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Abstract

Proteoglycans control numerous normal and pathological processes, among which are 

morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor 

development and growth, proteoglycan expression is markedly modified in the tumor 

microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes 

affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. 

Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our 

knowledge that proteoglycans are among the key players in the breast tumor microenvironment 

suggests their potential as pharmacological targets in this type of cancer. It has been recently 

suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as 

targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the 

proteoglycans that will be presented herein provides the potential for multiple layers of regulation 
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of breast tumor behavior. This review summarizes recent developments concerning the biology of 

selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches 

based on their novel key roles in breast cancer.
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1. Extracellular matrices in breast cancer: focus on the proteoglycans

1.1. Breast cancer: a complex disease

Breast cancer is a heterogeneous, tissue-specific disease, with substantial genotypic and 

phenotypic diversity. This type of cancer prevails in women, although male breast cancer is 

also observed. Estrogen receptor-alpha (ERα), progesterone receptor (PgR), and epidermal 

growth factor receptor-2 (HER2) are the three mandatory prognostic and predictive factors 

in invasive breast cancer used in routine clinical practice today [1]. Four main breast cancer 

subtypes drive treatment decisions: ERα-positive and HER2-negative with a low or 

intermediate differentiation grade (luminal A); ERα-positive and HER2-negative with a 

high differentiation grade (luminal B); aggressive type of HER2-positive and triple-negative 

breast cancer (ERα-, PgR- and HER2-negative). Two thirds of breast cancers are ERα-

positive. ERα plays an important role in the development, progression and treatment of 

breast cancer and is of special interest because its protein level is elevated in premalignant 

and malignant breast lesions, but not in normal tissue. Therefore, ERα is a valuable 

predictive and prognostic factor in the clinical management of breast cancer. However, the 

majority of hormonally responsive breast cancers develop resistance to anti-estrogen 

treatment and progress to a more aggressive and hormonally independent phenotype. 

Several preclinical and clinical studies conducted until todays are mainly focused on genetic 

components involved in tumor progression and tumor microenvironment as to better 

understand the biology of breast tumor cells and improve breast cancer treatment.

1.2. Proteoglycans: key molecular effectors of breast cancer cell surface and pericellular 
microenvironments

Interactions of cancer cells with the tumor microenvironment are important determinants of 

cancer progression toward metastasis. The tumor microenvironment contains many distinct 

cell types, including endothelial cells and their precursors, pericytes, smooth muscle cells, 

fibroblasts, cancer/tumor-associated fibroblasts (CAFs/TAFs), myofibroblasts, and 

inflammatory cells [2]. These cells are immersed in highly dynamic and functional 

extracellular matrices (ECMs) composed by macromolecules, such as proteoglycans (PGs), 

collagen, laminin, fibronectin and proteinases. PGs are major components of ECMs as well 

as the cell surfaces. They are composed of a specific core protein substituted with one or 

more covalently linked glycosaminoglycan (GAG) chains resulting in high degree of 

structural and functional complexity. GAGs (chondroitin sulfate, CS; dermatan sulfate, DS; 

heparan sulfate, HS; heparin, HP) are linear heteropolysaccharides composed of repeating 

disaccharides of hexosamines (N-acetyl-galactosamine or N-acetyl-glucosamine) and uronic 
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acids (D-glucuronic acid or L-iduronic acid) that are being sulfated at various positions. 

Keratan sulfate (KS) is composed of repeating disaccharides containing N-acetyl-

glucosamine and galactose [3]. Notably, hyaluronan (HA) is the only GAG that is not 

covalently bound to PG core protein and its synthesis is epigenetically regulated [4]. The 

number and the type of GAG chains, as well as the specific structure of each GAG chain 

may differ greatly even within a certain PG molecule [3, 5]. These variations in the overall 

PG structure may not only be cell- and tissue-specific, but also may depend on the 

differentiation stage and the action of various stimuli on the cells. PGs assembly and 

modification involves the action of multiple enzymes, such as glycosyltransferases, 

sulfotransferases, epimerases, sulfatases, glycosidases, and heparanase, revealing multiple 

layers of regulation as well as the structural diversity and functional heterogeneity of these 

macromolecules.

According to their localization, PGs are categorized as ECM-secreted, cell surface-

associated and intracellular. Each main group is further classified into subfamilies according 

to their gene homology, core protein properties, molecular size and modular composition [6, 

7]. Secreted PGs involve large aggregating PGs, named hyalectans (aggrecan, versican, 

brevican, neurocan), small leucine-rich PGs (SLRPs; decorin, biglycan, lumican) and 

basement membrane PGs (perlecan, agrin, collagen XVIII). Cell-surface-associated PGs are 

divided into two main subfamilies (transmembrane syndecans and 

glycosylphosphatidylinositol (GPI)-anchored glypicans), whereas serglycin is the only 

intracellular PG characterized to date. PGs can interact with most of the proteins present in 

ECMs with different affinities. Their GAG chains are mainly implicated in these 

interactions, although their core proteins are sometimes involved. Apart from their 

participation in the organization of ECM and regulation of its mechanical properties, PGs 

interact with growth factors, cytokines and chemokines. Binding of these molecules to PGs 

restricts their diffusion along the surface of receiving cells forming effective gradients of 

these components in the ECM, preventing them from loss to the extracellular space or 

aberrant signaling, and protects them from degradation [3]. Moreover, PGs can provide a 

signaling platform for signaling molecules and morphogens to interact with other important 

components, because PGs are able to bind to many cell surface co-receptors and secreted 

proteins/proteinases thereby modulating their activities. In this context, PGs can finely tune 

the activity of multiple matrix effectors by forming concentration gradients and specify 

distinct cell fates in a concentration-dependent manner [8, 9].

There is an abundance of evidence relating PG/GAG expression levels and fine structures to 

breast cancer growth, invasion, and metastasis. CS/DSPGs are involved in mammary gland 

development and may, consequently, be involved in breast cancer development [10]. DSPGs 

expression was described to be increased in breast cancer fibroadenoma compared to healthy 

tissue [11]. A common finding is that matrix secreted CS/DSPGs such as decorin and 

versican are deposited in tumor stroma [12, 13] and are related to aggressive phenotype in 

breast cancer [14–16]. Relapse in women with node-negative breast cancer is related to the 

level of versican deposited in peritumoral stroma [14, 17]. In contrast, low levels of decorin 

in invasive breast carcinomas are associated with poor outcome[15], whereas chondroitinase 

ABC treatment, an enzymatic procedure used to degrade CS/DS chains, in tumors triggers 
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metastasis [18]. Furthermore, it was recently shown that decorin has antiangiogenic 

activities [19], while it evokes mitochondrial autophagy (mitophagy) in breast carcinoma 

cells [20]. Biglycan, another DS/CSPG, acts as an endogenous danger signal and potently 

induces pro-inflammatory mediators actively participating in inflammatory processes. By 

binding to cell surface receptors, biglycan triggers innate immunity, but can also activate 

signaling pathways that bias oncogene activity, cell cycle, migration or survival [21–23].

Cell surface-associated HSPGs have been described as tumor biomarkers being 

differentially regulated during tumorigenesis [3, 24, 25]. Recently, a direct relationship 

between growth factor-mediated signaling, ERs and ECM components has been shown. 

Breast cancer cells that express ERα can be directly stimulated via estrogen, or indirectly 

stimulated via epidermal growth factor receptor (EGFR) or insulin-like growth factor 

receptor (IGFR). Activation of these pathways is crucial for tumor establishment and 

development and lead to specific modulation of HSPGs, such as syndecan-2 and syndecan-4 

and glypican-1, in addition to other ECM-modulating molecules [26–28]. Review of data 

from patient studies has shown that elevated levels of syndecan-1 are associated with 

aggressive phenotype [29], whereas upregulation of syndecan-2 in breast cancer promotes 

the acquisition of an invasive phenotype through regulation of the cytoskeleton and GTPases 

[30]. In addition, by degrading HS chains, the heparanase enzyme alters PG function leading 

to the enhancement of tumor growth, angiogenesis, and metastasis. Growth factor binding 

specificity leads to different responses according to cell status and the type of HS chain 

presented by the cells and for that function, a balance between cell surface and shed HSPGs, 

such as syndecan-1, is crucial [31, 32]. Syndecan-1 shed by tumor cells binds to growth 

factors released into the tumor microenvironment. This protects growth factors from 

proteolytic attack and the syndecan-1/growth factor complex binds to and activates high 

affinity growth factor receptors on endothelial and other host cells [31, 32].

Recently it has been shown that serglycin promotes breast cancer cell anchorage-

independent growth, migration and invasion of breast cancer cells and these properties are 

dependent on the expression and secretion of glycanated serglycin bearing CS chains [33].

Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our 

knowledge that PGs are among the key players in the breast tumor microenvironment 

suggests their potential as pharmacological targets. The key roles of the most important 

proteoglycans related to breast cancer progression and/or treatment are given in more details 

in the chapters below.

2. Versican: a tumor stroma-associated proteoglycan in breast cancer

2.1. Structural features and molecular interactions

Versican is present in the interstitial space of many tissues. Its core protein consists of two 

globular domains G1 and G3 present at the N-terminus and C-terminus, respectively, and a 

central part that may carry variable number of GAG chains. The G1 domain mediates the 

binding of versican to HA resulting in the formation of large aggregates in ECM. The G3 

domain contains two epidermal growth factor repeats, a lectin binding domain and a 

complement regulatory region. The central domain that carries GAG chains consists of two 
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discrete regions named as GAG-α and GAG-β, which are encoded by giant exon 7 of 3 kb 

and exon 8 of 5.3 kb size, respectively, in the human gene [3, 34]. At least four splice 

variants of versican exist that arise from the alternative splicing of these two exons encoding 

GAG-attachment region. The larger splice variants V0 can carry 17–23 CS/DS chains, 

whereas smaller variants V1 and V2, 12–15 and 5–8 CS/DS, respectively. The smallest 

variant V3 doesn’t carry GAG chains and exists as single protein [3, 34]. Versican is a 

multi-functional molecule that can interact with various ligands through its core protein and 

GAG chains. For example G3 domain binds PSGL-1, integrin β1, tenascin, fibulin-1 and -2, 

fibrillin-1, EGFR and fibronectin whereas G1 binds hyaluronan and link protein. The GAG 

chains mediate the binding to P- and L-selectin, CD44, chemokines, lipoproteins and most 

likely Toll-like receptors (TLR) [3].

2.2. Versican a tumor stroma modulator of breast cancer cell signaling and metastasis

Versican is accumulated in tumor stroma in various malignancies and its levels have been 

associated with cancer progression in various cancer types [3, 14, 35]. It is accumulated in 

the preclinical phase of breast cancer in non-palpable breast carcinomas and is associated 

with risk factors such as increased mammographic density and malignant appearing 

microcalcifications [16]. Versican is increased in fibroadenoma [11] and the elevated levels 

of stromal versican are associated with increased risk and rate of relapse in women with 

node-negative breast cancer [14, 17]. Although all versican splice variants are markedly 

accumulated in breast tumors, highly glycanated V0 and V1 variants predominate in tumor 

stroma. V2, V3 and a novel V4 splice variant are also expressed in tumor stroma [36]. V4 

contains the first 1194 bp of exon 8 that encodes GAG-β domain that are sandwiched 

between the end of exon 6 and the beginning of exon 9. In this part of GAG-β domain 

several serine-glycine consensus sequences capable for carrying GAG chains are present and 

V4 may exist as true PG. The biological role of V4 variant in tumorigenesis is still unknown 

[36]. This alternative splice variant of versican may be also considered as a possible target 

for prognosis and/or therapeutic intervention with antibody-related agents. Apart from the 

variations occurred in the protein cores of versican due to alternative splicing, versican 

exhibits significant structural alterations on its glycosylation in various tumors [37–39]. In 

breast cancer, versican is differentially glycosylated, containing more sialic acid [40]. In 

most cases stromal cells are the main source of versican in tumor stroma although some 

cancer cells can synthesize versican themselves. Various stimuli such as platelet derived 

growth factor (PDGF), transforming growth factor β1 (TGF-β1), epidermal growth factor 

(EGF), insulin-like growth factor-I (IGF-I), interleukins (ILs) (IL-1β and IL-11), angiotensin 

II and steroid hormones affect versican synthesis in normal and cancer cell lines [3, 27, 34]. 

For example, TGF-β1 triggers the biosynthesis of versican in tumor cells and cancer 

associated fibroblasts [41, 42]. Versican derived from cancer-activated fibroblasts promotes 

the motility and invasion of ovarian cancer cells by activating the nuclear factor-κB (NF-

κB) signaling pathway and by up-regulating expression of CD44, matrix 

metalloproteinase-9 (MMP-9), and the HA-mediated motility receptor [42]. Versican 

expressed by some tumor cells affects their growth and metastatic potential. For example, 

versican is highly expressed in sporadic clear cell renal cell carcinoma inhibiting cell death 

[43] and in sarcomas promoting tumor cell proliferation and migration and increasing HA 

production [44, 45]. Abrogation of versican expression in T-anaplastic large cell lymphoma 
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results in decreased levels of membrane type 1-MMP (MT1-MMP) and CD44 and marked 

suppression of T-cell adhesion and invasion [46].

