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Abstract
In mammals, mitochondria are important mediators of programmed cell death, and this process is
often regulated by Bcl-2 family proteins. However, a role for mitochondria-mediated cell death in
non-mammalian species is more controversial. New evidence from a variety of sources suggests that
mammalian mitochondrial fission/division proteins also have the capacity to promote programmed
cell death, which may involve interactions with Bcl-2 family proteins. Homologues of these fission
factors and several additional mammalian cell death regulators are conserved in flies, worms and
yeast, and have been suggested to regulate programmed cell death in these species as well. However,
the molecular mechanisms by which these phylogenetically conserved proteins contribute to cell
death are not known for any species. Some have taken the conserved pro-death activity of
mitochondrial fission factors to mean that mitochondrial fission per se, or failed attempts to undergo
fission, are directly involved in cell death. Other evidence suggests that the fission function and the
cell death function of these factors are separable. Here we consider the evidence for these arguments
and their implications regarding the origins of programmed cell death.
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INTRODUCTION
The discovery of genes in yeast that regulate fission/division and fusion/union of mitochondria
was a major advancement towards understanding the malleable nature and the dynamic
morphology of these organelles. In yeast, distinct molecular complexes mediate mitochondrial
fission versus fusion, and many of these factors have obvious mammalian counterparts with
analogous functions in mammals (1,2). It is widely assumed that a balance between the rates
of fission versus fusion is the primary determinant of the tubular shape of mitochondria in
healthy cells from yeast to humans. This assumption is based primarily on genetic
manipulations that alter mitochondrial morphology. For example, mutation of mitochondrial
fission proteins leads to abnormally fused (netted or elongated) mitochondria apparently due
to continued fusion. In contrast, inhibition or mutation of mitochondrial fusion proteins leads
to abnormally short mitochondria presumably due to undeterred fission. However, there are
other determinants of mitochondrial morphology, and the methodologies for quantifying these
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morphological changes are complex (3). The processes of mitochondrial fission and fusion are
essential for normal cellular function in humans, as genetic mutations in these genes lead to
severe developmental defects and neurological disease (4–6). In addition to their normal
cellular functions in mitochondrial maintenance, mitochondrial fission and fusion proteins also
regulate programmed cell death in yeast, worms, flies and mammals, consistent with the idea
that mitochondria contribute importantly to evolutionarily conserved cell suicide. The
conserved mitochondrial fission factor Drp1/Dnm1 mediates mitochondrial fission in a healthy
state and in a dying state (1,7). Currently, it is not clear if the fission protein complex that
carries out mitochondrial fission in healthy versus dying cells are identical or if their
compositions are only partially overlapping. The discovery that mitochondrial fission factors
also mediate the excessive mitochondrial fission during cell death, generally termed
mitochondrial fragmentation, has led to speculation that mitochondrial fission itself is directly
involved in permeabilization of the outer mitochondrial membrane to release of pro-death
factors into the cytoplasm during cell death. Alternatively, mitochondrial fission may be
dissociable or even distinct from the pro-death function of the factors that mediate
mitochondrial fission.

1. ANCIENT ORIGINS OF PROGRAMMED CELL DEATH
Though not universally accepted, new evidence suggests that the origin of programmed cell
death preceded multi-cellular organisms. Thus, programmed cell death may have originated,
ironically, as a survival strategy for single-cell species to respond to environmental hazards,
such as temperature extremes, cycles of nutrient deprivation and the inevitable infectious
pathogen (8). Convincing examples of purposeful cell death outside the animal kingdom are
available, but less renown. For example, it has been reported that plant embryogenesis in the
Norway spruce and fungal infection-induced cell death in the lily requires metacaspase-
dependent programmed cell death (9–11). Metacaspases are distantly related to animal
caspases, the proteases that facilitate apoptotic programmed cell death in mammals (12). If
these observations in plants are accepted as evidence of plant programmed cell death, then the
existence for programmed cell death in both the animal and plant kingdoms, carried out by
factors conserved across kingdoms, is consistent with a more ancient origin of cell suicide.

