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Abstract: With the ultimate goal to generate suitable materials for the repair of osteochondral 

defects, in this work we aimed at developing composite osteochondral scaffolds organized in 

different integrated layers, with features which are biomimetic for articular cartilage and 

subchondral bone and can differentially support formation of such tissues. 

A biologically inspired mineralization process was first developed to nucleate Mg-doped 

hydroxyapatite crystals on type I collagen fibers during their self assembling. The resulting mineral 

phase was non-stoichiometric and amorphous, resembling chemico-physical features of newly 

deposited, natural bone matrix. A graded material was then generated, consisting of (i) a lower 

layer of the developed biomineralized collagen, corresponding to the subchondral bone, (ii) an 

upper layer of hyaluronic acid-charged collagen, mimicking the cartilaginous region, and (iii) an 



intermediate layer of the same nature as the biomineralized collagen, but with a lower extent of 

mineral, resembling the tidemark. The layers were stacked and freeze-dried, to obtain an integrated, 

monolithic composite. Culture of the material for 2 weeks after loading with articular chondrocytes 

yielded cartilaginous tissue formation selectively in the upper layer. Conversely, ectopic 

implantation in nude mice of the material after loading with bone marrow stromal cells resulted in 

bone formation which remained confined within the lower layer.

In conclusion, we developed a composite material with cues which are biomimetic of an 

osteochondral tissue and with the capacity to differentially support cartilage and bone tissue 

generation. The results warrant test of the material as a substitute for the repair of osteochondral 

lesions in orthotopic animal models.
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“For the biological validation of the developed composites, we used different cell systems which 
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Abstract

With the ultimate goal to generate suitable materials for the repair of osteochondral defects, in this 

work we aimed at developing composite osteochondral scaffolds organized in different integrated 

layers, with features which are biomimetic for articular cartilage and subchondral bone and can 

differentially support formation of such tissues. A biologically inspired mineralization process was 

first developed to nucleate Mg-doped hydroxyapatite crystals on type I collagen fibers during their 

self assembling. The resulting mineral phase was non-stoichiometric and amorphous, resembling 

chemico-physical features of newly deposited, natural bone matrix. A graded material was then 

generated, consisting of (i) a lower layer of the developed biomineralized collagen, corresponding 

to the subchondral bone, (ii) an upper layer of hyaluronic acid-charged collagen, mimicking the 

cartilaginous region, and (iii) an intermediate layer of the same nature as the biomineralized 

collagen, but with a lower extent of mineral, resembling the tidemark. The layers were stacked and 

freeze-dried, to obtain an integrated, monolithic composite. Culture of the material for 2 weeks after 

loading with articular chondrocytes yielded cartilaginous tissue formation selectively in the upper 

layer. Conversely, ectopic implantation in nude mice of the material after loading with bone marrow 

stromal cells resulted in bone formation which remained confined within the lower layer. In 

conclusion, we developed a composite material with cues which are biomimetic of an osteochondral 

tissue and with the capacity to differentially support cartilage and bone tissue generation. The 

results warrant test of the material as a substitute for the repair of osteochondral lesions in 

orthotopic animal models.

Abstract
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1. Introduction

Trauma and disease of joints frequently involve structural damage to the articular cartilage surface 

and the underlying subchondral bone. These pathologies result in severe pain and disability for 

millions of  people world wide and represent a major challenge for the orthopaedic community [1-

4]. Even if a series of therapeutic approaches has been developed to treat osteochondral defects, 

none of them has proved yet to ensure long-lasting regeneration. Considering the intrinsically 

different biological, biochemical and biomechanical properties of the articular cartilage / 

subchondral bone system, several groups have directed their efforts into the generation of 

osteochondral composite materials and/or engineered tissues, using a rather large variety of 

approaches [5-10]. One of the most promising strategies consists in the generation of heterogenous 

scaffolds, obtained by the combination of distinct but integrated layers corresponding to the 

cartilage and bone regions. Such design is based on the recognition of the different requirements to 

regenerate the cartilage and bone parts of an osteochondral defect, and at the same time prevents the 

risk of delamination of different components, if these are adjacent but physically separated. 