Versican also contributes to the formation of an inflammatory microenvironment in tumor 

stroma. Using mouse models of spontaneous breast cancer, it has been shown enhanced 

recruitment of bone marrow-derived CD11b(+)Gr1(+) myeloid progenitor cells in the pre-

metastatic lungs. Versican secreted by these cells in the metastatic niche mediates 

suppression of the TGF-β/Smad2 pathway by stimulating mesenchymal to epithelial 

transition (MET), and increases breast cancer cell proliferation, which collectively promotes 

focal tumor outgrowth at the metastatic site [47]. Moreover, versican secreted by cancer 

cells interacts with TLR2 present on bone marrow derived macrophages. Versican activates 

TLR2/TLR6 complexes and induces TNF-alpha secretion enhancing the formation of lung 

metastasis [48]. Versican V1 secreted by ovarian cancer cells triggers TLR2 and vitamin D3 

signaling and enhances hCAP18/LL-37 expression in macrophages. Subsequently, hCAP18/

LL-37 secreted by macrophages stimulates growth and invasiveness of tumor cells in the co-

culture experiments in vitro [49]. TLR2 signaling is directly involved in the growth of 

human breast cancers in vitro and in vivo and the inhibition of this pathway merits 

investigation as possible therapeutic and chemoprevention strategy [50]. Versican V1 

variant is a direct transcriptional target of the transcription factor FoxQ1. Versican V1 over-

expression stimulates the secretion of chemokine (C-C motif) ligand 2 (CCL2) from 

hepatocellular cancer (HCC) cells, infiltration of intra-tumoral tumor associated 

macrophages and augments the formation of metastases [51].

It is well established that G1 and G3 versican domains regulate cell proliferation in normal 

and tumor cells [3, 34]. The G1 domain of versican stimulates proliferation by creating a 

less adhesive microenvironment thus destabilizing cell adhesion. The G3 domain induces 

proliferation, at least in part, by activating EGFR via the action of EGF-like motifs. In breast 

cancer tissues, G1 and G3 versican levels are increased and they are localized in stromal 

tissue [52]. It has been shown that G3 via triggering EGFR signaling promotes breast cancer 

cell proliferation migration and invasion to bone with concordant inhibition of osteoblast 

differentiation and enhanced osteoblast apoptosis in vitro [53, 54] as well as the formation of 

spontaneous metastasis to bone in an orthotopic model [54]. EGF-like motifs present on G3 

domain enhance EGFR/ERK or AKT signaling driving breast cancer cell invasion to bone 

stromal cells or osteoblast cells. These motifs are also responsible for the enhanced 

EGFR/JNK signaling that promotes osteoblast apoptosis and inhibits osteoblast 

differentiation as well as for repressed expression of GSK-3β (S9P) that contributes to 

inhibition of osteoblast growth [53]. G3 domain has a dual role in modulation breast cancer 

cell resistance to apoptosis against chemotherapeutic agents. It either enhances resistance to 

apoptosis in breast cancer cells cultured in serum free conditions, doxorubicin, or epirubicin 

by inducing pERK and GSK-3β or promotes apoptosis in cells treated with C2-ceramide or 

docetaxel by triggering pSAPK/JNK and decreasing expression of GSK-3β [55]. G3-

induced EGFR/AKT/GSK-3β (S9P) signaling in breast cancer cells also enhances breast 

cancer cell self-renewal both in vitro and in vivo. In this model, versican is highly expressed 

in breast cancer progenitor cells and confers resistance to chemotherapeutic drugs [56]. It is 

obvious that accumulated versican in ECM is capable of stimulating several cell types 
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through activation of various signaling pathways promoting the secretion of inflammatory 

mediators that augment tumor growth and metastasis.

It is notable that versican fragments liberated from the action of various proteases may also 

activate tumor or stromal cells at distant sites. Several protease families including a 

disintegrin and metalloproteinase domain with thrombospondin motifs (ADAMTS), MMPs 

and plasmin can cleave versican generating fragments containing the globular domains. The 

use of antibodies against an ADAMTS_specific versican cleavage site inhibits glioma cell 

migration [57]. The formation of neo-epitopes of versican fragments within tumor stroma 

may therefore be used as a potential targeted therapy [8].

3. The instructive role of decorin in autophagy and tumorigenesis

Decorin is a multifaceted PG and prototypical SLRP member that is rapidly evolving as a 

key factor in cell-matrix dynamics resulting in a multitude of cellular and biological 

phenotypes. Foremost, decorin is a pan-receptor tyrosine kinase (RTK) inhibitor [58, 59] 

that affects receptor function at multiple levels, including modulation and bioavailability of 

receptor ligands [60], for tumorigenic and metastatic suppression [61–65]. Perhaps the most 

striking evidence for decorin as “a guardian from the matrix” derives from the observation 

that decorin deficiency is permissive for tumorigenesis [66–68] and increases the basal 

activity of multiple receptor tyrosine kinases and is further permissive for progression of 

HCC [69]. Further, as decorin can integrate signaling over multiple receptors including 

EGFR and IGF-IR, it remains possible that decorin can affect the ERs as well in estrogen 

responsive breast carcinomas [27]. Decorin is over-expressed by stromal cells and is often 

accumulated in tumor stroma. Increased expression of decorin in breast cancer tissues is 

associated with lower tumor grade [70], reduced tumor size, reduced risk and rate of relapse 

and low survival in node-negative invasive breast cancer [15]. In contrast, high expression 

of decorin in malignant epithelial tissue is associated with increased lymph node metastasis, 

lower disease free survival in breast cancer [70]. High decorin expression in malignant 

epithelium is also correlated with decreased overall survival only in luminal B subtype of 

breast cancer tumors [70]. However, equally profound roles of decorin are quickly being 

elucidated and include the ultrastructure determinants of tendon and collagen biomechanics 

[71–74], a role in Lyme disease [75], maintaining the myogenic niche [76], a transcriptomic 

biomarker for HCC [77], keratinocyte function [78], fetal membrane regulation [79], and 

modulating the bone morphogenetic protein (BMP) and Wnt pathways [80, 81]. As a further 

indication concerning the functional diversity within the SLRP family, the closest relative of 

decorin, biglycan is primarily involved in orchestrating TLR2/4 as well as myeloid 

differentiation primary response gene 88 (MyD88) / toll-interleukin receptor-domain-

containing adapter inducing interferon-beta (TRIF) mediated innate- immune responses as 

elegantly determined [23, 82]. Decorin also modulates TLR2/4 for immunomodulation and 

cancer progression [83].

The newly-discovered function of decorin in evoking protracted endothelial cell autophagy 

and tumor cell mitophagy, independent of nutrient deprivation and mediated by RTK 

modulation, is discussed below. Furthermore, decorin is part of an emerging subclass of 
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matrix-derived effectors that engage the highly conserved autophagic machinery that will 

have profound effects on cell behavior and disease progression.

3.1. Extracellular matrix regulates autophagy

An emerging paradigm is the emerging concept regarding macroautophagic induction and 

regulation by a specific subset of multifunctional extracellular matrix constituents [84]. 

These constituents encompass diverse members including decorin, endorepellin, collagen 

VI, kringle 5, endostatin, and laminin α2 (Fig. 1A). Macroautophagy (hereafter, autophagy) 

is a tightly coordinated fundamental catabolic process responsible for the non-selective bulk 

degradation of cytosolic components and organelles [85, 86] following suboptimal 

metabolic conditions or nutritional dearth. Importantly, dysfunctional autophagy is 

increasingly being recognized as a key pathological mechanism responsible for several 

diseases including cancer [87, 88] as well as various forms of muscular dystrophy [89]. The 

multitude of biological processes orchestrated by the ECM parallels the progressive nature 

and recognition of autophagy in maintaining proper organismal homeostasis. Moreover, 

autophagic signaling via matrix components belies several well-established oncostatic and 

angiostatic functions of soluble matrix members such as decorin [59], endorepellin [90, 91] 

and endostatin [92]. When prolonged and unrestrained, autophagic induction is 

oncosuppressive [93] and can elicited by chemotherapeutic agents [94]

A crucial aspect of ECM-regulated autophagy is the wide functional variety and 

composition of the effector molecules, each engaging a distinct cell-surface receptor for 

proficient and differential signal transduction for autophagic regulation (Fig. 1A). Soluble 

decorin interacts with various RTKs including vascular endothelial growth factor receptor 2 

(VEGFR2), for paternally expressed gene 3 (Peg3)-dependent endothelial cell autophagy 

[95, 96] (see section 3.2), and Met, for mitostatin-dependent tumor cell mitophagy and 

angiostasis [20] (see section 3.3 and 3.4) (Fig. 1B and C). Endorepellin, the C-terminal 

cleavage product of perlecan, commands a dual receptor antagonism by acting as a 

molecular bridge and simultaneously ligating the α2β1 integrin and VEGFR2 for angiostasis 

[90, 91]. Concurrent with the documented angiostatic properties of endorepellin, is the 

formation of Beclin 1 and LC3-positive autophagosomes (Fig. 1B) downstream of VEGFR2 

in endothelial cells [97]. Molecular dissection of endorepellin into the bioactive (e.g. anti-

angiogenic) N-terminal LG1/2 domains [98] was sufficient for autophagic induction, 

independent of the LG3/α2β1 integrin-binding module [98]. By analogy with endorepellin, 

several other proteolytically liberated, soluble pro-autophagic effectors such as endostatin 

(from the HSPG collagen XVIII) and kringle V (derived from an internal region of 

plasminogen) are also competent for autophagic induction [99, 100] (Fig. 1B).

Pertinent for maintaining skeletal muscle homeostasis [101], collagen VI has also been 

implicated in autophagic and mitochondrial regulation [102–104]. Loss of collagen VI (e.g. 

as seen in Ullrich and Bethlem muscular dystrophies) compromises AKT/FoxO3 signaling 

resulting in decreased autophagosome formation and disproportionate cytosolic levels of 

Beclin 1 and Bnip3 [103] (Fig. 1B). The above described ECM components function as pro-

autophagic mediators for increased autophagy over basal levels. In contrast, laminin α2 

(laminin 211), exerts anti-autophagic properties as mutations that arise in laminin α2 (as 
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established in merosin-deficient congenital muscular dystrophy, MDC1A) manifest as loss 

of function alleles and consequent with a significant increase in autophagic markers (Beclin 

1, p62,and LC3) [105]. Moreover, the intracellular signals and second messengers that are 

activated as a consequence of receptor recruitment and binding, seemingly converge upon a 

common core (Peg3, Beclin 1, LC3) of autophagic machinery required for an appropriate 

and germane autophagic response [84]. Characterization of the signals and relays necessary 

for this biological function are only beginning to be understood and elucidated. This unique 

collection of ECM molecules is quickly emerging as key regulators of autophagic 

programming in a wide array of tissues and microenvironments that appears independent of 

the prevailing nutrient concentrations.

Collectively, these candidate ECM molecules are pioneering a paradigmatic shift in 

understanding the complex determinants of intracellular behavior. The matrix provides 

soluble cues and embedded signals for the fine-tuning of this highly conserved intracellular 

process that factors markedly in the progression of complex pathologies.

3.2. Decorin induces autophagy in normal endothelial cells

After successful establishment of tumor xenografts comprised of triple negative basal breast 

carcinoma cells, decorin was systemically administered and high-resolution transcriptomic 

profiling of the host Mus musculus stromal compartment and Homo sapiens tumor 

parenchyma was performed in parallel, on the same platform [106]. Bioinformatic analyses 

with this novel dataset unexpectedly revealed that decorin triggered significant and 

differential gene expression changes exclusively within the host microenvironment [106]. In 

striking contrast, no changes occurred within the human basal breast carcinoma [106]. 

Moreover, the stromal-specific genetic signature evoked by decorin decidedly disallows 

favorable tumorigenic growth and metastatic dissemination [59, 106].

Chronic decorin exposure permitted differential changes in a small, but robust, subset of 

genes operating wholly within the tumor stroma [106]. Of these, Peg3, a poorly understood 

genomically imprinted tumor suppressor [107, 108], emerged as a prime candidate. The 

biological activity of Peg3 aligns with the established oncostatic properties of decorin 

insofar as promoting the expression of an epigenetically silenced tumor suppressor gene [59, 

109, 110] and modulation of the Wnt/β-catenin signaling axis [111]. Therefore, employing 

macrovascular and microvascular endothelial cells as the tumor microenvironment proxy, 

Peg3 distributed upon subcellular configurations reminiscent of autophagosomes in response 

to decorin [112]. Validating the identity of these structures with canonical autophagic 

markers, such as Beclin 1 and LC3, authenticated these Peg3-positive entities as 

autophagosomes (Fig. 1B). Functionally, Peg3 is necessary and sufficient for decorin-

mediated transactivation of the BECN1 and MAP1LC3A genomic loci and eventual cytosolic 

accumulation of these proteins [112, 113]. Moreover, RNAi-mediated silencing of Peg3 

results in a decrease of basal Beclin 1 mRNA and protein in endothelial cells (Fig. 1B) [112, 

113].

Mechanistically, decorin induces Peg3-dependent endothelial cell autophagy downstream of 

VEGFR2 [113], the primary RTK responsible for coordinating endothelial cell behavior and 

homeostasis (Fig 1B). Intriguingly, decorin acts as a partial agonist via binding IgG modules 
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3–5 of the VEGFR2 ectodomain for competent autophagic induction (Fig. 1B) [113]. This 

activity stands in contrast with the well-documented role of decorin as a global RTK 

inhibitor [25, 114–116]. Upon decorin engagement of VEGFR2, the upstream signaling 

apparatus bifurcates and permits the simultaneous and protracted inhibition of the potently 

anti-autophagic PI3K/AKT/mTOR/p70S6K signalome with concurrent and sustained 

activation of the pro-autophagic ULK1/AMPKα/Vps34 pathway (Fig. 1B) [112, 117–119]. 

Consequently, the pro-autophagic signaling arm converges upon the physical assembly of a 

Peg3/Beclin 1/LC3/p62 supramolecular quaternary complex (Fig. 1B). The concerted 

formation of these Peg3-positive structures and the combinatorial disengagement of 

repressive Bcl2/Beclin 1 complexes are thereby permissive for competent isolation 

membrane formation, phagophore elongation, and autophagic gene target induction (Fig. 

1B) [117]. Importantly, decorin promotes the rapid activation of the central energy sensor 

network via phosphorylation of AMPKα at Thr172 downstream of VEGFR2 and 

independent of prevailing nutrient requirements (Fig. 1B) [117]. As a step between 

VEGFR2 and phosphorylation of AMPKα (as no direct biochemical interaction was seen 

between VEGFR2 and AMPK), ULK1 may be recruited to AMPK and serve as an 

intermediary kinase for autophagic initiation and further attenuation of the anti-autophagic 

mTOR/Raptor/GβL/mLST/PRAS40 complex [120, 121].

