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Abstract
In this review, we explore different approaches for introducing bioactivity into poly(ethylene
glycol) (PEG) hydrogels. Hydrogels are excellent scaffolding materials for repairing and
regenerating a variety of tissues because they can provide a highly swollen three-dimensional (3D)
environment similar to soft tissues. Synthetic hydrogels like PEG-based hydrogels have
advantages over natural hydrogels, such as the ability for photopolymerization, adjustable
mechanical properties, and easy control of scaffold architecture and chemical compositions.
However, PEG hydrogels alone cannot provide an ideal environment to support cell adhesion and
tissue formation due to their bio-inert nature. The natural extracellular matrix (ECM) has been an
attractive model for the design and fabrication of bioactive scaffolds for tissue engineering. ECM-
mimetic modification of PEG hydrogels has emerged as an important strategy to modulate specific
cellular responses. To tether ECM-derived bioactive molecules (BMs) to PEG hydrogels, various
strategies have been developed for the incorporation of key ECM biofunctions, such as specific
cell adhesion, proteolytic degradation, and signal molecule-binding. A number of cell types have
been immobilized on bioactive PEG hydrogels to provide fundamental knowledge of cell/scaffold
interactions. This review addresses the recent progress in material designs and fabrication
approaches leading to the development of bioactive hydrogels as tissue engineering scaffolds.
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1. Introduction
Tissue engineering applies methods from engineering and life sciences to create artificial
constructs to direct tissue regeneration [1]. Hydrogels have been studied intensively and
used as tissue engineering scaffolds, because they can provide a highly swollen three-
dimensional (3D) environment similar to soft tissues and allow diffusion of nutrients and
cellular waste through the elastic networks [2,3]. They have been used to repair and assist
regeneration of a variety of tissues, such as cartilage, bone and vasculature [4–7]. There are
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two major types of hydrogels, natural and synthetic hydrogels, according to their origin
[3,8,9]. Natural hydrogels are made mainly from natural polymer-based materials, such as
proteins (e.g., collagen, gelatin, and fibrin), and polysaccharides (e.g., alginate chitosan,
hyaluronic acid, dextran). Synthetic hydrogels are made from synthetic polymers, such as
poly(acrylic acid) (PAA), poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA),
polyacrylamide (PAAm), and polypeptides.

Natural hydrogels, such as collagen and fibrin, have been used as scaffolds because they
possess many of critical biological functions like cell adhesion and biodegradation, which
are lacking from synthetic polymers. However, the use of animal derived ECM proteins as
scaffolds is often restricted due to concerns of potential immunogenic reactions and
infection, as well as their relatively poor mechanical properties [10–12]. Synthetic hydrogels
have emerged as an alternative choice for hydrogel scaffolds. Synthetic hydrogels have
advantages over natural hydrogels, such as the ability for photopolymerization, adjustable
mechanical properties, and convenient control of scaffold architecture and chemical
compositions [8]. They can be tailored for specific applications with the incorporation of
biofunctions, and their transport properties can also be customized by adjusting polymer
chain lengths and density [2].

PEG has been an important type of hydrophilic polymers for biomedical applications,
including surface modification, bioconjugation, drug delivery and tissue engineering
because they have critical properties, such as good biocompatibility, non-immunogenity, and
resistance to protein adsorption [13,14]. PEG has linear and branched (multiarm or star)
structures (Fig. 1). The basic PEG structure is PEG diol with two hydroxyl end groups,
which can be converted into other functional groups, such as methyloxyl, carboxyl, amine,
thiol, azide, vinyl sulfone, azide, acetylene, and acrylate [15]. The two functional end groups
can be the same (symmetric) or different (asymmetric), which are versatile for hydrogel
formation or for conjugating with biomolecules. Three major cross-linking methods have
been used to make PEG hydrogels, including radiation of linear or branched PEG polymers
[15,16], free radical polymerization (FRP) of PEG acrylates [5–7,17,18], and specific
chemical reactions, such as condensation [18], Michael-type addition [19,20], Click
chemistry [21,22], native chemical ligation [23], and enzymatic reaction [24–26].

The most common approach to make PEG hydrogels is photopolymerization, which utilizes
light to convert liquid PEG macromer solutions into solid hydrogels at physiological
temperature and pH. This method is advantageous for fabricating hydrogel scaffolds in situ
with spatial and temporal control and in a variety of 3D structures with encapsulation of
cells and biological agents [27,28]. PEG acrylates are the major type of macromers used for
photopolymerization, including PEG diacrylate (PEGDA), PEG dimethacrylate (PEGDMA),
and multiarm PEG (n-PEG) acyrlate (n-PEG-Acr). PEG hydrogels are not naturally
degradable, but can be altered to enhance degradation by incorporating degradable
segments, such as polyester [29–31], poly(propylene fumarate) (PPF) [32,33], acetal [34]
and disulfide [35]. A convenient selection of the hydrolytically degradable blocks is
polyhydroxyacids, including poly(lactic acid) (PLA), and poly(glycolic acid) (PGA), and
polycaprolactone (PCL). Triblock (ABA) polymers, PLA-PEG-PLA and PGA-PEG-PGA
have been synthesized by ring opening polymerization, terminated with acrylates to generate
PLA-PEG-PLA diacrylate and PGA-PEG-PGA diacrylate, respectively [29,36,37]. In
addition, the thiol-acrylate reaction has been used to make hydrogels with enhanced
degradation of the ester bonds linked to PEG chains [38–43].

PEG hydrogels are attractive scaffolds to provide 3D templates in aqueous environments for
tissue regeneration; however, PEG hydrogels typically exhibit minimal or no intrinsic
biological activity due to the nonadhesive nature of PEG chains [13]. It is noted that
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anchorage-dependent cells encapsulated in PEG hydrogels show low viability due to the bio-
inert characteristic of PEG [42,43]. Inspired by nature, researchers have developed a variety
of bioactively modified PEG hydrogels to mimic the natural extracellular matrix (ECM)
[44–47]. Human tissues are built of different types of cells embedded within dynamic ECM
hydrogels, which are composed of various proteins and glycans (polysaccharides) secreted
by the cells. ECM components play a crucial instructive role in mediating cell functions, and
possess critical biological functions like cell adhesion, proteolytic degradation and growth
factor binding [48,49]. Thus, the natural ECM is an attractive model for design and
fabrication of bioactive scaffolds for tissue engineering [45–49].

To tether ECM-derived bioactive molecules (BMs) to PEG hydrogels, various strategies
have been developed to provide fundamental knowledge to understand cell/scaffold
interactions [44,45]. A number of cell lines have been explored to immobilize on bioactive
PEG hydrogels, including fibroblasts, chondrocytes, vascular smooth muscle cells (SMCs)
and endothelial cells (ECs), osteoblasts, neural cells, and stem cells [46,47]. Much effort has
been devoted to the control of ligand density and spatial distribution in PEG hydrogels to
modulate specific cellular responses for tissue formation [34,37,50,53]. This review
addresses the recent progress in material designs and fabrication approaches that are leading
to the development of bioactive PEG hydrogels as tissue engineering scaffolds. As the
fundamental biology of the cellular microenvironment is often the inspiration for material
design, this review begins with a brief discussion of the structure and biofunctions of the
natural ECM model for biomimetic modification, and then highlights the ECM-derived
biomolecules that have been used to make various bioactive PEG hydrogels, followed by
summarizing the current approaches for preparation of bioactive PEG hydrogels with the
control of specific cues, such as cell adhesion, proteolytic degradation and growth factor-
binding. Finally, brief conclusions are provided regarding bioactive PEG hydrogels and
challenges in biomimetic scaffold modification.

