from 3c ($3.1 \mathrm{~g}, 9.2 \mathrm{mmol}$). Chromatographic purification (dichloromethane) gave $4 \mathrm{c}(1.77 \mathrm{~g}, 43 \%)$ as a white solid; $\mathrm{mp} 45-47^{\circ} \mathrm{C}$. $\delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.99(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 3.71\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.4,2 \mathrm{H}\right), 4.24\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}\right.$ $5.4,2 \mathrm{H}$), $5.52(\mathrm{~s}, 2 \mathrm{H}), 7.63-7.78(\mathrm{~m}, 3 \mathrm{H}), 8.06-8.15(\mathrm{~m}, 1 \mathrm{H}) . \delta_{\mathrm{C}}$ ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 26.86, 27.26, 38.78, 38.85, 46.73, 62.22, 71.89, 124.43, 131.51, 132.04, 133.48, 134.24, 148.19, 177.81, 178.34. $v_{\text {max }}(\mathrm{KBr}) 1733 \mathrm{~s}(\mathrm{C}=0), 1721 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1540 \mathrm{~s}\left(\mathrm{NO}_{2}\right), 1372 \mathrm{~s}\left(\mathrm{NO}_{2}\right)$, 1349s $\left(\mathrm{SO}_{2}\right), 1150 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{NaS}$ $(\mathrm{M}+\mathrm{Na})^{+}, 467.1459$, found 467.1458 .

5.4.4. 4-Acetamido- N -(2-pivaloyloxyethyl)-N(pivaloyloxymethyl)benzenesulfonamide (4d)

According to the general procedure, 4d was obtained from 3d ($2.0 \mathrm{~g}, 5.8 \mathrm{mmol}$). Chromatographic purification (chloroform/acetone, $98: 2, \mathrm{v} / \mathrm{v}$) gave $\mathbf{4 d}(2.2 \mathrm{~g}, 83 \%)$ as a white solid; mp 73$76^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, $3.41\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.6,2 \mathrm{H}\right), 4.24\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.6,2 \mathrm{H}\right), 5.52(\mathrm{~s}, 2 \mathrm{H}), 7.64-$ $7.68(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) \delta_{\mathrm{c}}(50 \mathrm{MHz}$, CDCl_{3}) 24.87, 26.98, 27.31, 38.87, 45.38, 62.53, 72.41, 119.39, $129.00,134.51,142.50,168.77,178.42,178.47 . v_{\text {max }}(\mathrm{KBr}) 3336 \mathrm{~m}$ (NH), 1738s ($\mathrm{C}=0$), 1709s ($\mathrm{C}=0$), 1679s ($\mathrm{C}=\mathrm{O}$), 1593s, 1537br s, 1351s $\left(\mathrm{SO}_{2}\right), 1158 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{NaS}$ $(\mathrm{M}+\mathrm{Na})^{+} 479.1822$, found 479.1828 .

5.5. General procedure for the coupling of 4 with thymine, uracil, or 5-fluorouracil

A mixture of a nucleobase (thymine, uracil, or 5-fluorouracil) (2.0 mmol) and N, O-bis-(trimethylsilyl)acetamide (BSA, 815 mg , $4.0 \mathrm{mmol}, 1.0 \mathrm{~mL}$) in dry acetonitrile (10 mL) was stirred at room temperature for 1 h under an argon atmosphere. Then, a solution of $4(1.0 \mathrm{mmol})$ in dry acetonitrile (1 mL) and subsequently a Lewis acid [TMSOTf ($370 \mathrm{mg}, 1.7 \mathrm{mmol}, 0.3 \mathrm{~mL}$), or 1 M solution of tin(IV) chloride in dichloromethane (3 mL)] were added. The reaction mixture was kept at room temperature for 2 days. Ethyl acetate $(50 \mathrm{~mL})$ and a saturated aqueous solution of sodium bicarbonate (1 mL) were added. The mixture was stirred for 1 h and then filtered through a Celite pad. The organic phase was separated, washed with brine, and dried. The volatiles was distilled off. The residue was purified by column chromatography or crystallization
to give the corresponding azanucleoside $\mathbf{5 , 6}$, or $\mathbf{7}$; the solvents are given in parentheses below.

5.5.1. 1-[N-(4-Nitrobenzenesulfonyl)-N-(2-pivaloyloxyethyl) aminomethyl]-5-methyl-1H,3H-pyrimidin-2,4-dione (5a)

According to the general procedure, $\mathbf{5 a}$ was obtained from $\mathbf{4 a}$ ($445 \mathrm{mg}, 1 \mathrm{mmol}$) and thymine in the presence of TMSOTf. Chromatographic purification (chloroform/acetone, 9:1, v/v) gave 5a ($315 \mathrm{mg}, 67 \%$) as a white solid; $\mathrm{mp} 172-173^{\circ} \mathrm{C} . \delta_{\mathrm{H}}(200 \mathrm{MHz}$, DMSO-d d_{6}) 1.11 [s, $\left.9 \mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.72\left[\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\right]$, 3.74-3.79 (m, 2H, PivO-CH2-CH2-), 4.13-4.18 (m, 2H, PivO-CH $2_{2}-$ $\left.\mathrm{CH}_{2}-\right), 5.13\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}-\right), 7.40\left[\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\right]$, 8.06-8.10 (m, 2H), 8.35-8.39 (m, 2H), 11.26 [br s, 1H, NH]. δ_{c} (50 MHz , DMSO- d_{6},) $11.83\left[-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\right], 26.69\left[-\mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $37.50\left[-\mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 48.09$ ($\left.\mathrm{PivO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 60.32\left(-\mathrm{N}-\mathrm{CH}_{2}-\right.$ $\mathrm{N}-)$, $61.61\left(\mathrm{PivO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 108.91$ [- $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\right], 124.49(\mathrm{Ar})$, 128.22 (Ar), 139.92 [$-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-$], 144.93 (Ar), 149.68 (Ar), 150.83 [$-\mathrm{N}-\mathrm{C}(\mathrm{O})-\mathrm{NH}-$], 163.62 [-NH-C(O)-C $\left(\mathrm{CH}_{3}\right)=$], 177.03 [$\left.\mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$. $v_{\max }(\mathrm{KBr}) 1722 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1712 \mathrm{~s} \quad(\mathrm{C}=\mathrm{O}), 1683 \mathrm{~s}$ ($\mathrm{C}=\mathrm{O}$), 1533s $\left(\mathrm{NO}_{2}\right), 1354 \mathrm{~s}\left(\mathrm{NO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{8}$ $\mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$491.1207, found 491.1206.

5.5.2. 1-[N-(3-Nitrobenzenesulfonyl)-N-(2-pivaloyloxyethyl) aminomethyl]-5-methyl-1H,3H-pyrimidin-2,4-dione (5b)

According to the general procedure, $\mathbf{5 b}$ was obtained from $\mathbf{4 b}$ ($445 \mathrm{mg}, 1 \mathrm{mmol}$) and thymine in the presence of TMSOTf. Crystallization (methanol/diethyl ether, 5:1, v/v) gave $\mathbf{5 b}$ ($370 \mathrm{mg}, 79 \%$) as a white solid; $\mathrm{mp} 160-162^{\circ} \mathrm{C}$. The filtrate was concentrated to dryness, and the residue was purified by column chromatography (chloroform/acetone, 95:5, v/v) to give the additional amount of 5b $(49 \mathrm{mg}, 10 \%)$ as a white solid. $\delta_{\mathrm{H}}\left(\right.$ DMSO- $\left._{6} 200 \mathrm{MHz}\right) 1.12[\mathrm{~s}$, $\left.9 \mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.71\left[\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 1.0,3 \mathrm{H},-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$], 3.76-3.82 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{PivO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ or PivO- $\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), $4.14-4.19$ ($\mathrm{m}, 2 \mathrm{H}$, PivO- $\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ or PivO- $\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), 5.22 (s, $2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}-$), $7.45\left[\mathrm{q},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 1.0,1 \mathrm{H},-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{]}, 7.85-7.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})\right.$, 8.25-8.29 (m, 1H, Ar-H), 8.43-8.53 (m, 2H, Ar-H), 11.23 (br s, 1H, $\mathrm{NH}) . \delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}, 50 \mathrm{MHz}\right) 11.87,26.82,38.17,48.32,60.74$, $61.95,109.13,121.36,127.78,131.62,132.74,140.23,141.32$, 147.74, 151.00, 163.74, 177.24. $v_{\text {max }}(\mathrm{KBr}) 1718 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1710 \mathrm{~s}$ ($\mathrm{C}=\mathrm{O}$), 1681s $(\mathrm{C}=0)$, 1531s $\left(\mathrm{NO}_{2}\right), 1351 \mathrm{~s}\left(\mathrm{NO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$491.1207, found 491.1196.