Evidence that budding yeast Saccharomyces cerevisiae have evolved self-destruct mechanisms
was originally based on morphological characteristics of dying yeast cells that were suggested
to resemble some of the characteristics of apoptotic mammalian cells. These apoptosis-like
features reported for dying yeast include phosphatidylserine externalization on the outer leaflet
of the plasma membrane, DNA degradation, nuclear fragmentation and chromatin
condensation (13–18). Yeast encode orthologues of many mammalian cell death regulators,
including the DNA endonuclease EndoG (19), AIF (apoptosis-inducing factor) (20), the AIF-
like factor Ndi1/AMID (21) superoxide dismutase (SOD) (22), and the serine protease Omi/
HtrA2 that promotes caspase activation in mammals (23,24). However, it is unclear if the
molecular mechanisms by which these conserved factors promote cell death in yeast are in any
way analogous to mammals. Furthermore, Bcl-2 family proteins and aspartate-cleaving
caspases that constitute the apoptotic cell death machinery in mammals have not been
convincingly identified in yeast. Thus, many investigators doubt that yeast cell death represents
the predecessor of apoptosis in mammals, where the morphological changes characteristic of
apoptosis are the direct result of caspase activation. However, a growing list of alternative
caspase-independent death pathways are beginning to be elucidated in mammals, but even less
is known about analogous pathways in other species.

1.1. Protease-dependent cell death
Mammalian caspases can be subdivided into two functional groups, those involved in
inflammatory responses and innate immunity (e.g. caspases-1, 4 and 5) and those that regulate
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programmed cell death (e.g. caspase-2, 3, 6, 7, 8, 9), though the line between these two groups
has become blurred. For example, mammalian caspases involved in immune recognition may
function as pro-death proteases while carrying out their role in immunity (25,26). Furthermore,
caspases involved in apoptosis may also have roles in healthy cells (27,28). Thus, it is not a
great leap to suggest that first-responder mechanisms for single-cell species conceivably reflect
the origins of innate immune recognition responses. While sequence analysis predicts that
mammalian caspases arose from more ancient proteases related to metacaspases, the
unanswered question is whether or not metacaspases arose in single-cell species at least in part
for the purpose of cell suicide, or if cell death is a more recently acquired function of caspases
for the purpose of sculpting complex multi-organ structures and preventing cancer.

Like plants and bacteria, yeast do not encode the equivalent of mammalian caspases, but do
encode a metacaspase, MCA1/YCA1 (12), which is more closely related to peptidases of
bacteria and plants than to mammalian caspases. Nevertheless, deletion of the Saccharomyces
cerevisiae metacaspase results in protection from a variety, but not all death stimuli (29–35).
Thus, the existence of a conserved pro-death protease in yeast fuels the idea that single-cell
eukaryotes have an evolutionarily conserved programmed cell death pathway similar to
mammals (Figure 1). We favor the possibility that programmed cell death is an important
function of metacaspases, consistent with the observation that yeast M1 and M2 killer viruses
induce yeast cell death that is mediated in part by the yeast metacaspase YCA1/MCA1 (30,
35).

Several hundred caspase substrates have been identified in mammals, and the mechanisms by
which a few of these promote cell death are partially delineated (36–39). In contrast, there are
no known target substrates of yeast Mca1/Yca1 that function equivalently to caspase-cleaved
mediators of mammalian apoptosis to support the model that yeast undergo a caspase-like
death. However, there is also a paucity of caspase substrates identified in flies and worms,
where caspases are well accepted mediators of programmed cell death. Despite these gaps in
knowledge, genetic evidence provides support for the pro-death function of yeast metacaspase
MCA1/YCA1 in several cell death paradigms, including ROS-mediated damage (10,31,40),
chronological aging (33), virus infection (30,35), DNA damage (34), and dysregulated mRNA
stability (32).

Esp1 is another caspase-like yeast protease implicated in programmed cell death, and is
conserved in mammals (41). This cysteine protease of yeast was recently reported to cleave
yeast Mcd1, orthologue of human cohesin Rad21/Mcd1 involved in the attachment of sister
kinetachores for chromatid cohesion. In mammalian cells or in vitro, this 635 amino acid
protein is a substrate of caspase-3 and -7, which cleaves Rad21 after the sequence DSPD279

in anaphase cells and preceding chromatin condensation during cell death (42). Furthermore,
the C-terminal cleavage product of human Rad21 can trigger mammalian cell death. A
somewhat analogous situation was reported for yeast (41). Although the critical cleavage site
in yeast Mcd1 was not identified, a C-terminal cleavage fragment of Mcd1 was reported to
translocate to mitochondria and trigger cytochrome c-dependent cell death in yeast.