The generation of integrated, bilayered osteochondral scaffolds has been initially proposed using α-

hydroxy acids polymers (i.e., poly-lactic acid, poly-lactic-coglycolic acid), combined with a 

ceramic component (i.e., hydroxyapatite, tricalcium phosphate) in the region corresponding to the 

subchondral bone [11-12] More recently, biphasic but monolithic materials were formed by joint 

freeze drying and chemical crosslinking of collagen-based materials (i.e., mineralised or coupled 

with hyaluronic acid), as well as by ionotropic gelation of alginate-based materials (i.e., containing 

or not hydroxyapatite ceramic particles), allowing to achieve specific mechanical properties (i.e., 

elasticity or compression strength) [13]. 

Along the direction of designing biomimetic osteochondral composite scaffolds resembling the 

composition of the extracellular matrices of cartilage and bone tissue, in this study we first aimed at 

further developing a previously reported process of nucleation of hydroxyapatite nanocrystals onto 

self-assembled collagen fibers [14]. We then generated chemically and morphologically graded 

hybrid materials, built by stacking a lower mineralised layer produced according to the newly 

developed technique, an intermediate layer with reduced amount of mineral to mimic the tidemark 

and an upper layer formed by collagen and hyaluronic acid, reproducing some cartilaginous 

environmental cues. Finally, we addressed whether the resulting composite materials would 

differentially support cartilage and bone tissue formation in the different layers, when loaded with 

articular chondrocytes or bone marrow stromal cells.

* Manuscript
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2. Materials and Methods

2.1. Material processing and composite development

The organic component, working as matrix mediating the mineralization process, was type I 

collagen (Coll) extracted from equine tendon, telopeptides free and supplied as acetic gel (an 

aqueous acetic buffer solution with pH=3.5 containing 1wt% of pure collagen). Type I collagen was 

selected for the synthesis of the composite layers, including the cartilaginous one, due to (i) its good 

physico-chemical stability and processability and (ii) high safety and biocompatibility profile, 

related to the removal of all telopeptides, which are potentially responsible for immunological 

reactions. The mineral phase, represented by hydroxyapatite (HA) and/or magnesium-

hydroxyapatite (MgHA) was directly nucleated onto collagen fibers during their self assembling. 

Magnesium ions were introduced to increase the physico-chemical, structural and morphological 

affinity of the composite with newly formed natural bone [15]. In order to generate a scaffold with a 

morphological and mineralization gradient, three different layers were prepared: a) the upper one, 

mimicking the cartilagineous layer, and composed of Collagen and Hyaluronic acid; b) the 

intermediate one, mimicking the tide-mark,  and composed of HA/Coll (40/60 wt%) composite; c) 

the lower one, mimicking the subchondral bone, and composed of HA/Coll (70/30 wt%) composite.

Synthesis of the cartilagineous upper layer: 100 g of 1wt% type I collagen in acid suspension were 

precipitated by  the addition of NaOH (0.1M) solution up to pH 5.5. The precipitate was then 

washed three times with 300 ml of water. Finally 0.1wt% of hyaluronic acid (HYA: 

P.M.=1.700.000 uma) was added to the gel just before the crosslinking treatment.

Synthesis of the intermediate bony layer (tidemark): 100 ml of H3PO4 (0.040M) solution, mixed 

with 100 g of 1wt% collagen gel, were dropped in a basic suspension, containing 0.491 g of 

Ca(OH)2 in 750 ml distilled water to yield a composite HA/Col material in the ratio 40/60wt%.

Synthesis of the lower bony layer: 244 ml of H3PO4 (0.040M) solution, added with 70 g of 1wt% 

collagen gel, was dropped in a basic suspension containing 1.203 g of Ca(OH)2 in 184 ml of 

distilled water to yield a composite HA/Col material in the ratio 70/30 wt%. The same 

mineralization process was also performed to nucleate Mg doped HA on collagen fibers. In 

particular, 244 ml of H3PO4 (0.040M) solution, mixed with 70 g of 1wt% collagen gel, were 

dropped in a basic suspension containing 1.203 g of Ca(OH)2 and  MgCl2  in 184 ml of distilled 

water. The amount of MgCl2 was calculated to obtain a molar ratio XMg (Mg/Ca) = 5% in the 

mineral phase. The drop wise addition procedure was performed  under stirring and assuring a slow 

decrease of pH [14]  up to neutrality ( total dropping  time for the considered volumes 30 min.).
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Each  synthesized material was treated with the crosslinking agent 1,4-butanediol diglycidyl ether 

