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Abstract

F-box proteins, which are subunit recruiting modules of SCF (SKP1-Cullin 1-F-box protein) E3 

ligase complexes, play critical roles in the development and progression of human malignancies 

through governing multiple cellular processes including cell proliferation, apoptosis, invasion and 

metastasis. Moreover, there are emerging studies that lead to the development of F-box proteins 

inhibitors with promising therapeutic potential. In this article, we describe how F-box proteins 

including but not restricted to well-established Fbw7, Skp2 and β-TRCP, are involved in 

tumorigenesis. However, in-depth investigation is required to further explore the mechanism and 

the physiological contribution of undetermined F-box proteins in carcinogenesis. Lastly, we 

suggest that targeting F-box proteins could possibly open new avenues for the treatment and 

prevention of human cancers.
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1. Introduction

The UPS (ubiquitin-proteasome system) governs the degradation of target proteins and plays 

critical roles in multiple cellular processes including cell proliferation, apoptosis, migration, 

invasion and cell cycle [1]. It has been known that conjugation of ubiquitin to the targeted 
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substrates and subsequent degradation of the ubiquitinated proteins are two processes in 

governing protein degradation [2]. There are three enzymes including the ubiquitin-

activating enzyme (E1), the ubiquitin-conjugating enzyme (E2), and the ubiquitin ligase (E3) 

to catalyze these reactions. Specifically, ubiquitin molecules are activated by the E1 enzyme 

via utilizing ATP and then transferred to the E2 enzyme, and subsequently recruited into the 

E3 ligases. The E3 complex binds to substrate proteins and further leads to their degradation 

by the 26S proteasomes [2] (Figure 1). It is acceptable that the substrate specificity for 

ubiquitination is largely controlled by E3 ligases. Among approximately 600 E3 ligases, 

they are characterized as multiple families according to their protein sequence homology 

including the HECT (Homologous to the E6-AP Carboxyl Terminus) family, the RING 

(Really Interesting New Gene) finger family and the REB (Ring-between-ring) family [3-5].

Among the RING type of E3 ligases, the SCF (Skp1-Cullin1-F-box) complex has been well 

studied. It has been identified that the SCF complex consists of the scaffold protein Cullin1, 

the RING finger protein Rbx1, the linker protein Skp1 (S phase kinase associated protein 1), 

and F-box protein [4] (Figure 2). The function of Rbx1 is to recruit the E2 enzyme, while 

Skp1 binds to F-box proteins. F-box proteins often recognize substrates when they are 

properly modified, most of cases involving phosphorylation of the degron motif within the 

specific substrate, and then recruit the substrates to the SCF complex for ubiquitination [6]. 

It has been identified that there are 69 F-box proteins in human genome [7, 8]. Based on the 

substrate binding domains, F-box proteins are characterized as three major subfamilies: the 

FBXW (F-box with the WD40 motif), FBXL (F-box with the LRR motif), and the FBXO 

(F-box only) subfamily [8]. These F-box proteins target a wide range of substrates for 

ubiquitination and destruction and subsequently regulate cellular processes such as cell 

cycle, cell proliferation, apoptosis, angiogenesis, and metastasis [6]. Thus, dysregulation of 

F-box proteins contributes to the development and progression of various human diseases 

including human cancer. Recently, a wealth of literature has shown that aberrant expression 

of F-box proteins is critically involved in tumorigenesis [6]. Furthermore, F-box proteins 

have been suggested as biomarkers in clinical implications. Therefore, in this article, we will 

review the recent advances in our biochemical understanding of how various F-box proteins 

are dysregulated and lead to tumorigenesis. Moreover, we will summarize possible clinical 

implications of F-box proteins and further discuss whether some F-box proteins could be 

biomarkers and therapeutic targets of a variety of human cancers.

2. F-box proteins

Over the past decades, F-box proteins have been intensively investigated using both 

biochemical approaches and mouse genetic models. It is well documented that F-box 

proteins could exert their oncogenic or tumor suppressive function, which depends on 

misregulated degradation of oncoproteins or tumor suppressors by SCF E3 ligases [7]. In 

this section, we will summarize the recent pathological and biochemical evidence revealing 

a potential role of F-box proteins in the development and progression of human cancers. 

Furthermore, given the critical role of F-box proteins in tumorigenesis, the potential clinical 

implications via targeting F-box proteins will be described.
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2.1. Role of the FBXW subfamily in clinical implications

FBXW subfamily contains the WD40 repeat domain and includes 11 proteins, namely 

FBXW-1 (also known as beta transducin repeat-containing protein, β-TRCP1), FBXW-2, 

FBXW-4, FBXW-5, FBXW-7, FBXW-8, FBXW-9, FBXW-10, FBXW-11 (also known as β-

TRCP2), FBXW-12, and FBXW-15 [6] (Table 1). Many excellent studies have demonstrated 

that FBXW1 (β-TRCP1) and FBXW11 (β-TRCP2) have context-dependent functions in 

cancer. It is worthy to mention that β–TRCP recognizes the consensus sequence D-pS-G-X-

X-pS (X represents any amino acid) degron and phosphorylation of both serine residues by 

specific kinases is required for β-TRCP-mediated ubiquitination [9]. β-TRCP1 and β-

TRCP2 are two homologues, although they are encoded by two different genes. Structurally, 

both isoforms contain an F-box domain and seven WD-40 repeats, but they have different 

sequences in their N-terminal regions [10]. Notably, their biochemical functions are 

redundant by in vitro assays [11].