Autophagy requires fusion between autophagosomes and lysosomes (autophagolysosomes) 

for engulfed target degradation by lysosomal hydrolases and nutrient recycling (Fig. 1B) 

[122, 123]; lysosomal biogenesis must be induced and maintained for continual and 

successful autophagic flux. Further, Peg3 functions as a master autophagic regulator and 

decorin may dynamically regulate transcription factor EB (TFEB) downstream of Peg3 

activity [112, 124]. TFEB serves as a critical link for the synchronization of coordinated 

lysosomal-nuclear signaling and positive autophagic flux [125]. Phosphorylated TFEB is 

held in an inactive state in the cytosolic compartment upon the lysosomal membrane by 

positive mTOR signaling [126]. Since decorin staunchly inhibits mTOR activity in a 

VEGFR2 dependent manner, TFEB may become actively or passively dephosphorylated, 

translocate into the nucleus, and incorporate into transcriptionally competent pre-initiation 

complexes on the promoters of pro-autophagic targets downstream of Peg3 [124].

Collectively, the induction of endothelial cell autophagy proclaims a paradigmatic shift for 

elucidating not only the underlying molecular mechanisms of decorin, but also these 

findings could be applicable to the SLRP gene family as a whole. Autophagic induction in a 

tissue and organ specific manner may therefore represent heretofore unbeknownst, but 

evolutionarily conserved biological functions for matrix-derived cues, independent of 

nutrient conditions.

3.3. Decorin evokes mitophagy in breast carcinoma cells

Decorin has earned the title of “a guardian from the matrix” as decorin significantly 

disfavors tumorigenic growth [63, 127–129], circumvents rampant tumor neovascularization 

[19, 130], and suppresses bone metastasis [59, 131, 132]. In a mechanism analogous to the 

aforementioned activity of decorin-evoked endothelial cell autophagy, decorin acts as a 

partial Met agonist for the induction of tumor cell mitochondrial autophagy (Fig. 1C) [84, 
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117]. Mitophagic induction may, indeed, unify the classical tumoricidal functions of decorin 

[59]. Functioning at the core of this novel finding is a poorly studied decorin-inducible 

tumor suppressor known as mitostatin [133, 134]. Mitostatin, also known as trichoplein 

[135], localizes to mitochondria [133] as well as to highly specialized sites that exist in 

juxtaposition at endoplasmic reticulum-mitochondrial interfaces in conjunction with 

mitofusion-2 [135].

Downstream of Met, the regulatory scheme for mitostatin induction is dependent on 

PGC-1α, the molecular kingpin for mitochondrial biogenesis [136]. This is unique insofar as 

that PGC-1α has been implicated for BRAF-mediated oncogenesis [137] as well as 

metabolic reprogramming in several models of solid malignancies [138, 139]. However; in a 

Met tyrosine kinase dependent manner, decorin orchestrates rapid post-transcriptional 

stabilization of MITOSTATIN mRNA via direct binding of the C-terminal RNA recognition 

motif (RRM) of PGC-1α (Fig. 1C) [117]. Protein arginine methylation of the PGC-1α RRM 

is carried out by PRMT1 [130] and required for the formation of PGC-1α/MITOSTATIN-

positive mRNP complexes (Fig. 1C) [117]. Genetically ablating the PGC-1α RRM disrupts 

mRNA binding and abrogates decorin-mediated stabilization of MITOSTATIN mRNA and 

downstream mitophagic induction in basal breast carcinoma cells (Fig. 1C).

RNAi-mediated suppression of mitostatin abolishes the response of breast carcinoma cells 

for canonically evoked (e.g. rapamycin, HBSS) or decorin-evoked mitophagy [117]. This 

manifests as a block in oxidative phosphorylation complex turnover, mitochondrial 

fragmentation, VDAC, and mtDNA depletion [117] (Fig. 1C). An early signaling event for 

the stimulation of mitophagic processes requires the loss of mitochondrial membrane 

potential [140]. Depolarization of the mitochondria outer membrane is a valid prognosticator 

of mitochondrial dysfunction and represents a “danger signal” [139] for degradation and / or 

apoptosis [141]. Depolarized mitochondria recruit a RING-between-RING (RBR) E3-

ubiquitin ligase known as Parkin that executes the mitophagic cascade [142]. The 

importance of maintaining healthy mitochondria and their clearance via mitophagy is 

underscored in the development of several types of neurodegenerative diseases, such as 

recessive forms Parkinson’s, for which the eponym Parkin derives [140]. Over 18% of 

Parkinson’s disease patients harbor mutations in the PARK2 gene that encodes Parkin [142]. 

Moreover, this loss of membrane potential permits recognition of damaged versus healthy 

mitochondria for Parkin recruitment [142]. Therefore, as a very early event in the 

mitophagic pathway, decorin triggers mitochondrial depolarization to an extent that is 

analogous to the protonophore, FCCP [117]. The ability of decorin evoked mitochondrial 

depolarization may originate and succeed the calcium oscillations that occur upon 

decorin/RTK interactions [143].

Mechanistically, mitostatin may function as a molecular tether for Parkin recruitment to 

damaged, depolarized mitochondria and / or stimulate the activity of the PINK1/Parkin-

mediated ubiquitination (Fig. 1C). The documented role of Parkin in evoking mitophagy 

[144] and respiratory chain turnover [145] functionally overlaps with the known roles of 

mitostatin signaling [117]. As such, mitostatin promotes the assembly of a pro-mitophagic 

signaling complex that includes PINK1, a master kinase necessary for mitophagic initiation 

and progression, and Parkin (Fig. 1C). This newly-formed ternary effector complex, 
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downstream of positive decorin/Met signaling, may then permit activation, via PINK1 

phosphorylation, of the Parkin RBR domain and downstream ubiquitination (Ubq) of 

mitochondrial targets, such as VDAC and p62/SQSTM1 [144, 146] (Fig. 1C). Tantalizingly, 

selective degradation of specific mitochondrial proteins in a PINK1/Parkin dependent 

manner [142] occurs primarily on the outer mitochondrial membrane, where mitostatin 

localizes [133, 134].

Therefore, soluble decorin engages Met in a positive fashion and evokes mitophagy in a 

mitostatin dependent manner within the tumor parenchyma. As will be discussed below, 

mitophagic induction may account for a classical hallmark of decorin bioactivity by 

suppressing tumor angiogenesis.

3.4. Anti-angiogenic function of decorin

A classic tenet of decorin is the innate ability of angiogenic suppression thereby preventing 

rampant tumor neovascularization and circumventing metastatic spread. In essence, decorin 

differentially modulates angiogenic effectors by inhibiting the transcription of pro-

angiogenic angiokines [e.g. hypoxia inducible factor 1 α (HIF-1α) and vascular endothelial 

growth factor A (VEGFA)] with the concomitant induction and rapid secretion of potently 

anti-angiogenic molecules [tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) and 

thrombospondin 1 (TSP1)] (Fig. 1C) [19, 130]. The induction of autophagic processes 

within the stroma and mitophagic activity within the tumor may underlie the molecular 

mechanism concerning this hallmark of decorin.

We have discussed above (section 3.2) that decorin binds VEGFR2 and positively signals 

for the induction of a macroautophagic program within the endothelial cells [112]. 

Endothelial cells, in turn, represent the fundamental cell type for being involved in both 

developmental and pathological vascularization. Indeed, migration, proliferation, 

tubulogenesis, and capillary plexus formation are chief angiogenic mechanisms by which a 

quickly developing tumor conciliates the need for nutrients, oxygen, and sustained growth 

and spreading. These properties are largely mediated by paracrine effects of VEGFA 

signaling, derived from the abnormal angiogenic stimulus (e.g. the tumor) and autocrine 

VEGFA effects stemming from the endothelial cells. Activation of the pro-autophagic 

VEGFR2 receptor stimulates the presumptive ULK1/AMPKα/Vps34/Peg3/TFEB signaling 

arm and may repress endothelial cell VEGFA or VEGFA responsiveness of the endothelial 

cells.

Intriguingly, upon loss of mitostatin, the ability decorin-mediated VEGFA suppression is 

wholly abrogated [117] (Fig. 1C). Therefore, mitophagic induction and angiogenic 

suppression may be inextricably and genetically linked. Several possible explanations that 

account for this connection exist. Turnover and degradation of electron transport chain 

components affect the production of reactive oxygen species [138, 147] which in turn drives 

HIF-1α/VEGFA signaling independent of oxygen tensions [148] in a manner akin to decorin 

[19]. Further, mitostatin-dependent mitophagy and recruitment of the PINK1/Parkin axis 

may ubiquitinate and trigger degradation of additional pro-angiogenic targets such as Myc, 

β-catenin, and HIF-1α [19, 127]. Importantly, as an associative partner of Parkin [149], the 

Skp1-Cul1-F-box (SCF)-containing E3 ubiquitin ligase, FBW7, may target HIF-1α and Myc 
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for proteasomal degradation [150, 151] following mitophagic initiation. Therefore, 

activation of the mitophagic program, in a mitostatin and Parkin-dependent manner, under 

normoxic and nutrient rich conditions may provide a molecular link with the non-canonical, 

hypoxia-independent mechanism of decorin-mediated angiostasis (Fig. 1C) [19].

In conclusion, the ramification of decorin-mediated autophagy and mitophagy may have far-

reaching consequences suppressing the overall integrity and viability of primary and 

metastatic solid neoplasms. As such, autophagic regulation may represent a generalized 

function for the surrounding matrix, and in particular for the multifunctional SLRP family, 

in the control of cell behavior.

4. Biglycan triggers inflammation and tumorigenesis

4.1 Biglycan as endogenous danger signal and its role in inflammatory diseases

Biglycan, another member of the class I family of SLRPs, consists of a 42 kDa protein core 

and up to two covalently-bound CS/DS side chains. This SLRP is ubiquitously expressed 

and acts as a structural component and stabilizer of the ECM via its interaction with 

numerous components of the ECM, e.g. collagens type I, II, III, and VI, and elastin [21, 22, 

152]. Lessons learnt from biglycan-deficient mice that display an osteoporosis-like 

phenotype, established biglycan as an important regulator of bone formation and collagen 

fiber assembly [152, 153]. By interacting with tumor necrosis factor (TNF)-α, TGF-β1-3, 

BMP-4, Wnt (Wingless-type mouse mammary tumor virus integration site family) 1-

induced secreted protein 1 (WISP-1) and VEGF, biglycan modifies a host of cellular 

processes [21, 22, 152].

The most striking observation is that biglycan in its soluble form acts as a signaling 

molecule and “danger signal” by engaging the innate immunity TLR2 and TLR4 [154, 155] 

in macrophages (Fig. 2). Biglycan/TLR-mediated activation of the NF-κB leads to synthesis 

of proinflammatory TNF-α, IL-6 and pro-1β cytokines [82, 154] (Fig. 2). By clustering 

TLR2/4 with purinergic P2X7/P2X4 receptors along with induction of reactive oxygen 

species (ROS) and Heat shock protein (Hsp)90, biglycan triggers formation of NLRP3/ASC 

inflammasome (NLR pyrin domain containing 3/apoptosis-associated speck-like protein 

containing a carboxy-terminal caspase activation and recruitment domain) with subsequent 

activation of caspase-1 and processing of pro-IL-1β into mature IL-1β [3] (Fig. 2). 

Furthermore, an interplay of biglycan with either the adaptor molecule MyD88 or TRIF 

results in synthesis of various C-C and C-X-C motif ligands (CCL and CXCL), 

chemoattracting neutrophils (CXCL1, CXCL2), macrophages (CCL2), T-(CCL5), and B-

lymphocytes (CXCL13) into the site of tissue injury [82, 156]. Consequently, studies in 

transgenic mice lacking or over-expressing soluble biglycan, have provided robust genetic 

evidence for the involvement of biglycan as an autonomous trigger in sterile inflammation 

(e.g. systemic lupus erythematosus, autoimmune perimyocarditis, diabetic nephropathy, 

ischemic kidney injury, and obesity) as well as a potentiator of pathogen-dependent 

inflammation (e. g. sepsis) [21, 22, 152, 154, 156].

The ability of biglycan to create a pro-inflammatory milieu and to interfere with central 

signaling pathways operating in cancer (e.g. TGF-β- and Wnt- signaling) posits biglycan as 
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a regulator of tumorigenesis. Below, we will review recent knowledge regarding the role of 

biglycan in cancer, metastasis and angiogenesis, and discuss potential therapeutic 

implications.

4.2 Biglycan expression in tumors

4.2.1 Biglycan: A prognostic marker for cancer progression and patients’ 
survival—There is a growing evidence for the over-expression of biglycan in various 

tumor types such as esophageal squamous cell carcinoma [157], intrahepatic 

cholangiocarcinoma [158], odontogenic cancer [159], melanoma [160],colorectal [161–163], 

endometrial [164] and gastric [165] that correlates with disease progression in some cases 

[162–165]. Interestingly, biglycan is also enriched in CD133-positive colon cancer stem 

cells, responsible for tumor motility and facilitation of drug resistance [166].

Notably, several studies correlate levels of biglycan in tumor tissue with a survival rate of 

patients. Patients suffering from esophageal squamous cell carcinoma with high tumor-

associated biglycan expression possess a strongly reduced disease-specific survival rate 

[157]. Reduced survival of patients whose tumors had high expression of biglycan is also 

reported [167]. Accordingly, low biglycan levels tissue are beneficial and correspond to 

prolonged patients’ survival [164]. Whether these clinical effects reflect a role of biglycan in 

modulating the tumor stroma or the cancer needs to be further investigated.