5.5.3. 1-[N-(2-Nitrobenzenesulfonyl)-N-(2-pivaloyloxyethyl) aminomethyl]-5-methyl-1H,3H-pyrimidin-2,4-dione (5c)

According to the general procedure, $\mathbf{5 c}$ was obtained from 4c ($445 \mathrm{mg}, 1 \mathrm{mmol}$) and thymine in the presence of TMSOTf. Chromatographic purification (chloroform/acetone, 95:5, v/v) gave 5c ($248 \mathrm{mg}, 54 \%$) as a white solid; $\mathrm{mp} 129-130^{\circ} \mathrm{C} . \delta_{\mathrm{H}}(200 \mathrm{MHz}$, DMSO- d_{6}) 1.11 (s, 9H), 1.63 (br s, 3H), 3.83-8.87 (m, 2H), 4.13$4.18(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.76-8.03(\mathrm{~m}, 4 \mathrm{H})$, 11.30 (br s, 1H, NH). $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$) 11.93, 26.81, 38.15, 48.06, 59.70, 61.44, 109.11, 124.66, 129.07, 132.34, 132.80, $134.88,139.54,147.44,151.26,163.72,177.23 . v_{\max }(\mathrm{KBr}) 1738 \mathrm{~s}$ ($\mathrm{C}=\mathrm{O}$), 1712s $(\mathrm{C}=0)$, 1674s $(\mathrm{C}=0)$, 1540s $\left(\mathrm{NO}_{2}\right)$, 1366s $\left(\mathrm{NO}_{2}\right)$. HRMS m / z calcd $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$491.1207, found 491.1226.
5.5.4. 1-[N-(4-Acetamidobenzenesulfonyl)-N-(2-pivaloyloxye-thyl) aminomethyl]-5-methyl-1H,3H-pyrimidin-2,4-dione (5d)

According to the general procedure, 5d was obtained from 4d ($228 \mathrm{mg}, 0.5 \mathrm{mmol}$) and thymine in the presence of TMSOTf. Chromatographic purification (chloroform/acetone, $8: 2, \mathrm{v} / \mathrm{v}$) gave 5d ($152 \mathrm{mg}, 63 \%$) as a white solid; mp $115-117^{\circ} \mathrm{C} . \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.18\left[\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.89\left[\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 1.2,3 \mathrm{H},-\right.$ $\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{]}, 2.20\left[\mathrm{~s}, 3 \mathrm{H},-\mathrm{NH}-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 3.69\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.4,2 \mathrm{H}\right.$, PivO- $\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ or PivO- $\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), 4.18 (t, ${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.4,2 \mathrm{H}$, PivO-
$\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - or PivO- $\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), $5.22\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}-\right.$), $7.34\left[\mathrm{q},{ }^{4} \mathrm{~J}\right.$ н-н $\left.1.2,1 \mathrm{H},-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\right], 7.63-7.71(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.92[\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\left.-\mathrm{NH}-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 9.07$ [br s, $\left.1 \mathrm{H},-\mathrm{C}(\mathrm{O})-\mathrm{NH}-\mathrm{C}(\mathrm{O})-\right] \delta_{\mathrm{C}}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 12.42, 24.82, 27.31, 38.88, 48.10, 60.94, 62.47, 111.37, 119.56, 128.14, 134.33, 139.83, 142.86, 151.37, 164.08, 168.99, 178.40. $v_{\max }(\mathrm{KBr}) 3320 \mathrm{~m}(\mathrm{NH})$, $1742 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, $1735 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, 1716s ($\mathrm{C}=\mathrm{O}$), 1685s ($\mathrm{C}=0$), 1664m, 1592m, 1533m. HRMS m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+} 503.1571$, found 503. 1595.

5.5.5. 1-[N-(4-Nitrobenzenesulfonyl)-N-(2-pivaloyloxyethyl)

 aminomethyl]-1H,3H-pyrimidin-2,4-dione (6a)According to the general procedure, $\mathbf{6 a}$ was obtained from 4a ($445 \mathrm{mg}, 1 \mathrm{mmol}$) and uracil in the presence of TMSOTf. Chromatographic purification (chloroform/acetone, $9: 1, \mathrm{v} / \mathrm{v}$) gave $\mathbf{6 a}(343 \mathrm{mg}$, 76%) as a white solid; $\mathrm{mp} 213-215^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 1.11$ ($\mathrm{s}, 9 \mathrm{H}$), $3.75\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.2,2 \mathrm{H}\right), 4.14\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.2,2 \mathrm{H}\right), 5.25(\mathrm{~s}, 2 \mathrm{H}), 5.61$ (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 8.0,1 \mathrm{H}\right), 7.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 8.0,1 \mathrm{H}\right), 8.07-8.12(\mathrm{~m}, 2 \mathrm{H}), 8.34-8.40$ ($\mathrm{m}, 2 \mathrm{H}$), 11.26 (br s, 1H, NH). $\delta_{\mathrm{c}}\left(50 \mathrm{MHz}\right.$, DMSO-d d_{6}) 26.82, 38.13, $48.20,60.85,61.76,101.59,124.67,128.32,144.65,144.93,149.91$, 151.04, 163.24, $177.20 v_{\max }(\mathrm{KBr}) 1731 \mathrm{~s}(\mathrm{C}=0)$, 1716s $(\mathrm{C}=\mathrm{O})$, $1707 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1685 \mathrm{~s}, 1533 \mathrm{~s}\left(\mathrm{NO}_{2}\right), 1349 \mathrm{~s}\left(\mathrm{NO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+} 477.1051$, found 477.1068.

5.5.6. 1-[N-(3-Nitrobenzenesulfonyl)- N-(2-pivaloyloxyethyl) minomethyl]-1H,3H-pyrimidin-2,4-dione (6b)

According to the general procedure, $\mathbf{6 b}$ was obtained from 4b $(1.25 \mathrm{~g}, 2.8 \mathrm{mmol})$ and uracil in the presence of TMSOTf. Chromatographic purification (chloroform/acetone, 95:5, v/v) gave 6b ($971 \mathrm{mg}, 76 \%$) as a white solid; $\mathrm{mp} 142-143^{\circ} \mathrm{C} . \delta_{\mathrm{H}}(200 \mathrm{MHz}$, DMSO- d_{6}) 1.11 ($\mathrm{s}, 9 \mathrm{H}$), 3.77-3.79 (m, 2H), 4.12-4.17 (m, 2H), $5.27(\mathrm{~s}, 2 \mathrm{H}), 5.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 8.0,1 \mathrm{H}\right), 7.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 8.0,1 \mathrm{H}\right), 7.86-$ $7.94(\mathrm{~m}, 1 \mathrm{H}), 8.25-8.30(\mathrm{~m}, 1 \mathrm{H}), 8.45-8.55(\mathrm{~m}, 2 \mathrm{H}), 11.25$ (br s, $1 \mathrm{H}, \mathrm{NH}) . \delta_{\mathrm{C}}\left(50 \mathrm{MHz}\right.$, DMSO-d d_{6}) 26.82, $38.13,48.24,60.98,61.91$, $101.54,121.46,127.85,131.62,132.70,141.11,144.73,147.86$, 151.04, 163.17, 177.19. $v_{\text {max }}(\mathrm{KBr}) 1729 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1715 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, 1703s ($\mathrm{C}=\mathrm{O}$), 1683s, 1534s $\left(\mathrm{NO}_{2}\right)$, 1355s $\left(\mathrm{NO}_{2},\right)$. HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+} 477.1051$, found 477.1065.

5.5.7. 1-[N-(2-Nitrobenzenesulfonyl)- N-(2-pivaloyloxyethyl) aminomethyl]-1H,3H-pyrimidin-2,4-dione (6c)

According to the general procedure, $\mathbf{6 c}$ was obtained from 4c ($445 \mathrm{mg}, 1 \mathrm{mmol}$) and uracil in the presence of TMSOTf. Chromatographic purification (chloroform/acetone, 95:5, v/v) gave 6c ($245 \mathrm{mg}, 54 \%$) as a white solid; mp $145-146^{\circ} \mathrm{C} . \delta_{\mathrm{H}}(200 \mathrm{MHz}$, DMSO- d_{6}) 1.09 ($\mathrm{s}, 9 \mathrm{H}$), 3.78-3.83 (m, 2H), 4.09-4.15 (m, 2H), 5.35 $(\mathrm{s}, 2 \mathrm{H}), 5.53\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}} 8.0,1 \mathrm{H}\right), 7.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 8.0,1 \mathrm{H}\right), 7.79-8.05(\mathrm{~m}$, 4 H), 11.31 (br s, $1 \mathrm{H}, \mathrm{NH}$). $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}\right.$, DMSO-d d_{6}) 26.80, 38.12, $47.71,60.00,61.39,101.78,124.85,129.27,131.96,132.86,135.01$, 143.98, 147.46, 151.32, 163.18, 177.20. $v_{\max }(\mathrm{KBr}) 1737 \mathrm{~s}(\mathrm{C}=0)$, $1704 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1686 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1656 \mathrm{~s}, 1541 \mathrm{~s}\left(\mathrm{NO}_{2}\right), 1367 \mathrm{~s}\left(\mathrm{NO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+} 477.1051$, found 477.1070.