(BDDGE) through immersion for 48 hours in a BDDGE aqueous solution (2.5 mM), setting up a 

BDDGE/collagen ratio equal to 1wt%. After this cross-linking treatment, each preparation was 

filtered and layered on Mylar sheet. The thicknesses of the cartilaginous, intermediate and bony

layers (respectively about 2.0, 1.5 and 2.5 mm) were selected on the basis of technological 

limitations (preparations thinner than 1.5 mm are challenging) and of the dimension of native

articular cartilage in the sheep joint (selected as in vivo test model). The three layers were piled up, 

then a knitting procedure [16] was applied at each interface (bone-tidemark interface and tidemark-

cartilage interface) to assure good integration by the exchange of anchor fibers between the layers 

and avoid delamination at the interface. Finally, freeze-drying with a controlled freezing and 

heating ramp was performed from 25°C to -25°C and from -25°C to 25°C in 50 min., under vacuum 

conditions (P = 0.20 mbar) .

2.2 Composite characterization

ICP-OES quantitative analysis, using an inductively coupled plasma - atomic emission 

spectrometry (ICP-AES: Liberty 200, Varian, Clayton South - Australia), was applied to determine 

the content of Mg2+, Ca2+, PO4
3- ions constituting the mineral phase forming the composites. 

Samples were previously prepared using an acid attack (nitric acid 65wt%). The obtained values 

were expressed in term of Ca/P and Mg/Ca molar ratios. The composites were examined by 

scanning electron microscopy (ESEM) (Quanta 600 FEG, FEI Company, Hillsboro, OR) equipped  

with EDS (analyzing program: EDAX Genesis, Mahwah, NJ). Infrared spectroscopy (FTIR) was 

performed by  using a Nicolet 4700 Spectroscopy on  pellets (13 mm ) which  were prepared by 

mixing 2 mg of ground sample with 100 mg of KBr in a mortar and pressing. Collected X-ray 

diffraction patterns were recorded by a Bruker AXS D8 Advance instrument in reflection mode 

with Cu-Ka radiation and by a Rigaku Miniflex diffractometer (Cu-Ka radiation). The samples were 

ground through a cryo-milling apparatus to obtain relatively uniform particle size powder.

Observations of composites materials by transmission electron microscopy (TEM) were performed 

with a JEOL EX4000 instrument with acceleration potential of 400 kV. Samples were dispersed on 

lacy carbon Cu grids by contact with the grids and subsequent gentle shaking.

Enzymatic tests were performed on mineralized and non-mineralized materials using 200 U/ml of 

Collagenase solution (in 0,1 M Tris-HCl pH=7.4). The kinetics of enzymatic degradation was 

followed by an UV-visible spectrophotometer, that allowed to observe the different absorbance in 

function of time. At  λ = 280 nm the absorption of the aromatic amino-acids tyrosine and tryptophan 

occurs and it is possible to estimate the increase of concentration of degraded collagen in solution.
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Solid state 13C NMR spectra were performed at 50.33 MHz on a Bruker AC-200, equipped with an 

HP amplifier. Samples were finely powdered and packed into 4 mm zirconia rotors and sealed with 

Kel-F caps.

Mechanical tests were performed on mineralized specimens (bars 3mm x 7mm x 60mm) obtained 

through cold uni-axial pressing at different pressures of freeze dried HA/Coll 70/30 composite 

materials and having different final porosities. Three specimens have been prepared for each pre-

selected porosity (in the range 45-65 vol%). Young’s Modulus was measured by resonant frequency 

method using an H&P gain phase analyzer (Yokogama, Hewlett Packard, Tokyo, Japan) and 

flexural strength σ through the 4-point (lower span = 40mm, upper span = 20 mm) bending method 

(Instron machine model 1195, High Wycombe, Bucks, UK) using a crosshead speed of 1mm/min.

The σ value has been calculated applying the formula σ =3PN * a/bd2 where PN is the load in N and b 

and d are respectively the width and  the height of the specimen and a is the outer span.

2.3 Cell isolation and expansion

For the biological validation of the developed composites, we used different cell systems which 

have been previously shown to efficiently differentiate towards the chondrogenic and osteogenic 

lineages, i.e. respectively human expanded chondrocytes [17] and sheep bone marrow stromal cells 

(BMSC) [18]. 