Perhaps we should not expect yeast cell death facilitated by metacaspases or other proteases
to directly reflect mammalian programmed cell death mechanisms. Rather, we speculate that
the upstream steps critical for sensing nutrient deprivation and responding to invading
pathogens are better conserved aspects of cell death pathways in yeast and mammals. Certainly,
many of the signaling cascades (e.g. PI3K VPS34), growth control mechanisms (e.g. TOR
kinase) and metabolic pathways are among the most conserved cellular processes across
species. We may find that the proteolytic steps that occur downstream in a given cell death
pathway are more important for the purpose of packaging and disposing of cell corpses, rather
than for initiating cell death (or for healthy cell functions), and are less analogous between
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species out of necessity as dictated by the specific environments inhabited by yeast and
mammalian cells.

1.2. Are Bcl-2 family proteins universally conserved?
In yeast, the protective effect of human Bcl-2 was first demonstrated in strains lacking
superoxide dismutase (43). However, most studies have used yeast as a type of incubator for
cellular apoptosis regulators, under the assumption that yeast lack endogenous apoptosis
regulators such as Bcl-2 family proteins that could otherwise interfere with the assay. For
example, the mammalian pro-death Bcl-2 family member Bax also promotes yeast cell death
(and growth arrest) that is inhibited by anti-apoptotic Bcl-2 and Bcl-xL when these mammalian
proteins are co-expressed in yeast (44). However, human Bcl-2 and Bcl-xL can protect yeast
against mitochondrial cell death in the absence of pro-apoptotic mammalian factors (18).

How might mammalian Bcl-2 family proteins inhibit cell death in yeast? Unless Bcl-2 proteins
act independently of all other host proteins in yeast, such as directly altering membrane
structures, then they presumably interface with evolutionarily conserved components of yeast.
Based on studies in mammalian cells, candidates include yeast proteins involved in nutrient
signaling, autophagy or mitochondrial energetics, which are highly conserved processes
carried out by highly conserved proteins. Consistent with this idea, the pro-apoptotic Bcl-2
family protein Bax was suggested to induce autophagy instead of apoptotic death in yeast
(45).

Bcl-2 proteins are widely thought to carry out their anti- and pro-apoptotic activities by
interacting with other Bcl-2 family members. If true, the ability of human Bcl-2 proteins to
inhibit cell death in yeast would imply conservation of Bcl-2-like functions in yeast. Thus, it
is possible that yeast in fact do encode functional/structural equivalents of Bcl-2 family
proteins, despite the absence of significant amino acid sequence similarity (18,46,47).
Consistent with this idea, 3-dimensional structure determination of several virus-encoded anti-
apoptotic factors with no significant amino acid sequence similarity to each other or to Bcl-2
proteins revealed a Bcl-2-like protein fold (48–50). These structures, together with the
prokaryotic Bcl-2-like structure of Diphtheria toxin, lead one to consider the possible existence
of many more yet unrecognized Bcl-2-like structures in diverse species. Even more important
will be the discovery of any biochemical functions that reveal how the novel 3-dimensional
structure of Bcl-2 proteins acts to directly or indirectly alter membrane structure and cell death/
survival.

2. BENEFITS OF PROGRAMMED CELL DEATH FOR UNI-CELLULAR SPECIES
If programmed cell death evolved for the purpose of cell suicide, then what is the evidence that
yeast cells have a purpose in dying? The most obvious answer is that the death of selected
individuals serves as a long-term survival advantage for the species. It has been suggested that
programmed cell death serves to eliminate yeast cells that are incompetent for mating (51),
susceptible to viruses (30,35) and generally less fit due to mutations or aging (33,52,53). An
intriguing model system was developed to investigate the advantages of programmed cell death
in populations of yeast cells (54). This study linked the ability to die with the ability to
genetically adapt to an adverse environment. Fabrizio et al. (52) reported that if the majority
of a population of starving yeast has the ability to die early (before they would otherwise die
from nutrient depletion), then the entire yeast culture is more likely to eventually establish a
new population equilibrium and survive long-term. For this to occur, the dying cells are
suggested to employ a programmed death pathway that is activated by mitochondrial
superoxide, and the ‘debris’ from dying cells provides nutrients for the rare surviving (better
adapted) genetic variants (54,55). If this is true, then the ability of yeast to undergo programmed
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cell death would provide an evolutionary advantage for the species. Herker et al. (33) suggest
that this cell death process requires the yeast metacaspase MCA1/YCA1.