5.5.8. 1-[N-4-(Acetamidobenzenesulfonyl)- N-(2-pivaloyloxye-thyl)aminomethyl]-1H,3H-pyrimidin-2,4-dione (6d)

According to the general procedure, $\mathbf{6 d}$ was obtained from 4d ($228 \mathrm{mg}, 0.5 \mathrm{mmol}$) and uracil in the presence of TMSOTf. Chromatographic purification (chloroform/acetone, 8:2, v/v) gave 6d ($148 \mathrm{mg}, 66 \%$) as a white solid; $\mathrm{mp}>121^{\circ} \mathrm{C}(\mathrm{dec}) . \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.19(\mathrm{~s}, 9 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 3.68\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.6,2 \mathrm{H}\right), 4.18\left(\mathrm{t},{ }^{3} \mathrm{~J}\right.$ н-н $5.6,2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 5.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 8.2,1 \mathrm{H}\right), 7.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 8.2\right.$, $1 \mathrm{H}), 7.63-7.70(\mathrm{~m}, 5 \mathrm{H}), 8.97$ (br s, $1 \mathrm{H}, \mathrm{NH}) \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $24.88,27.34,38.87,48.05,61.23,62.47,102.85,119.63,128.20$, $134.25,142.80,144.17,151.12,163.12,168.85,178.37 . v_{\max }(\mathrm{KBr})$ 3318m (NH), 1748s ($\mathrm{C}=0$), 1731s ($\mathrm{C}=0$), 1712s ($\mathrm{C}=\mathrm{O}$), 1681s ($\mathrm{C}=\mathrm{O}$), $1632 \mathrm{~m}, 1592 \mathrm{~m}, 1533 \mathrm{~m}$. HRMS m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{NaS}$ $(\mathrm{M}+\mathrm{Na})^{+} 489.1414$, found 489.1438 .
5.5.9. 1-[N-(4-Nitrobenzenesulfonyl)- N -(2-pivaloyloxyethyl) aminomethyl]-5-fluoro-1 H,3H-pyrimidin-2,4-dione (7a)

According to the general procedure, 7a was obtained from 4a ($445 \mathrm{mg}, 1 \mathrm{mmol}$) and 5 -fluorouracil in the presence of TMSOTf. Crystallization (methanol) gave $\mathbf{7 a}$ ($275 \mathrm{mg}, 58 \%$) as a white solid; $\mathrm{mp} 154-155^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 1.10(\mathrm{~s}, 9 \mathrm{H}), 3.73-3.78$ $(\mathrm{m}, 2 \mathrm{H}), 4.12-4.17(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 7.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}} 6.6,1 \mathrm{H}\right)$, 8.10-8.15 (m, 2H), 8.38-8.42 (m, 2H), 11.84 (br s, 1H, NH). δ_{C} (50 MHz , DMSO- d_{6}) 26.82, 38.16, 48.34, 61.10, 61.56, 124.73, 128.44, 128.81 (d, ${ }^{2} J_{\text {C-F }} 34.9$), 139.47 (d, ${ }^{1} J_{\text {C-F }} 229.9$), 144.85 , 149.74, 149.98, 157.15 (d, ${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 25.8$), $177.20 . v_{\max }(\mathrm{KBr}) 1718 \mathrm{~s}$ $(\mathrm{C}=0), 1705 \mathrm{~s}(\mathrm{C}=0), 1666 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1537 \mathrm{~s}\left(\mathrm{NO}_{2}\right), 1349 \mathrm{~s}\left(\mathrm{NO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{FNaS}(\mathrm{M}+\mathrm{Na})^{+} 495.0956$, found 495.0937.

5.5.10. 1-[N-(3-Nitrobenzenesulfonyl)-N-(2-pivaloyloxyethyl) aminomethyl]-5-fluoro- $\mathbf{1 H}, 3 \mathrm{H}$-pyrimidin-2,4-dione (7b)

According to the general procedure, $\mathbf{7 b}$ was obtained from $\mathbf{4 b}$ ($445 \mathrm{mg}, 1 \mathrm{mmol}$) and 5-fluorouracil in the presence of TMSOTf. Chromatographic purification (chloroform/acetone, 85:15, v/v) gave 7b ($322 \mathrm{mg}, 68 \%$) as a white solid; mp $132-133^{\circ} \mathrm{C} . \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.13(\mathrm{~s}, 9 \mathrm{H}), 3.68-3.74(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.21(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{~s}$, $2 \mathrm{H}), 7.74-7.83(\mathrm{~m}, 2 \mathrm{H}), 8.11-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.41-8.47(\mathrm{~m}, 1 \mathrm{H})$, $8.52-8.54(\mathrm{~m}, 1 \mathrm{H}), 9.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) . \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 27.17$, 38.79, 48.10, 61.34, 61.67, 121.94, 127.86 (d, $^{2}{ }^{2}$ Cl- $^{2} 33.4$), 128.02, $131.25,132.54,140.67$ (d, ${ }^{1} J_{\text {C-F }} 238.6$), 141.60, 148.57, 150.21, 157.19 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 26.6$), 178.28. $v_{\max }(\mathrm{KBr}) 1724 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1703 \mathrm{~s}$ ($\mathrm{C}=0$), 1676s $(\mathrm{C}=0)$, 1534s $\left(\mathrm{NO}_{2}\right)$, 1353s $\left(\mathrm{NO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{FNaS}(\mathrm{M}+\mathrm{Na})^{+}, 495.0956$, found 495.0974.

5.5.11. 1-[N-(2-Nitrobenzenesulfonyl)- N-(2-pivaloyloxyethyl) aminomethyl]-5-fluoro- $\mathbf{1 H}, 3 \mathrm{H}$-pyrimidin- 2,4 -dione (7 c)

According to the general procedure, $7 \mathbf{c}$ was obtained from $\mathbf{4 c}$ ($445 \mathrm{mg}, 1 \mathrm{mmol}$) and 5 -fluorouracil in the presence of TMSOTf. Chromatographic purification (chloroform/acetone, 95:5, v/v) gave 7c ($329 \mathrm{mg}, 70 \%$) as a white solid; mp $162-163^{\circ} \mathrm{C} . \delta_{\mathrm{H}}(200 \mathrm{MHz}$, DMSO- d_{6}) $1.10(\mathrm{~s}, 9 \mathrm{H}), 3.80-3.86(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.17(\mathrm{~m}, 2 \mathrm{H})$, $5.32(\mathrm{~s}, 2 \mathrm{H}), 7.69-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.95(\mathrm{~m}, 2 \mathrm{H}), 8.01-8.05(\mathrm{~m}$, 2 H), 11.84 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}\right.$, DMSO-d d_{6}) 26.79, 38.15, 47.96, 60.25, 61.26, 124.79, 128.20 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 33.8$), 129.32, 131.96, $132.86,135.03,139.38$ (d, ${ }^{1}{ }_{C-F} 230.3$), $147.45,149.95,157.10$ (d, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}} 25.8\right)$, 177.21. $v_{\max }(\mathrm{KBr}) 1724 \mathrm{~s}(\mathrm{C}=0), 1694 \mathrm{~s}(\mathrm{C}=0), 1666 \mathrm{~s}$ ($\mathrm{C}=0$), $1542 \mathrm{~s} \quad\left(\mathrm{NO}_{2}\right), 1368 \mathrm{~s} \quad\left(\mathrm{NO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{FNaS}(\mathrm{M}+\mathrm{Na})^{+} 495.0956$, found 495.0970 .
5.5.12. 1-[N-(4-Acetamidobenzenesulfonyl]- N -(2-pivaloyloxye-thyl)aminomethyl]-5-fluoro-1H,3H-pyrimidin-2,4-dione (7d)

According to the general procedure, 7d was obtained from 4d ($228 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 5 -fluorouracil in the presence of tin(IV) chloride. Chromatographic purification (chloroform/methanol, $98: 2, \mathrm{v} / \mathrm{v}$) gave $7 \mathbf{7 d}\left(127 \mathrm{mg}, 52 \%\right.$) as a white solid; $\mathrm{mp} 168{ }^{\circ} \mathrm{C}$ (subl.). $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$, DMSO- d_{6}) 1.09 ($\left.\mathrm{s}, 9 \mathrm{H}\right), 2.09$ (s, 3H), 3.60$3.65(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.12(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 7.71-7.77(\mathrm{~m}, 4 \mathrm{H})$, 7.86 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}} 6.4,1 \mathrm{H}$), 10.38 (br s, $1 \mathrm{H}, \mathrm{NH}$), 11.89 (br s, $1 \mathrm{H}, \mathrm{NH}$). $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}\right.$, DMSO- d_{6}) 24.18, 26.78, 47.78, 61.03, 61.70, 118.61, 127.97, 128.74 (d, ${ }^{2} J_{\mathrm{C}-\mathrm{F}} 34.55$), 132.60, 139.35 (d, ${ }^{1} J_{\mathrm{C}-\mathrm{F}} 230.60$), 143.66, 149.82, 157.19 ($\mathrm{d}^{2}{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 25.45$), 169.10, 177.14. $v_{\text {max }}(\mathrm{KBr})$ $3383 \mathrm{~m}(\mathrm{NH})$, 1742s ($\mathrm{C}=\mathrm{O}$), 1719s ($\mathrm{C}=\mathrm{O}$), 1705s ($\mathrm{C}=\mathrm{O}$), 1678s $(\mathrm{C}=\mathrm{O}), 1591 \mathrm{~m}, 1533 \mathrm{~m}$. HRMS m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{FNaS}$ $(\mathrm{M}+\mathrm{Na})^{+} 507.1320$, found 507.1342 .

5.6. General method for the reduction of the thymine derivatives $5 \mathrm{a}-\mathrm{c}$ with sodium dithionite in alkaline medium

A mixture of $\mathbf{5 a - c}(0.4 \mathrm{mmol})$, sodium dithionite $(350 \mathrm{mg}$, 2 mmol) and 4% aqueous solution of sodium hydroxide (20 mL) was heated at $90^{\circ} \mathrm{C}$ for 1 h . Then, the mixture was cooled to
room temperature, neutralized with an aqueous hydrochloric acid (5\%), and extracted with ethyl acetate ($5 \times 10 \mathrm{~mL}$). The extracts were combined, washed with brine (5 mL) and dried. The solvent was distilled off. The residue was purified by column chromatography (chloroform/methanol/ NH_{3} aq, 95:5:0.1, v/v/v) to give 8a-c.