Full-thickness human articular cartilage biopsies were obtained post mortem (within 24 h after 

death) from the lateral condyle of knee joints of 2 individuals with no history of joint disease, after 

informed consent by relatives and in accordance with the local ethics committee of University 

Hospital Basel, Switzerland. Cartilage tissue was minced, digested with 0.15% type II collagenase 

(10 mL solution/g tissue, 300 U/mg, Worthington Biochemical Corporation, Lakewood, NJ) for 22 

hours and the isolated chondrocytes resuspended in Dulbecco's modified Eagle's medium containing 

10% fetal bovine serum, 4.5 mg/mL D-glucose, 0.1 mM nonessential amino acids, 1 mM sodium 

pyruvate, 100 mM HEPES buffer, 100 U/mL penicillin, 100 µg/mL streptomycin, and 0.29 mg/ml 

L-glutamine (complete medium). Chondrocytes were expanded in complete medium with the 

addition of 1 ng/ml of transforming growth factor-b1, 5 ng/ml of fibroblast growth factor-2 and 10 

ng/ml of platelet-derived growth factor-bb in a humidified 37°C/5% CO2 incubator, as previously 

described [17]. BMSC were obtained from sheep iliac crest marrow aspirates of 3 year old ewes. 

All procedures were approved by the Institutional Ethical Committee. BMSC were cultured as 

described [18]. Mononuclear cells were plated at 5x106 in 100mm dishes in Coons modified Ham’s 

F-12 medium supplemented with 10% FCS and 1ng/ml human recombinant FGF-2 (Austral 

Biologicals, San Ramon, CA). Medium was changed after 3 days and twice weekly. 
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2.4 Generation and culture of chondrocyte-scaffold constructs

Expanded human articular chondrocytes were resuspended at a concentration of 2x108 cells/mL and 

aliquots of 80µl (i.e., 1.6x107 cells) were statically loaded onto the composite scaffolds (8mm 

diameter, 6 mm height disks), either from the cartilaginous or from the subchondral bone layer.

Chondrocyte seeded scaffolds were then transferred to agarose-coated dishes and cultured for two 

weeks in complete medium supplemented with 0.1mM ascorbic acid 2-phosphate, 10µg/mL insulin 

and 10ng/mL TGFβ3 (chondrogenic medium), with medium changes twice a week.

2.5 Generation and implantation of BMSC-scaffold constructs

Expanded sheep BMSC were resuspended at a concentration of 2.0x107 cells/mL and aliquots of 

100µl (i.e., 2.0x106 cells) were statically loaded onto the composite scaffolds (8mm diameter, 6 mm 

height disks), both from the cartilaginous and from the subchondral bone layer. BMSC/scaffold 

composites,  in agreement and with the approval of the competent ethical committee and legal 

authorities, were subcutaneously implanted in immuno-deficient (ID) (CD-1 nu/nu) mice by using 

an established model of ectopic bone formation [18]. Recipient ID mice of 1 month of age, 

purchased from Charles River Italia, were kept in a controlled environment and given free access to 

food and water. Mice were anesthetized by intramuscular injection of Xilazine (20 g/ml) and 

Ketamine (30 g/ml). Bioceramic/BMSC composites were implanted subcutaneously on the back 

of the mice. A total of 3 constructs were implanted in 3 different mice. Animals were sacrificed 8

weeks after implantation. Grafts were harvested and processed for histological analysis.

2.6 Histological characterization of generated constructs

Immediately after cell seeding or following 2 weeks culture, chondrocyte-scaffold constructs were 

fixed in 4% formalin, embedded in paraffin, cross-sectioned and stained with Safranin-O for 

sulfated glycosaminoglycans (GAG). BMSC-scaffold constructs were formalin fixed after 

explantation following 8 weeks in ID mice, embedded in paraffin, cross-sectioned and stained with 

hematoxylin-eosin.