A unique role for biglycan is reported in bladder cancer. In agreement with other clinical 

data, enhanced biglycan levels correlate with a high-grade human bladder cancer and muscle 

invasiveness. However, patients with high tumor-associated biglycan expression display the 

best survival rate [168]. This is in line with the in vitro and in vivo data showing increased 

proliferation of bladder cancer cells after knockdown of biglycan, indicating that biglycan 

may act as growth suppressor in urothelial neoplasms [168]. Furthermore, in diffuse large B-

cell lymphomas biglycan expression is linked to improved success of therapies and patient 

survival by inducing a high intratumoral inflammatory reaction and an increased autologous 

tumor response [169]. In light of current knowledge regarding influence of inflammation on 

tumorigenesis, it is predictable that biglycan, similar to decorin, might inhibit tumor growth 

of established tumors by creating the TLR2/4-mediated pro-inflammatory environment [83]. 

However in early stages of tumor development biglycan-driven inflammation is expected 

rather to promote malignant growth.

Thus, cell type- and tumor stage-dependent expression of biglycan appears to be an 

important marker for prediction of tumor progression, development of metastases and for 

estimation of patients’ survival.

4.2.2 Triggers and sources of biglycan in cancer—In spite of the mounting 

evidence reporting enhanced biglycan expression in various malignant tumors not much is 

known about triggers and sources of biglycan in cancer. TGF-β is a major inducer of 

biglycan expression in the majority of cell types [156]. In fact, tumor-derived TGF-β has 

been shown to trigger biglycan expression in stromal fibroblasts via activation of growth 

arrest and DNA-damage inducible-beta (GADD45beta) and p38 [170, 171]. Furthermore, 

pro-inflammatory cytokines such as IL-1β and IL-6 are capable of inducing synthesis of 
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biglycan in macrophages [154]. Therefore it is conceivable that pro-inflammatory factors 

secreted by stromal mononuclear cells will trigger de novo synthesis of biglycan in 

inflammatory and resident stromal cells. This in turn will cause TLR2/4-dependent synthesis 

of chemoattractants for neutrophils, macrophages, T- and B-lymphocytes recruiting these 

cells to the stroma (Fig. 2). Some of infiltrating mononuclear cells will contribute to a 

further synthesis of biglycan in the stroma, creating a feed-forward cycle driving an 

inflammatory response and influencing tumor growth in a cancer-stage dependent manner.

The majority of studies reporting enhanced biglycan levels in various cancers provide data 

generated in entire tumors. However it has to be considered that “biglycan pool” finally 

influencing tumor behavior originates from various sources of this SLRP. This “pool” 

consists of biglycan synthesized in cancer as well as in stromal cells of host and tumor (e. g. 

fibroblasts and macrophages) and of proteolytically released biglycan from host- and tumor-

derived ECM (Fig. 2). Biglycan synthesized by various cells frequently differs in terms of 

type and length of its GAG chains. Therefore, it is conceivable that influence on tumor 

behavior in vivo caused by “biglycan pool” interfering with a crosstalk between host and 

tumor cells with the ECM, differs from those in vitro where single cell types and 

homogenous biglycan are used. Future studies identifying the cell type expressing biglycan 

at various stages of tumor progression are needed to provide a basis for the analysis of 

biglycan-mediated signaling crosstalk between tumor cells, stroma and the ECM. In 

particular, there is an urgent need to generate data regarding the soluble form of biglycan in 

cancer, as this is the form that is capable of acting as a receptor ligand and signaling 

molecule [154]. In fact, levels of soluble biglycan are markedly enhanced in sera from 

cancer patients [172, 173]. Furthermore, a gradual increase of circulating soluble biglycan is 

positively associated with tumor grade enhancement and lymph node metastases in patients 

suffering from endometrial cancer [173].

4.3 Biglycan-mediated signaling in tumorigenesis

In contrast to relative straightforward clinical data indicating enhancement of biglycan 

expression in various tumors, our understanding of biglycan signaling in tumorigenesis is 

quite sparse and controversial. Below, we critically analyze our current knowledge regarding 

biglycan effects on angiogenesis, malignant cell proliferation, growth arrest, innate 

immunity and inflammation as well as on development of metastases. Additionally, we 

anticipate biglycan-dependent signaling pathways known from non-carcinoma cells to be 

possibly operative in tumor cells as well.

4.3.1 Angiogenesis—There is a growing evidence for the importance of biglycan in 

promoting angiogenesis. Biglycan, constitutively expressed in normal endothelial cells, 

becomes markedly up-regulated under tumor condition and promotes endothelial cell 

migration and neovascularization of cancer [172]. Accordingly, biglycan-deficient mice 

exhibit extenuated neovascularization during healing of bone fractures [174]. In terms of 

underlying mechanisms triggers VEGF synthesis in carcinoma cells [175]. Additionally, 

biglycan has been shown to bind and sequester (VEGFA) in the ECM, thereby generating a 

reservoir of VEGF that can be released during tumor-associated ECM-degradation, enabling 

angiogenesis (Figure 2) [174]. Furthermore, neovascularization is also conveyed by TLR2 
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signaling and production of ROS [176]. Thus, it is conceivable that biglycan as a TLR2 

ligand [154] and ROS-inducer [177] may trigger angiogenesis in a TLR2/ROS-dependent 

manner (Fig. 2).

4.3.2 Cell proliferation and breast cancer normalization—Anti-proliferative effects 

of biglycan are described in elaborated studies using human urothelial carcinoma cells either 

incubated with exogenous biglycan or over-expressing and lacking the biglycan gene, 

respectively [168]. Accordingly, in a model of subcutaneous mouse xenograft tumors, 

containing biglycan-depleted urothelial carcinoma cells, enhanced tumor growth is observed 

[168]. While mechanisms of anti-proliferative effects of biglycan are not clarified yet, 

activation of the P2X7 receptor and interference with TGF-β1-signaling can be considered as 

potential mechanisms of biglycan-dependent anti-proliferative effects in bladder cancer. In 

pancreatic cancer cells, biglycan-mediated cell cycle arrest due to up-regulation of the 

cyclin-dependent kinase inhibitor p27 and inhibition of cyclin A/E, provides further 

evidence that biglycan might act as a suppressor of tumor growth [170] (Figure 2). 

Additionally, biglycan inhibits cell proliferation in an in vitro model of HER-2/neu+ cell 

oncogenic transformation [178]. In renal mesangial cells, biglycan inhibits PDGF-mediated 

proliferation [179].

However, there are several mechanisms in downstream signaling of biglycan that might 

suggest enhancement of proliferation in certain tumor cell types. In vascular smooth muscle 

cells, biglycan attenuates p27 levels with subsequent enhancement of cyclin-dependent 

kinase (CDK)2 expression and acceleration of mitosis [180]. Furthermore, biglycan 

interferes with Wnt/β-catenin-signaling, a central pathway involved in tumor progression. 

Biglycan binds to low-density lipoprotein receptor-related protein 6 (LRP6) and Wnt3a, an 

activator of the Wnt/β-catenin pathway, and increases β-catenin levels thereby supporting 

cell proliferation and differentiation [181].

Thus, it appears that there are several gaps in our knowledge regarding biglycan-dependent 

regulation of tumor growth. Besides not fully clarified effects of biglycan on carcinoma cell 

proliferation, data regarding biglycan-mediated regulation of tumor cell death is quite sparse 

(see below). Reports in non-carcinoma cells indicate biglycan-dependent inhibition of 

apoptosis in mesangial cells due to decreasing of caspase-3 activity [179] and pro-apoptotic 

effects in pre-adipocytes due to unknown mechanisms [182].

Despite being the most homologous relative of decorin, and in contrast to decorin, biglycan 

has been implicated in the development and progression of several genetically distinct 

cancers. Indeed, high levels of biglycan expression are associated with increased risk of 

esophageal squamous cell carcinoma [157], significant clinical outcome of pancreatic 

adenocarcinoma [167], enhanced gastric cancer invasion [183], and breast cancer 

normalization [184]. It is well established that breast cancer cells slow their growth and 

differentiate when associated with embryonic mesenchyme. Notably, when the matrix 

secreted by embryonic mammary mesenchyme was injected into fast-growing breast 

carcinoma in mice, there was a marked reduction of growth. Proteomics analysis of this 

mesenchyme ECM showed biglycan as a major constituent [184]. Moreover, addition of 

soluble biglycan was capable of evoking the tumor normalization response, and RNAi-
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mediated depletion of biglycan expression in cultured embryonic mesenchyme abolished the 

ECM’s inductive activity [184]. Thus, biglycan has a novel biological activity within the 

embryonic mammary mesenchyme that leads to partial breast cancer reversion. Additional 

studies in a broad-spectrum of carcinoma cell types and at various stages of tumor 

development are needed to provide a convincing proof for the inhibitory function of 

biglycan in tumorigenesis.

4.3.3 Development of metastases—In several human cancer types enhanced 

expression of biglycan is associated with the development of metastases. Furthermore, over-

expression of biglycan in a mouse model of gastric xenograft tumors results in the 

development of metastases [183]. Mechanistically, biglycan triggers phosphorylation of the 

focal adhesion kinase (FAK) at Tyr576/577, Tyr925 and Tyr397 with subsequent induction 

of paxillin, resulting in enhanced migration and invasion [183] (Fig. 2). Accordingly, several 

reports describe biglycan-dependent induction of cell migration in various types of non-

carcinoma cells [172, 178, 185]. In contrast, in osteosarcoma cells, biglycan reduces 

migratory capacity [186]. Interestingly, in lung fibroblasts biglycan activates the signaling 

pathways of RhoA and Rac1 thereby stimulating migration of these cells [185]. As 

phosphorylated paxillin is involved in Rac activation, it is conceivable that biglycan-FAK-

paxillin-Rac1-signaling could be responsible for the biglycan-mediated induction of cell 

migration and development of metastases. In addition, anti-adhesive effects of biglycan 

[179] can further contribute to mechanisms of biglycan-dependent promotion of metastases.

4.4 Desensitization of tumors to chemotherapy

Of high therapeutic relevance appears the observation that biglycan expression in tumors 

correlates negatively with the cancer response to chemotherapy. A study that compared gene 

expression profiles of osteosarcoma biopsies either from patients with good or poor 

responses to chemotherapy, showed that biopsies from the non-responding group had twice 

as high biglycan levels as compared to responding patients [187]. Additionally, patients with 

ovarian cancer were chemotherapy-resistant when their tumors expressed enhanced levels of 

biglycan [188]. However, the mechanism of biglycan-dependent desensitization of tumors to 

chemotherapy remains elusive and should be addressed in future studies.

Taken together, the clinical message regarding biglycan and tumorigenesis is 

straightforward and shows over-expression of biglycan in various tumors in a positive 

correlation with the grade of tumor development and metastasis in cancer patients and 

experimental tumor models. However, the effects of biglycan on tumor growth still remain 

unclear. The majority of data underscores the role of biglycan as an inhibitor of cell 

proliferation and cell cycle suppressor. On the other hand biglycan promotes angiogenesis, 

cell migration and inflammation (Fig. 2).

Careful analysis of data published in this field, that appear in some cases to be controversial, 

reveals that these differences are mostly due to the usage of a wide variety of tumor cells 

with different histogenetic backgrounds and of tumor tissues at diverse stages of 

development and differentiation. Another critical point is the source and form of biglycan 

used in in vitro studies. We note that several commercial sources of biglycan do not provide 
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a native form of this SLRP. Furthermore, it is frequently unclear whether effects of intact 

proteoglycan or protein core of biglycan on cell behavior are described. This might be 

essential for biglycan signaling as previously shown for inflammatory pathways [154, 156, 

177]. Moreover, it is of importance whether soluble or immobilized biglycan was used in an 

experimental setting. Based on these variations, the underlying mechanisms and signaling 

pathways driving biglycan effects during the central steps in tumorigenesis are largely 

unknown. Thus, further studies are needed to unravel the biological roles of this SLRP in 

cancer progression and metastasis, and as potential therapeutic target for cancer.

5. Syndecans and their Roles in Breast Cancer

5.1. Syndecans as signaling receptors

Syndecans are a small family of type I transmembrane PGs. Mammals have four distinct 

genes encoding the core proteins, and with the exception of erythrocytes, all cells express at 

least one syndecan. Syndecan-4 is a ubiquitously expressed family member, while other 

family members are more tissue and spatio-temporally restricted [189]. For example, 

syndecan-1, the most studied of the family, is characteristic of simple and stratified 

epithelia. Syndecans are composed of a core protein bearing multiple GAG chains. These 

chains can be HS or CS/DS and the number and type of GAG chains vary depending on the 

syndecan core protein, although for the most part, glycosylation of syndecans in vivo is not 

well characterized. However, syndecan-1 and syndecan-3 can bear both HS and CS/DS 

chains whereas syndecan-2 and syndecan-4 predominantly have HS chains [189, 190]. HS 

chains are formed of repeating disaccharides of N-acetylglucosamine and glucuronic acid. 

These are extensively modified by sulfation and epimerization of the glucuronic acid to 

iduronic acid. The length and fine structure of GAG chains appear to be tissue and core 

protein specific, but generally there are between 50–150 disaccharides per chain. The 

structure of GAG chains has been discussed in detail recently [191, 192]. Mature HS chains 

are not uniformly modified by sulfation, but instead have regions of high sulfation 

interspersed among regions of low, or even no sulfation [191]. This patterning of HS chains 

encodes motifs that can interact with protein ligands. There are now over 100 potential 

ligands ranging from growth factors, cytokines, chemokines, ECM proteins and collagens, 

proteinases, to lipases and lipoproteins. As a result, syndecans are implicated in many 

cellular processes, but since many growth promoting ligands can bind HS, there is 

increasing focus on proliferative diseases, such as tumor progression [25].

Syndecan core proteins are between 20–40kD can be divided into three domains; a large 

extracellular, single transmembrane and small cytoplasmic domain (Fig. 3A). While 

extracellular domains bear the GAG chains, transmembrane domains promote 

multimerization of the core protein, which appears necessary for signaling functions [193]. 