In support of this concept, depletion of β-TRCP1 in mice caused minor spermatogenesis 

defects, which did not affect mouse normal development [11]. This could be possibly due to 

that β-TRCP2 was still available and may compensate for β-TRCP1 function. It is clear that 

β-TRCP1/2 exerts its physiological functions via targeting some substrates for ubiquitination 

and degradation. Since many substrates of β-TRCP have been identified to play a critical 

role in cell cycle, apoptosis, and migration, dysregulated β-TRCP is involved in 

tumorigenesis. For example, some cell cycle regulators including Emi1[12], Cdc25A [13, 

14], Wee1A [15], cyclin D1 [16], and BTG [17] are the substrates of β-TRCP. REST is 

degraded by means of β-TRCP during the G2 phase of the cell cycle to allow transcriptional 

derepression of Mad2, which is an essential component of the spindle assembly checkpoint 

[18]. Moreover, β-TRCP controls centrosome duplication and separation through targeting 

PLK4 and CEP68 for degradation, respectively [19, 20]. Studies from various groups have 

shown that β-TRCP targets Snail [21], the extracellular matrix protein fibronectin [22], and 

Twist [23], which are involved in cell migration. Additionally, multiple apoptotic proteins 

such as Mcl-1[24], BimEL [25], PDCD4 [26], and Pro-caspase-3 [27] have been identified 

as the ubiquitin substrates of β-TRCP.

Emerging evidence has also implicated that β-TRCP plays an oncogenic role in human 

cancers. In line with this, higher expression of β-TRCP has been validated in various types 

of human malignances including colorectal cancer [28], hepatoblastoma [29], pancreatic 

cancer [30], and melanoma [31]. Consistently, studies have defined that β-TRCP promoted 

cell growth and tumor growth using in vitro cell culture and in vivo mouse model 

approaches [32, 33], suggesting that β-TRCP exerts tumorigenic activity. Kuto et al found 

that 38% of MMTV β-TRCP mice developed tumors including mammary, ovarian, and 

uterine carcinomas [32]. Interestingly, several groups argued that β-TRCP may also have 

tumor suppressor functions in a tissue-specific manner. For instance, Saitoh et al. found that 

there was a WD-40 substrate binding domain mutation (F462S) in a gastric cancer cells, 

leading to stabilization of β-catenin and activation of the Wnt signaling pathway, and 

subsequent tumor development [34]. Later, additional five mutations of β-TRCP (A99V, 

H342Y, H425Y, C206Y, and G260E) were identified in gastric cancer [35]. In keeping with 

these reports, β-TRCP mutations have also been found in prostate cancer [36] and breast 
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cancer [37]. Due to the fact that β-TRCP substrates include both oncoproteins and tumor 

suppressors, it is difficult to characterize β-TRCP as an oncogene or tumor suppressive gene. 

Therefore, further in-depth investigation is required to explore the exact role of β-TRCP in 

tumorigenesis using engineered mouse model in different tissue context. Therefore, β-TRCP 

could contribute to tumorigenesis in the tissue-specific or cellular context-dependent 

manner.

FBXW2 has been reported to target hGCM1 (human glial cell missing homolog 1) to the 

ubiquitin-proteasome degradation system [38]. Moreover, Chiang et al. found that ubiquitin-

conjugating enzyme UBE2D2 is responsible for FBXW2-mediated hGCM1 ubiquitination 

and degradation [39]. This group further identified that RACK1 (receptor for activated C-

kinase 1) interacted with FBXW2 to up-regulate hGCM1 stability and placental cell 

migration and invasion [40]. Although FBXW2 gene alteration was not found in human 

tumors by chromosome mapping and analysis [41], further exploration is necessary to 

dissect the exact role of FBXW2 in tumorigenesis.

It has been reported that FBXW4 is mutated, lost or under-expressed in various types of 

human cancer cell lines and clinical lung cancer patient samples. Notably, FBXW4 

expression level is correlated with survival of patients with non-small cell lung cancer, 

indicating that FBXW4 could be a novel tumor suppressor in lung cancer [42]. On the other 

hand, FBXW5 has been found to ubiquitinate tumor suppressor DLC1, leading to promotion 

of non-small cell lung cancer cell growth [43]. Specifically, FBXW5 knockdown using 

siRNA restored DLC1 protein expression in non-small cell lung cancer cell lines, resulting 

in a reduction in the levels of activated RhoA-GTP and in RhoA effector signaling. 

Importantly, inhibition of FBXW5 led to decrease in cell proliferation in non-small cell lung 

cancer [43], suggesting that FBXW5 may function as an oncoprotein in non-small cell lung 

cancer cell growth, but further investigation is warranted to reveal the oncogenic role of 

FBXW5 in vivo.