3. Results and Discussion

3.1 Development and characterization of the lower (bony) and intermediate (tidemark) layers

The  selected procedure, differently from  processes previously reported, implies the dispersion of 

collagen into the acid solution and the addition drop-wise  of this mixture into the basic dispersion 
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so that to maintain  basic condition (pH>8) for almost all the process. Under these conditions, the 

fibril formation takes place before the precipitation of calcium phosphate, which is crucial since the 

collagen fibrils are supposed to act as templates for the mineralization. Upon decrease of pH lower 

than 8, amorphous HA forms onto the fibrils before their assembling into fibers. Approaching 

neutral pH  two processes enter  in competition, involving the same  binding  chemical groups on 

the surface of the fibers: the organization of collagen fibers into a three-dimensional network  and 

the  proceeding  HA crystallization  [13,14,19,20] . 

The final porosity of the spongy mineralized composites was directly dependent on the freezing 

temperature, heating ramp and the content of water into the starting gel. When the freezing 

temperature was settled at -25°C, with a heating ramp set at 1°C/min the large pores appeared 

anisotropic, with the largest dimension in the range 250-450 m (Fig. 1). Lowering of the freezing 

temperature up to -40°C induced a decrease of the pore diameters and an eccessive pore anisotropy 

[13]. By knitting the collagen/HA gel we assured the formation of  macropores up to 400m [21]. 

Among the several methods used to define the micro-macro porosity and the interconnectivity of 

the mineralized  composites, XRay CT  was also employed with a local resolution of 10 m,  

revealing a total porosity around 80%, a surface-to-volume ratio of  0.116  and a pore wall thickness 

of about 15 -20 m. 

Results of  the ICP analysis  of the HA/Coll composites are reported  in Table 1: the different values 

of the Ca/P ratio of HA and  Mg doped HA, nucleated on Collagen, are in the range of low 

crystallinity HA ( 1.45-1.60): in fact the presence of HPO4
2- in low crystallinity apatites 

contributes to lower the ratio. In the case of composites Mg-HA/Coll 70/30 wt%, the amount of Mg 

substituting Ca is exactly as expected, i.e. about 50% of the starting nominal concentration of Mg 

[22, 23]. On the contrary, when the inorganic/organic ratio is lowered at 40/60 HA/Coll the amount 

of Mg substituting Ca into HA structure  decreased. The XRD analysis of HA/Coll composite 

displayed a pattern typical of very low crystallinity HA; the estimated crystallite size along c axis 

was around 12-15 nm. The nucleation occurred according to the process typical of natural bone, 

where the nano-size dimension of crystallites is responsible of the large broadening of reflections in 

the pattern. Such nanocrystals were growing inside collagen fibers with their c axes preferentially 

oriented parallel to the direction of orientation of the fibers [14, 24, 25]. In the case of the 

composite containing Mg-HA, the XRD pattern (Fig. 2) had a profile typical of amorphous phase. 

In the case of composites with lower inorganic/organic phase ratio (40/60) it was systematically 

observed that the diffraction peaks (see Fig. 2b) began to be resolved: actually in the composite 

with lower HA/Coll ratio, the amount of magnesium entered into the HA lattice was lower and thus 

the crystallinity of HA phase increased [22]. A possible explanation could be linked to the higher 
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affinity of Ca2+, with respect to Mg2+, to link COO- groups of collagen, therefore when the HA/Col 

ratio is  40/60 most of the mineral phase grows in tight contact with collagen fibers and Ca2+ ion 

(instead of Mg2+) preferentially binds carboxylic groups present at the surface of collagen fiber, 

therefore maintaining its place within the HA lattice. Differently behaves the HA phase not directly 

contacting the organic fibers, where the competition between magnesium and calcium is mainly 

controlled by the nucleation and subsequent crystallization kinetics. The complete absence of any 

undesirable crystalline secondary phase in all the preparations, even after a thermal treatment up to 

800°C, is a further important information that can be drawn out by XRD analysis.  

The mineral phase was evaluated from a typical set of HREM images (Fig. 3). The HA crystals 

nucleated on the organic fiber exhibited a rod like structure (Fig. 3a). When Mg2+ substituted Ca2+, 

the nuclei of mineral phase had a globular shape and smaller dimensions (Fig. 3b). The inset of Fig. 