One could argue that the rare variant that survives in a culture of dying yeast is itself a “cheater”,
a self-preservationist that has simply gained the ability to resist death but is not otherwise better
fit in the new environment (55,56). However, this is apparently not the case because a culture
of death-resistant yeast has a minimal chance of establishing a long-term culture (33,52). For
example, cultures of yeast knockout strains lacking the metacaspase gene MCA1/YCA1
(yca1Δ) have increased short-term survival, but have reduced long-term survival. Similarly,
yeast strains that overexpress SOD1 (superoxide dismutase 1) or mammalian Bcl-2, have
improved short-term survival, but fail to maintain long-term survival, presumably because
nutrients are exhausted by overpopulation, and the entire population fails (33,52,53). The
delayed cell death in these cultures presumably does not allow sufficient time or appropriate
conditions for the adaptation, selection or nurturing of potential survivors, resulting in death
of the entire population within 40–60 days. These findings offer possible explanations for why
it is disadvantageous to the species when the majority of individuals have an extended lifespan,
and why programmed cell death may have been required prior to the origin of multi-cellular
organisms.

3. MITOCHONDRIA AND PROGRAMMED CELL DEATH
Mitochondria play a central role in mammalian cell death, not only because their disruption
results in an energy crisis, but also because they harbor factors that actively promote some
types of programmed cell death. Pro- and anti-apoptotic Bcl-2 family members are thought to
be the core regulators of mitochondrial outer membrane permeability, a process assumed to
release pro-death factors during mammalian cell death (57). It is widely accepted that during
mammalian apoptosis, Bax translocates from the cytosol to mitochondria and directly or
indirectly permeabilizes the mitochondrial outer membrane resulting in release of cytochrome
c and other factors that trigger caspase activation, though the mechanisms are not fully
delineated (58–60). Preceding or simultaneous with mitochondrial outer membrane
permeabilization, normal tubular mitochondria are commonly observed to undergo
fragmentation into short punctate structures during mammalian cells apoptosis (7,61–65)
(Figure 2A). The connection between cell death and mitochondrial morphology changes is
currently debated.

3.1. Mitochondrial Fragmentation During Cell Death From Yeast To Mammals
Given the close link between mitochondrial fission/division and programmed cell death, and
the conservation of mitochondrial fission genes across species, we investigated the possibility
that dying yeast cells may exhibit mitochondrial morphology changes similar to mammalian
cells. Indeed, yeast mitochondria undergo rapid fragmentation when treated with acetic acid
(18), a death stimulus previously reported to mimic overgrowth conditions and trigger
apoptosis-like death in yeast (15). Following treatment, yeast mitochondria change from
tubular structures to beads-on-a-string within 5–10 minutes and finally to isolated fragments
within 1–3 hours (Figure 2B). Treatment with the anti-fungal agent amiodarone, H2O2, or
ethanol also induces yeast mitochondrial fragmentation in yeast (32,66,67). These morphology
changes in yeast may parallel the thread-to-grain transition observed with mammalian
mitochondria during apoptosis (68). In addition to mammals and yeast, mitochondrial
fragmentation also occurs during programmed cell death in other model organisms, including
the Drosophila melanogaster (69,70) and Caenorhabditis elegans (71,72). Thus, it appears
that mitochondrial fragmentation is an evolutionarily conserved response when cells face
threatening insults, implying an evolutionarily conserved death pathway involving these
ancestral organelles.
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If mitochondrial fragmentation is conserved during cell death, then what purpose does it serve?
Some have suggested, but not all agree, that fragmentation facilitates the release of cytochrome
c from mammalian mitochondria to facilitate caspase activation and cell death. Alternatively,
mitochondrial fission during cell death could serve as a survival attempt rather than a mediator
of cell death. One study in mammalian cells found that mitochondrial damage caused by high
levels of Ca2+ can be limited if that mitochondrion is first divided into segments, not all of
which have the capacity to overload with Ca2+, though there was no protection from cell death
in these assays (73). The implications are that mitochondrial fission and fusion factors regulate
mitochondrial homeostasis, but perhaps independently of their direct roles in fission and fusion.
Thus, mitochondrial fragmentation per se may not promote cell death, but instead it is the
factors that mediate mitochondrial fission in healthy cells that are responsible for cytochrome
c release in dying cells, presumably because they adopt alternative functions. In any case, the
evidence that cytochrome c plays a role in caspase activation or in cell death in worms or flies
is lacking, except for specific cell types during fly spermatogenesis (74). Whether or not
cytochrome c or other factors released from mitochondria contribute to cell death or to
activation of the MCA1/YCA1 metacaspase in yeast also remains controversial, although
several studies found that cytochrome c is released during yeast cell death, and in some cases
is suggested to play a causal role (41,75–81).