Extensive studies have identified that FBXW7 (also known as FBW7, hCdc4, hAgo, and 

SEL10) is involved in several biological processes such as cell growth, proliferation, 

differentiation, and survival [44]. It has been known that FBXW7 substrates typically 

contain a conserved CPD (Cdc4 phosphodegron) sequence (L)-X-pT/pS-P-(P)-X-pS/pT/E/D 

(X represents any amino acid) [44]. Like β-TRCP, FBXW7 recognizes and ubiquitinates its 

substrates, which requires phosphorylation of the substrate within its degron by a single 

kinase or multiple kinases [45, 46]. Elegant studies from various groups have revealed that 

FBXW7 functions largely as a tumor suppressor due to its negative regulation of some 

oncogenic proteins including Aurora A [47], cyclin E [48], c-Myc [49], c-Jun [50, 51], c-

Myb [52-54], G-CSFR (Granulocyte colony stimulating factor receptor) [55], HIF-1α 
(Hypoxia inducible factor-1α [56, 57], KLF2 (Krüppel-like factor 2), KLF5 (Kruppel-like 

factor 5) [58, 59], Mcl-1 (Myeloid cell leukemia-1) [9, 60], MED13 (Mediator 13) [61], 

mTOR (mammalian target of rapamycin) [62, 63], NF1 (Neurofibromatosis type 1) [64], 

Notch [65, 66], NF-κB2 [67, 68], NRF1 (Nuclear factor E2-related factor 1) [69], JUNB 

[70, 71] and SREBP (Sterol regulatory element-binding proteins) [72, 73]. Notably, FBXW7 
mutations and deletions have been observed in a variety of human cancers such as T-cell 

acute lymphoblastic leukemia [74], cholangiocarcinoma, gastrointestinal cancer [75], 
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bladder cancer [76], colon cancer [77], and prostate cancer [74]. For example, FBXW7 
mutation rate is approximately 30% in T-cell acute lymphoblastic leukemia [78]. Herein, we 

will not discuss the detailed role of FBXW7 in tumorigenesis because several recent 

excellent reviews have described the function of FBXW7 in human cancers and clinical 

implications [78-82].

Notably, FBXW8 (also known as FBW6, FBW8, FBX29, FBXW6, or FBXO29) has been 

shown to play an essential role in cancer cell proliferation via promoting the proteolysis of 

cyclin D1 [83]. Interestingly, one study revealed that FBXW8 did not regulate cyclin D1 

degradation during normal cell cycle progression [84]. Moreover, disruption of the FBXW8 
gene led to pre- and postnatal growth retardation in mice, suggesting that FBXW8 plays a 

significant role in growth control [85]. Lin et al. reported that FBXW8 regulated the 

proliferation of human choriocarcinoma cells via G2/M phase transition, which is associated 

with regulation of several cell cycle regulators such as CDK1, CDK2, cyclin A, cyclin B1 

and p27 expression [86]. Recently, Wang et al. observed that FBXW8 promoted the 

degradation of hematopietic progenitor kinase 1 (HPK1), leading to enhancing cell 

proliferation of pancreatic cancer cells [87]. Moreover, high expression of FBXW8 was 

observed and targeting FBXW8 by miR-218 inhibited the proliferation of human 

choriocarcinoma cells [88], indicating that targeting FBXW8 by miR-218 could be a 

potential approach for the treatment of human choriocarcinoma.

While FBXW9 was reported to promote synaptic transmission in GABAergic motor neurons 

in C. elegans, the physiological role of FBXW9 in tumorigenesis is still uncertain [89]. 

Additionally, FBXW10 was identified to have mutations in T-cell prolymphocytic leukemia 

using whole-genome sequencing and whole-exome sequencing analysis [90]. Feng et al. 
found that FBXW10 is negatively regulated in transcription and expression level by protein 

O-GlcNAcylation [91]. Notably, the FBXW12 gene is deleted in its promoter or the mRNA-

encoding region in some cases of epithelial ovarian cancer [92]. Moreover, it was found that 

FBXW12 was epigenetically silenced by CpGs methylation in epithelial ovarian cancer 

patients [92]. These findings indicate that FBXW12 could be a tumor suppressor in 

epithelial ovarian cancer, while further in-depth investigation is required to pinpoint its 

physiological role in tumorigenesis. One study showed that FBXW15 mediated HBO1 

(histone acetyltransferase binding to origin recognition complex) ubiquitin-proteasomal 

degradation, which is important in DNA replication licensing and cell proliferation [93]. 

Moreover, this study authenticates that FBXW15 is an ubiquitin E3 ligase subunit to 

promote HBO1 degradation, leading to controlling cell replicative capacity [93], but its 

physiological role in tumorigenesis warrants further studies.

2.2.Role of the FBXL subfamily in clinical implications

The FBXL subfamily has 22 members, namely FBXL1 to FBXL22. Each FBXL protein 

contains an F-box motif and a C-terminal Leu-rich repeat (LRR) domain. FBXL subfamily 

member proteins could be tumor suppressors or oncoproteins (Table 2). In this section, we 

will describe their physiological functions in tumorigenesis.

FBXL1, also known as Skp2 (S-phase kinase-associated protein 2), has been well 

characterized as an oncoprotein. Skp2 protein consists of four distinct domains, namely 
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destruction domain (D-box), nuclear localization signal (NLS), F-box domain, and C-

terminal LRR domain. Skp2 has been identified to exert its oncogenic function through 

targeting its substrates including p27 [94, 95], p21 [96, 97], p57 [98], TOB1 [99], RASSF1 

(Ras association domain family 1) [100], FOXO1 [101, 102], and RBL2 (retinoblastoma-

like 2; also known as p130) [103]. Overexpression of a dominant negative type of Skp2 

caused cell growth inhibition in breast cancer cells [104]. One study showed that androgen 

signaling pathway enhanced cell proliferation via upregulation of Skp2 and subsequent 

targeting p27 [105, 106]. Moreover, deletion of Skp2 in mice led to resistance to tumor 

development induced by loss of either p19 Arf or the Pten protein [107]. Noteworthy, Skp2 
conditional knockout mice further validated its oncogenic function in T-cell lineage [108], 

B-cell lineage [109], bone marrow [110], liver [111, 112], breast [113], prostate [114], and 

skin [115]. On the other hands, overexpression of Skp2 in mice led to tumor development 

including lymphoma [116], prostate cancer [114], mammary gland tumor [113]. 