Cytoplasmic domains of syndecan can be further divided into two conserved (C1 and C2) 

with an intervening variable (V) region unique to each syndecan [189]. Though complete 

structure of syndecan core protein has not been elucidated, syndecan-4 cytoplasmic domain 

forms a twisted clamp dimeric structure [194]. The cytoplasmic domains have no intrinsic 

kinase activity, but can nevertheless signal through the docking of, for example, protein 

kinase Cα (PKCα) (in the case of syndecan-4; [195]). Broadly speaking, the C1 and C2 
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regions appear to be involved in trafficking of syndecans to or from the cell surface, together 

with subsequent formation of paracrine signaling organelles, exosomes [196–198]. V region 

interactions are quite poorly understood, with the exception of syndecan-4, where 

interactions with the cytoskeletal protein α–actinin and PKCα are documented [189, 195, 

199, 200]. Downstream of these molecules is the regulation of Rho family GTPases and the 

actomyosin system, to control adhesion, migration and cellular morphology. For more 

details on signaling by syndecans, see reviews [189, 199, 201].

5.2. Syndecans in the normal mammary gland

Considering the current interest in syndecans and breast cancer, it is surprising how little is 

known regarding their expression in the developing, lactating or involuting gland. The most 

studied member of syndecan family in normal mammary gland is syndecan-1. Through the 

development of the syndecan-1 knockout mouse, its function was addressed during 

mammary branching morphogenesis [202]. Syndecan-1 expression in the mouse mammary 

tissue is high in myoepithelial cells and ductal epithelial cells, notably on their lateral 

membrane [203]. Syndecan-1 null mice showed disrupted mammary gland development, as 

evidenced by hypomorphic glands and a sparse epithelial tree with 3 times less side 

branching than control mice. More importantly, absence of syndecan-1 conferred resistance 

to mammary hyperplasia and tumor development induced by constitutively active 

intracellular β-catenin expression [202]. The observed phenotype goes beyond the well-

known syndecan-1 effect on the Wnt signaling complex. Rather, it was shown that 

syndecan-1 was essential to mammary epithelial cells responsiveness to β-catenin/TCF 

[202]. In contrast to syndecan-1, and even though syndecan-4 knockout mice have been 

reported [204, 205], there are no studies regarding its role during mammary gland 

development. In human breast tissue, syndecan-4 is expressed on luminal cells and weakly 

expressed on myoepithelial cells [29]. Stromal cell expression was not detected [29]. On the 

other hand, syndecan-2 expression in normal breast tissue was observed in myoepthelial 

cells (Fig. 3B). To the best of our knowledge, there is no report of how HSPGs are regulated 

during the different stages of mammary gland development. The available data regarding 

this aspect describes HS, CS and DS polysaccharide expression in virgin, lactating and 

involuting mouse mammary glands. Whereas HS chains are present at the basement 

membrane during all stages of development there is a shift between DS and CS expression. 

For instance, DS was highly expressed at the basement membrane during lactation stage 

while CS chains were the major GAG in mammary tissue during pregnancy [206].

5.3. Regulation of syndecan expression

The expression patterns of the four mammalian syndecans are distinct, suggesting that 

transcriptional regulation is an important feature. Despite this, little is currently understood 

regarding the regulation of the syndecan gene promoters. Soon after the identification of 

syndecan-1, there were some studies of its promoter [207, 208], indicating sites for Sp1 

family (specifically Sp3 in more recent studies [209]), NF-kB, MyoD (Ebox) and 

Antennapedia [207] as well as Wilms’ tumor suppressor gene (WT1; [210]). However, 

syndecan-1 is not well known as an early response gene, unlike syndecan-4, where its 

expression has been well documented to be NF-kB and hypoxia sensitive [211, 212].
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While none of the syndecan genes has been shown directly to be regulated by steroids, it is 

known that treatment of ERα+ breast carcinoma cells with estradiol (E2) exhibits significant 

increases in syndecan-2 transcriptional levels, but not syndecan-4 [26]. Moreover, the use of 

EGFR and IGF-IR inhibitors decrease the gene expression levels of syndecan-2 and -4, in 

contrast to E2-mediated treatment in the presence of inhibitors that also cause up-regulation 

of syndecan-2 and down-regulation of syndecan-4 gene expression levels [28]. The 

syndecan-2 promoter may be well worth characterizing, not least as it may be important in 

triple negative breast cancer [30].

Furthermore, treatment of breast cancer cells with pharmaceutical formulations or by other 

novel therapeutic approaches can affect syndecan expression levels. The bisphosphonate 

zoledronic acid suppresses syndecan-1 and syndecan-2 gene expression levels in human 

breast cancer cells, in contrast to significant increases in syndecan-4 mRNA levels [213]. 

Non-coding RNAs may also be important regulators since miR-10b, already implicated in 

breast cancer [214], regulates syndecan-1 levels in MDA-MB231 breast carcinoma, thereby 

promoting cell motility and invasiveness by a Rho-GTPase- and E-cadherin-dependent 

mechanism [215].

Syndecan-1 levels are also modified by omega-3 polyunsaturated fatty acids in human breast 

cancer cells and suggest that syndecan-1 mediated biological processes are modified through 

low-density lipoprotein delivery of n-3 polyunsaturated fatty acids [216]. In addition, 

syndecan-1 expression levels, shedding and localization in breast cancer cells are also 

enhanced by heparanase, an enzyme in current focus that promotes tumor progression and 

metastasis [217].

Very few studies have examined the genetic variation in syndecan genes and their 

association with malignancies. However, syndecan-1 and syndecan-4 polymorphic 

variations have been investigated in Australian breast cancer patients [218]. A single 

nucleotide polymorphism (SNP) in syndecan-1 (rs1131351) is associated with breast cancer 

in this population, in contrast to a syndecan-4 (rs67068737) polymorphism which has no 

association to the disease. This perspective is also enhanced by another study on European 

postmenopausal population, which shows that a syndecan-1 SNP is associated with breast 

cancer susceptibility [219]. The molecular implications of these findings remain to be 

investigated.

5.4. Syndecans and breast cancer

There have now been many studies on syndecans and breast cancer, although knowledge of 

mechanistic pathways is largely absent. Loss of syndecan-1 is associated in poor prognosis 

in many cancers such as lung cancer [220]. However, breast cancer research provides a 

different story. Several reports indicate that syndecan-1 is up-regulated in human breast 

cancer tissues compared to normal tissues, where it is correlated with higher histological 

tumor grading, increased mitotic index, increased tumor size, positive lymph node status and 

poor prognosis [29, 220–222].

Several studies confirmed the expression of syndecan-1 in both epithelial and stromal 

compartments of breast tumors [29, 223] (Fig. 3C). Epithelial syndecan-1 expression has 
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been associated with negative ER status but stromal syndecan-1 expression with positive ER 

status. Moreover, triple negative breast carcinoma lines exhibit a higher expression of 

syndecan-1 compared to non-metastatic subtypes [224]. In addition, the HER2 positive and 

basal triple-negative carcinomas exhibit higher levels of syndecan-1 compared to luminal 

subtypes, though the latter may have higher expression than normal cells. Syndecan-1 

expression in the reactive stroma cells has been proposed to create a favorable 

microenvironment for tumor cell growth and angiogenesis [225]. The source of stromal 

syndecan-1 is still debated, though some reports hold MT1-MMP mediated shedding 

responsible [226] while others detect the presence of syndecan-1 mRNA in the stroma [227]. 

In addition, a worse prognosis in breast carcinoma patients was reported where syndecan-1 

expression extended to the stroma [223]. This was in agreement with earlier studies where 

stromal syndecan-1 promoted invasiveness of breast carcinomas [228]. In any case, distinct 

roles were suggested for soluble syndecan-1 in stroma and syndecan-1 in membrane bound 

form [229] and one study concluded that breast cancer-specific 10-year overall survival was 

reduced with higher expression of syndecan-1 in epithelium or stroma [223]. Several in vivo 

and in vitro models support the idea that syndecan-1 promotes tumorigenesis by promoting 

Wnt signaling [203], tumor cell adhesion, spreading [230], angiogenesis [231], proliferation 

[232] and ECM signaling [233]. Recently, Ibrahim et al. suggested that syndecan-1 

promotes cancer stem cell properties in triple negative breast cancers [234], a factor that 

negatively impacts cancer therapies. The same study proposed that syndecan promotes stem 

cell properties via a pathway involving Wnt and IL-6/STAT3 signaling. Interestingly, 

administration of chemotherapy results in reduced syndecan-1 in cancers [235], but this 

treatment is less effective in patients with higher syndecan-1 expression [236].

Unlike syndecan-1, roles of syndecan-4 in breast cancer oncogenesis have been less studied, 

though syndecan-4 is known to be the second most abundant HSPG not only in normal 

mammary epithelium but also in breast carcinoma lines. Regardless of the expression, 

syndecan-4 was shown to mediate breast cancer cell adhesion, spreading [230] and growth 

factor signaling [224]. This might be important since receptor status is a key criterion for 

tumor classification and selection of treatment. However, syndecan-4 expression did not 

correlate with histological tumor type, age, lymph node status or grade of the tumor [29]. In 

contrast, a previous study suggested that syndecan-4 expression correlated significantly with 

high histological grade and negative estrogen receptor status [237], therefore a marker of 

poorer prognosis. These studies employed distinct methods and antibodies but suggest that 

the importance of syndecan-4 in breast cancer is not sufficiently resolved.

There are a few studies available concerning the roles of syndecan-2 and syndecan-3 in 

breast cancer progression. Our recent data from human tissue arrays suggest that syndecan-2 

is up-regulated in breast tumors and in cases where the primary tumor and metastases from 

the same patient could be compared, syndecan-2 was expressed at higher levels in the latter 

[238]. Corresponding work in tissue culture suggested that syndecan-2 has an important role 

in regulating breast carcinoma cell morphology and invasive behavior [238]. A single report 

failed to correlate syndecan-3 expression mammary carcinoma outcome. It also indicated 

that syndecan-3 is not associated with lymph node metastasis and clinical stage, ruling out 

syndecan-3 as a possible prognostic marker [239].
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5.5. Breast carcinoma in vitro

Breast tumors are characterized by loss of tissue architecture and tissue function, complex 

and altered patterns of gene expression and enormous heterogeneity [240, 241]. These 

factors make breast cancer a challenging disease to be studied. Syndecan roles include 

function as a receptor for ECM. According to the dynamic reciprocity model [242], organs 

and tissues are embedded in the ECM, a source of both biochemical and biophysical cues 

that control cell behavior. ECM cues are transduced by cell surface receptors through the 

cytoskeleton, which is connected to the nuclear matrix and chromatin. As a result of this 

intricate network, ECM information can decode change in gene expression and ultimately 

cell behavior. Syndecan HS chains interact with many ECM proteins such as collagen, 

fibronectin, laminins, and vitronectin [189, 190]. The triple negative and highly malignant 

MDA-MB-231 cells express many HSPGs, with syndecan-1 being dominant [230]. Cell 

spreading on vitronectin was achieved by a cooperative mechanism between syndecan-1 

ectodomain and integrin αvβ3, since recombinant syndecan-1, syndecan-1 core protein-

specific antibody or syndecan-1 down-regulation inhibited αvβ3 integrin-dependent 

spreading and migration [243]. Furthermore, through the use of syndecan-1 mutants lacking 

specific domains in the core protein, a peptide called synstatin (corresponding to amino 

acids 82–130 of mouse syndecan-1) was identified. Synstatin blocked interaction between 

syndecan-1 and αvβ3 and αvβ5 integrins [244]. Since these integrins are involved in tumor 

angiogenesis, synstatin was tested as an anti-angiogenic compound. Synstatin treatment 

inhibited xenograft tumor growth of human MDA-MB-231 breast cancer cells and tumor 

angiogenesis (11-fold reduction compared to untreated tumors), suggesting that syndecan-1 

is a crucial regulator of integrin activation during angiogenesis and tumorigenesis [244]. The 

molecular mechanism by which syndecan-1 activated αvβ3 and αvβ5 integrins involved IGF-

IR (insulin-like growth factor-I receptor) autophosphorylation mediated by syndecan-1 

clustering. Indeed, IGF-IR inhibitors block mouse Sdc1-expressing breast cancer cell 

spreading and migration on vitronectin [245]. Studies using the S115 mouse mammary 

tumor cell line suggested that syndecan-1 expression inhibits tumor cell growth and 

supported epithelial morphology by inducing actin filament organization [246]. Similarly, 

targeting of syndecan-1 by the miR-10b or syndecan-1 knockdown in MDA-MB-231 cells 

induced increased cell migration and invasion [215]. The molecular mechanism that may 

explain cell phenotype upon syndecan-1 down regulation involves altered function of focal 

adhesion kinase, Rho-GTPases and E-cadherin [215].

Syndecan function in cell signaling induced by growth factors has also been addressed in 

breast cancer. Breast carcinoma tissue had an enhanced ability to promote assembly of 

fibroblast growth factor-2 (FGF-2) and fibroblast growth factor receptor 1 (FGFR1) 

complex when compared to normal tissue. In addition, syndecan-1 and syndecan-4 are the 

main proteoglycans responsible for FGF-2-FGFR1 complex formation in breast tumor 

samples [224].

Tumor cells and their microenvironment coexist in a relationship based on information 

exchanges. Stromal cells in the tumor microenvironment can also express syndecan-1, which 

contributes to tumor progression. Interestingly, fibroblast expression of syndecan-1 

correlates with parallel stromal fiber organization in mammary tumors [247]. Through the 
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use of syndecan-1 positive and syndecan-1 negative fibroblasts cultured on three 

dimensional ECM it was shown that syndecan-1 positive fibroblasts promoted ECM 

organization in a parallel fiber architecture. On the other hand, ECM in which syndecan-1 

negative fibroblasts were cultured presented a random fiber arrangement [247]. 

Furthermore, fiber organization modulated by syndecan-1 positive fibroblasts controlled 

breast carcinoma cell migration since tumor cells preferentially migrate and invade along 

aligned collagen fibers [248].