Mitochondrial fragmentation during cell death is presumed to occur by a mechanism that is at
least related to mitochondrial fission/division in healthy cells except carried to greater
extremes. This conversion of mitochondrial morphology from reticular tubules to punctate
spots closely correlates with translocation of pro-apoptotic Bax from the cytosol to
mitochondria and with cytochrome c release from mitochondria (82). Furthermore, Bax and
the Bax-like protein, Bak, localize at constriction points (predicted fission sites) on
mitochondria in apoptotic mammalian cells (61,83). While Bax appears to promote fission/
division during mammalian cell death, it has the opposite effect in healthy mammalian cells
where Bax promotes mitochondrial fusion (84). However, the biochemical mechanisms that
distinguish the fusion versus fission functions of Bax are not known.

Consistent with the possibility that enhanced fission/division of mitochondria can contribute
to apoptosis, several reports have shown that decreased fusion of mitochondria sensitizes
mammalian cells to apoptosis (85–87). Conversely, enhanced fusion of mitochondria can
protect or delay apoptosis (87,88). This evidence is consistent with a positive relationship
between mitochondrial fission/division and cell death (89–92). However, mitochondrial fission
also occurs in normal healthy cells without detrimental consequences (93).

3.2. Mitochondrial Fission Versus Mitochondrial Fission Factors in Cell Death
The machinery responsible for mitochondrial fission/division in healthy cells was identified
in yeast as a complex of proteins, Dnm1, Mdv1/Net2, Caf4 and Fis1 (2,94–103)). Deletion of
any one of these fission proteins, except Caf4, causes yeast mitochondria to adopt a large net-
like structure (100). Human Drp1, and its yeast homologue Dnm1, are dynamin-like, large
GTPases that appear to constrict mitochondrial organelles. In mammalian cells, Drp1 co-
localizes with Bax and Bak at these constriction sites during cell death (7,104–106). Depletion
of Drp1 by RNAi or overexpression of the dominant negative mutant of human Drp1 (K38A/
E) inhibits the excessive mitochondrial fragmentation typical of apoptotic cells and delays
mammalian cell death (7,62,85,91,104,107). Dominant negative Drp1 or RNAi knockdown of
Drp1 also inhibits or delays other events associated with mammalian cell death including
cytochrome c release from mitochondria, mitochondrial membrane depolarization, and caspase
activation (7,91,107). Yeast Dnm1/Drp1 also promotes yeast cell death, based on the
observation that DNM1-knockout strains are resistant to several different death stimuli and
have significantly delayed mitochondrial fragmentation during yeast cell death (18,30). In
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addition, overexpression of a dominant-negative Dnm1 mutant (equivalent to dominant
negative human Drp1) also protects yeast from cell death (18). Furthermore, inhibition of Drp1
in worms can inhibit mitochondrial fragmentation during cell death (71). These studies suggest
that division of mitochondria or other function of Drp1/Dnm1 can play a causal role in
programmed cell death and that this process is conserved from yeast to mammals.

While it is clear that Drp1/Dnm1 have the capacity at least under some circumstances to
promote cell death, it is not clear if Drp1/Dnm1 promote cell death via their fission functions
or other, yet unknown activity. A small molecule inhibitor (Mdivi) of Drp1/Dnm1, but not of
dynamin, was shown recently to inhibit mitochondrial fragmentation in yeast and mammals,
and to inhibit Bax-dependent cytochrome c release and cell death in mammalian cells (108).
The authors concluded that the fission function of Drp1 is dissociable from its ability to
permeablize the outer mitochondrial membrane, in part because Mdivi inhibits cytochrome c
release from isolated mitochondria, where cytochrome c release occurs in the absence of
mitochondrial fission.