5.6.1. 1-[N-(4-Aminobenzenesulfonyl)- N-(2-hydroxyethyl) aminomethyl]-5-methyl-1H,3H-pyrimidin-2,4-dione (8a)

Method A. According to the general procedure, 8a was obtained from $\mathbf{5 a}(100 \mathrm{mg}, 0.2 \mathrm{mmol})$. Chromatographic purification afforded $8 \mathbf{8 a}(42 \mathrm{mg}, 59 \%)$ as a white solid; $\mathrm{mp} 179-180^{\circ} \mathrm{C} . \delta_{\mathrm{H}}$ (DMSO-d $\left.{ }_{6}, 200 \mathrm{MHz}\right) 1.75(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.45$ (m, 2H), 4.76 (t, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.2,1 \mathrm{H}, 0 \mathrm{OH}\right), 5.07$ (s, 2H), 6.09 (br s, 2 H , NH_{2}), 6.57-6.62 (m, 2H), 7.36-7.44 (m, 2H), 7.36 (br s, 1H), 11.29 (br s, 1H, NH). $\delta_{c}\left(\right.$ DMSO- $\left.d_{6}, 50 \mathrm{MHz}\right) 11.89,50.31$, 59.53, 60.27, 108. 45, 112.56, 123.66, 128.58, 139.92, 150.89, $153.02,163.81 . v_{\max }(\mathrm{KBr}) 3435 \mathrm{~m}(\mathrm{NH}), 3374 \mathrm{~m}(\mathrm{OH}), 3335 \mathrm{~m}$ (NH), $1719(\mathrm{C}=0), 1687(\mathrm{C}=0), 1630 \mathrm{~m}, 1361 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1151 \mathrm{~s}$ $\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$377.0890, found 377.0898.

Method B. (Scheme 5). A mixture of $\mathbf{5 d}(47 \mathrm{mg}, 0.1 \mathrm{mmol})$ and an aqueous sodium hydroxide ($4 \%, 3 \mathrm{~mL}$) was heated at $90^{\circ} \mathrm{C}$ for 2 h . Then, the mixture was cooled to room temperature, neutralized with aqueous hydrochloric acid (5\%), and extracted with ethyl acetate ($5 \times 5 \mathrm{~mL}$). The extracts were combined, washed with brine (5 mL) and dried. The solvent was distilled off. The residue was purified by column chromatography (chloroform/methanol/ NH_{3} $\mathrm{aq}, 95: 5: 0.1, \mathrm{v} / \mathrm{v} / \mathrm{v}$) to afford $\mathbf{8 a}(14 \mathrm{mg}, 39 \%)$.

5.6.2. 1-[N-(3-Aminobenzenesulfonyl)- N-(2-hydroxyethyl) aminomethyl]-5-methyl-1H,3H-pyrimidin-2,4-dione (8b)

According to the general procedure, $\mathbf{8 b}$ was obtained from $\mathbf{5 b}$ ($143 \mathrm{mg}, 0.3 \mathrm{mmol}$). Chromatographic purification afforded 8b ($74 \mathrm{mg}, 52 \%$) as a white solid; $\mathrm{mp} 168-169^{\circ} \mathrm{C} . \delta_{\mathrm{H}}(200 \mathrm{MHz}$, DMSO- d_{6}) $1.74(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.47(\mathrm{~m}, 4 \mathrm{H}), 4.82\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.0\right.$, $1 \mathrm{H}, \mathrm{OH}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.61\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.77-6.87(\mathrm{~m}, 2 \mathrm{H})$, $6.98(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 11.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NH). $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}\right.$, DMSO- d_{6}), $12.09,50.76,59.77,60.45,108.89$, 110.98, 113.01, 117.89, 129.84, 139.95, 139.97, 149.66, 151.15, 164.02. $v_{\max }(\mathrm{KBr}) 3471 \mathrm{~m}(\mathrm{NH}), 3405 \mathrm{~m}(\mathrm{OH}), 3362 \mathrm{~m}(\mathrm{NH})$, 1716s ($\mathrm{C}=0$), 1685s ($\mathrm{C}=0$), 1640m, 1361s $\left(\mathrm{SO}_{2}\right), 1151 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+} 377.0890$, found 377.0889 .

5.6.3. 1-[N-(2-Aminobenzenesulfonyl)- N-(2-hydroxyethyl)

 aminomethyl]-5-methyl-1H,3H-pyrimidin-2,4-dione (8c)Method A. According to the general procedure, 8 c was obtained from $5 \mathbf{5 c}(187 \mathrm{mg}, 0.4 \mathrm{mmol})$. Chromatographic purification afforded 8c ($7 \mathrm{mg}, 5 \%$) as a white solid; $\mathrm{mp} 138-139^{\circ} \mathrm{C}$. δ_{H} (200 MHz , DMSO-d d_{6}) $1.71(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.57(\mathrm{~m}, 4 \mathrm{H}), 4.80(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{OH}$), $5.21(\mathrm{~s}, 2 \mathrm{H}), 6.02$ (br s, 2H, NH2), 6.58-6.66 (m, 1H), $6.82-6.86(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 1 \mathrm{H}), 11.00$ (br s, 1H, NH). $\delta_{\mathrm{c}}\left(50 \mathrm{MHz}\right.$, DMSO-d d_{6}) 12.05, 49.94, 59.32, 59.97, 108.73, 115.54, 117.45, 118.74, 129.26, 134.33, 139.92, 146.89, $151.20,164.00 . v_{\max }(\mathrm{KBr}) 3471 \mathrm{~m}(\mathrm{NH}), 3406 \mathrm{~m}(\mathrm{OH}), 3351 \mathrm{~m}$ (NH), 1714s ($\mathrm{C}=0$), 1386s ($\mathrm{C}=0$), 1625m, 1361s (SO_{2}), 1143s $\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$377.0890, found 377.0903.

Method B. A mixture of $\mathbf{9 c}(107 \mathrm{mg}, 0.24 \mathrm{mmol})$, concentrated ammonium hydroxide (5 mL), and methanol (5 mL) was heated in a sealed tube at $70^{\circ} \mathrm{C}$ for 1 day. The volatiles were evaporated to dryness under reduced pressure. The residue was purified by column chromatography (chloroform/methanol, $95: 5, \mathrm{v} / \mathrm{v}$) to afford $\mathbf{8 c}(68 \mathrm{mg}, 79 \%)$.

5.7. General method for the reduction of the thymine derivatives 5a-c with sodium dithionite under neutral conditions

A mixture of 5a-c (0.3 mmol), sodium dithionite $(260 \mathrm{mg}$, 1.5 mmol) and water (15 mL) was heated at $90^{\circ} \mathrm{C}$ for 1 h . The mixture was cooled to room temperature and extracted with ethyl acetate ($5 \times 10 \mathrm{~mL}$). The extracts were combined, washed with brine (5 mL) and dried. The solvent was distilled off. The residue was purified by column chromatography (chloroform/methanol, 95:5, v / v) to yield 9a-c.

5.7.1. 1-[N-(4-Aminobenzenesulfonyl)- N-(2-pivaloyloxyethyl) aminomethyl]-5-methyl-1H,3H-pyrimidin-2,4-dione (9a)

According to the general procedure, 9a was obtained from 5a ($140 \mathrm{mg}, 0.3 \mathrm{mmol}$). Chromatographic purification afforded 9a ($70 \mathrm{mg}, 58 \%$) as a white solid; $\mathrm{mp} 186-190^{\circ} \mathrm{C}$ (dec). δ_{H} ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.17(\mathrm{~s}, 9 \mathrm{H}), 1.91$ (d, $\left.{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 1.0,3 \mathrm{H}\right), 3.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}}\right.$ н $5.4,2 \mathrm{H}$), 4.15 (d, $\left.{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.4,2 \mathrm{H}\right), 4.26$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 5.21 (s, 2H), 6.62-6.66 (m, 2H), 7.47-7.51 (m, 2H), 7.37 (d, ${ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 1.0,1 \mathrm{H}$), 9.88 (br s, $1 \mathrm{H}, \mathrm{NH}) . \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.43,22.27,38.82,47.59$, $60.65,62.41,111.34,114.21,127.45,129.11,139.77,151.31$, 151.40, 164.08, 178.30. $v_{\max }(\mathrm{KBr}) 3483 \mathrm{~m}(\mathrm{NH}), 3381 \mathrm{~m}(\mathrm{NH})$, 1730s ($\mathrm{C}=0$), 1717s ($\mathrm{C}=0$), 1663s ($\mathrm{C}=0$), 1630m, 1594m, 1314s $\left(\mathrm{SO}_{2}\right)$, 1142s $\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$ 461.1465, found 461.1488.