2. ECM as a natural model for bioactive modification
The rapid increase in the understanding of matrix biology has provided opportunities to use
the natural ECM as a model for designing biomimetic scaffolds. This section discusses the
structure and biofunctions of the ECM and the general strategies for ECM-mimetic
modification of PEG hydrogels.

2.1. ECM structure and components
The tissues of the human body contain significant extracellular space, into which ECM
molecules are secreted by the cells to form a complex network (Fig. 2) [55,56]. The ECM
provides mechanical support for tissues, organizes cells into specific tissues, and controls
cell behavior. Generally, the natural ECM consists of two classes of biomacromolecules,
proteins and glycans [55–57]. The ECM proteins include structural fibrous proteins (e.g.,
collagen, elastin and fibrin) and cell adhesive proteins (e.g., fibrolectin and laminin).
Collagen, the most abundant protein in mammals, provides tensile strength to the ECM [58],
while other proteins, such as elastin, give the ECM its elasticity [56]. Collagen comes in
many different types [59]. Type I collagen is the most common fibrillar collagen found in
skin, bone and tendons, and type II collagen possess a similar fibrillar structure which
provides tensile strength to cartilage [60,61]. Type IV collagen is a network-forming
collagen, which forms a meshwork, particularly in basal lamina [62]. Cells bind to the ECM
mainly through adhesive proteins like laminin (LN) and fibronectin (FN). LN, which has a
cross-shaped trimer structure containing α, β and γ chains [63–66], is the major adhesive
protein in basal lamina with binding sites for cell membrane receptors and type IV collagen,
heparan sulfate proteoglycan (HSPG) and entacin [67]. FN, evolutionarily related to
fibrinogen [68–72], is another important adhesive protein in the ECM. FN is a V-shaped
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dimer with several binding domains for mediating the connection between the ECM and cell
membrane [73], and binds a variety of proteins like collagen and fibrin, as well as cell-
surface receptors like integrins and syndecan [73,74].

ECM proteins are embedded in highly negatively charged, polysaccharide-rich, gelatinous
ground substances (Fig. 2), called glycans, including glycosaminoglycans (GAGs) and
proteoglycans (PGs) [55,56,75,76]. GAGs are linear polymers of repeated disaccharide
derivative with two types, nonsulfated like hyaluronic acid (HA) and sulfated, such as
chondroitin, dermatan, heparan and keratin sulfates [77]. Sulfated GAGs can assemble on
serine-rich proteins to form proteoglycans (PGs), such as aggrecan and HSPG [77–79]. Both
GAGs and PGs swell in the aqueous spaces between protein fibrils, taking compressive
stresses, limiting tissue collapse under pressure. Glycans also allow tissues to diffuse
nutrients and provide reservoir for signaling molecules [55].

2.2. Basic biofunctions of ECM
ECM components undergo self-assembly as well as cell-directed assembly to form complex
3D organized networks (Fig. 2] [80–83]. Cell receptors bind both soluble and tethered
signaling cues from the ECM environment. In turn, these receptor-ligand interactions trigger
complex cascades of intracellular enzymatic reactions that regulate gene and protein
expression, and define the fate of a cell in a tissue [84]. Simultaneously, cells send out
signals to actively construct and degrade their microenvironment. Thus, the ECM acts not
only as a simple space filler and a mechanical scaffold for the cells, but also a bioactive and
dynamic environment that mediates cellular functions [55,56]. Generally, the natural ECM
has three basic biofunctions, including cell adhesion, proteolytic degradation and growth
factor (GF)-binding.

Cell attachment to the ECM is an obvious prerequisite for a number of important cell-
function processes, such as cell proliferation and cell migration [85–87]. The ECM provides
cell-adhesive domains for binding cell surface receptors. There are various cell-surface
receptors, such as integrins, selectins, CD44 and syndecan [88–91]. Integrins are the major
family responsible for cell attachment to the ECM [92,93], which bind to specific domains
present in ECM proteins such as FN, LN and collagen [94,95]. Through binding to these
functional cell-binding domains, integrins play central roles in the tissue development,
organization and maintenance, by providing anchorage and triggering signals that direct cell
function, cell-cycle progression, and expression of differentiated phenotypes [91,96,97].

The proteolytic degradation of the natural ECM is an essential feature of a variety of
biological processes, such as cell migration, tissue repair and remolding [98–100]. Most
ECM proteins, including collagen, fibrin, FN and LN, have specific cleavage sites for
degradation by enzymes, such as matrix metalloproteinases (MMPs), plasmin and elastase
[101–105]. MMPs are zinc-dependent endopeptidases involved in the remodeling of the
ECM and play important roles in morphogenesis, angiogenesis, arthritis, skin ulcer, tumor
invasion and metastasis [106]. Five families of cell-secreted MMPs have been recognized,
including collagenases, gelatinases, stromelysins, matrilysins, and membrane-type MMPs.
These enzymes are composed of several domains including propeptide, catalytic, and
hemopexin (except for matrilysin) domains and are involved in the degradation of collagens,
proteoglycans, and various glycoproteins [107,108]. Among them, collagenases (MMP-1,
MMP-8) are required by endothelial cells (ECs) for invasion and tubule formation in types I,
II, and III collagen gels, and is present in the ECM at high levels during the inflammatory
and early proliferative phases of wound repair. Gelatinases (MMP-2 and MMP-9) digest
type IV and VII collagens, while stromelysins (MMP-3, MMP-10) degrade laminins of the
basement membranes. MMPs are secreted as inactive zymogens and their activation is a
prerequisite for function. Furthermore, posttranscriptional regulation of MMP activity is
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controlled by tissue inhibitors of metalloproteinases (TIMPs). MMPs and TIMPs play a
crucial role in defining the cellular environment through regulated degradation and
processing of ECM proteins [106–108].

During the natural tissue development, the binding of growth factors (GFs) to the ECM is a
major mechanism regulating cellular activity [109]. GFs are a class of proteins that have
either specific pro- or antiproliferative effects under different circumstances, and act to
modulate cell functions (e.g. differentiation, migration and proliferation) and gene
expression [110,111]. Naturally, the morphogenetic activities of endogenous GFs are
exerted at the action site close to the site of cellular production within a given tissue
compartment. Once sequestered into the surrounding ECM, GFs associated with
proteoglycans, such as HSPG, syndecan and perlecan. An increasing number of GFs,
including fibroblast growth factor (FGF), transforming growth factor (TGF), epidermal
growth factor (EGF), vascular endothelial growth factor (VEGF) and platelet-derived
growth factor (PDGF), have been found to associate with ECM proteoglycans. These
associations are important to stabilize the GF’s active conformation and protect it from
immediate clearance. Liberation of factors by ECM-degrading enzymes (e.g., MMPs and
plasmin) as well as heparanases, which remove the heparan sulfate, modulates the
bioavailability of the GFs [112]. Once liberated, the turnover of GFs may occur rapidly
within the range of minutes to a few hours [113]. Thus, the ECM plays a highly
functionalized role in modulating the stability activity, release and spatial localization of
GFs.