3b displays at higher magnification the Mg-HA nucleus on collagen fiber. The analysis of the high 

resolution images and its Fourier Transform (FT) (inset c in Fig. 3b) revealed that this shape is 

accompanied by a lack of order and the particles appear completely amorphous, as indicated by the 

intense diffuse ring and by the complete lack of spots in the FT of the image. It must be stressed 

that the degree of disorder observed for this sample does not correspond to a short range order (as 

the case of low crystalline inorganic HA) but to a “true amorphous” structure [25]. These data 

indicate that, despite comparable synthesis conditions were used, the structural features of the 

mineral phase in the composite are completely different from that nucleated in the absence of an 

organic template [26], moreover, during mineralization, a structural control was accomplished  

through  the preferential nucleation of a specific crystal face/axis, by molecular recognition, at the 

surface of the organic template. Since  Mg  has different polarity, structure and stereochemistry (as 

compared to Ca) the activation energy controlling the nucleation rate changes and this reflects in a 

modification of site-specificity, mineral structure and crystallographic alignment [19, 27]. Another 

clear  evidence of the chemical interaction between HA and collagen fibers comes from the study of 

the FTIR spectra (Fig. 4a), in which a shift from 1340 to 1337 cm-1 of the band corresponding to the 

stretching of –COO- group of collagen, was observed. The band at 870 cm-1 was stronger for 

HA/Coll composites, indicating that the nucleation of HA into collagen implies carbonation of the 

inorganic phase. Moreover the carbonation can be assigned only to the B position as confirmed by 

the absence of the band at 880 cm-1 and by EDS analysis (after collagen elimination by enzymatic 

digestion), which revealed that the increase of the C content (in the CO3
2- groups) corresponds to a 

decrease in P concentration. Similarly, Mg-HA nucleated on collagen results spontaneously 

carbonated and therefore the actual theoretical formula of the mineral phase becomes:

[(Ca, Mg)10-x/2(PO4)6-x(CO3)x(OH)2].
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Thus, like in the natural mineralization process, it was  possible to recognize also a chemical control 

mechanism which occurred during the nucleation and crystals growth and was mainly achieved by 

the regulation of ion movement and the kinetic competition between the fibrils assembling and HA 

nucleus formation [19]. In Fig. 4b a comparison between  HA/Coll and  Mg-HA/Coll  is reported: 

normally, the low site symmetry of the PO4
3- tetrahedron of crystalline HA splits the 4 PO4

3-

contour into three components which fall near 630, 600, and 550 cm-1. It is possible to observe that 

the triplet tends to merge in two and one broad band in HA/Coll composite and Mg-HA/Coll 

composite respectively. In addition, the broad band centered between 550 and 560 cm-1, assigned to 

acid phosphate (HPO4
2-) in the mineral lattice, was much more intense in Mg doped HA nucleated 

on Collagen. These peculiarities of MgHA/Coll can be similarly observed in the FTIR spectrum of 

young bone; while they tend to disappear in mature bone and in highly crystalline synthetic apatite 

[28-30]. Correlation was noted between the fractional intensity of ~1050 cm-1 band  related to PO4
3-

group and the crystal size of the apatite: a reduction of the apatitic crystal size induced an increase 

of the percentage area of this component [31, 32]. All these features indicate that the mineral phase 

containing Mg ions and nucleated on the natural template (collagen) is non-stoichiometric and 

remarkably amorphous resembling very well the features of newly deposited bone mineral.

Flexural strength (σ) was determined on the HA/Coll 70/30 wt% dry composites revealing a 

pseudo-plastic behavior. Due to technological obstacles some samples turned out extremely non-

homogeneous and this is reflected in very different behavior under loading.  The flexural strength 

decreased from about 20 to 5 MPa as the specimen porosity increased from about  45 to 63 vol% 

(Table 2).   From the regression curve of the strength and porosity data,  the equation:                 

     y = 330.5 e-6.8481x

was derived and σ value at zero porosity was also calculated ( = 330 MPa), that can be considered 

an approximation of the strength of the  material at full density). Elastic modulus (Young’s modulus 

- E) determined on the mineralized layer well reproduced the value found for trabecular bone at 

correspondent values of porosity (Table 2).

3.2 Development and characterization of the upper cartilagineous layer

The pure collagenic portion (mimicking cartilage) was added with hyaluronic acid to create bridges 

between the collagen fibers and, through the introduction of this saccharidic structure rich in polar 

hydrogen atoms, to  modify the hydrophilicity of the system. In Fig. 5 the ESEM image shows the 

details of the hyaluronic acid bridges. The porosity of the cartilagineous layer is visible in the inset 

of Fig. 5 and was evaluated by image analysis: the pores result more isotropic if compared with the 

mineralized composite and the average pore diameter was in the range of 100-150 m. Solid state 



- 9-

NMR analysis was performed on the collagenic (cartilaginous) layer with and without hyaluronic 

acid to confirm its presence (Fig. 6), while detailed quantitative analysis are in progress.