5.7.2. 1-[N-(3-Aminobenzenesulfonyl)-N-(2-pivaloyloxyethyl) aminomethyl]-5-methyl-1H,3H-pyrimidin-2,4-dione (9b)

According to the general procedure, $\mathbf{9 b}$ was obtained from 5b ($141 \mathrm{mg}, 0.3 \mathrm{mmol}$). Chromatographic purification afforded 9b ($71 \mathrm{mg}, 54 \%$) as a white solid; $\mathrm{mp}>163^{\circ} \mathrm{C}$ (dec). $\delta_{\mathrm{H}}(200 \mathrm{MHz}$, DMSO- d_{6}) 1.11 ($\mathrm{s}, 9 \mathrm{H}$), 1.72 ($\mathrm{s}, 3 \mathrm{H}$), 3.56-3.61 (m, 2H), 4.08-4.13 (m, 2H), $5.16(\mathrm{~s}, 2 \mathrm{H}), 5.62\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.77-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.98$ (br s, 1H), 7.14-7.26 (m, 2H), 11.34 (s, 1H, NH). $\delta_{\mathrm{C}}(50 \mathrm{MHz}$, DMSO- d_{6}) 12.03, 26.81, 38.13, 47.29, 59.94, 61.70, 109.00, 110.87, 112.88, 117.96, 129.88, 139.82, 139.97, 149.72, 151.24, $163.88,177.20 . v_{\max }(\mathrm{KBr}) 3404 \mathrm{~m}(\mathrm{NH}), 3353 \mathrm{~m}(\mathrm{NH}), 1729 \mathrm{~s}$ ($\mathrm{C}=0$), 1713s ($\mathrm{C}=0$), 1686s ($\mathrm{C}=0$), $1628 \mathrm{~m}, 1599 \mathrm{~m}, 1339 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$, $1157 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$ 461.1465, found 461.1471.

5.7.3. 1-[N-(2-Aminobenzenesulfonyl)-N-(2-pivaloyloxyethyl) aminomethyl]-5-methyl-1H,3H-pyrimidin-2,4-dione (9c)

According to the general procedure, 9 c was obtained from 5c ($187 \mathrm{mg}, 0.4 \mathrm{mmol}$). Chromatographic purification afforded 9c ($97 \mathrm{mg}, 56 \%$) as a white solid; mp $137-138^{\circ} \mathrm{C} . \delta_{\mathrm{H}}(200 \mathrm{MHz}$, DMSO- d_{6}) 1.11 ($\mathrm{s}, 9 \mathrm{H}$), 1.68 ($\left.\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 1.0,3 \mathrm{H}\right), 3.61-3.66(\mathrm{~m}, 2 \mathrm{H})$, 4.01-4.07 (m, 2H), 5.24 (s, 2H), 6.02 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.59-6.66 $(\mathrm{m}, 1 \mathrm{H}), 6.82-6.86(\mathrm{~m}, 1 \mathrm{H}), 7.20\left(\mathrm{q},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 1.0,1 \mathrm{H}\right), 7.26-7.30(\mathrm{~m}$, 1 H), $7.46-7.50(\mathrm{~m}, 1 \mathrm{H}), 11.26$ (br s, $1 \mathrm{H}, \mathrm{NH}$). $\delta_{\mathrm{c}}(50 \mathrm{MHz}$, DMSO$\left.d_{6}\right) 12.01,26.83,38.12,46.69,59.63,61.75,108.82,115.66$, 117.54, 118.80, 129.15, 134.44, 139.78, 146.86, 151.33, 163.90, 177.22. $v_{\max }(\mathrm{KBr}) 3475 \mathrm{~m}(\mathrm{NH})$, $3369 \mathrm{~m}(\mathrm{NH})$, 1733s $(\mathrm{C}=\mathrm{O})$, 1719s ($\mathrm{C}=0$), 1691s ($\mathrm{C}=\mathrm{O}$), 1621m, 1599m, 1324s (SO_{2}), 1144s $\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+} 461.1465$, found 461.1471.

5.8. General method for the palladium-catalysed transfer hydrogenation of derivatives 6a-c or 7a-c

A mixture of 6a-c or 7a-c (200 mg), cyclohexene (8 mL), palladium on charcoal ($10 \% \mathrm{Pd} / \mathrm{C}, 100 \mathrm{mg}$), and a solvent (ethanol, methanol, or 1,4 -dioxane; 15 mL) was heated in a sealed tube at $60^{\circ} \mathrm{C}$ for 1 day under an argon atmosphere. The catalyst was filtered off, and the filtrate was concentrated to dryness. The residue
was purified by column or preparative thin-layer chromatography to afford the corresponding products (see Schemes 3-5); the eluting solvents are given in parentheses below.

5.8.1. 1-[N-(4-Aminobenzenesulfonyl)- N-(2-pivaloyloxyethyl) aminomethyl]-1H,3H-pyrimidin-2,4-dione (10a)

According to the general procedure, 10a was obtained from 6a ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$) in ethanol. Column chromatography (chloroform/acetone, $95: 5, \mathrm{v} / \mathrm{v}$) provided $\mathbf{1 0 a}(54 \mathrm{mg}, 58 \%)$ as a white solid; $\mathrm{mp} 147-149^{\circ} \mathrm{C}$. $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$, DMSO- d_{6}) 1.18 (s , 9H), 3.59-3.65 (m, 2H), 4.13-4.18 (m, 2H), 4.24 (br s, 2H, NH_{2}), $5.24(\mathrm{~s}, 2 \mathrm{H}), 5.73\left(\mathrm{~m},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 8.0,1 \mathrm{H}\right), 6.62-6.68(\mathrm{~m}, 2 \mathrm{H})$, $7.46-7.54$ (m, 2H), 7.64 (d, ${ }^{3} J_{\mathrm{H}-\mathrm{H}} 8.0,1 \mathrm{H}$), 8.74 (br s, $1 \mathrm{H}, \mathrm{NH}$). $\delta_{c}\left(50 \mathrm{MHz}\right.$, DMSO-d d_{6}) 27.31, 38.83, 47.66, 61.02, 62.49, 102.81, 114.30, 127.29, 129.16, 144.17, 151.22, 151.34 163.24, 178.27. $v_{\text {max }}(\mathrm{KBr}) 3483 \mathrm{~m}(\mathrm{NH}), 3389 \mathrm{~m}(\mathrm{NH}), 1723 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1710 \mathrm{~s}$ ($\mathrm{C}=\mathrm{O}$), 1687s $(\mathrm{C}=0)$, 1629m, 1598m, 1324s (SO_{2}), 1146s $\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$447.1309, found 447.1330.

5.8.2. 1-[N-(3-Aminobenzenesulfonyl)- N-(2-pivaloyloxyethyl) aminomethyl]-1H,3H-pyrimidin-2,4-dione (10b)

According to the general procedure, 10b was obtained from $\mathbf{6 b}$ ($200 \mathrm{mg}, 0.44 \mathrm{mmol}$) in ethanol. Column chromatography (chloroform/acetone, 98:2, v/v) provided $\mathbf{1 0 b}$ ($117 \mathrm{mg}, 62 \%$) as a white solid; mp 147-148 ${ }^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 1.11$ (s, 9H), 3.55$3.60(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.11(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.6-5.64(\mathrm{~m}, 3 \mathrm{H})$, $6.79-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.98(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.56$ (d, ${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 7.8,1 \mathrm{H}$), 11.30 (br s, $1 \mathrm{H}, \mathrm{NH}$). $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ 26.84, 38.14, 47.53, 60.63, 61.86, 101.47, 110.96, 112.85, 118.00, $129.93,139.69,144.45,149.70,151.26,163.36,177.19$. $v_{\max }$ (KBr) 3373m (NH), 3305m (NH), 1740s ($\mathrm{C}=\mathrm{O}$), 1696s ($\mathrm{C}=\mathrm{O}$), 1679s (C=O), 1633m, 1599m, 1356s (SO_{2}), 1155s (SO_{2}). HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$447.1309, found 447.1330.
5.8.3. 1-[N-(2-Aminobenzenesulfonyl)- N-(2-pivaloyloxyethyl) aminomethyl]-1H,3H-pyrimidin-2,4-dione (10c)

According to the general procedure, 10c was obtained from 6c ($200 \mathrm{mg}, 0.44 \mathrm{mmol}$) in ethanol. Column chromatography (chloroform/acetone, $95: 5, \mathrm{v} / \mathrm{v}$) provided $\mathbf{1 0 c}(168 \mathrm{mg}, 89 \%)$ as a white solid; mp 146-147 ${ }^{\circ} \mathrm{C}$. $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$, DMSO- d_{6}) 1.10 (s, 9H), 3.573.63 (m, 2H), 3.97-4.02 (m, 2H), $5.30(\mathrm{~s}, 2 \mathrm{H}), 5.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 8.0\right.$, $1 \mathrm{H}), 6.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.59-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.8-6.87(\mathrm{~m}, 1 \mathrm{H})$, 7.27-7.35 (m, 1H), 7.46-7.50 (m, 1H), 7.56 (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 8.0,1 \mathrm{H}\right)$, 11.32 (br s, $1 \mathrm{H}, \mathrm{NH}$). $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}\right.$, DMSO- d_{6}) 26.84, 38.10, 46.68, $60.31,61.84,101.39,115.70,117.65,118.55,129.13,134.50$, $144.43,146.93,151.39,163.39,177.18 . v_{\max }(\mathrm{KBr}) 3471 \mathrm{~m}(\mathrm{NH})$, 3373m (NH), 1717s ($\mathrm{C}=0$), 1702s ($\mathrm{C}=\mathrm{O}$), 1695s ($\mathrm{C}=0$), 1670m, $1618 \mathrm{~m}, 1340 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1155 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{6}$ $\mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$447.1309, found 447.1287.
5.8.4. 1-[N-(4-Aminobenzenesulfonyl)- N-(2-pivaloyloxyethyl) aminomethyl]-5-fluoro-1H,3H-pyrimidin-2,4-dione (11a)