It would therefore appear that syndecan-1 could influence the progression of breast cancer in 

several ways. Roles in supporting growth factor signaling are foremost, but if stromal 

syndecan-1, for example, influences integrin activity and the ECM, then it may also exert its 

effects through cell adhesion. This would be unsurprising since syndecans are bridges 

between the pericellular environment and the cytoskeleton. Syndecan-1 influences tumor 

cell behavior but also the stromal compartment and components of the immune system.

Recent data has unveiled novel roles for syndecan-2, which is more widely known as a 

mesenchymal HSPG, in breast cancer progression [30, 238]. Depletion of syndecan-2 in 

MDA-MB-231 cells led to profound impact on cytoskeletal organization in these cells. Cell 

spreading was enhanced with increased microfilament bundles, focal adhesions and 

cadherin-11 containing adherens junctions (Fig. 3D). Concomitantly, type I collagen 

invasion and degradation were blocked in the absence of syndecan-2 [238]. Mechanistically, 

syndecan-2 may signal through caveolin-2 to modulate breast carcinoma cell behavior since 

caveolin-2 formed a complex with syndecan-2 (but not syndecan-4). Depletion of caveolin-2 

yielded the same phenotype as syndecan-2 depletion (unpublished data). In addition, our 

data also showed that protein levels of caveolin-2 were reduced upon syndecan-2 depletion, 

suggesting that syndecan-2 is a key player in maintaining caveolin-2 expression in these 

tumor cells. It would be interesting to investigate the fate of caveolin-2, for example 

proteasomal degradation, when syndecan-2 is depleted.

The cytoskeletal and behavioral consequences of syndecan-2 depletion were dependent on 

the Rho-GTPases [30]. A novel cross-talk between syndecan-2 and a negative regulator of 

Rho-GTPases, p190ARhoGAP, enabled spatiotemporal control of cytoskeletal 

rearrangement and cell migration in MDA-MB-231 cells. This GTPase activating protein 

was re-localized from cytoplasm to plasma membrane where RhoA is inactivated in the 

absence of syndecan-2. The re-localization of p190ARhoGAP appears to be syndcan-4 

dependent. Consistent with this, Src-dependent tyrosine phosphorylation of p190ARhoGAP, 

which is a measure of its activity was increased upon syndecan-2 depletion, suggesting that 

syndecan-2 is a novel regulator of both distribution and activity of p190ARhoGAP in these 

tumor cells. A number of previous studies have indicated that syndecan-2 and -4 may have 

some overlapping roles since they are closely related in structure [189, 249]. However, in 

breast carcinoma, we found that syndecan-2 suppressed syndecan-4-induced focal adhesion 

formation [238] and cell surface levels of syndecan-4, on the other hand, were elevated by 

syndecan-2 depletion, suggesting that a compensatory up-regulation had occurred. However, 

further experiments are required to provide an answer on how syndecan-2 controls 

syndecan-4 leading to downstream effects on cytoskeletal rearrangement.
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6. Heparanase, syndecan-1 shedding and exosomes facilitate intercellular 

communication that drives tumor progression

6.1. Heparanase acts as a master regulator of tumor-host crosstalk

Heparanase is a multifunctional molecule whose expression is closely associated with the 

aggressive behavior of many types of human cancers including breast cancer [250–254]. 

Heparanase binds to and enzymatically cleaves HS chains, thereby regulating HS 

availability and/or function both at the cell surface and within the ECM. The 

endoglucuronidase activity of heparanase may depend on the saccharide structures that 

surround the cleavage site of HS, thereby leading to variable substrate specificities and 

implying a complex role for heparanase in regulating HS biological activity [255]. 

Functionally, much of the impact of heparanase within the tumor microenvironment lies in 

its regulation of the bioavailability and activity of key factors that bind to HS including 

growth factors, chemokines, cytokines, enzymes and other effectors. These HS-binding 

factors represent a large number and broad range of functions [191], further underscoring 

the potential influence of heparanase in tumor-host cross-talk. Additionally, many factors 

utilize HS as a receptor or co-receptor on the surface of cells and modulation of HS by 

heparanase can impact this function. Heparanase function however is not limited solely to its 

enzymatic activity. Enzymatically inactive heparanase can activate signaling molecules such 

as AKT and p38 [256, 257] and promote transcription of several biologically important 

effectors [e.g., hepatocyte growth factor (HGF) and tissue factor] [258, 259]. This implies 

heparanase has broad functions beyond its impact on HS.

In breast cancer, analysis of clinical specimens led to early speculation that heparanase is 

associated with breast cancer metastasis. Heparanase expression is present in a high percent 

of patients having metastatic breast cancer as compared to patients without metastasis, 

where heparanase expression is rare [260]. Moreover, heparanase expression as determined 

by immunohistochemistry is associated with high-grade metastatic breast cancers [261] and 

with more invasive subtypes of human breast cancer as compared to less invasive subtypes 

[262]. Heparanase expression in breast cancer patients has also been associated with lymph 

node status, late clinical stages, a short overall survival and a short relapse-free survival 

[263].

Utilizing animal models of breast cancer, heparanase was shown to promote tumor growth, 

angiogenesis and survival apparently through its impact on generating a supportive tumor 

microenvironment [251, 264]. Much of this effect can be attributed to heparanase-mediated 

upregulation of VEGF and the downstream impact this has on enhancing angiogenesis 

[265]. Contributing to this effect is the ability of heparanase to enhance endothelial cell 

migration by stimulating AKT and PI3K [265]. In addition, heparanase has a major impact 

on promotion of the metastatic phenotype. Enhanced expression of heparanase in human 

breast cancer cell lines promotes tumor invasion, while knock-down of heparanase 

expression diminishes invasion capacity in vivo [264, 266, 267]. Heparanase plays 

important roles in breast cancer metastasis to the brain, an event that signals an 

exceptionally poor prognosis for the patient. Heparanase was found to regulate cytoskeletal 

dynamics of breast cancer cells and to mediate cross-talk between tumor and brain 
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endothelial cells that together promote metastasis to the brain [268]. Stable expression of 

miR-1258 in metastatic cells inhibited heparanase expression and activity and diminished 

experimental metastasis to brain in vivo [269]. Moreover, isolation of circulating tumor cells 

from breast cancer patients and analysis of their protein signatures revealed that heparanase 

expression along with several other markers identified a population of circulating cells 

having a high probability of metastasizing to brain [270].

6.2. Shed syndecan-1 potentiates growth factor signaling that aids in establishing a 
supportive tumor microenvironment

Shedding of the transmembrane proteoglycan syndecan-1 from the surface of cells is 

elevated in many diseases and has a remarkable impact in tumor cell behavior [32, 271, 

272]. Syndecan shedding is mediated by the action of a number of proteases that act at sites 

generally in the membrane-proximal region of the syndecan extracellular domain leading to 

release of an intact ectodomain with attached GAG (HS and CS) chains [273, 274]. 

Interestingly, heparanase also plays a role in increasing syndecan-1 shedding. In both 

myeloma and breast cancer, when heparanase expression was increased, syndecan-1 

expression and shedding were substantially increased [217]. The increase was driven by 

heparanase-mediated stimulation of expression of sheddases MMP-9 and urokinase 

plasminogen activator and its receptor (uPA/uPAR) [275].

Because shed syndecan-1 retains its HS chains, it is free to bind to numerous effectors 

(growth factors, cytokines, chemokines and other HP-binding molecules) which can lead to 

diverse functional consequences both within the extracellular matrix and at the cell surface. 

These activities have been well-characterized within the myeloma tumor microenvironment 

where shed syndecan-1 potentiates the activity of factors such as VEGF and HGF [31, 258, 

276]. Syndecan-1 shedding can influence FGF-2 mediated signaling in breast cancer cells. 

In the absence of shedding, syndecan-1 mediates FGF-2 signaling, but following induction 

of syndecan-1 shedding, FGF-2 signaling is mediated by the HSPG glypican-1 [277]. In 

breast cancer, shed syndecan-1 is derived predominantly from stromal fibroblasts that reside 

within the tumor [228]. This stromal-derived syndecan-1 stimulates breast cancer cell 

proliferation via activation of FGF-2 [272]. Together, these findings indicate differing roles 

exist for cell surface verses shed syndecan-1 in regulating breast cancer. This notion has 

been confirmed by other studies showing that shed syndecan-1 confers an invasive 

phenotype to breast cancer cells, whereas membrane syndecan-1 inhibits tumor cell invasion 

[229].

Interestingly, in addition to local interactions within the tumor microenvironment, shed 

syndecan-1 can regulate interactions with host cells that are distal to the tumor. When 

heparanase expression was enhanced in metastatic MDA-MD-231 breast cancer cells and 

these cells were implanted in the mammary fat pad of mice, a systemic bone resorption 

occurred even though tumor could not be detected within the bone [278]. This increased 

bone resorption was due to enhanced osteoclastogenesis stimulated, at least in part, by shed 

syndecan-1 released from the heparanase-expressing tumor cells growing in the mammary 

fat pad [279]. This suggests that the heparanase/syndecan-1 axis has broad impact on tumor-

host behavior both within and beyond the immediate tumor microenvironment.
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6.3. Heparanase and syndecans together regulate exosome secretion and composition

Exosomes are small (~30–100 nm) membrane vesicles that are produced within endosomal 

compartments and released at the cell surface. Following their release they can dock with 

recipient cells and deliver their cargo of signaling proteins, nucleic acids (DNA, mRNA and 

miRNA), carbohydrates and lipids thereby acting as powerful mediators of intercellular 

communication [280–282]. In cancer, this horizontal transfer of biological material can 

regulate the behavior of both tumor and host cells [283]. In addition to acting within the 

local tumor microenvironment, due to their small size, exosomes can escape the tumor, 

travel through the circulation and enter distal tissues where they can, for example, prepare 

metastatic niches prior to arrival of tumor cells [282, 283]. Emerging data also indicate that 

exosomes can act as barriers to anti-cancer therapy by interacting with tumor cells and 

enhancing their chemoresistance.

A number of publications over the last few years have begun to detail the impact of 

exosomes on breast cancer. Several of those indicate an important role for exosomes in 

breast cancer metastasis. For example, it was recently shown that breast cancer cell 

migration is stimulated by fibroblast-secreted exosomes that activate the protrusive activity 

and motility of breast cancer cells via Wnt-planer cell polarity signaling [284]. In vivo, when 

fibroblasts were co-injected with breast cancer cells, metastasis was dramatically enhanced 

and this was dependent on CD81, a well-known cargo present in exosomes. Breast cancer 

metastasis may also be mediated through miR-105, a microRNA found in breast cancer 

patients and associated with the occurrence of metastasis. Mechanistically, it was 

demonstrated that exosomes containing miR-105 carried by exosomes released from cancer 

cells target the tight junction protein ZO-1 [285]. This destroys the tight junctions of 

endothelial monolayers thereby compromising the integrity of this barrier and facilitating 

metastasis. Exosomes can also play an important regulatory role in breast cancer by 

enhancing chemoresistance. Exposure of drug-sensitive MCF-7 breast cancer cells to 

exosomes secreted by drug resistant variants of MCF-7 increased survival of the sensitive 

cells following their treatment with cytotoxic drugs [286]. This chemoresistant effect was 

traced to miR-100, miR-222 and miR-30a, a group of miRs previously associated with 

therapy failure. Additional studies have demonstrated a role for exosomal-delivered 

miRNAs in promoting resistance of breast cancer cells to docetaxel and tamoxifen [287, 

288]. Interestingly, exosomes also play a role in dormancy of breast cancer within the bone 

marrow. This occurs through stroma-derived exosomes that deliver quiescence-inducing 

miRNAs to breast cancer cells [289].

Together, the studies above underscore the importance of understanding how exosome cargo 

and secretion are regulated. This is particularly important in cancer where it has been shown 

that the level of exosome secretion is significantly enhanced as tumors progress [290]. 

However, the mechanisms regulating exosome biogenesis are not well understood and may 

vary between cell types and within the context of their function [291]. There is considerable 

evidence that components of the Endosomal Sorting Complex Required for Transport 

(ESCRT) and members of the Rab family of GTPases play roles in mediating exosome 

secretion [292, 293]. In addition, there is emerging evidence that both syndecans and 

heparanase influence exosome secretion. Syndecans of MCF-7 breast cancer cells were 
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recently shown to promote exosome formation through their binding to syntenin, a cytosolic 

adaptor protein [196]. Syntenin, through its LYPXX(n)L domains, also binds to ALIX, a 

component of the ESCRT machinery responsible for endosomal membrane budding and 

abscission. This syndecan-syntenin-ALIX complex segregates syndecans and their cargo 

(e.g., growth factors that are bound to syndecan HS chains) to budding endosomal 

membranes and supports the budding process resulting in formation of exosomes [196]. 

Interestingly, this syntenin-driven exosome formation is dependent on HS-mediated 

clustering of syndecans.

The finding that the status of HS influences exosome secretion raised the interesting 

possibility that physiologic modification of HS by heparanase would impact exosome 

secretion and molecular composition. This notion was confirmed by analysis of exosomes 

secreted by cells transfected with the cDNA for heparanase. In both myeloma and breast 

cancer cells, an elevation in heparanase expression led to a dramatic increase in exosome 

secretion [294]. This effect required the enzymatic activity of heparanase suggesting that 

exosome secretion was enhanced when syndecan-1 HS chains were remodeled by the 

enzyme. It is possible that heparanase-mediated shortening of the HS chains enhances 

formation of the syndecan-syntenin-ALIX complex thereby boosting the rate exosome 

formation. Enhanced heparanase expression in the tumor cells also led to alteration of the 

composition of the secreted exosomes including increased levels of heparanase, syndecan-1, 

HGF and VEGF [294]. This altered composition endowed these “heparanase exosomes” 

with an increased ability to promote tumor cell spreading and endothelial cell migration 

when compared to control exosomes. These findings indicate that as tumors progress and 

heparanase levels rise, it causes increased exosome secretion and alterations in exosome 

composition. This adds yet another mechanism whereby heparanase facilitates tumor-host 

crosstalk that helps drive aggressive tumor behavior and further validates heparanase as a 

target for anti-cancer therapy.