2.3. ECM-mimetic bioactive modification
The requirements of scaffolds for tissue engineering include biocompatibility,
biodegradability, high porosity and no immunogenic reactions. To promote cellular
functions, it is highly desirable that the scaffolds have cell specific adhesion and the ability
to carry signaling biomolecules. Owing to their design flexibility, PEG hydrogels have been
the primary choice of hydrogel materials for making porous scaffolds with similar
characteristics to certain soft tissues such as cartilage. However, they are limited in
providing an ideal environment for cells, because PEG is neither cell adhesive nor
biodegradable.

Although hydrolytically labile segments like PLA and PGA have been incorporated in PEG
hydrogels to enhance their biodegradability, this kind of degradation is not cell-mediated. To
meet the diverse needs in tissue engineering, PEG hydrogels have been modified with the
incorporation of bioactive molecules, such as cell adhesive peptides (CAPs), enzyme-
sensitive peptides (ESPs) and growth factors, to mimic one or more ECM biofunctions, such
as specific cell adhesion, enzyme-sensitive degradation and GF-binding (Fig. 3A).

The functional cues presented by the ECM can be chemical in nature. Most ECM
components such as collagen, elastin, FN, LN and PGs have bioactive domains for cell
binding, proteolytic degradation and/or GF-binding. Usually, from these domains, short
peptide sequences can be identified as motifs that are responsible for these biofunctions
[54,114–123]. ECM-derived short peptides [50] as well as ECM-derived proteins [124–127]
and proteoglycans [128–131] have been used to modify PEG hydrogels. Unlike the entire
protein structure, which is subject to denaturation and degradation, short peptide sequences
have the advantage of being relatively stable for modification, tunable for cell binding, and
easy to be synthesized in a large scale [132]. The incorporation of specific peptide sequences
has emerged as the major strategy for the bioactive modification of PEG hydrogels [133]. To
date numerous bioactive peptide sequences derived from ECM proteins, such as FN, LN and
collagen, have been incorporated into PEG hydrogels. To covalently tether ECM-derived
biomolecules to the PEG hydrogel networks, mono-, di- or multivalent reactive groups, such
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as acrylate, amine, thiol, azide, maleimide and biotin/strepavidin, have been used to
functionalize them for hydrogel formation (Fig. 3B).

3. Bioactive molecules for modification of PEG hydrogels
Biomimetic scaffolds usually mimic one or more biofunctions of the natural ECM by
incorporation of different types of ECM-derived bioactive molecules (BMs) in the materials.
This section classifies bioactive PEG hydrogels into four major groups, including cell-
adhesive, enzyme-sensitive, growth factor-bearing (or binding) and specially
biofunctionalized hydrogels. Based on this classification, biomolecules that have been used
for bioactive modification of PEG hydrogels are summarized in this section.

3.1. Cell-adhesive PEG hydrogels
The major limitation of PEG hydrogels as scaffolds for tissue engineering is lack of cell
specific adhesion. To overcome this limitation, a variety of ECM protein-derived cell
adhesive peptides (CAPs) have been important targets for cell-adhesive modification of PEG
hydrogels (Table 1). They are mainly derived from four ECM proteins, including FN (e.g.,
RGD, KQAGDV, REDV and PHSRN), LN (e.g., YIGSR, LGTIPG, IKVAV, PDGSR LRE,
LRGDN and IKLLI), collagen (e.g., DGEA and GFOGER) and elastin (e.g., VAPG).The
most commonly used CAP for cell-adhesive modification is RGD [133], the cell binding
domain derived from FN, LN and collagen [121]. There are two forms of RGD peptides,
including linear RGD and cyclic RGD (cRGD). The RGD sequence in the cell-binding
domain of FN is exposed at the tip of a loop with a spatial constraint that results in increased
affinity for cell binding [122]. Research has demonstrated that cRGD peptides have the
advantage of increasing the affinity to integrin αvβ3 and enhance biological activity up to
240 times, in comparison with linear RGD analogues [157–160]. The incorporation of
cRGD peptides into the PEGDA hydrogels can better mimic the native RGD loop structure
and benefits the cell specific adhesion [148].

3.2. Enzyme-sensitive PEG hydrogels
The degradation rate of scaffolds is one of most important considerations and it is highly
desirable to ensure that the degradation rate matches with new tissue regeneration at the
defect site. If the degradation is more rapid than the tissue regeneration, the scaffolds will
lose their carrier function for cell growth; on the other hand, if the degradation is too slow
compared with tissue regeneration, the scaffolds will impede tissue regeneration. PEG
hydrogels from photopolymerization of PEGDA have ester bonds for potential hydrolysis;
however, the hydrolytic degradation is relatively slow both in vitro and in vivo. Although the
incorporation of polyester segments (e.g. PLA and PGA) has been used to enhance the
hydrolytic degradation of PEG hydrogels, this hydrolytic degradation process is not
responsive to cellular signals or cell-secreted enzymes. The best way to impart
biodegradability is to exploit the proteolytic degradation mechanisms presented in the ECM
with the incorporation of enzyme-sensitive peptide (ESP) sequences. Various ESPs have
been used for enzyme-sensitive degradation of PEG hydrogels (Table 2). Peptides like
collagen-derived GPQG↓IAGQ and peptide library-derived GPQG↓IWGQ, APG↓L and
L↓GPA (↓ indicating the cleavage site) have been used to make MMP-sensitive PEG
hydrogels, while fibrin-derived YK↓NRD and VR↓N have been used to make plasmin-
sensitive PEG hydrogels. The elastase-sensitive peptides, such as AAPV↓RGGG and
AAAAAAA also have been used for proteolytic modification of PEG hydrogels [138,172].

The enzyme-sensitive designs also have been used to modulate cell adhesion to PEG
hydrogels. The incorporation of enzyme-cleavable CAPs is expected to mimic the natural
ECM that provides temporary cues for regulating of cellular responses and tissue
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development. PE↓NFF is one of the major peptide sequence at the MMP-13 cleavage site of
aggrecan, a cartilage ECM component. Anseth et al, incorporated a cysteine-containing
bifunctional peptide, CPENFFRGD into PEG hydrogels by thiol– acrylate
photopolymerization. This peptide has the RGD motif for cell adhesion and the sequence of
PENFF for MMP-13-sensitive cleavage [153]. The resulting hydrogels provide a platform
that mimics the native upregulation and downregulation of cell adhesive proteins by the cell-
secreted enzymes in the ECM for differentiating human mesenchymal stem cells (hMSCs).

3.3. Growth factor-bearing or binding PEG hydrogels
Growth factors (GFs) are polypeptides that transmit signals to modulate cellular activities.
GFs initiate their action by binding to specific receptors on the surface of target cells, and
need to bind to matrix molecules for activity and stabilization due to their short half-lives in
free forms or in the circulation. Most GFs are involved in binding to proteoglycans, which
also modulate their release from sulfated GAG chains, to guide cell functions and tissue
formation [109,173–175]. Purified GFs are highly sensitive to proteolytic degradation in
soluble forms. The easiest way to incorporate GFs into PEG hydrogels is to load them in
hydrogels directly during hydrogel formation; however, this direct loading method typically
shows a rapid burst release during the initial swelling phase [176–178]. Since the rate of
protein release is generally diffusion-controlled through aqueous channels within the
hydrogels, it is a great challenge for the direct loading method to control the growth factor
release over a long time without burse release [180–182].