Consistently, overexpression of Skp2 has been frequently observed in a variety of human 

cancers such as lymphomas [117, 118], pancreatic cancer [119], breast carcinomas 

[120-124], prostate cancer [125, 126], melanoma [127-129], and nasopharyngeal carcinoma 

[130, 131]. Importantly, Skp2 expression is associated with histological grade and tumor 

size in hepatocarcinoma [132]. Similarly, Skp2 amplification is correlated with poor 

prognosis in human gastric cancer [133]. Taken together, inhibition of Skp2 could be a novel 

approach for the treatment of human cancers.

FBXL2 has been observed to exert its tumor suppressor-like activity by ubiquitin-mediated 

degradation of cyclin D3, leading to lung cancer cell growth inhibition and cell cycle arrest 

[134]. Specifically, overexpression of FBXL2 triggered G2/M arrest and increased 

apoptosis, whereas depletion of FBXL2 accelerated lung cancer cell growth and enhanced 

cell viability. Ectopic expression of FBXL2 retarded tumor formation in athymic nude mice, 

implicating that FBXL2 could serve as a tumor suppressor [134]. Similarly, FBXL2 

expression was suppressed in AML (acute myelogenous leukemia) and ALL (acute 

lymphoblastic leukemia) patient samples [135]. Moreover, FBXL2 induced G0 phase arrest 

and cellular apoptosis in part via targeting cyclin D2. This study suggests a tumor 

suppressive effect of FBXL2 in lympho-proliferative malignancies [135]. This group further 

discovered that FBXL2 ubiquitinated Aurora B to inhibit tumorigenesis [136]. One excellent 

study from Pagano group showed that FBXL2-mediated degradation of p110-free p85β 
regulatory subunit governed the PI3K signaling cascade [137]. Altogether, these studies 

suggest that FBXL2 could have tumor suppressive function.

FBXL3 was initially found as a regulator of the circadian rhythm through targeting 

Cryptochrome (Cry1/Cry2) proteins [138-140]. Lower expression of Cry1 and Cry2 in 

glioma tissues was observed, arguing that disturbances in Cry1 and Cry2 stability by FBXL3 

could affect normal circadian rhythm, leading to glioma cells survival [141]. Recently, 

FBXL3 mutations were found in colon cancer cell lines with microsatellite instability [142]. 

FBXL5 has been confirmed to modulate Snail1 DNA binding and stability [143]. Therefore, 

FBXL5 could inhibit Snail1 to suppress cancer cell invasion. Indeed, one study validated 

that FBXL5 inhibited cell invasiveness due to targeting Snail1 in gastric cancer cells [144]. 

Moreover, it has been shown that FBXL5 targeted cortactin for ubiquitination-mediated 

destruction, which is mediated by ERK (extracellular regulated signal kinase), leading to 
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inhibition of cell migration in gastric cancer cells [145]. Chen et al. reported that FBXL5 

targeted single-stranded DNA-binding protein hSSB1 to control DNA damage response 

[146].

FBXL10 (also known as Ndy1, JHDM1B or KDM2B) contains an F-box domain and a 

JmiC domain with demethylase activity [147, 148]. It has been shown that FBXL10 has 

H2AK119 ubiquitination activity and histone H3K36 demethylase function [149]. Moreover, 

FBXL10 was found to be involved in anti-estrogen resistance in breast cancer [150]. 

Furthermore, FBXL10 was also identified as a transcriptional repressor of c-Fos and a target 

gene of NF-κB in human cancer [151]. This study demonstrated that FBXL10 functions as 

an anti-apoptotic protein, binds and represses c-Fos promoter, leading to cancer cells to 

resist TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)-induced apoptosis 

[151]. Consistently, depletion of FBXL10 sensitizes resistant cells to TRAIL, whereas 

upregulation of FBXL10 inhibits TRAIL-induced apoptosis. TRAIL or proteasome 

inhibitors repress FBXL10 through inhibition of the NF-κB signaling pathway. These 

findings suggest that targeting FBXL10 could overcome resistant cancer cells for TRAIL 

treatment in human cancer [151].

In support of the oncogenic role of FBXL10, transgenic mice that overexpression FBXL10 
in hematopoietic stem cells (HSCs) developed myeloid or B-lymphoid leukemia with 

complete penetrance [152]. FBXL10 transgenic mice displayed an upregulation of Nsg2 

(neuron-specific gene family member 2). HSCs from FBXL10 transgenic mice exhibited 

enhanced mitochondrial oxidative phosphorylation genes [152]. This transgenic mouse study 

dissected FBXL10 as a bona fide oncogene via regulation of metabolic proliferation and 

Nsg2-mediated impaired differentiation [152]. Along these lines, FBXL10 is overexpressed 

in human PADC (pancreatic ductal adenocarcinoma) and is associated with tumor grade and 

stage and metastases [153]. In addition, depletion of FBXL10 abrogated tumorigenicity of 

cell lines, whereas overexpression of FBXL10 cooperated with KrasG12D to promote 

PDAC development in mice [153]. Additional in-depth investigation defined that FBXL10 

repressed developmental genes and activated a module of metabolic genes, leading to 

subverting cellular differentiation and driving the pathogenesis of an aggressive subset of 

PDAC [153]. Yu et al. found that FBXL10 is a positive regulator of glycolysis, 

glutaminolysis, and pyrimidine synthesis in cancer cells [154]. FBXL10 is also 

overexpressed in various types of cancers, further suggesting that FBXL10 is an oncoprotein 

[154]. Interestingly, one group found that FBXL10 was downregulated in aggressive brain 

tumors, indicating that role of FBXL10 in cancer appears to be possibly tissue dependent 

[155].