In addition to its pro-death function, mitochondrial division mediated by Drp1/Dnm1 is
required to produce new mitochondria that subsequently localize adjacent to synapses along
neuronal processes (109,110). Based on knockdown studies, the application of ABT-737, a
small molecule inhibitor of anti-apoptotic Bcl-xL, and by overexpression of dominant negative
Drp1, a picture emerges in mammalian neurons where endogenous Bcl-xL activates Drp1,
leading to increased numbers of mitochondria at synapses and dramatically enhanced synaptic
activity (110). Given the pro-death activity of Drp1, this was initially unexpected, but fitting
with the beneficial effects of may other pro-death molecules, including Bax and Bak (111,
112). Conversely, Bcl-2 and Bcl-xL can also have pro- as well as anti-death activity (36,113).
Although confirmation of this pro-death function in physiological or developmental settings
has not yet been reported, the ability of ABT-737 to protect against rundown of synaptic activity
during tetanus in acute preparations supports this model (114). Taken together, these studies
imply that regulation of mitochondrial fission/division is of central importance in normal
cellular functions as well as in cell death (Figure 1).

Yeast Mdv1 and Caf4 can facilitate the interaction between Dnm1 and Fis1 on mitochondria
(97,98,100,115–118). Dnm1 interacts with the WD40 repeat domain of Mdv1 or Caf4, while
the N-terminal domain of Mdv1 or Caf4 interacts with the Fis1 protein (2,101–103). Although
Fis1 is conserved from plants to humans, there are no obvious homologues of Mdv1 or Caf4
in mammals, consistent with new protein structures that offer an explanation for this species
specificity (95,99,117,119). Although mammals lack sequence homologs of yeast Mdv1 and
Caf4, mammalian Drp1 also interacts with mammalian Fis1 to control mitochondria fission
(105,120). Fis1 of S. cerevisiae is an 18 kD protein that is anchored to the outer mitochondrial
membrane by a C-terminal hydrophobic-basic domain characteristic of transmembrane
domains found in Bcl-2, Tom5 and other proteins targeted to the outer mitochondrial membrane
(95,121). Consistent with its fission function in yeast, depletion of endogenous human Fis1
decreases mitochondrial fission (85,105,122,123). Decreased mitochondrial fission resulting
from Fis1 knockdown can protect mammalian cells from certain apoptotic stimuli (85,124),
and overexpression of human Fis1 in mammalian cell lines can promote mitochondrial fission
and apoptosis in response to certain death stimuli (120,125–127). Similar to overexpression of
Drp1, mitochondrial fragmentation induced by Fis1 overexpression was found to protect from
Ca2+-induced cell death due to blockage in efficient transmission of Ca2+ signals (128).
However, like Drp1, Fis1 also has a pro-survival function, as knockdown of mammalian Fis1,
at least in some cell types, results in cell senescence (129,130). Taken together, these studies
suggest that mitochondrial fission and fusion modulate cell death differently depending on the
specific death stimulus.
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Despite the evidence described above, mitochondrial fission factors are not universally
accepted as important mediators of cell death. In mammals, inhibition of mammalian Drp1 or
Fis1-mediated mitochondrial fragmentation was reported to delay but not prevent cytochrome
c release and cell death, and had no effect on the release of other pro-apoptotic molecules from
mitochondria, including Smac/Diablo, Omi/Htr2 and others (91,107). Inhibition of
mitochondrial fragmentation in these studies only delayed but did not ultimately protect cells
from death, as these cells did not survive in a clonagenic assay. However, the harsh and
continuous death stimuli being applied in these studies likely preclude the possibility of
extended or clonagenic survival. Similar early arguments were made about Bcl-2, as
overexpressed Bcl-2 often delays death without increasing clonagenicity, though now it is clear
that anti-apoptotic Bcl-2 proteins contribute importantly to ultimate cell survival in many
physiological settings. Nevertheless, it is still unclear how fragmentation of mitochondria
mediated by Drp1 and Fis1 selectively affects cytochrome c release but not the release of other
factors from the mitochondrial intermembrane space. Another important factor that controls
cytochrome c release from mammalian mitochondria is Opa1 (131,132). This effect of Opa1
may be a consequence of its role as a regulator of cristae junctions and cristae remodeling in
mitochondria. While Opa1 is conserved from mammals to yeast (Mgm1), its role in yeast cell
death is unresolved.