The dosage response of GFs like VEGF is highly sensitive for tissue formation. For
example, low doses of VEGF result in increased vascular permeability in therapeutic
vascularization and overdoses result in hemangioma formation and fatal vascular leakage.
Most research demonstrates that sustained stimulation with an optimal level of VEGF is
required for the formation of stable vasculature in vivo [183]. Thus, a variety of delivery
systems (e.g., microparticles and nanoparticles) for GFs have been designed and fabricated
from diverse types of synthetic and natural materials [184–189]. GFs have been incorporated
into hydrogels during or after the fabrication by covalent and non-covalent means; the latter
includes simple adsorption, electrostatic interaction, or complexation [188,189]. ECM
components like proteins and glycans have functional domains for binding GFs and for
modulating their release. To mimic the GF-binding function of the ECM, researchers have
developed two major strategies to modify PEG hydrogels with binding of GFs, including
covalent attachment and specific interaction (Table 3).

Various functional groups have been used to modify GFs for covalent attachment, including
thiol, Gln, acrylate, and azide. Hubbell et al., engineered recombinant VEGF with cysteine
(VEGF-SH) for tethering to PEG networks by Michael-type addition with multiarm PEG
vinyl sulfone (n-PEG-VS) [190]. They also developed recombinant VEGF with attachment
of a native Gln acceptor peptide (QAP), NQEQVSPL (derived from the N-terminus of α2-
plasmin inhibitor), which can be incorporated into hydrogels with the Lys donor peptide
(KDP) (e.g., FKGG)-functionalized multiarm PEG by the enzymatic reaction using Factor
XIIIa [25]. West et al., developed a copolymerization method for covalently tethering
acrylated GFs to PEG networks [191–193]. GFs, including bFGF, EGF and TGFβ, were
acrylated by conjugating with Acr-PEG-NHS, followed by photo-copolymerization with
PEG macromers to form hydrogels. Their results show the covalently tethered GFs
maintaining mitogenic activity and enhancing fibroblast proliferation and migration. In
addition to attach the intact GFs on hydrogels, Jabbari and coworkers reported on the
incorporation of bone morphogenetic protein (BMP)-derived peptide,
KIPKASSVPTELSAISTLYL (corresponding to residues 73–92 of BMP-2) into PEG
hydrogels by Click chemistry [194], in order to enhance the osteogenic differentiation of
bone morrow stromal cells.

Zhu Page 7

Biomaterials. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Apart from the covalent tethering of GFs and GF-derived peptides, the development of GF-
binding hydrogels has emerged another important strategy for delivering GFs. This method
has the advantage to maintain the biological bioactivity of GFs upon release, and overcome
the potential damage to GFs that may be resulted from the method of covalent tethering. To
mimic the GF binding mechanism of GAGs in the natural ECM, much efforts have been
devoted to chemical modification of heparin [195–205], chondroitin sulfate (CS) [205–207]
and hyaluronic acid (HA) [205] with various reactive groups, such as acrylate , thiol, or
maleimide, followed by reacting with the functionalized derivatives of PEG or multiarm
PEG to form GAG-bearing PEG hydrogels by carboxyl/amine conjugation [195–197],
copolymerization [198,199,206,207], Michael addition [200,201,204,205], and specific
interaction between heparin and GFs [202] or heparin-binding peptides (HBPs) [203](Table
3). Another method to make GF-binding PEG hydrogels is to develop affinity hydrogels.
Anseth et al., used thiol-acrylate photopolymerization to incorporate thiol-containing biotin
into PEG hydrogels for specific interaction with strepavidin-modified GFs like bFGF [208].
Also they used similar chemistry to make hydrogels with incorporated GF-binding peptide,
KRTGQYK for binding of bFGF [208].

3.4. Specially biofunctionalized PEG hydrogels
In addition to the above three major bioactive PEG hydrogels, some special biofunctions
have been incorporated in PEG hydrogels for specific biomedical applications. Currently,
there are three types of specially biofunctionalized PEG hydrogels, including matrix-protein-
binding, immune-isolating and NO-bearing hydrogels (Table 4).

3.4.1. Matrix protein-binding PEG hydrogels—Cells can respond to extracellular
signals not only through direct interaction between cell surface receptors and ECM
components, but also through matrix protein deposition and organization. To enhance the
matrix collagen binding ability of PEG hydrogels, Lee et al., incorporated collagen-mimetic
proline-hydroxyproline-glycine (POG) peptide, (POG)7Y into PEGDA hydrogel to retain
cell-secreted collagens and promote cell matrix production [209]. The peptide sequence of
KLER is one of the major sites found in decrorin that plays a key role in matrix deposition
by aiding in the fibril growth, extension, and ultimately organization of type II collagen in
the cartilage matrix. Salinas and Anseth incorporated KLER into PEGDA hydrogels to
promote cartilage-specific matrix deposition and organization [210]. KLER was found to
bind type II collagen and stabilize its triple-helical structure, which leads to inhibiting
collagenase degradation and regulating the influence of TGFβ on chondrocytes.

3.4.2. Immuno-isolating PEG hydrogels—Although the survival and function of cells
encapsulated in PEG hydrogels can be controlled in most in vitro studies, these cells
encounter additional challenges when they are transplanted in vivo. The host responds
rapidly to the injury caused by the implantation procedure and triggers normal wound
healing cascades with pro-inflammatory cytokines secreted by inflammatory cells. Semi-
permeable PEG hydrogels can prevent direct contact between immune and inflammatory
cells and the encapsulated cells; however, they cannot prevent the diffusion of small
cytotoxic molecules, such as reactive oxygen species (ROS) and pro-inflammatory
cytokines, e.g., tumor necrosis factor-α (TNFα, 17.4 KDa), and interleukin-1β (IL-1β, 17
KDa). Once these cytotoxic molecules penetrate into the hydrogel, they can trigger apoptotic
pathways that lead to apoptosis or impaired cell function. To overcome this challenge,
Anseth and co-workers synthesized a polymerizable superoxide dismutase (SOD)-mimetic
macromer, tetraacrylate of Mn(III) tetrakis(1-Methyl-4-pyridyl)porphyrin pentachloride
(MnTMPyP), and coplymerized it with PEGDA to form hydrogel networks that provide
SOD-mimetic activity assigned to protect encapsulated cells from ROS-mediated damage
[211]. They also immobilized cytokine-antagonizing antibody, anti-Fas MAb (binding to the
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Fas antigen of Jurkat T cells) in PEG hydrogels [212]; however, there are concerns in
conjugating modified antibodies in PEG hydrogels, including the large size for conjugation,
poor stability and immunogenicity. As an alternative, a short peptide of YC*WSQYLC*Y
(* indicating disulfide form) derived from a critical TNFα recognition loop on TNF receptor
1, has been incorporated into PEG hydrogels to inhibit TNFα-mediated cell apoptosis by
binding TNFα [213].