It has been recently shown that the hypoxia-controlled FBXL14 governed Snail1 for 

proteasome degradation [156]. Specifically, FBXL14 interacted with Snail1 and promoted 

its ubiquitylation and degradation independently of phosphorylation by GSK-3β. 

Importantly, FBXL14 expression is decreased in tumors [156]. Consistently, Yang et al. 
found that imipramine blue halts head and neck cancer invasion via enhancing FBXL14-

mediated Twist degradation [157], suggesting that FBXL14 could function as a tumor 

suppressor to inhibit invasion in this experimental setting. Although the molecular 

mechanism of FBXL17 is undermined in tumorigenesis, FBXL17 has been considered as a 
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potential useful biomarker for breast cancer therapy [158]. Another F-box protein FBXL19 

has been discovered to regulate TGFβ1-induced E-cadherin downregulation in part through 

targeting Rac3 ubiquitination and degradationin esophageal cancer cells [159].

Notably, FBXL20 has been reported to have high expression in human colon tumor samples 

[160]. Depletion of FBXL20 by its siRNA inhibited cell proliferation and caused G1 phase 

arrest as well as induced apoptosis in colon cancer cell lines [160]. In addition, 

downregulation of FBXL20 increased SET, caspase-3 and E-cadherin, but decreased β-

catenin, c-Myc, cyclin D1, p53 and PP2A [160]. This work suggests that FBXL20 promotes 

carcinogenesis via governing the Wnt signaling pathway and caspase activity [160]. 

Moreover, overexpression of FBXL20 increased the cell viability and invasion capacity in 

colon cancer cells, which is correlated with an upregulation of β-catenin and c-Myc, and 

downregulation of E-cadherin [161]. Taken together, FBXL20 could play an oncogenic role 

in colon cancer development and progression. Additionally, FBXL20 was validated as a 

direct miR-3151 target in CN-AML (cytogenetically normal acute myeloid leukemia) [162]. 

High miR-3151 expression was correlated with shorter disease-free and overall survival. 

This indicates that FBXL20 is critical involved in CN-AML [162]. However, further 

investigation is required to determine the physiological role of FBXL20 in various types of 

human cancers.

2.3. Role of the FBXO subfamily in clinical implications

Within the 69 putative F-box proteins, the 36 F-box proteins were designed as FBXO 

proteins, consisting the largest subfamily of F-box proteins. FBXO proteins contain the F-

box motif and different functional domains other than LRR or WD40 repeats, which have 

not been fully characterized. In the following paragraphs, we limit our discussion to these 

FBXO members with functions in tumorigenesis (Table 3).

Notably, FBXO1 (also known as FBX1 or cyclin F) has been considered as a critical 

regulator of cell cycle progression, although it did not bind or activate any CDKs (cyclin 

dependent kinases) [163]. Interestingly, FBXO1 oscillates during the cell cycle and its 

degradation is independent of ubiquitination and proteasome-mediated pathways [163]. 

Moreover, FBXO1 regulates the nuclear localization of cyclin B1 through a cyclin-cyclin 

interaction [164]. One elegant study has identified that FBXO1 targets CP110 protein, which 

is necessary for centrosome duplication, leading to control of the fidelity of mitosis and 

genome integrity [165]. This group also identified RRM2 (ribonucleotide reductase family 

member 2) as an ubiquitin substrate of FBXO1 [166]. Specifically, FBXO1 degraded RRM2 

to maintain balanced dNTP pools and genome stability, thereby ensuring efficient DNA 

repair in response to genotoxic stress [166]. Moreover, NUSAP1 was validated as a FBXO1 

substrate during the S and the G2 phases of the cell cycle. FBXO1 targeted NUSAP1 in 

response to DNA damage, leading to sensitizing cells to microtubule-based 

chemotherapeutics [167]. Altogether, FBXO1 plays a direct role in controlling genome 

stability through targeting its substrates and implications for cancer development and 

therapy. In line with this concept, mice with a homozygous FBXO1 deletion were 

embryonic lethal and with developmental anormalies [168]. MEFs carrying an FBXO1 

deletion displayed cell cycle defects, indicating that FBXO1 is critically involved in cell 
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cycle progression [168]. In support of this notion, one study showed that FBXO1 was 

noticeably downregulated in hepatocellular carcinoma (HCC) at both mRNA and protein 

levels [169]. Importantly, low expression of cyclin F was correlated with tumor size, clinical 

stage, serum alpha-fetoprotein level and tumor multiplicity, as well as poor overall survival 

and recurrence-free survival. More importantly, low expression of FBXO1 was an 

independent poor prognostic marker for overall survival [169]. These studies might 

speculate that FBXO1 could be a tumor suppressor in part via regulation of cell cycle 

progression in human cancer.