According to the general procedure, 11a was obtained from 7a ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) in 1,4-dioxane. Preparative thin-layer chromatography (chloroform/acetone, 85:15, v/v) provided 11a (30 mg , 64%) as a white solid; $\mathrm{mp} 153-155^{\circ} \mathrm{C}$. $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$, DMSO- d_{6}) 1.10 (s, 9H), 3.50-3.57 (m, 2H), 4.03-4.10 (m, 2H), 5.10 (s, 2H), 6.14 (s, 2H, NH ${ }_{2}$), 6.58-6.62 (m, 2H), 7.42-7.46 (m, 2H), 7.82 (d, ${ }^{3} J_{\text {H-F }} 6.8,1 \mathrm{H}$), 11.67 (br s, $1 \mathrm{H}, \mathrm{NH}$). $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}\right.$, DMSO- d_{6}) 26.84 , 38.15, 47.53, 61.04, 61.92, 112.79, 123.45, 128.26, (d, ${ }^{2} J_{C-F} 32.7$), 128.84, 138.83 (d, ${ }^{1} J_{\text {C-F }} 228.8$), 149.86, 153.50, 157.24 (d, ${ }^{2} J_{C-F}$ 25.8), 177.21. $v_{\max }(\mathrm{KBr}) 3478 \mathrm{~m}(\mathrm{NH}), 3364 \mathrm{~m}(\mathrm{NH}), 1731 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, 1716s ($\mathrm{C}=0$), 1691s ($\mathrm{C}=\mathrm{O}$), 1672m, 1619m, 1599m, 1330s (SO_{2}), $1145 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{FNaS}(\mathrm{M}+\mathrm{Na})^{+}$ 465.1215 , found 465.1235 .
5.8.5. 1-[N-(3-Aminobenzenesulfonyl)-N-(2-pivaloyloxyethyl) aminomethyl]-5-fluoro-1 $\mathrm{H}, 3 \mathrm{H}$-pyrimidin-2,4-dione (11b)

According to the general procedure, 11b was obtained from 7b ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) in 1,4-dioxane. Preparative thin-layer chromatography (chloroform/acetone, 85:15, v/v) provided 11b $(27 \mathrm{mg}, 57 \%)$ as a white solid; mp $151-152^{\circ} \mathrm{C} . \delta_{\mathrm{H}}(200 \mathrm{MHz}$, DMSO- d_{6}) 1.11 ($\mathrm{s}, 9 \mathrm{H}$), 3.58-3.62 (m, 2H), 4.07-4.12 (m, 2H), 5.16 (s, 2H), 5.63 (br s, 2H, NH2), 6.78-6.89 (m, 2H), 6.91-7.06 (m, 1H), 7.16-7.23 (m, 1H), 7.77 (d, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{F}} 6.6,1 \mathrm{H}\right), 11.89$ (br s, $1 \mathrm{H}, \mathrm{NH}) . \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) 26.86,38.19,47.79,60.86$, $61.68,110.85,112.89,118.10,128.53$ ($\mathrm{d},{ }^{2} \mathrm{~J}_{\text {C-F }} 33.8$), 129.98, 139.40 (d, ${ }^{1} J_{\text {C-F }} 229.5$), 139.74, 149.81, 149.89, 157.45 (d, ${ }^{2} J_{C-F}$ 25.8), 177.24. $v_{\max }(\mathrm{KBr}) 3365 \mathrm{~m}(\mathrm{NH}), 3315 \mathrm{~m}(\mathrm{NH}), 1738 \mathrm{~s}$ ($\mathrm{C}=0$), 1710s ($\mathrm{C}=0$), 1691s ($\mathrm{C}=0$), $1669 \mathrm{~m}, 1599 \mathrm{~m}, 1355 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$, $1165 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{FNaS}(\mathrm{M}+\mathrm{Na})^{+}$ 465.1215, found 465.1224.

5.8.6. 1-[N-(2-Aminobenzenesulfonyl)-N-(2-pivaloyloxyethyl) aminomethyl]-5-fluoro-1H,3H-pyrimidin-2,4-dione (11c)

According to the general procedure, 11c was obtained from 7c ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) in 1,4-dioxane. Preparative thin-layer chromatography (chloroform/acetone, 85:15, v/v) provided 11c ($29 \mathrm{mg}, 62 \%$) as a white solid; $\mathrm{mp}>170^{\circ} \mathrm{C}(\mathrm{dec}) . \delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO- d_{6}) 1.09 ($\mathrm{s}, 9 \mathrm{H}$), 3.64-3.66 (m, 2H), 3.99-4.01 (m, 2H), 5.24 (s, 2H), 6.03 (br s, 2H, NH2), 6.60-6.64 (m, 1H), 6.83 (d, ${ }^{3} \mathrm{~J}$ н-н $8.4,1 \mathrm{H}$), $7.27-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.48$ (d, ${ }^{3}{ }^{\mathrm{J}}$ н-н $8.0,1 \mathrm{H}$), 7.74 (d, ${ }^{3} J_{\mathrm{H}-\mathrm{F}} 6.8,1 \mathrm{H}$), 11.89 (br s, $1 \mathrm{H}, \mathrm{NH}$). $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right)$ $26.85,38.14,47.10,60.60,61.08,115.75,117.62,118.69,128.63$, (d, ${ }^{2} J_{\mathrm{C}-\mathrm{F}} 33.4$), 129.20, 134.58, 139.23 (d, ${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 229.8$), 146.92, 150.01, 157.27 (d, ${ }^{2} J_{\text {C-F }} 25.8$), 177.24. $v_{\text {max }}(\mathrm{KBr}) 3488 \mathrm{~m}$ (NH), 3367m (NH), 1735s ($\mathrm{C}=\mathrm{O}$), 1720s ($\mathrm{C}=\mathrm{O}$), 1699s ($\mathrm{C}=0$), 1664m, $1629 \mathrm{~m}, 1599 \mathrm{~m}, 1324 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1141 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{FNaS}(\mathrm{M}+\mathrm{Na})^{+} 465.1215$, found 465.1222.
5.8.7. 1-[N -(4-Methylaminobenzenesulfonyl)- N -(2-pivaloyloxy-ethyl)aminomethyl]-5-fluoro-1H,3H-pyrimidin-2,4-dione (12)

According to the general procedure, $\mathbf{1 2}$ was obtained from 7a ($100 \mathrm{mg}, 0.21 \mathrm{mmol}$ in methanol. Column chromatography (chloroform/acetone, $95: 5, \mathrm{v} / \mathrm{v}$) provided $12(43 \mathrm{mg}, 45 \%)$ as a white solid; mp 157-158 ${ }^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right) 1.10(\mathrm{~s}, 9 \mathrm{H}), 2.72$ (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.0,3 \mathrm{H}\right), 3.50-3.56(\mathrm{~m}, 2 \mathrm{H}), 4.04-4.10(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H})$, $6.56-6.61(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 2 \mathrm{H}), 6.71\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.0,1 \mathrm{H}, \mathrm{NH}\right)$, 7.82 (d, ${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}} 6.8,1 \mathrm{H}$), 11.48 (br s, $1 \mathrm{H}, \mathrm{NH}$). $\delta_{\mathrm{C}}(50 \mathrm{MHz}$, DMSO$\left.d_{6}\right) 26.81,29.10,38.11,47.53,60.98,61.91,110.80,123.35$, 128.64, (d, ${ }^{2}{ }_{\mathrm{C}-\mathrm{F}} 33.8$), 128.69, 139.32 (d, ${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 229.1$), 149.88, 153.53, 157.27 (d, ${ }^{2} J_{\text {C-F }} 25.4$), 177.17. $v_{\max }(\mathrm{KBr}) 3430 \mathrm{~m}(\mathrm{NH})$, 1738s ($\mathrm{C}=0$), 1722s ($\mathrm{C}=\mathrm{O}$), 1684s ($\mathrm{C}=\mathrm{O}$), 1664m, 1599m, 1319s $\left(\mathrm{SO}_{2}\right), 1150 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{FNaS}(\mathrm{M}+\mathrm{Na})^{+}$ 479.1371, found 479.1367.
5.8.8. 1-[N-(4-Dimethylaminobenzenesulfonyl)- N-(2-pivaloyl-oxyethyl)aminomethyl]-5-fluoro-1H,3H-pyrimidin-2,4-dione (13)

According to the general procedure, $\mathbf{1 3}$ was obtained from 7a $(100 \mathrm{mg}, 0.21 \mathrm{mmol}$ in methanol. Column chromatography (chloroform/acetone, 95:5, v/v) provided $13(15 \mathrm{mg}, 15 \%)$ as a white solid; mp 164-165 ${ }^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$, DMSO-d d_{6}) 1.09 (s, 9H), $2.99(\mathrm{~s}, 6 \mathrm{H}), 3.53-3.59(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.10(\mathrm{~m}, ~ 2 \mathrm{H}), 5.11$ (s, 2H), 6.72-6.77 (m, 2H), 7.54-7.59 (m, 2H), 7.82 (d, ${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}$ $6.8,1 \mathrm{H}$), 11.83 (br s, 1H, NH). $\delta_{\mathrm{c}}\left(50 \mathrm{MHz}\right.$, DMSO-d d_{6}) 26.84, $38.18,39.64,47.68,60.99,61.95,111.10,123.75,128.65$ (d, ${ }^{2} J_{\mathrm{C}}$ F 33.6), 128.46, 139.33 (d, ${ }^{1} J_{\text {C-F }} 229.5$), 149.87, 153.02, 157.30 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 27.2$), 177.22. $v_{\max }(\mathrm{KBr}) 1735 \mathrm{~s}(\mathrm{C}=0)$, $1715 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, 1694s ($\mathrm{C}=0$), 1671m, 1598m, 1319s (SO_{2}), 1172s (SO_{2}). HRMS m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{FNaS}(\mathrm{M}+\mathrm{Na})^{+}$493.1528, found 493.1552.