3.4.3. Nitric oxide-bearing PEG hydrogels—Nitric oxide (NO), a molecule produced
by uninjured ECs, reduces platelet adhesion and SMC proliferation, while stimulating EC
proliferation. West et al., reported on the synthesis of nucleophile-containing PEG hydrogels
to complex and delivery NO [214,215]. Three kind nucleophiles, including K5 with 5 lysine
residues, diethylenetriamine (DETA), cysteine (Cys), were chosen to conjugate with Acr-
PEG-NHS and complex with NO, followed by copolymerizing with PEGDA (Mw 3400) to
form NO-containing PEG hydrogels. NO was released from these hydrogels over periods
ranging from hours to months, depending on the hydrogel formulation. The NO-releasing
hydrogels inhibit SMC growth and platelet adhesion, which could provide localized and
sustained production of NO to reduce thrombosis and restenosis following procedures such
as balloon angioplasty [214].

4. Approaches for bioactive modification of PEG hydrogels
ECM-derived bioactive molecules (BMs), especially short peptides are major targets for
bioactive modification of PEG hydrogels. To specifically direct cell adhesion and tissue
formation, it is essential to develop suitable strategies to tether the BMs to the PEG hydrogel
networks and tailor the hydrogel chemistry and composition with controlled biofunctions.
This section reviews a variety of key approaches that have been developed for bioactive
modification of PEG hydrogels.

4.1. Post-grafting
The approach of post-grafting is to make PEG hydrogels first, followed by grafting peptides
(or proteins) on the hydrogel surface. The hydrogels prepared by photopolymerization of
PEG macromers, like PEGDA, have no functional groups for further modification with
peptides. To provide reactive sites on the hydrogel surface, acrylic acid has been
copolymerized with PEGDA to make hydrogels with carboxyl groups, followed by
conjugation with the amine groups of peptides like RGD [216] or proteins like collagen
[217], as shown in Fig. 4A. The amount of acrylic acid in the PEG hydrogel network
directly control the amount of incorporated RGD peptides. This post-grafting method also
was used to attach other peptides, such as YIGSR and REDV on PEG hydrogel surfaces
[203]. Furthermore, it was developed to modify PEG hydrogels with attachment of
maleimide or thiol groups on the hydrogel surface, followed by attachment of peptides
through Michael-type addition with the cysteine- or maleimide-containing peptides [23,151].

An important application of the post-grafting approach is to prepare patterned medical
devices with biological components by microcontact printing (µCP) [218–221]. The surface
grafting of biomolecules is crucial for soft lithography to tailor the chemical and structural
properties of the desired surfaces to mediate cell attachment, proliferation and differentiation
[222–226]. Hynd and coworkers applied streptavidin-biotin chemistry to make patterned
PEG hydrogel surfaces to direct cell attachment and growth [124]. Streptavidin-
functionalized PEG hydrogel surfaces were first made by photo-copolymerization of
acrylated streptavidin with PEGDA. Subsequently, biotin-labeled LN, FN, or biotin-IKVAV
were transferred by polydimethylsiloxane (PDMS) stamps to react with streptavidin on the
hydrogel surface, which resulted in the formation of a patterned cell-adhesive hydrogel
surface (Fig. 4B). LRM55 astroglioma cells selectively adhered to LN, FN or IKVAV-
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stamped regions of the hydrogels, and exhibited significant neurite extension after 72 h in
vitro [124].

4.2. Free radical polymerization
Free radical polymerization (FRP), especially photopolymerization has been widely used to
make PEG hydrogels from PEGDA macromers in the presence of photoinitiators. To
incorporate bioactive molecules into PEG hydrogel networks, copolymerization of acrylated
biomolecules has been an important strategy to make bioactive PEG hydrogels.

4.2.1. Copolymerization with peptide monoacrylates—The post-grafting approach
is limited to attaching peptides on the hydrogel surface. However, cell culturing in a 3D
hydrogel network needs to incorporate bioactive peptides throughout the bulk hydrogel.
Copolymerization of PEGDA with monoacrylates of cell-adhesive peptide (CAPs) has
emerged as the major approach to make bulk cell-adhesive hydrogels (Fig. 5A). Hern and
Hubbell reported on the synthesis of monoarcylated RGD with/without PEG spacers by
functionalizing the N-terminal amines of RGD peptides with N-hydroxyl succinimide
(NHS) ester of acrylic acid (AA-NHS) and acryloyl-PEG-NHS (Acr-PEG-NHS, Mw 3400)
to produce mono-acrylamidoyl RGD (RGD-MA) and RGD-PEG monoacrylate (RGD-
PEGMA), respectively [134]. Subsequently, RGD-MA or RGD-PEGMA monomers were
copolymerized with PEGDA upon photopolymerization to create cell-adhesive hydrogels
(Fig. 5A). The modified PEG hydrogels with various RGD densities were studied in vitro
for their ability to promote the spreading of human foreskin fibroblasts over 24 h. The PEG
spacer (Mw 3400) can enable the immobilized peptide to move flexibly in the biological
environment, which is required to permit cell spreading to be mediated specifically, while
PEGDA hydrogels with RGD-MA without a PEG spacer mediated cell spreading
nonspecifically.

The copolymerization method with peptide monoacrylates presents a versatile means for
cell-adhesive modification of PEG hydrogels. For example, 10% (w/v) PEGDA (Mw 6000)
hydrogels showed minimum cell adhesion and spreading 6 h after seeding human artery
SMCs seeding on the hydrogel surface (Fig. 5B), while 10% (w/v) PEGDA hydrogels with
incorporation of 0.5% (w/v) RGD-PEGDA (PEG Mw 3400; RGD sequence, GRGDSP,
density ∼ 1.0 mM) exhibited significantly higher cell adhesion and spreading at the same
time point (Fig. 5C). This method for incorporating cell adhesion into PEG hydrogels has
been studied extensively with various other CAPs, such as KQAGDV, YIGSR, REDV,
VAPG and IKVAV (Table 1) [100–111,115,227]. Various cell lines have been explored to
immobilize on bioactive PEG hydrogels, including fibroblasts, chondrocytes, vascular
endothelial cells (ECs), osteoblasts, neural cells, and stem cells [43,44].

4.2.2. Copolymerization with peptide diacrylates—Peptide monoacrylates like
RGD-PEGMA can copolymerize with PEGDA to create cell-adhesive PEG hydrogels, but
the distribution of RGD peptides in hydrogels is random (Fig. 5A), and the extent of peptide
incorporation in hydrogels is limited due to the monoacrylation of peptide affecting
hydrogel formation and its mechanical properties. Since ligand presentation in scaffolds
plays an important role in controlling cell behavior, Zhu et al., developed a strategy to create
a peptide-containing PEGDA macromer like RGD-PEGDA with RGD attached with two
PEG monoacrylates, which has a similar structure to PEGDA with two C=C double bonds
for polymerization (Fig. 6A) [147]. This approach has the advantage of controlling the
spatial organization of peptide ligands in hydrogels (Fig. 6B) and eliminating the effort of
peptide incorporation on hydrogel mechanical properties. RGD-PEGDA was synthesized by
conjugation of diaminopropionic acid (Dap)-capped GRGDSP peptides with Acr-PEG-NHS
(Mw 3400). To mimic the RGD loop structure, Zhu et al., synthesized cyclic RGDfE peptide
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(Fig. 6C), c[RGDfE(SSSKK-NH2)] with a hydrophilic tail consisting of a spacer of three
serine residues (SSS) and a linker of two lysine residues (KK) [148], which can be
conjugated with Acr-PEG-NHS to form cRGD-PEGDA (Fig. 6D) [148,228]. Both RGD-
PEGDA and cRGD-PEGDA can be photopolymerized to form cell-adhesive hydrogels with
well-controlled spatial organization of peptide ligands. The results show that cRGD-PEGDA
hydrogels facilitate EC adhesion and spreading on the hydrogel surfaces, and exhibit
significantly higher EC population in comparison with linear RGD-modified hydrogels at
low peptide incorporation [148].