FBXO4 (also known as FBX4) has been reported to interact with both Pin2 and TRF1 

isoforms and promote their ubiquitination, thereby regulating telomere length and cell cycle 

[170]. Overexpression of FBXO4 led to progressive telomere elongation via reduction of 

Pin2/TRF1 protein levels, while depletion of FBXO4 stabilized Pin2/TRF1 and caused 

telomere shortening as well as impaired cell growth [170]. This study suggests that FBXO4 

could control cell growth through targeting Pin2/TRF1 for degradation. Another study 

revealed that FBXO4 is involved in promoting ubiquitin-dependent degradation of cyclin 

D1, leading to reduction of cell cycle progression [171]. Depletion of FBXO4 attenuated 

cyclin D1 ubiquitination and subsequently increased cyclin D1 levels and accelerated cell 

cycle progression. Consistently, FBXO4 expression was reduced in tumor-derived cell lines 

and a subset of primary human cancers, suggesting that FBXO4 could be a tumor suppressor 

[171]. Furthermore, inhibition of FBXO4 E3 ligase activity led to an accumulation of 

nuclear cyclin D1 and oncogenic transformation. FBXO4 mutations, which inhibited the 

dimerization of the SCF (FBXO4) ligase and contributed to carcinogenesis, have been also 

observed in human cancer [172]. Moreover, phosphorylation-dependent regulation of SCF 

(FBXO4) dimerization and activity involved 14-3-3ε [173]. Recently, Lee et al. found that 

FBXO4 deficiency induced Braf-driven melanoma, which depended on cyclin D1 

accumulation in mice, suggesting that FBXO4 dysfunction is a contributor to human 

malignancy [174]. Interestingly, Chu et al. independently discovered that FBXO4 has several 

isoforms: FBXO4α, FBXO4β, FBXO4γ, and FBXO4δ [175]. FBXO4β, FBXO4δ, and 

FBXO4δ but not FBXO4α, were found to promote cell proliferation and migration due to 

inhibition of cyclin D1 degradation [175]. Importantly, FBXO4 knockout mice facilitated N-

nitrosomethylbenzylamine (NMBA), an esophageal carcinogen, induced papillomas, 

indicating FBXO4 as a possible suppressor of esophageal tumorigenesis [176]. A structure-

based computational approach has been performed to rationally design peptide inhibitors of 

SCF (FBXO4) [177]. Altogether, FBXO4 might function as an anti-tumor protein.

FBXO7 is an F-box protein with a C-terminal specific proline-rich region (PRR) that is 

important for substrate recognition [178]. Laman et al. found that FBXO7 knockdown 

reduced Cdk6 association with cyclin D [179]. Moreover, FBXO7 overexpression increased 

cyclin D/Cdk6 activity and E2F activity and transformed murine fibroblasts, leading to 

tumorigenic in mice [179]. Strikingly, FBXO7 was highly expressed in human lung and 

colon cancers compared with normal tissues, suggesting that FBXO7 could play a proto-

oncogenic role in these epithelial tumors [179]. Recent studies also showed that a reduction 

of FBXO7 expression increased cell proliferation, decreased cell size and shortened G1 

phase due to decreased p27 and increased levels of S phase cyclins and Cdk2 activity [180]. 

FBXO7 levels correlated inversely with CD43 expression. Further experiments 
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demonstrated that FBXO7 has an anti-proliferative function and promotes maturation of 

precursor cells [180]. In further support the tumor suppressor role of FBXO7, another study 

reported that FBXO7 negatively regulates the proliferation and differentiation of HSPCs 

(haematopoietic stem and progenitor cells) in a p53-dependent manner [181].

Notably, FBXO7 expression promoted T cell lymphomagenesis in the absence of p53 [181]. 

FBXO7 has also been reported to catalyze the ubiquitination of HURP (hepatoma-

upregulated protein), a cell cycle-regulated oncogene that involved in cell growth control in 

human HCC, demonstrating that FBXO7 could be a possible tumor suppressor in HCC 

[178]. Consistently, FBXO7 interacted with human inhibitor of apoptosis cIAP1 (the 

inhibitor of apoptosis protein 1) and promoted its ubiquitination [182]. In line with this, 

FBXO7 was validated to mediate ubiquitin conjugation to cIAP1 and TRAF2, leading to 

decreased RIP1 ubiquitination and negatively regulating NF-κB signaling pathway [183]. 

However, Kang et al. found that FBXO7 positively regulated BMP (bone morphogenetic 

protein)-mediated signaling through targeting NRAGE (neurotrophin receptor-interacting 

MAGE) protein, and upregulated NF-κB activity [184]. Taken together, FBXO7 might 

function in a tissue-specific manner.

FBXO11 was reported to target the BCL6 oncoprotein [185]. Specifically, BCL6 is 

overexpressed in the majority of patients with DLBCL (diffuse large B-cell lymphoma). 

BCL6 has been found to be targeted for ubiquitination and proteasomal degradation by SCF 

complex containing FBXO11 [185]. Consistently, FBXO11 was deleted or mutated in 

DLBCL cell lines and in primary DLBCLs [185]. Reconstitution of FBXO11 enhanced 

BCL6 degradation, leading to inhibition of cell proliferation and induction of cell death. 