BDDGE (1,4-butanediol diglycidyl ether) was added to the three different layers as cross linking 

agent to stabilize collagen and retard its degradation  kinetic. However the effect of the cross-

linking agent on the material morphology is more evident on collagen when the mineral phase is 

absent. A comparison  between the morphology of the freeze dried collagen and freeze dried 

collagen + BDDGE is shown is Fig. 7, highlighting the different morphology induced by BDDGE 

and the higher number of links between the collagen bundles in the cross-linked sample. Enzymatic 

tests carried out on the different layers using Collagenase revealed that the mineral phase retards the 

degradation of collagen and BDDGE further stabilizes the HA/Coll composite: HA/Coll 70/30 wt%

degraded completely in 38hrs, while HA/Coll 70/30 wt% + BDDGE in 78hrs. On the other hand, 

Collagen/Hyaluronic Acid degraded in 3.5hrs while Collagen/Hyaluronic Acid + BDDGE in 7hrs. 

A more detailed description of tests and the nature of link formed between collagen and BDDGE in 

function of pH will be discussed in a  following paper.

3.3 Development and test of the three-layered scaffold

The rationale to fabricate a three-layered scaffold instead of a bi-layered one is based on  the 

consideration that gradual changes in the mechanical features of the layers, due to different

stiffnesses of the differently mineralized fibers, could reduce the mismatch of properties at the 

interface and increase the composite stability.  Fig. 8 displays the ESEM image of the graded 

composite: it is possible to distinguish a disordered lower layer that corresponds to the mineralized 

one, a second layer, with lower mineralization extent, which corresponds to the tidemark and a third 

layer in which the propagation of a planar ice front [33] during a freeze-dry cycle, causes the 

formation of a columnar-like structure converging towards the external surface where it forms 

horizontal flat ribbons, resembling the morphology of the lamina splendens. In the lower layer, the 

higher density and scarce flexibility of  the mineralized fibers  hamper the formation of a 

directionally ordered  structure during freeze-drying. Pulling tests on dry and wet samples were 

manually performed and the detaching interfaces evaluated: in a statistically significant number of 

tests the separation occurred in a random position (not at the layers interface), proving that the 

knitting procedure assures a good adhesion between the mineralized layers and the cartilagineous 

one.

Chondrocytes statically loaded in the composite scaffolds remained mostly confined within the 

seeded layer and their distribution within the layer was rather non-uniform (Fig. 9 a, b). Cells 

appeared more sparse and at lower density in the subchondral bone than in the cartilaginous layer. 
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After 2 weeks in chondrogenic medium, cells in the cartilaginous layer displayed a chondrocytic 

morphology and generated a cartilaginous tissue positively stained for Safranin O (Fig. 9c), while 

cells in the subchondral bone layer remained fibroblastic and did not accumulate histologically 

detectable amounts of glycosaminoglycans (Fig. 9d). The scaffold regions initially void of cells, 

especially those in the central core, remained essentially acellular (data not shown). After 8 weeks 

in ID mice, BMSC loaded in the composite scaffold generated a nicely structured bone tissue 

confined in the bone layer and a loose connective tissue in the cartilagineous layer (Fig. 10).

The obtained results demonstrate that the cartilaginous layer of the composite scaffold is permissive 

to human articular chondrocyte differentiation and cartilaginous matrix deposition, whereas only a 

fibrous tissue could develop in the subchondral bone layer. Conversely, bone tissue formation was 

supported within the subchondral layer of the composite, but not in the cartilaginous region. Further 

studies are required to establish whether the differential tissue formation is due to the initially 

different density of seeded cells, to the different architecture of the layers (e.g., pore size) or to 

effectively biomimetic cues in their composition (e.g., hydroxyapatite, hyaluronic acid component). 

The role of 3-layered composites, as compared to 2-layered structures, will also have to be 

addressed in orthotopic animal models.