Another important type of peptide-modified PEG diacrylates is enzyme-sensitive peptide
(ESP)-containing PEGDA (ESP-PEGDA) (Fig. 7). The structure of ESP-PEGDA is
different from that of CAP-PEGDA. ESP usually have two reactive groups on both ends for
conjugation with Acr-PEG-NHS to create ESP-PEGDA with ESP inserted between two
PEG monoacrylate (PEGMA) chains, while CAP-PEGDA was synthesized by a CAP with
two amines on one end for attachment as a pendant on the PEGDA chain. ESP-PEGDA has
the ability for photopolymerization to form hydrogels, which mimic the proteolytic
degradation of the natural ECM by specific enzymes, e.g., plasimin, elastase and MMPs. A
variety of enzyme-sensitive peptide (ESP) sequences (Table 2), such as GPQG↓IWGQ (↓
indicating the cleavage site) [162], YK↓NRD [164,165], L↓GPA [7,138,168–170], APG↓L
[171], VR↓N [171] and AAAAAAAAA [138], have been used for enzyme-sensitive
modification of PEG hydrogels. Also, ESP-PEGDA can be used to copolymerize cell-
adhesive PEG macromers like RGD-PEGMA to make bioactive PEG hydrogels with dual
biofucntions, i.e., enzyme-sensitive degradation and specific cell adhesion [168–170].

4.2.3. Thiol-acrylate photopolymerization—Copolymerization of acrylated bioactive
peptides has been a major method to incorporate bioactive peptides in PEG hydrogels, but
this method needs one more step to synthesize acrylated peptides off resin using Acr-PEG-
NHS. It will be beneficial to develop a method to tether peptides into hydrogels directly.
Since thiol-containing compounds have been used as chain transfer reagents to control the
molecular weight of polymers by free radical polymerization (FRP), it is expected that
cysteine-containing peptides can play the same role as chain transfer reagents in the FRP of
PEGDA, which leads to the incorporation of cysteine-containing peptides into the PEG
hydrogel network [229–232]. Based on this principle, an alternative approach, called thiol-
acrylate photopolymerization has been developed to bioactively modify PEG hydrogels (Fig.
8) [21,152,153,233]. Anseth and co-workers synthesized thiol-bearing RGD peptide in the
form of CGRGDSG, which was photopolymerized with PEGDA. The results show that
approximate 95% of the CGRGDSG peptide was incorporated after 10 min reaction with
incorporation of cysteine-containing peptides with appropriately functionalized PEG or
multiarm PEG macromers (e.g., acrylate, maleimide and vinyl sulfone) [234–238]. The
reaction proceeds via a stepwise growth mechanism [239,240]. Hubbell and coworkers
synthesized multiarm PEG vinyl sulfone (n-PEG-VS) for Michael-type addition of SH-
containing RGD peptide (CRGDSP), and dithiol-bearing ESP (ESP-2SH), CRD-
GPQG↓IWGQ-DRC (↓ indicating the cleavage site) (Fig. 9) [154,161,163,241]. The PEG-
based network can be readily formed under physiological conditions in direct contact with
tissues, cells and biological molecules. The resultant hydrogel mimics the cell-adhesive and
biodegradable properties of the natural ECM, and has utility as tissue engineering scaffolds
and as delivery matrixes for sensitive biomolecules, such as recombinant human bone
morphogenetic protein-2 (rhBMP-2). Primary human fibroblasts migrated within the
bioactive hydrogels by integrin- and MMP-dependent mechanisms [241].
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4.4. Click chemistry
Recently, Click chemistry has been employed to fabricate PEG hydrogels, which exhibit
enhanced swelling capacities and improved mechanical properties [21,22,152]. Yang et al.,
reported on synthesis of cell-adhesive PEG hydrogels by Click chemistry between 4-arm
PEG acetylene (4-PEG-Ace) and RGD diazide (RGD-2N3) (Fig. 10) [145]. RGD-2N3 was
prepared by solid phase peptide synthesis (SPPS), while 4-PEG-Ace was synthesized by
acetylenation of tetrahydroxy terminated 4-arm PEG. PEG networks were formed by the
copper (I)-catalyzed formation of 1,2,3-triazoles between RGD-2N3 and 4-PEG-Ace, which
has demonstrated complete specificity under physiological conditions. The gelation time
ranged from 2 to 30 min, depending on temperature, catalyst and precursor concentration.
Cell studies using primary human dermal fibroblasts show that the PEG hydrogels with the
incorporation of RGD peptides achieved significantly improved cell attachment and greater
cell proliferation, compared with the control hydrogels without RGD peptides.

4.5. Enzymatic reaction
Enzymatic reactions have become increasingly attractive targets for the fabrication of
advanced materials. Recent development efforts in this area have produced a number of
remarkable examples for such smart enzyme responsive materials [24,242–244]. Molecular
building blocks have been designed to form hydrogels by the catalytic action of crosslinking
enzymes. Most enzymes catalyze chemical reactions under mild conditions, such as at low
temperature and neutral pH, and in buffered aqueous solutions. Enzymes also can be
exceptionally selective for their substrates, allowing for sophisticated, biologically inspired
hydrogel designs without the complication of side reactions and cellular toxicity. The
enzymatic formation of hydrogels is versatile to functionalize hydrogels with the
incorporation of necessary biomolecular signals to elicit a desired cellular response.

Hubbell et al., developed a method using coagulation transglutaminase Factor XIIIa to form
bioactive hydrogels by the enzymatic reaction between Gln- and Lys-containing substrates
[25,26]. A α2-plasmin inhibitor-derived peptide, NQEQVSPL was used as the Gln acceptor
peptide (QAP), while FKGG was used as the Lys donor peptide (KDP) conjugated with an
ESP, GPQG↓IWGQ. Both QAP and KDP-ESP were attached with a cysteine residue for
coupling with multiarm PEG vinyl sulfone (n-PEG-VS) by Michael-type addition,
producing n-PEG-QAP and n-PEG-ESP/KDP, respectively (Fig. 11). Factor XIIIa was used
for enzymatic crosslinking n-PEG-QAP and n-PEG-ESP/KDP to form MMP-sensitive
hydrogels. To incorporate CAPs and GFs, RGD and VEGF were attached with QAP to
generate RGD-QAP and VEGF-QAP, respectively. Both RGD-QAP and VEGF-QAP can be
incorporated into the enzyme-sensitive PEG networks by the same enzymatic reaction using
Factor XIIIa. VEGF was quantitatively incorporated and released upon cell-derived
proteolytic degradation of the gels, and primary stromal cells invaded and proteolytically
remodeled these networks both in vitro and in vivo [25].