5.9. General procedure for the ammonolysis of $5 d$ or $\mathbf{6 d}$

A mixture of $\mathbf{5 d}$ or $\mathbf{6 d}$, concentrated ammonium hydroxide, and methanol in the ratio of $0.5 \mathrm{mmol} / 10 \mathrm{~mL} / 10 \mathrm{~mL}$, respectively, was heated in a sealed tube at $70^{\circ} \mathrm{C}$ for 1 day. The volatiles were evaporated to dryness under reduced pressure. The residue was purified by column chromatography (chloroform/methanol, 95:5, v/v) to give $\mathbf{1 4 a}$ or $\mathbf{1 4 b}$, respectively.

5.9.1. 1-[N-(4-Acetamidobenzenesulfonyl)- N-(2-hydroxyethyl) aminomethyl]-5-methyl-1H,3H-pyrimidin-2,4-dione (14a)

According to the general procedure, 14a was obtained from 5d $(136 \mathrm{mg}, 0.28 \mathrm{mmol})$. Chromatographic purification afforded 14a ($105 \mathrm{mg}, 94 \%$) as a white solid; $\mathrm{mp}>219^{\circ} \mathrm{C}$ (dec). $\delta_{\mathrm{H}}(200 \mathrm{MHz}$, DMSO- d_{6}) 1.73 (br s, 3H), 2.10 (s, 3H), 3.17-3.72 (m, 4H), 4.82 (br s, 1H, OH), 5.13 (s, 2H), 7.41 (br s, 1H), 7.69-7.85 (m, 5H), 10.80 (br s, 1H, NH). $\delta_{c}\left(50 \mathrm{MHz}\right.$, DMSO-d d_{6}) 12.06, 24.18, 50.72, 59.70, 60.53, 108.80, 118.63, 123.94, 132.89, 140.26, 143.68, 151.15, 164.06, 169.30. $v_{\max }(\mathrm{KBr}) 3406 \mathrm{~s}(\mathrm{OH}), 3312 \mathrm{~m}(\mathrm{NH})$, 1715s ($\mathrm{C}=0$), 1698s ($\mathrm{C}=\mathrm{O}$), 1664s ($\mathrm{C}=0$), $1594 \mathrm{~m}, 1537 \mathrm{~m}, 1336 \mathrm{~s}$ $\left(\mathrm{SO}_{2}\right), 1155 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$ 419.0996, found 419.0998.

5.9.2. 1-[N-(4-Acetamidobenzenesulfonyl)-N-(2-hydroxyethyl) aminomethyl]-1H,3H-pyrimidin-2,4-dione (14b)

According to the general procedure, 14b was obtained from $\mathbf{6 d}$ ($81 \mathrm{mg}, 0.18 \mathrm{mmol}$). Chromatographic purification afforded 14b ($69 \mathrm{mg}, 85 \%$) as a white solid; $\mathrm{mp}>212^{\circ} \mathrm{C}$ (dec). δ_{H} (200 MHz , DMSO-d d_{6}) 2.10 ($\mathrm{s}, 3 \mathrm{H}$), 3.21-3.59 (m, 4H), 4.83 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 5.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 8.0,1 \mathrm{H}\right), 7.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}\right.$ $8.0,1 \mathrm{H}$), $7.70-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.85(\mathrm{~m}, 2 \mathrm{H}), 8.44$ (br s, 1H, NH), 10.75 (br s, $1 \mathrm{H}, \mathrm{NH}$). $\delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$) 24.05, 50.61 , 59.53, 60.75, 101.21, 118.45, 127.75, 132.52, 143.46, 144.66, 150.94, 163.30, 169.04. $v_{\max }(\mathrm{KBr}) 3394 \mathrm{~s}(\mathrm{OH}), 3327 \mathrm{~m}(\mathrm{NH})$, 1718s ($\mathrm{C}=0$), 1698s ($\mathrm{C}=\mathrm{O}$), 1671s ($\mathrm{C}=\mathrm{O}$), 1591s, 1522s, 1154s $\left(\mathrm{SO}_{2}\right), 1342 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$. HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{NaS}$ $(\mathrm{M}+\mathrm{Na})^{+}$405.0839, found 405.0859.

Acknowledgments

The synthetic part of this work was financially supported by Warsaw University of Technology. We thank Dr. Wojciech Sas, Warsaw University of Technology, for his support, and fruitful discussions. We thank Leentje Persoons, Frieda De Meyer and Vicky Broeckx for excellent technical help, and the International Consortium for Antivirals (ICAV) and Fonds voor Wetenschappelijk Onderzoek Vlaanderen for financial support (Project No. G.0188.07).

References and notes

1. (a) De Clercq, E. J. Clin. Virol. 2004, 30, 115; (b) Galmarini, C. M.; Mackey, J. R.; Dumontet, C. Lancet Oncol. 2002, 3, 415; (c) Opio, C. K.; Lee, W. M.; Kirkpatrick, P. Nat. Rev. Drug Disc. 2005, 4, 535.
2. (a) Johnson, A. A.; Ray, A. S.; Hanes, J.; Suo, Z.; Colacino, J. M.; Anderson, K. S.; Johnson, K. A. J. Biol. Chem. 2001, 276, 40847; (b) De Clercq, E. J. Antimicrob. Chemother. 2003, 51, 1079; (c) Jeha, S.; Gandhi, V.; Chan, K. W.; McDonald, L.; Ramirez, I.; Madden, R.; Rytting, M.; Brandt, M.; Keating, M.; Plunkett, W.; Kantarjian, H. Blood 2004, 103, 784.
3. Gumina, G.; Olgen, S.; Chu, C. K. In Antiviral Nucleosides: Chiral Synthesis and Chemotherapy; Chu, C. K., Ed.; Elsevier B.V., 2003; pp 161-169.
4. For 5'-deoxy-5'-sulfonamidofuranosyl nucleosides, see: (a) Markham, A. F.; Newton, C. R.; Porter, R. A.; Sim, I. S. Antiviral Res. 1982, 2, 319; (b) Cosstick, R.; Jones, A. S.; Walker, R. T. Tetrahedron 1984, 40, 427; (c) Elliott, R. D.; Brockman, R. W.; Montgomery, J. A. J. Med. Chem. 1986, 29, 1052; (d) Sim, I. S.; Picton, C.; Cosstick, R.; Jones, A. S.; Walker, R. T.; Chamiec, A. J. Nucleosides Nucleotides 1988, 7, 129; (e) Martin, J. A.; Duncan, I. B.; Hall, M. J.; Wong-Kai-In, P.; Lambert, R. W.; Thomas, G. J. Nucleosides Nucleotides 1989, 8, 753; (f) Homma, H.; Watanabe, Y.; Abiru, T.; Murayama, T.; Nomura, Y.; Matsuda, A. J. Med. Chem. 1992, 35, 2881; (g) Criton, M.; Dewyntert, G.; Aouf, N.; Montero, J.-L.;