7. The role of Glypicans in breast cancer progression

7.1. The structure and function of glypicans

Glypicans are a family of proteoglycans that are linked to the plasma membrane through a 

GPI anchor [295]. Six members of the glypican family have been identified in mammals 

(glypican-1 to glypican-6) [295]. Structural features that are conserved across the family 

include the localization of 14 cysteine residues and of the insertion sites for GAG chains. All 

these insertion sites are close to the C-terminus, placing the GAG chains in proximity to the 

cell surface, and suggesting that these chains could mediate the interaction of glypicans with 

other cell surface proteins [295]. Most glypicans display HS chains. The number of GAG 

chains varies across the family (from two in glypican-3 to four in glypican-5), but the 

functional implications of this variation are unknown. Glypicans can be released from the 

cell surface by a lipase called Notum, which cleaves the GPI anchor [296]. These PGs can 

also be cleaved by furin-like convertases into two subunits that remain attached to each 

other by one or more disulfide bridges [297]. Notably, glypicans do not have domains with 

obvious homology to characterized domains found in other proteins, suggesting that they 

have unique functions. The crystal structure of glypican-1 lacking the GAG attachment 
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domain has been recently reported [298]. The structure reveals that glypican-1 is a densely 

packed one-domain protein of cylindrical shape, consisting of 14 α-helices and three major 

loops.

Genetic and biochemical studies have demonstrated that glypicans can regulate several 

signaling pathways, including those triggered by Wnts [299–305], Hedgehogs (Hhs) [306–

310], BMPs [311–314] and FGFs [315, 316]. In most cases this regulatory activity is based 

on the ability of glypicans to either inhibit or stimulate the interaction of these growth 

factors with their signaling receptors. It is now well established that the structural features of 

glypicans combine with the set of growth factors and growth factor receptors present in a 

given cell type to determine glypican function.

In addition to regulating signal reception at the cell membrane, glypicans have been shown 

to be involved in the secretion and/or transport of Hhs [307, 317–320]; Wnts [321–323], and 

BMPs [311, 312]. The studies that uncovered these functions have been mostly performed in 

the developing Drosophila wing. Similar functions of glypicans in a mammalian in vivo 

context remain to be demonstrated.

Glypicans also have specific functions in the nervous system. For example, glypicans have 

been shown to play a role in axon guidance [310, 324], and in the formation of excitatory 

synapses [325, 326].

7.2. Glypicans and breast cancer

It is well established that alterations of the signaling pathways regulated by glypicans 

contribute to malignant transformation. It is therefore not surprising that several studies have 

demonstrated that abnormal expression of members of the glypican family play a role in the 

progression of various tumor types, including breast cancer [308, 327–329].

The first study implicating a glypican in breast cancer progression reported the over-

expression of glypican-1 in 10 out 20 tumors [330]. The levels of glypican-1 were assessed 

by Northern blot analysis. Notably, this study also showed that glypican-1 stimulates the 

mitogenic response of two breast cancer cell lines to -heparin binding epidermal growth 

factor (HB-EGF) and to FGF2, suggesting that the up-regulation of glypican-1 could play a 

role in breast cancer progression. It should be noted, however, that a more recent study of 23 

breast tumor samples by qRT-PCR could not detect significant over-expression of 

glypican-1 [24].

The second investigation implicating glypicans in breast cancer progression showed a 

significant down-regulation of glypican-3 in the tumors compared to the surrounding non 

malignant tissue [329]. This study included 12 patients, and used in situ hybridization as a 

method to detect GPC3. The authors showed that the down-regulation of glypican-3 in 

breast cancer cell lines was due, at least in part, to the hypermethylation of the glypican-3 

promoter. Furthermore, ectopic expression of glypican-3 inhibited the growth of eight out of 

ten breast cancer cell lines, suggesting that glypican-3 can act as an inhibitor of breast 

cancer growth [329]. The hypermethylation of the glypican-3 promoter in breast cancer was 

confirmed by a more extensive study that showed that this promoter was hypermethylated in 
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38 of 45 breast tumors [331]. Notably, this study reported that high levels of glypican-3 

promoter methylation are more predominant in hormone receptor-negative patients. It 

should also be noted that the downregulation of glypican-3 in breast cancer has been 

recently confirmed by a study that included 23 patients [24]. Another investigation 

implicating glypican-3 in breast cancer showed that this glypican can inhibit experimental 

lung metastasis in a murine breast cancer cell line [332]. This finding is consistent with the 

previously reported glypican-3-induced inhibition of the growth of breast cancer cells.

Lastly, a recent study showed that glypican-6 stimulates the invasive migration of breast 

cancer cells [333]. This investigation also found that glypican-6 promotes invasiveness 

indirectly by stimulating Wnt5a expression leading to the activation of Jun N-terminal 

kinase (JNK) and p38 MAPK. It should be noted, however, that the authors of this study did 

not investigate whether glypican-6 is upregulated in breast cancer patients, and that a recent 

report found no difference in the glypican-6 mRNA levels of invasive breast cancer tissues 

compared to normal mammary gland [24].

Conclusively, the accumulated evidence strongly indicates that the glypican-3 is 

downregulated in most breast cancer patients, and that this down-regulation contributes to 

the progression of the disease. On the other hand, additional studies are required to confirm 

that the expression of glypican-1 and glypican-6 are deregulated in breast cancer, and that 

these glypicans play a role in this malignancy.

8. Serglycin: an inflammatory proteoglycan that is involved in 

tumorigenesis

Serglycin is the only characterized member of the family of intracellular PG and presents in 

intracellular secretory compartments. Serglycin is highly expressed in hematopoietic cells 

but recent studies demonstrated that it is also expressed by a variety of cell types and 

mediates crucial functions in both normal and pathological conditions [334]. The human 

serglycin gene is located in chromosome 10q.22. and consists of three exons. In human the 

small core protein of serglycin contains eight serine/glycine repeats, which are potential 

GAG attachment sites. The structure of serglycin differs between cell types due to variations 

of the number, the type and specific structure of GAGs attached on the core protein [334].

In hematopoietic cells serglycin is found in secretory granules and vesicles contributing in 

intracellular storage and secretion of bioactive molecules such as proteases, pore formation 

proteins, chemokines, growth factors and neurotransmitters. It has been shown that serglycin 

is secreted in the ECM in various cell types either constitutively or upon stimulation. In the 

ECM, serglycin forms complexes with bioactive molecules regulating their availability or 

transport to target sites [334].

8.1. Serglycin in inflammation

Serglycin is also synthesized by various stromal cells in tumor microenvironment for 

instance inflammatory cells, endothelial cells and activated fibroblasts [335, 336]. Serglycin 

is involved in the secretion of inflammatory mediators by these cells, which contribute to 

tumorigenesis [335, 336]. Serglycin plays crucial roles in the storage and secretion of 
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various proteolytic enzymes in inflammatory cells but also regulates their functions upon 

secretion and may contribute to tumor progression. HP present on serglycin in mast cells 

forms complexes with chymase and promotes the binding of the enzyme to HP-binding 

substrates enhancing their proteolysis [337]. Furthermore, HP significantly blocks the 

inhibition of chymase by natural inhibitors such as α1-protease inhibitor, α1-

antichymotrypsin, α2-macroglobulin and soybean trypsin inhibitor [338, 339]. HP present 

on serglycin is important for the formation of active tryptase tetramers [340, 341]. Chymase 

can activate various MMPs, whereas both tryptase and chymase directly degrade ECM 

components. Chymase cleaves vitronectin and procollagen, while tryptase degrades collagen 

type IV and both degrade fibronectin [334]. Serglycin is colocalized with MMP-13 in 

cytoplasmic granules in chondrocytes interacting with a fragment of MMP-13 that 

comprises the hinge and PEX domains [342]. Endogenous and exogenous added serglycin 

isolated from various sources forms complexes with the proform of MMP9 (proMMP9) in 

macrophages in vitro [343, 344]. The core protein interacts with both the hemopexin-like 

(PEX) domain and the fibronectin-like (FnII) module of proMMP-9. The formation of the 

complexes alters the mode of activation of proMMP9 and the interaction of the enzyme with 

its substrates [343, 345]. ProMMP-9 associated with PGs is activated in the presence of 

Ca2+ and it may be important for the activation of pro-enzyme in pathological situation such 

as breast cancer-induced bone disease [346].

8.2. Tumor-promoting role of serglycin in breast cancer

Serglycin is expressed in numerous human hematopoietic tumors including lymphoma, 

myeloma, mastocytoma, and thymoma but also in non-hematopoietic tumors [334]. 

Serglycin carrying CS side chains is highly expressed and constitutively secreted by 

multiple myeloma cells [347]. Serglycin levels are increased in bone marrow aspirates of 

patients with myeloma and inhibits bone mineralization through direct binding to 

hydroxyapatite, suggesting a potent correlation of serglycin accumulation with disease 

progression [347]. Serglycin knockdown in myeloma cells results in dramatically attenuated 

tumor growth in mice and impaired development of blood vessels, indicating that serglycin 

may affect tumor angiogenesis [348]. Serglycin is also localized on the cell surface of 

myeloma cells where it is attached through its CS-4S chains [347]. CD44 on myeloma cell 

surface may serve as a major ligand for serglycin promoting the adhesion of myeloma cells 

to collagen I and to bone marrow stromal cells [348, 349]. Binding of serglycin to collagen I 

enhances the biosynthesis and secretion of MMP2 and MMP9, which are involved in bone 

destruction [349].

Recently, increased expression of serglycin has been confirmed in nasopharyngeal and 

hepatocellular carcinoma. The elevated levels of serglycin in patients is correlated with 

unfavorable prognosis for overall survival and recurrence in nasopharyngeal cancer and for 

disease free and distant metastasis free survival in HCC [350, 351]. Serglycin secreted from 

metastatic nasopharyngeal carcinoma cells promotes EMT, motility, invasion, and 

metastasis [351]. Non-glycanated core protein of serglycin fails to induce cancer cell 

motility suggesting the involvement of GAG chains in tumor promoting properties of 

serglycin.
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Serglycin is highly expressed in breast cancer tissues and cell lines [33]. The mRNA levels 

of serglycin are markedly up-regulated in aggressive breast cancer cells clustered into Basal 

B subgroup, which exhibit an EMT gene signature and resemble breast cancer stem cells 

being CD44highCD24low [33]. Basal-like breast cancers are correlated with increased risk of 

metastatic spread and poor patient prognosis. In contrast, serglycin is expressed in low levels 

in less aggressive subtypes of breast cancer cells [33]. Biochemical characterization of 

proteoglycans secreted by aggressive MDA-MB-231 breast cancer cells demonstrated that 

serglycin bearing CS chains is the major secreted proteoglycan and it is abundantly present 

in the cytoplasm and cell membrane showing both filamentous and granular distribution 

[33]. Serglycin promotes breast cancer cell anchorage-independent growth, migration and 

invasion when it is over-expressed in minimally invasive MCF-7 breast cancer cells. 

Interestingly, over-expression of a mutant form of serglycin lacking GAG attachment sites 

fails to induce breast cancer cell aggressiveness demonstrating that specific structure of 

CS-4S present on serglycin is important for its functions in breast cancer [33]. CHST11 gene 

that specifically mediates 4-O sulfation of CS is highly expressed in MDA-MB-231 breast 

cancer cells promoting their binding to P-selectin via CS-4S chains and facilitating the 

formation of metastasis [352]. It is also of great importance that CS-4 chains regulates the 

functional properties of proteolytic enzymes such as cathepsins, which are involved in ECM 

degradation and tumor metastases [8].

Serglycin also regulates immune system through its ability to inhibit complement system 

activity. Serglycin isolated from myeloma and breast cancer cells inhibits the classical and 

the lectin pathways of complement system via direct binding to C1q and MBL, respectively, 

and protects tumor cells from complement system attack [33, 353]. Only those CS-4S chains 

with a high proportion of 4-sulfated disaccharides interact efficiently with complement 

proteins [353]. CS-E and in a lower extent heparin compete with CS-4 chains of serglycin 

for binding to C1q, whereas only CS-E competes for binding to MBL. Binding of serglycin 

to C1q or/and C1 inhibits the cleavage of C4 in the classical pathway. In the lectin pathway, 

binding of serglycin to MBL either competes out MBL-associated proteases (MASPs) from 

the stalk region of MBL or sterically hinders cleavage of C2 and C4 by MASPs [353]. The 

inhibition of complement is a great limitation during immunotherapy against several types 

of cancer. These findings suggest a role for serglycin as a modulator of immune system 

response in tumor microenvironment.

9. Translational medicine: targeted therapeutic approaches based on the 

novel key roles of proteoglycans in breast cancer

Treating cancer poses a challenge because cancer cells have several inherent defense 

mechanisms. Not only do cancer cells originate from the host system, but they also use 

natural cellular metabolic pathways to grow. Additionally, due to the genetic errors that 

manifest cancer, tumors, including those of breast, are composed of heterogeneous 

populations of cells that respond differently to treatments and impart multi-drug resistance 

to tumors. In these cells, erroneous cellular machinery triggers abnormal signals, 

misinterpret incoming signals, and causes differentiation into several families of cancerous 

cells. The expanding repertoire of molecular interactions attributed to specific PGs emerges 
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these molecules as powerful mediators that control a wide variety of processes and could 

represent novel therapeutic modalities against cancer as well as being targets themselves.

Importantly, most of these interactions are critically enhanced or inhibited by specific 

structural modules within GAG chains. Thus, therapeutics that target/modify specific PGs/

GAGs will be able to attack cancer cells on multiple fronts because they can target their 

interactions such as growth factor binding, the coagulation cascade, proteinase activation 

and inhibition, heparanase and other GAG modifying enzymes activation and activity, and 

possibly tumor evolution/differentiation [354].