Consistently, FBXO11-deleted DLBCL cells generated tumors in mice, which were 

suppressed by FBXO11 reconstitution [185]. One study discovered that FBXO18 promotes 

DNA double-strand breakage and apoptosis upon DNA replication stress via regulation of 

activation of ATM and DNA-PK and phosphorylation of RPA2 and p53 [186]. Moreover, it 

has been reported that FBXO18 is often deleted in melanomas to protect melanoma cells 

from apoptosis [187].

FBXO32, also known as atrogin-1 or MAFbx (muscle atrophy F-box), is expressed largely 

in skeletal muscle cells and cardiomyocytes [188, 189]. FBXO32 regulates myocyte cell size 

and skeletal muscle atrophy as well as muscle homeostasis through targeting multiple 

substrates including calcineurin, eIF3-f, MyoD, MKP-1 (MAPK phosphatase-1), and IκB 

(inhibitor of κB) [190-194]. Emerging evidence has indicated that FBXO32 plays a tumor 

suppressive role in human cancers. Chou et al. found that FBXO32 expression is 

undetectable in ovarian cancer cell lines, but it is observed in the normal ovarian surface 

epithelium [195]. FBXO32 methylation was found in ovarian cancer cell lines with 

activation of TGF-β/SMAD4 signaling pathway [195]. Moreover, FBXO32 methylation was 

associated with shorter progression-free survival. Overexpression of FBXO32 significantly 

inhibited proliferation of a platinum-resistant ovarian cancer cell line due to induced 

apoptosis, and also sensitized cells to cisplatin [195]. Consistently, decreased mRNA level 

and protein expression of FBXO32 were observed in esophageal cancer cell (ESCC) lines 

and tumor tissues, which correlate with FBXO32 promoter methylation status [196]. 

Importantly, FBXO32 methylation status and protein expression were independently 
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associated with patient survival in ESCC, suggesting that FBXO32 could be a prognostic 

marker and potential therapeutic target for ESCC patients [196]. It has been found that 3-

deazaneplanocin A (DZNep) induced efficient apoptosis in breast cancer cells partly due to 

increased FBXO32 expression [197]. DZNeP also induced the expression of FBXO32 in 

human mantle cell lymphoma cells [198]. Moreover, EZH2 (zeste homolog 2) exerted its 

functions in regulation of the proliferation and survival of PAX3-FOXO1 alveolar 

rhabdomyosarcoma cells, at least in part, by repressing FBXO32 abundance [199]. Lei et al. 
found that SerpinB5 interacts with KHDRBS3 and FBXO32 in gastric cancer cells [200]. 

Therefore, further studies are warranted to determine the physiological function of FBXO32 

in tumorigenesis.

3. Conclusion and future perspectives

Since some F-box proteins play pivotal roles in tumorigenesis, targeting F-box proteins 

could be a novel therapeutic strategy for the treatment of human cancers. Indeed, proto-

oncoprotein Skp2 has been considered as a promising molecular target for achieving better 

outcome in cancer patients. Two compounds, namely compound A (SMIP0004) and 

compound 25 (also known as SZL-P1-41), have been found to inhibit Skp2 [201, 202]. 

Compound A could block the recruitment of Skp2 to the SCF ligase, leading to cell growth 

inhibition, apoptosis and cell cycle arrest in multiple myeloma cells [202]. Compound 25 

suppressed Skp2 E3 ligase activity, resulting in inhibition of cell survival and Akt-mediated 

glycolysis and activation of cellular senescence [201]. Strikingly, compound 25 restricts 

cancer stem cell traits and cancer progression, demonstrating that Skp2 is a novel target for 

treatment of human cancer [201]. In addition, several compounds that inhibit Skp2 by 

blocking the binding to its cofactors CKS1 have been discovered [203]. Interestingly, some 

natural agents including curcumin, quercetin, lycopene, silibinin, epigallocatechin-3-gallate, 

and Vitamin D3 have also been found to inhibit Skp2 expression in human cancers 

[204-207]. Due to the non-toxic nature of natural agents, inactivation of Skp2 by natural 

agents could be a safer approach for the prevention /or treatment of human cancer. It has 

been reported that loss of Fbw7 led to resistance to Taxol and ABT-737 in cancer cells [60]. 

Moreover, treatment decisions regarding to anti-tubulin therapeutics depend on the Fbw7 

status [9]. Thus, increased Fbw7 through regulation of its upstream regulatory proteins could 

overcome drug resistance to certain therapeutic drugs. On the basis of the fact that many F-

box proteins have various functions in different cancer types, it is reasonable to design 

personalized medicine targeting the F-box proteins in specific tissues.

In conclusion, F-box proteins have been critically involved in tumorigenesis through 

targeting their substrates for ubiquitin-mediated degradation. Although some studies have 

revealed multiple F-box proteins functions in the tumor development and progression, many 

key remaining questions still need to be addressed. For example, how to develop specific 

approaches to screen physiological substrates of F-box proteins at endogenous levels? How 

to discover novel methods to validate these substrates and link these findings to pathological 

conditions such as cancer? How to identify the conditions which F-box proteins exerts their 

oncogenic or tumor suppressive functions? How to develop specific inhibitors to inactivate 

the oncogenic F-box proteins for better treatment of human cancer? To answer these 

questions, it is important to use tissue specific knockout mice or transgenic mice to 
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understand contribution of F-box proteins in carcinogenesis. It is also important to detect the 

pathological gene alternations in cancer patients and discover biochemical substrates of F-

box proteins. Furthermore, answering these questions may be useful in further guiding the 

development of specific inhibitors targeting oncogenic F-box proteins or the discovery of 

compounds to activate tumor suppressive F-box proteins as novel anticancer treatments.
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Highlights

F-box proteins play key roles in the development and progression of malignancies.