Imbach, J.-L. Nucleosides Nucleotides 1995, 14, 1795; (h) Sharma, M.; Li, Y. X. Ledvina, M.; Bobek, M. Nucleosides Nucleotides 1995, 14, 1831; (i) Urjasz, W.; Celewicz, L.; Golankiewicz, K. Nucleosides Nucleotides 1996, 15, 1189; (j) Martin, J. A.; Thomas, G. J.; Merret, J. H.; Lambert, R. W.; Bushnel, D. J.; Dundson, S. J.; Freeman, A. C.; Hopkins, R. A.; Johns, I. R.; Keech, E.; Simmonite, H.; Wong-KaiIn, P.; Holland, M. Antiviral Chem. Chemother. 1998, 1, 1; (k) Scherman, M. S.; Winans, K. A.; Stern, R. J.; Jones, V.; Bertozzi, C. R.; McNeil, M. R. Antimicrob. Agents Chemother. 2003, 47, 378; (1) Vanada, J.; Bennet, E.; Wilson, D.; Bishoff, H.; Barry, C.; Aldrich, C. Org. Lett. 2006, 8, 4707.
5. For 3'-deoxy-3'-sulfonamidofuranosyl nucleosides, see: (a) Van Calenbergh, S.; Van Den Eeckhout, E.; Herdewijn, P.; De Bruyn, A.; Verlinde, C.; Hol, W.; Callens, M.; Van Aerschot, A.; Rozenski, J. Helv. Chim. Acta 1994, 77, 631; (b) Yamana, K.; Ohashi, Y.; Nunota, K.; Nakano, H. Tetrahedron 1997, 53, 4265.
6. For N-(p-toluenesulfonyl)pyrrolidines, see: (a) Nair, V.; Walsh, R. H. J. Org. Chem. 1974, 39, 3045; (b) Ng, K. E.; Orgel, L. E. J. Med. Chem. 1989, 32, 1754; (c) Pickering, L.; Malhi, B. S.; Coe, P. L.; Walker, R. T. Nucleosides Nucleotides 1994, 13, 1493; (d) Westwood, N. B.; Walker, R. T. Tetrahedron 1998, 54, 13391; (e) Negwer, M.; Scharmow, H.-G. In Organic-Chemical Drugs and their Synonyms; Wiley-VCH Verlag GmbH, 2001, p 1454.
7. Krizmanić, I.; Višnjevac, A.; Luić, M.; Glavaš-Obrovac, L.; Žinić, M.; Žinić, B. Tetrahedron 2003, 59, 4947. and references cited therein.
8. (a) Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. T. Curr. Med. Chem. 2003, 10, 925; (b) Supuran, C. T.; Casini, A.; Scozzafava, A. Med. Res. Rev. 2003, 23, 535; (c) Supuran, C. T.; Innocenti, A.; Mastrolorenzo, A.; Scozzafava, A. MiniRev. Med. Chem. 2004, 4, 189.
9. (a) Koszytkowska-Stawińska, M.; Sas, W. Tetrahedron Lett. 2004, 45, 5437; (b) Koszytkowska-Stawińska, M.; Sas, W.; De Clercq, E. Tetrahedron 2006, 62, 10325; (c) Koszytkowska-Stawińska, M.; Kaleta, K.; Sas, W.; De Clercq, E. Nucleosides Nucleotides Nucl. 2007, 26, 51; (d) Koszytkowska-Stawińska, M.; Kołaczkowska, E.; Adamkiewicz, E.; De Clercq, E. Tetrahedron 2007, 63, 10587.
10. (a) Pitman, I. H. Med. Res. Rev. 1981, 1, 189; (b) Gao, H.; Mitra, A. Synthesis 2000, 329; (c) Anastasi, C.; Quelever, G.; Burlet, S.; Garino, C.; Souard, F.; Kraus, J.-L. Curr. Med. Chem. 2003, 10, 1825; (d) Calogeropoulou, T.; Detsi, A.; Lekkas, E.; Koufaki, M. Curr. Top. Med. Chem. 2003, 3, 1467; (e) De Clercq, E.; Field, H. J. Br. J. Pharmacol. 2006, 147, 1.
11. Vorbrüggen, H.; Ruh-Pohlenz, C. In Handbook of Nucleoside Synthesis; John Wiley: New York, 2001; pp 29-33.
12. 4-Acetamido- N -(2-pivaloyloxyethyl)- N -(acetamidomethyl)benzenesulfonamide: (36% yield); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.17(\mathrm{~s}, 9 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{t}$, ${ }^{3} J_{\mathrm{H}-\mathrm{H}} 5.6,2 \mathrm{H}$), 4.19 (t, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 5.6,2 \mathrm{H}\right), 4.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 6.2,2 \mathrm{H}\right), 6.55\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 6.2,1 \mathrm{H}\right.$, NH), $7.62-7.68$ (m, 2H), $7.70-7.74(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) . \delta_{\mathrm{C}}(50 \mathrm{MHz}$, CDCl_{3}) 23.26, 24.77, 38.86, 46.65, 53.26, 62.20, 119.67, 128.30, 134.40, 142.64, 169.13, 170.98, 178.66. HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$436.1513, found 436.1528 .
13. Such competition of N-monosilylated or free acetamide with persilylated nucleobases for sugar cation upon the nucleosides synthesis has been reported (a) Cristalli, G.; Volpini, R.; Vittorio, S.; Camaioni, E.; Rafaiani, G.; Potenza, S.; Vita, A. Nucleosides Nucleotides 1996, 15, 1567; (b) Ochoa, C.; Provensio, R.; Jimeno, M. L.; Balzarini, J.; De Clercq, E. Nucleosides Nucleotides 1998, 17, 901.
14. (a) Watanabe, K. A.; Beránek, J.; Friedman, H. A.; Fox, J. J. J. Org. Chem. 1965, 30, 2735; (b) Friedman, H. A.; Watanabe, K. A.; Fox, J. J. J. Org. Chem. 1967, 32, 3775; (c) Matsuda, A.; Watanabe, K. A. Nucleosides Nucleotides 1996, 15, 205; (d) Ohta, N.; Minamoto, K.; Yamamoto, T.; Koide, N.; Naoya, S.; Sakodo, R. Nucleosides Nucleotides 1996, 15, 833; (e) Rozens, E.; Katkevica, D.; Bizdena, E.; Stroemberg, R. J. Am. Chem. Soc. 2003, 125, 12125; (f) Glinski, R. P.; Sporn, M. B. Biochemistry 1972, 11, 405; (g) Liu, B.; Hu, L. Bioorg. Med. Chem. 2003, 11, 3889; (h) Baer, H. H.; Bayer, M. Can. J. Chem. 1971, 49, 568.
15. For the reduction of nucleoside analogues with the nitro group in a nucleobase moiety, see: (a) Bigge, C. F.; Kalaritis, P.; Deck, J. R.; Mertes, M. P. J. Am. Chem. Soc. 1980, 102, 2033; (b) Dziwiszek, K.; Schinazi, R. F.; Chou, T.-C.; Su, T.-L.; Dzik, J. Nucleosides Nucleotides 1994, 13, 77; (c) De Riccardis, F.; Bonala, R. R.; Johnson, F. J. Am. Chem. Soc. 1999, 121, 10453; (d) Chakraborti, D.; Colis, L.; Schneider, R.; Bau, A. Org. Lett. 2003, 5, 2861; (e) Takamura-Enya, T.; Enomoto, S.; Wakabayashi, K. J. Org. Chem. 2006, 71, 5599.
16. For reviews, see: (a) Johnstone, R. A. W.; Wilby, A. H. Chem. Rev. 1985, 85, 129; (b) Rylander, P.N. In Hydrogenation Methods; Academic Press, 1985; pp 16-17, 104-107, and 163.
17. The 11a: 10a ratio was estimated from the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture by the comparison of the intensities of the signals corresponding to the $\mathrm{H}-6$ proton of 10a [7.64 (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}} 8.0 \mathrm{~Hz}\right)$] and to the $\mathrm{H}-6$ one of $\mathbf{1 1 a}$ [7.82 $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}\right.$ $6.8 \mathrm{~Hz})]$.
18. (a) Duschinsky, R.; Pleven, E. J. Am. Chem. Soc. 1957, 79, 4559; (b) Colla, L.; Herdewijn, P.; De Clercq, E.; Balzarini, J.; Vanderhaeghe, H. Eur. J. Med. Chem. Chim. Ther. 1985, 20, 295.
19. The reference antivirals displayed the following MCC values: (a) Vero cells: brivudin, $>250 \mu \mathrm{M}$; [(S)-DHPA], $>250 \mu \mathrm{M}$; ribavirin, $>250 \mu \mathrm{M}$; (b) HEL cells: brivudin, $>250 \mu \mathrm{M}$; ribavirin, $>250 \mu \mathrm{M}$; acyclovir, $>250 \mu \mathrm{M}$; ganciclovir, $>100 \mu \mathrm{M}$; (c) HeLa cells: brivudin, $>250 \mu \mathrm{M}$; (S)-9-(2,3-dihydroxypropyl)adenine [(S)-DHPA], $>250 \mu \mathrm{M}$; ribavirin, $>250 \mu \mathrm{M}$; (d) MDCK cells: oseltamivir carboxylate, $>100 \mu \mathrm{M}$; ribavirin, $100 \mu \mathrm{M}$; amantadin, $>100 \mu \mathrm{M}$; rimantadin, >100 $\mu \mathrm{M}$.
20. The reference antivirals displayed the following CC_{50} values: (a) MDCK cells: oseltamivir carboxylate, $>100 \mu \mathrm{M}$; ribavirin, $>100 \mu \mathrm{M}$; amantadin, $>100 \mu \mathrm{M}$; rimantadin, $>100 \mu \mathrm{M}$; (b) CRFK cells: hippeastrum hybrid agglutinin (HHA), $>100 \mu \mathrm{~g} / \mathrm{mL}$; urtica dioica agglutinin (UDA), >100 $\mu \mathrm{g} / \mathrm{mL}$; ganciclovir, $>100 \mu \mathrm{M}$.
21. The estimated values indicate that in the case of both the host cell cultures, cytotoxicity of the 5 -fluorouracil nitro derivatives decreases in the following order: $2-\mathrm{NO}_{2}$ isomer $>4-\mathrm{NO}_{2}$ isomer $>3-\mathrm{NO}_{2}$ isomer. However, based on our current knowledge, it is difficult to discuss on the relationship between $\mathrm{NO}_{2}{ }^{-}$ isomerism and cytotoxicity of the compounds.
22. (a) De Clercq, E.; Descamps, J.; Verhelst, G.; Walker, R. I.; Jones, A. S.; Torrence, P. F.; Shugar, D. J. Infect. Dis. 1980, 141, 563; (b) De Clercq, E.; Cools, M.; Balzarini, J.; Marquez, V. E.; Borcherding, D. R.; Borchardt, R. T.; Drach, J. C.; Kitaoka, S.; Konno, T. Antimicrob. Agents Chemother. 1989, 33, 1291.

[^0]: * Corresponding author. Tel.: +48 22234 5442; fax: +48 226282741.

 E-mail address: mkoszyt@ch.pw.edu.pl (M. Koszytkowska-Stawińska).