4.6. Photoregulation of hydrogel bioactivity
Natural proteolytic activities are involved in a wide array of biological processes, including
zymogen activation, protein degradation, and the removal of signal peptides [245].
Photochemical regulation of such a cleavable process is used increasingly to probe cellular
events. The ability to initiate protein or peptide cleavage photochemically would allow
spatial and temporal control over the activity, lifetime and localization of bioactive motifs
both in vitro and in living cells [246,247]. Photoactive molecules have attracted much
attention since they can be used with high space and time selectivity. For example,
photocleavable molecules like 2-(nitrophenyl)glycine (NPG) have been introduced into
proteins to study the folding mechanism [248–251], whereby the native protein structure is
produced instantly by irradiation of the modified protein with light (Fig. 12A). A
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photoisomerizable intramolecular crosslinker, 4-[(4-amino)phenylazo]benzoic acid (APB)
has been used to control optically not only the peptide conformation, but also its complex
formation with biomolecules (Fig. 12B) [252–256]. The desired gel property for altering cell
function or fabricating a device is externally triggered and directed with irradiation by
photolytic cleavage and removal of the macromolecules that compose the gel.

The ability to manipulate the hydrogel bioactivity is an essential feature in the development
of novel scaffolds for tissue engineering. To date there are few examples of bioactive PEG
hydrogels with photoresponsive bioactivities. Anseth and coworkers developed
photodegradable PEG hydrogels for the dynamic tuning of gel physical and chemical
properties and for the control of cell adhesion in real time [257]. Photodegradable acrylate
(PDA) with a carboxyl group was synthesized by acrylation of the photodegradable
functionality, a nitrobenzyl ether-derived moiety. Photodegradable PEG diacrylate (PD-
PEGDA) was synthesized by conjugation of PEG diamine with the carboxyl group of PDA,
while photodegradable RGD monoacrylate (PD-RGDMA) was synthesized by the same
chemistry by the reaction of N-terminal amine of RGD with the carboxyl group of PDA
[257]. PD-RGDMA and PD-PEGDA are capable of redox-initiated polymerizing to produce
photolytically degradable hydrogels (Fig. 13).

This type of hydrogels is capable of polymerizing in the presence of cells like hMSCs, and
the gel physical or chemical properties and cell morphology can be manipulated by light
irradiation and degradation of these PD-PEGDA hydrogels at any time in culture [257]. To
tune the cell adhesion of hydrogels temporally and spatially with light, PD-RGDMA was
copolymerized with PEGDA to make hydrogels with photocleavable cell adhesion. Upon
photolytic removal of RGD peptides from the photolabile tether gels on day 10, hMSC
viability was unaffected; however, by day 21, a four-fold statistical increase in the
production of GAGs occurred relative to the persistently presented RGD or PEG-only
hydrogels. Cells persistently presented with RGD expressed integrins, whereas most cells
with photocleavable RGD ceased integrin expression by day 21, indicating that the cells
have locally sensed and responded to the chemical change in their environment [257].

5. Conclusions
The natural ECM is an attractive model for bioactive modification of PEG hydrogels. Short
peptide sequences derived from ECM proteins, such as fibronectin, laminin and collagen,
have been the major targets for fabricating biomimetic hydrogels. To tether ECM-derived
bioactive molecules to PEG hydrogels, various strategies have been developed to provide
fundamental knowledge to understand cell/scaffold interactions through specific cell
adhesion, proteolytic degradation, and signal molecule conjugation. Much effort has been
devoted to the control of ligand density and spatial distribution in PEG hydrogels to
modulate specific cellular responses. Despite the recent advances toward the development of
bioactive PEG hydrogels, several challenges still remain including precisely spatial and
temporal control of scaffold architecture and biofunctions, cell-mediated delivery of GFs
without burst release, and design of a dynamic cellular microenvironment for tissue
engineering.
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Fig. 1.
Structures of linear PEG and 4-arm-PEG with various functional end groups.
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Fig. 2.
Model of complex 3D structure of extracellular matrix (ECM) and cell-ECM interactions.
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Fig. 3.
Bioactive modification of PEG hydrogels (A) with bioactive molecules (BMs), such as cell-
adhesive peptide (CAP), enzyme-sensitive peptide (ESP), and growth factor (GF), and major
types of bioactive monomers from mono-, di- and multi-functionalization of BMs with
various groups (B).
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Fig. 4.
Fabrication of cell-adhesive PEG hydrogels (A) by copolymerization of PEGDA and acrylic
acid, followed by post-grafting of cell-adhesive peptides (CAPs) on the hydrogel surface
through the reaction between the N-terminal amino groups of CAPs and the carboxyl groups
provided by acrylic acid from the hydrogel. Microfabrication of patterned cell-adhesive
hydrogel surfaces (B) by microcontact printing (µCP) of biotinated CAPs (Biotin-CAPs) on
streptavidin-bearing PEG hydrogels.
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Fig. 5.
Synthesis of cell adhesive peptide (CAP) monoacrylamide (CAP-MA) and CAP-containing
PEG monoacrylate (CAP-PEGMA) for preparation of cell-adhesive PEG hydrogels (A).
Phase contrast images of human artery SMCs 6 h after seeding on 10% (w/v) PEGDA (Mw
6000) hydrogels (B) and on 10% (w/v) PEGDA (Mw 6000) hydrogels with incorporation of
0.5% (w/v) RGD-PEGMA (PEG Mw 3400; RGD sequence, GRGDSP, density ∼ 1 mM)
(C).
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Fig. 6.
Synthesis of RGD-containing PEGDA (RGD-PEGDA) (A) by conjugating
diaminopropionic acid (Dap)-capped GRGDSP with Acr-PEG-NHS. Model of cell-adhesive
PEG hydrogels (B) from photopolymerization of cell adhesive peptide (CAP)-containing
PEGDA (CAP-PEGDA) with controlled spatial organization of CAPs. Structures of cyclic
RGD (cRGD), c[(RGDfE)SSSKK(NH2)] (C) with a hydrophilic tail, consisting a spacer of
three serine residues (SSS) and a linker of two lysine residues (KK), and cRGD-containing
PEGDA (cRGD-PEGDA) (D).
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Fig. 7.
Synthesis of enzyme-sensitive peptide (ESP)-containing PEGDA (ESP-PEGDA) by
conjugating Acr-PEG-NHS with ESP diamine (ESP-2NH2), and preparation of
proteolytically degradable PEG hydrogels from photopolymerization of ESP-PEGDA.
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Fig. 8.
Preparation of cell-adhesive PEG hydrogels by thiol-acrylate photopolymerization of
PEGDA with monothiol-containing cell adhesive peptide (CAP-SH).
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Fig. 9.
Preparation of cell-adhesive PEG hydrogels by Michael addition of 4-arm-PEG vinyl
sulfone (4-PEG-VS) with monothiol-containing cell-adhesive peptide (CAP-SH) and
dithiol-containing enzyme-sensitive peptide (ESP-2SH).
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Fig. 10.
Preparation of cell-adhesive PEG hydrogels by Click chemistry between 4-arm-PEG
acetylene (4-PEG-Ace) and cell adhesive peptide diazide (CAP-2N3) in the presence of
copper (II) sulfate and sodium ascorbate.
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Fig. 11.
Preparation of bioactive PEG hydrogels by enzymatic reaction between Lys donor peptide
(KDP)-capped multiarm PEG (n-PEG-KDP) and Gln acceptor peptide (QAP)-capped
enzyme-sensitive peptide (ESP)-containing multiarm PEG (n-PEG-ESP/QAP) with
incorporation of QAP-functionalized cell adhesive peptide (CAP-QAP) and/or QAP-
functionalized growth factor (GF-QAP) in the presence of Factor XIIIa and calcium ion.
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Fig. 12.
Photodegradable peptide backbone (A) containing the residue of 2-(nitrophenyl)glycine
(NPG), and photoisomerizable peptide backbone (B) containing the residue of 4-[(4-
amino)phenylazo]benzoic acid (APB).
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Fig. 13.
Preparation of photocleavable cell-adhesive PEG hydrogels by copolymerization of PEGDA
with photocleavable cell-adhesive peptide monoacrylate (PD-CAPMA), and
photodegradable PEG hydrogels by copolymerization of photocleaveable PEGDA (PD-
PEGDA) with PEG monoacrylate (PEGMA).
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Table 1