F-box proteins exert functions mainly via targeting substrates for ubiquitination.

F-box proteins function as oncoproteins or tumor suppressors in different cancers.

F-box proteins inhibitors have been shown to exhibit therapeutic potential.

Targeting F-box proteins could be a strategy for the treatment of human cancers.
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Figure 1. 
A schematic illustration of the E1-E2-E3 cascade-mediated ubiquitin transfer process.
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Figure 2. 
A schematic illustration of structural organization of the multiple-subunit SCF E3 ubiquitin 

ligase complexes.
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Table 1

Representative substrates of the FBXW subfamily of F-box proteins in clinical implications

Substrates F-box Functions References

Emi1 β-TRCP Cell cycle [12]

Cdc25A β-TRCP Cell cycle [13, 14]

Wee1A β-TRCP Cell cycle [15]

cyclin D1 β-TRCP cyclin, Cell cycle [16]

BTG β-TRCP Cell cycle [17]

REST β-TRCP Cell cycle [18]

PLK4 β-TRCP Cell cycle [19]

CEP68 β-TRCP Cell cycle [20]

Snail β-TRCP Cell migration [21]

ECMFn β-TRCP Cell migration [22]

Twist β-TRCP Cell migration [23]

Mcl-1 β-TRCP Apoptosis [24]

BimEL β-TRCP Apoptosis [25]

PDCD4 β-TRCP Apoptosis [26]

Pro-caspase-3 β-TRCP Apoptosis [27]

hGCM1 FBXW2 Transcription factor, Cell cycle [38]

RACK1 FBXW2 Cell migration and invasion [40]

DLC1 FBXW5 Tumor suppressor, Cell growth [43]

Aurora A FBXW7 Cell cycle [47]

cyclin E FBXW7 Protein kinase, Cell cycle [48]

C-Myc FBXW7 Transcription factor [49]

C -Jun FBXW7 Oncogene [50, 51],

C-Myb FBXW7 Transcription factor [52-54]

G-CSFR FBXW7 Cell proliferation [55]

HIF-1α FBXW7 Transcription factor [56, 57]

KLF2/5 FBXW7 Cell proliferation [58, 59]

Mcl-1 FBXW7 Cell death [9, 60]

MED13 FBXW7 Transcription factor [61]

mTOR FBXW7 Cell proliferation [62, 63]

NF1 FBXW7 Tumor suppressor [64]

Notch FBXW7 Transcription factor [65, 66]

NF-κB2 FBXW7 Transcription factor [67, 68]

NRF1 FBXW7 Transcription factor [69]

JUNB FBXW7 Oncogene, Tumor suppressor [70, 71]

SREBP FBXW7 Transcription factor [72, 73]

cyclin D1 FBXW8 cyclin, Cell cycle [83]

CDK1/2 FBXW8 Cell cycle [86]

cyclin A FBXW8 cyclin, Cell cycle [86]

cyclin B1 FBXW8 cyclin, Cell cycle [86]
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Substrates F-box Functions References

P27 FBXW8 Cell cycle [86]

HPK1 FBXW8 Cell growth, Cell cycle [87]

HBO1 FBXW15 Cell proliferation [93]
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Table 2

Representative Substrates of the FBXL subfamily of F-box proteins in clinical implications

Substrates F-box Functions References

P27 Skp2 Cdk inhibitor, Cell cycle [94, 95]

P21 Skp2 Cdk inhibitor, Cell cycle [96, 97]

P57 Skp2 Cdk inhibitor, Cell cycle [98]

TOB1 Skp2 Cell cycle [99]

RASSF1 Skp2 Tumor suppressor [100]

FOXO1 Skp2 Transcription factor [101, 102]

RBL2 Skp2 Cell cycle [103]

cyclin D3 FBXL2 cyclin, Cell cycle [134]

cyclin D2 FBXL2 cyclin, Cell cycle [135]

Aurora B FBXL2 Mitosis, Cell cycle [136]

Cry1/2 FBXL3 Circadian clock, Cell cycle [138, 139, 141]

Snail 1 FBXL5 Invasion, Cell cycle [144]

Cortactin FBXL5 Migration [145]

hSSB1 FBXL5 DNA damage [146]

c-Fos FBXL10 Apoptosis [151]

KrasG12D FBXL10 Oncogene [153]

Snail1 FBXL14 Invasion [156]

Rac3 FBXL19 Cell adhesion [159]
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Table 3

Representative Substrates of the FBXO subfamily of F-box proteins in clinical implications

Substrates F-box Functions References

CP110 FBXO1 Centrosome duplication, Cell cycle [165]

RRM2 FBXO1 DNA repair [166]

NUSAP1 FBXO1 Microtubule, Cell cycle [167]

Pin2/TRF1 FBXO4 Cell growth [170]

cyclin D1 FBXO4 cyclin, Cell cycle [171]

cyclin D/Cdk6/p27 FBXO7 cyclin, Cell cycle [179]

HURP FBXO7 Oncogene, Cell cycle [178]

cIAP1 FBXO7 Apoptosis inhibitor [182]

NRAGE FBXO7 Cell cycle [184]

BCL6 FBXO11 Oncogene [185]
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