The use of modified GAGs or GAG mimetics to modulate GAG-protein interactions alone, 

or in conjunction with specific proteinases' exosites may introduce a new era in cancer 

therapeutics [8, 355]. One such approach could be the targeting of the exosites of specific 

cathepsins with negative charged inhibitors (such as poly-Asp and poly-Glu) with ionic 

properties similar to those of specific GAG moieties thereby modulating proteinase catalytic 

activities by interfering with the formation of cathepsin/GAG complexes [8]. It is possible to 

stimulate HS and CS biosynthesis by utilizing xylosides to prime GAG chains, however 

with no specific properties [356]. In another approach, it is possible to inhibit HS/CS 

biosynthesis by utilizing 4-deoxy-4-fluoro-xylosides [357]. Decreasing overall levels of HS 

and CS would affect HS/CS-matrix interactions and prevent tumor proliferation, invasion, 

metastasis, and angiogenesis by reducing for example FGF and VEGF signaling. Inhibition 

of HS production may also prevent heparanase activation and hence restrain heparanase 

activity by modulating the function of syndecans as the main mediators for heparanase 

uptake [358]. Preclinical and clinical studies have demonstrated that therapies targeting the 

heparanase/syndecan-1 axis hold promise for blocking the aggressive behavior of cancer 

since heparanase helps drive exosome secretion, alters exosome composition, and facilitates 

production of exosomes that impact both tumor and host cell behavior, thereby promoting 

tumor progression [31]. Notably, exosome secretion was markedly reduced by knocking 

down enzymes involved in HS synthesis or modification (EXT1/2 or NDST1/2) or by 

growing cells in the presence of heparitinase (heparinase III), a bacterial enzyme that 

degrades HS chains. Together these findings suggest that up or down regulation of 

syndecans in pathological processes could dramatically impact exosome formation and 

subsequent extent of intercellular communication. Similarly, this implies that therapeutic 

interventions designed to regulate the expression or abundance of syndecans could diminish 

the progression of diseases such as breast cancer. In addition to a role for HS in exosome 

formation, it was recently reported that HS on the surface of recipient cells plays an 

important role in exosome internalization [359]. It will be important to further explore this 

and to determine the full extent of HS function in the exosome docking and internalization 

process. Given the abundance of evidence that heparanase facilitates the progression of 

breast cancer, it will be important to eventually test heparanase inhibitors for their efficacy 

in breast cancer patients. Ongoing Phase I studies are now in progress testing three 

heparanase inhibitors including Roneparstat (SST0001) in myeloma patients [360], M402 in 

pancreatic cancer [361] and PG545 in patients with solid tumors [362, 363].

Many of the previous studies of cell surface PGs and cancer progression are correlative. 

Two questions arise: (1) are the tumor-related changes in syndecan and glypican expression 
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and function merely a consequence of the process, or active participants and (2) do these 

PGs make a relevant target? Syndecans and glypicans as potential targets in the wider cancer 

field has been the subject of recent analysis [3, 364, 365] and they are attractive in part 

because they are accessible on the cell surface. Most attention has been paid to syndecan-1, 

and it is both the most abundant member of the family in breast carcinoma and evidence 

suggests it supports growth and progression. However, there are no reports on the impact of 

targeting the core protein in breast carcinoma models. Evidence from knock-out mice 

suggests there may be redundancy between syndecan family members, in breast cancer at 

least there appears to be considerable specificity. Our very recent work with the MDA-

MB-231 cell line suggests that syndecan-2 should also be further considered. It is only this 

syndecan that controls the poorly adhesive, highly migratory and invasive phenotype of this 

highly malignant cell line and once removed, cells become adherent and less motile, even 

though alternate syndecans remain on the cell surface. Moreover, it was found that the 

simple expedient of adding HS or HP to these cells was sufficient to alter behavior through 

competition with cell surface HSPGs. It will be interesting to determine whether targeting 

the syndecan-2 gene in invasive breast carcinoma renders them less metastatic in murine 

models.

The treatment with already existed pharmaceutical formulations in several in vitro and in 

vivo biological systems, suggests that they can regulate the expression levels of syndecans 

and glypicans, thus inhibiting their carcinogenic potential. According to that notion, the third 

generation bisphosphonate, zoledronate (zoledronic acid, Zometa®) is shown to down-

regulate the expression levels of syndecan-1 -2 and glypican-1, in contrast with the up-

regulation of syndecan-4 in human breast cancer cells with different metastatic potentials 

[213]. This effect is associated with the inhibition of cell growth, migration, adhesion, and 

invasion in correlation with the diminished levels of ανβ3, ανβ5, and α5β1 integrins [213]. 

Similar mode of action has the specific tyrosine kinase inhibitor imatinib (Glivec®), which 

targets PDGFRs, c-Kit and Bcr-Abl. It exerts a significant inhibitory effect on the expression 

of syndecan-2 -4 and glypican-1 on PDGF-BB-treated breast cancer cells, leading to 

suppressed cell growth ability, migration, and invasion [366]. Recent studies focus on 

exploring therapeutically approaches that are associated with syndecans ectodomain. As a 

result, monoclonal antibodies or peptides, which target specifically extracellular domain of 

syndecans, have been evaluated. For example, B-B4 (iodine-131-labeled anti-syndecan-1 

antibody) was administrated to myeloma patients with success, promoting the notion of 

targeted radioimmunotherapy (RIT) [367]. Interestingly, recent studies indicate the 

importance of B-B4 antibody not only in multiple myeloma but also in triple-negative breast 

cancer in combination with immune-PET imaging and RIT [368]. Another approach in 

syndecan targeting involves the use of small peptides. For example, Synstatin was 

developed to the sequence between 82 and 130 amino acids of syndecan-1 ectodomain. In 

detail, this peptide antagonizes syndecan-1 domain, responsible for capturing and activating 

ανβ3 or ανβ5 integrins and IGF-IR. Synstatin’s action prevents the formation of the receptor 

complex, and in turn blocks tumor-induced angiogenesis and metastasis mediated by the 

initial complex [369].
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It may be optimistic to expect that targeting a single receptor on the cell surface can provide 

a new opportunity for treating breast cancer. Syndecans and glypicans do not operate in 

isolation, but function alongside other receptors, including integrins and growth factor 

receptors. Moreover, the interplay with estrogen receptors may provide further complexity 

[29]. However, cell surface PGs are certainly worth pursuing to determine if they are 

important contributors to tumor progression that make them a viable target alongside other 

treatment options.

Versican deposition in the tumor stroma is associated with cancer relapse and poor patient 

outcome in several cancer types, including breast cancer [3, 25]. HA-versican pericellular 

matrices of cancer cells may be potential targets for tumor therapy due to their well-

documented implication in cancer metastasis. Disruption of the HA–CD44 interaction with 

HA oligomers may be used for targeting tumor progression making HA oligomers 

promising inhibitors of cancer dissemination [370]. Furthermore, a novel versican isoform 

V4 is highly expressed in breast cancer [36], whereas versican is also differentially 

glycosylated in breast cancer because it contains more sialic acid [40]. This alternative 

splice variant of versican or the presence of unusual glycosylation may comprise possible 

targets for therapeutic intervention in breast cancer with antibody-related agents.

SLRPs such as decorin and biglycan have established roles in cancer progression and 

metastasis and thus, they constitute potential therapeutic targets for breast cancer treatment 

[3, 8, 371]. Adenoviral-mediated gene delivery of decorin or the systemic administration of 

human recombinant decorin or decorin core protein to various tumor xenograft models 

(breast and prostate carcinomas) suppresses tumor growth [62–64, 96, 372]. The recent 

discovery that decorin is pro-inflammatory and interacts with TLRs [83], together with the 

induction of autophagy in endothelial cells [95] and mitophagy in breast cancer cells [20], 

indicates that decorin can affect both the tumor stroma and the tumor itself in a variety of 

ways. Decorin-evoked endothelial cell autophagy reveals important therapeutic targets for 

augmenting autophagy and combating tumor angiogenesis. Induction of autophagic 

programs by decorin (and related autophagic matrikines) may represent a mechanism for 

tumorigenic and angiogenic suppression or for quelling homeostatic imbalances relevant for 

human pathologies.

On the other hand, the fact that biglycan is involved in numerous signaling cascades that 

strongly impact tumorigenesis harbors a great potential for targeting this molecule in 

therapeutic approaches. There are no doubts about the importance of innate immunity and 

inflammation for tumor growth. In this context lack of data regarding biglycan/TLR2/4-

mediated inflammation [154] in tumorigenesis is surprising (Fig. 2). It is predictable that in 

developing cancer soluble biglycan promotes tumor growth by creating a pro-inflammatory 

environment in the stroma. Therefore, inhibitors of SLRP/TLR binding sites could be 

presumably effective in suppressing tumor growth. In contrast, in established tumors soluble 

biglycan potentially contributes to tumor growth retardation by boosting inflammation [83]. 

Thus, there is an urgent need for studies elucidating pro-inflammatory effects of biglycan in 

various stages of tumorigenesis in order to translate this knowledge into new cancer 

treatments.
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Highlights

• The biosynthesis of proteoglycans is dysregulated in breast cancer

• Proteoglycans affect cancer cell signaling and phenotype

• Targeting proteoglycans and modifying enzymes may provide novel therapeutic 

approaches
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Figure 1. 
The instructive roles of decorin in autophagy and tumorigenesis. A). Several matrix-derived 

molecules function as key modulators of autophagy. Each molecule engages a specific 

receptor for autophagic regulation while utilizing a common core of autophagic machinery. 

Decorin, endorepellin, collagen VI, kringle 5, and endostatin are pro-autophagic molecules. 

The laminin α2 chain from laminin 211 represses autophagic function. Please refer to 

section 3.1 for a more detailed analysis. B,C). Schematic representations of the mechanisms 

underlining decorin evoked endothelial cell autophagy via VEGFR2 and tumor cell 
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mitophagy downstream of Met, respectively. Please refer to sections 3.2, 3.3, and 3.4 for 

additional information.
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Figure 2. 
Multifunctional role of biglycan signaling in tumorigenesis. Soluble biglycan synthesized by 

host tissue, cancer and stromal cells (e. g. macrophages) or proteolytically released from the 

host- or tumor-derived extracellular matrix acts as a multifunctional signaling molecule. It 

stimulates angiogenesis by creating a reservoir of VEGF that can be released during tumor-

associated ECM-degradation and presumably by interaction with TLR2 and ROS induction. 

It promotes cell cycle arrest but enhances development of metastases thereby promoting 

tumor progression. In stromal macrophages via TLR2/4 and NLRP3/ASC inflammasome 

biglycan triggers pro-inflammatory signaling thereby influencing tumorigenesis and 

metastasis. For details please refer to the text. (ASC, apoptosis-associated speck-like protein 

containing a carboxy-terminal Caspase activation and recruitment domain; CCL, chemokine 

(C-C motif) ligand; CXCL, chemokine (C-X-C motif) ligand; FAK, focal adhesion kinase; 

Hsp, Heat shock protein; IL, interleukin; MyD88, Myeloid differentiation primary response 

gene 88; NF-κB, nuclear factor 'kappa-light-chain-enhancer' of activated B-cells; NLRP3, 

Nod-like receptor pyrin domain containing 3; Nod, nucleotide-binding oligomerization 

Theocharis et al. Page 60

Biochim Biophys Acta. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



domain; ROS, reactive oxygen species; TLR, Toll-like receptor; TNF, tumor-necrosis factor; 

TRIF, Toll-interleukin receptor-domain-containing adapter inducing interferon-β).
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Figure 3. 
A. Diagram of syndecan structure, showing some interactions and functions of the 

constituent domains. B. Intraductal invasive carcinoma grade III showing stromal staining 

(arrowheads) with mouse anti-syndecan-1 monoclonal antibody 11A9-14. Bar=100µm. C. 

Ductal hyperplasia (upper panel) and invasive ductal carcinoma grade III (lower panel) 

stained for syndecan-2 using monoclonal antibodies. Bar=100µm. D. Impact of syndecan-2 

(Sdc-2) depletion on the behavior of triple negative MDA-MB231 cells. Cytoskeletal 
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alterations include junction formation and microfilament bundle formation. Increased 

adhesion also results in decreased invasion and degradation of type I collagen gels.
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Table 1

Correlation of proteoglycans with clinicopathological characteristics and disease outcome in breast cancer

Proteoglycan
/ Enzyme

Expression mode Correlation (References)

Versican High stromal expression Increased risk and rate of relapse in node-negative invasive breast cancer [14, 17]. 
Increased tumor grade, invasive disease and presence of malignant appearing 
microcalcifications [16].

Decorin High stromal expression Lower tumor grade [70], reduced tumor size, reduced risk and rate of relapse and poor 
survival in node-negative invasive breast cancer [15].

High expression in malignant 
epithelial tissue

Higher number of positive lymph nodes, increased lymph node metastasis, lower 
disease free survival in breast cancer [70]. Decreased overall survival only in luminal 
B subtype tumors [70].

Syndecan-1 High expression in cancer cells High tumor grade [29, 220, 237], large tumor size [220, 237], lymph node metastasis 
[237], reduced disease-free survival [220, 237] and poor overall survival [220, 222, 
223, 237].

Loss of expression in cancer cells High tumor grade and reduced relapse-free survival in invasive ductal breast cancer 
[225].

High stromal expression Increased blood vessel density and total vessel area [232], high tumor grade [225] and 
reduced survival [223].

Syndecan-4 High expression in cancer cells High tumor grade [237].

Glypican-1 High expression in cancer cells High tumor size [237].

Heparanase High expression in cancer cells Higher VNPI score in ductal in situ carcinoma [262], high grade [261], lymph node 
metastasis [260, 261, 263], tumor size [260, 263], clinical stage [263], reduced relapse-
free and overall survival [263].
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