Cell-adhesive peptides (CAPs) that have been used for cell-adhesive modification of PEG hydrogels.

CAP Origin a Cell receptor Monomer type Ref.

RGD FN, LN, Collagen Integrins Monoacrylate 7,134–146

Diacrylate 147,148

Monothiol 21,149–154

Monoazide 155

Diazide 155

Monomaleimide 23

Mono-QAP b 26

KQAGDV FN Integrin Monoacrylate 138–141,145

REDV FN Integrin α4β1 Monoacrylate 118

PHSRN FN Integrin α5β1 Monoacrylate 142,143

Monothiol 150

IKVAV LN α1 110 kDa protein Monoacrylate 144,146

Monothiol 151

Monobiotin 124

YIGSR LN 67 kDa protein Monoacrylate 144–146

Monothiol 150

PDGSR LN Integrin Monoacrylate 144,146

LRGDN LN Integrin Monoacrylate 146

LRE LN Integrin Monoacrylate 144

IKLLI LN Heparin Monoacrylate 144,146

GFOGER Collagen-I Integrin α2β1 Monoacrylate 141

VAPG Elastin 67 kDa protein Monoacrylate 139,140,145,156

a
FN, fibronectin; LN, laminin.

b
QAP, Gln acceptor peptide (NQEQVSPL).
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Table 2

Enzyme-sensitive peptides (ESPs) that have been used for preparation of proteolytically degradable PEG
hydrogels.

ESPa Origin Sensitive enzyme Monomer type Ref.

GPQG↓IAGQ Collagen-I MMP-1 Dithiol 161

GPQG↓IWGQ Peptide library MMP-1 Diacrylate 162

Dithiol 19,149,163–167

GPQG↓ILGQ Collagen-I MMP-1 Dialkyne 152

L↓GPA Peptide library MMP-1 Diacrylate 7,138,168–170

APG↓L Peptide library MMP-1 Diacrylate 171

YK↓NRD Fibrinogen Plasmin Dithiol 164,165

VR↓N Fibrinogen Plasmin Diacrylate 171

AAAAAAAAA Peptide library Elastase Diacrylate 138

AAPV↓RGGG Peptide library Elastase Monoacrylate 172

PEN↓FF Aggrecan MMP-13 Monothiol 153

a
↓ indicates the cleavage site.
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Table 3

Bioactive molecules (BMs) that have been used for preparation of GF-bearing or binding PEG hydrogels.

BM a Monomer type Method Ref.

VEGF Monothiol Covalently attaching VEGF to hydrogels by Michael-
type addition of VEGF-SH with n-PEG-VS. b

190

Mono-QAP Covalently attaching VEGF to hydrogels using Factor
XIIIa through enzymatic reaction of VEGF-QAP with n-
PEG-KDP. c

25

bFGF Multiacrylate Covalently attaching bFGF to hydrogels by
copolymerization of acrylated bFGF with PEGDA.

191

EGF Multiacrylate Covalently attaching EGF to hydrogels by
copolymerization of acrylated EGF with PEGDA.

192

TGF-β Multiacrylate Covalently attaching TGF-β to hydrogels by
copolymerization of acrylated TGF-β with PEGDA.

193

BMP peptide a Monoazide Covalently incorporating KIPKASSVPTELSAISTLYL
(corresponding to residues 73–92 of BMP2) into
hydrogels by Click chemistry for induction of
osteogenesis.

194

Heparin Multicarboxyl Forming hydrogels by carboxyl/amine conjugation 195–197

Multiacrylate Forming hydrogels by copolymerization. 198,199

Multimaleimide Conjugating with PEG or star PEG and forming
hydrogels by Michael addition, or by specific binding
between heparin and GFs or HBPs. d

200–203

Multithiol Forming hydrogels by Michael addition
All the above hydrogels were studied for binding bFGF

204,205

CS Multiacrylate Forming hydrogels by copolymerization. 206,207

Multithiol Forming PEG hydrogels with incorporation of HA by
Michael addition for binding bFGF.

205

HA Multithiol Forming PEG hydrogels with incorporation of heparin
by Michael addition for binding bFGF.

205

Biotin Monothiol Incorporating thiol-modified biotion into PEG hydroges
by thiol-acrylate photopolymerization, followed by
specific binding streptavidin-modified bFGF.

208

KRTGQYKL Monothiol Incorporating thiol-containing peptide, CKRGGAYKL
into PEG hydroges by thiol-acrylate
photopolymerization for specific binding of bFGF.

208

a
BMP, bone morphogenetic protein; CS, chondroitin sulfate; HA, hyaluronic acid.

b
VEGF-SH, recombinant VEGF with incorporation of a cysteine residue; n-PEG-VS, multiarm PEG vinyl sulfone.

c
QAP, Gln acceptor peptide (NQEQVSPL); KDP, Lys donor peptide (FKGG); VEGF-QAP, QAP-modified VEGF; n-PEG-KDP, KDP-capped

multiarm PEG.

d
HBP, heparin-binding peptide, CGGRMKQLEDKVKKLLKKNYHLENEVARLKKLVG derived from the heparin-binding domain of human

platelet factor 4.
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Table 4

Functionalized PEG hydrogels with specific bioactivities.

Bioactive PEG hydrogel BM a Origin Monomer type Ref.

Matrix protein-binding (POG)7Y Collagen Monoacrylate 209

KLER Decrorin Monothiol 210

Immuno-isolating MnTMPyP N/A b Tetra-acrylate 211

Anti-Fas N/A Monoacrylate 212

YC*WSQYLC*Y TNF receptor 1 213

NO-bearing K5/NO N/A Monoacrylate 214,215

Cys/NO N/A Monoacrylate 214

DETA/NO N/A Monoacrylate 214

a
POG, proline-hydroxyproline-glycine; MnTMPyP, Mn(III) tetrakis(1-Methyl-4-pyridyl)porphyrin pentachloride; * indicates disulfide form ;

DETA, diethylenetriamine.

b
N/A, not applicable.
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