4. Conclusions

HA/Coll bio-hybrid composites were prepared through a biologically inspired mineralization 

process. The presence of magnesium, doping hydroxyapatite nucleating on collagen (Mg-HA/Coll),  

induces in the composite those physico-chemical, structural and morphological  features typical of 

newly formed natural bone. Actually, during the artificial mineralization process, intrinsic control 

mechanisms such as regulation of chemistry, morphology and spatial distribution of the mineral 

phase occur, similarly to what happens in natural biomineralization process. Compositionally and 

morphologically graded scaffolds, made with the bio-hybrid composites, displayed the ability to 

support selective cell differentiation towards the osteogenic and chondrogenic lineages. Further 

studies are ongoing to test whether the biomimetic properties of the graded scaffold can induce 

orderly repair of osteochondral defects in a large size animal model.
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Figure captions 

Figure 1: SEM image of the mineralized  bony layer  made of 70/30 wt% HA/Coll

Figure 2: X ray diffractogram of MgHA/Coll (70/30)wt (a), MgHA/Coll (40/60)wt  (b)

Figure 3: Set of HREM images: TEM micrography of freeze milling HA/Coll (70/30)wt composite (a) and  TEM 
micrography of freeze milling MgHA/Col (70/30)wt composite (b). Insert (c): high resolution HREM images and Fourier 
Transform.

Figure 4 : FTIR analyses of apatite/Collagen composites containing different mineral phases (HA, MgHA) compared with 
crystalline HA (a) and detail of PO4 peak area comparison (b).

Figure 5: ESEM micrography of the morphology of the  cartilaginous layer  made of collagen containing Hyaluronic acid 

Figure 6: Solid State NMR analysis : freeze dried collagen (a) and freeze dried collagen with Hyaluronic Acid added (b).

Figure 7:  ESEM micrography of freeze-dried natural collagen (a) and BDDGE cross-linked collagen (b).

Figure 8 ESEM micrography of osteochondral scaffold morphology: three different layers are distinguishable due to the 
different content of mineral phase, that increases moving from the upper (cartilagineous: collagenic only) to the 
intermediate (tide-mark: HA/Coll 40/60wt composite), to the lower layer (bone layer: HA/Coll 70/30wt composite). The 
inset shows the detail of the morphology of cartilaginous (upper) layer: a columnar-like structure converges towards the 
external surface where it forms horizontal flat ribbons, resembling the morphology of the lamina splendens.

Figure 9 Representative safranin O-stained cross-sections of constructs after seeding (a,b), or following two weeks of 
culture in chondrogenic medium (c,d) of scaffolds seeded from the cartilaginous layer (a,c) or from the subchondral bone 
layer (b,d). Scale bar = 100  µm (or 50 µm for the inset in c)

Figure 10: Histological characterization of BMSC generated constructs. The histological analysis of BMSC loaded 
constructs retrieved after 8 weeks of  in vivo implantation in ID mice revealed a nicely formed bone tissue limited to the 
construct bone layer (upper part of the panel) and a loose connective tissue in the construct cartilagineous layer (lower 
part of the panel). The dotted line underlines the transition between bone and cartilage layers of the construct. Staining 
Hematoxylin-Eosin.
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Table 1: ICP-OES quantitative analyses of apatite/collagen composites.

Ca2+ (mol) Mg2+ (mol) PO4
3- (mol) Molar 

Ca/P
Molar 

(Ca+Mg)/P
Molar 

Mg/Ca (%)
HA / Coll 
(70/30)wt

1.870 --- 1.144 1.635 --- ---

MgHA / Coll 
(70/30)wt

1.315 0.035 0.857 1.534 1.575 2.662

MgHA / Coll 
(40/60) wt

1.419 0.027 0.983 1.444 1.471 1.903

Table



Table 2: Flexural strength (σ) values (three point bending method for flexural strength evaluation)
and Young’s modulus (E) values obtained for HA/Coll 70/30 bars having different porosity value 
(in the range 45-65 %).

Specimen porosity 
(%)

Flexural strength 
(MPa)

Young’s modulus E 
(GPa)

45.3 17.56 6.85
45.9 23.23 4.51
46.7 7.46 6.29
51.5 7.86 3.44
52.4 8.77 2.00
54.1 9.05 3.91
62.0 4.68 1.81
62.6 4.92 1.65
63.3 6.11 1.50

Table