3.3. Mitochondrial Fission Is Not Sufficient For Cell Death In Yeast Or Mammals
Since the link between apoptosis and the mitochondrial fission factor Drp1 was initially
uncovered (7), investigators have been searching for the relationship between mitochondrial
fission/fragmentation and apoptosis. It is now clear that mitochondrial fission is an early event
during mammalian apoptosis induced by multiple different physiological and pharmacological
insults (7,61–65). Nevertheless, there are multiple examples where mitochondrial fission/
fragmentation alone is either not sufficient to induce cell death, or the normal fission machinery
is distinct form the apoptotic fission machinery. For example, yeast Fis1 is required for normal
mitochondrial fission in healthy cells, but not for mitochondrial fission during yeast cell death
(18). In contrast, one study reported that Fis1 is required for ethanol-induced mitochondrial
fragmentation (67). Barring differences between assay protocols, this discrepancy is
presumably due to yet unknown genetic differences. Embryonic fibroblasts from knockout
mice lacking the dynamin-like GTPases mitofusin 1 (Mfn1) or Mfn2, which promote
mitochondrial fusion, have profoundly fragmented mitochondria (133). While these cells
survive in this state, they can be more sensitive to cell death if treated with an insult. A portion
of Mfn-deficient mitochondria has reduced membrane potential and defective retention of
mitochondrial DNA, indicating that mitochondrial fusion is required for organelle maintenance
(134). We found a disconnection between fission and death, as yeast lacking Fzo1 (fzo1Δ),
homologue of human Mfn-1 and -2, were not prone to cell death even though their mitochondria
are profoundly fragmented (Y Fannjiang, B Qi and JMH, unpublished). While ectopic
expression of CED-9 (worm Bcl-2) in mammalian cells triggers prominent and sustained fusion
of mitochondria, it fails to block apoptosis in mammalian cells (125). Some interpret this and
related findings to indicate that regulation of mitochondrial morphology may be a more
conserved function of Bcl-2 family proteins, consistent with the lack cell death phenotypes in
Drosophila with defective Bcl-2 family genes. Strikingly, the potent anti-apoptotic factor
vMIA encoded by cytomegalovirus induces mitochondrial fragmentation but inhibits
cytochrome c release and apoptosis (64,135,136). This unexpected effect of vMIA is apparently
due to its ability to also inhibit the “day-job” fusion activity of Bax (137). Similarly,
overexpression of mouse GDAP1 (ganglioside-induced differentiation associated protein 1),
a mitochondria-localized protein that is commonly mutated in Charcot-Marie-Tooth disease,
promotes mitochondrial fission without inducing apoptosis (138). Furthermore, mitochondrial
fission proteins are required to efficiently divide mitochondria into four spores derived form
a single diploid yeast cell during sporulation, yet this process occurs without inducing cell
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death (139). Thus, mitochondrial fission per se is not sufficient to induce cell death and
presumably has other important functions such as mitochondrial biogenesis. However, the
evolutionarily conserved role of mitochondrial fission proteins in cell death raise the interesting
possibility that the processes of mitochondrial fission in healthy cells and of mitochondrial
fragmentation during programmed cell death are molecularly related, though distinct.

3.4. Mitochondrial Fragmentation and Mitochondrial Destruction
Although mitochondrial fission/fragmentation per se is not necessarily predictive of cell death
(see section 3.3), fission still could potentially be required for cell death. Even if cytochrome
c release is not mediated by a fission-related process, organelle division could still contribute
importantly to cell demise. We found that yeast mitochondrial fragmentation occurs very
shortly (seconds to minutes) following addition of a death stimulus (18) (Figure 2B). However,
yeast cell death did not occur until hours to days later, suggesting that some critical process
transpires between these two time points. Instead, the cell death endpoint correlates temporally
with the loss of mitochondrial markers assessed by immunoblot analyses, even though loss of
membrane potential often occurred much earlier (18). This coincidence between cell death and
the disappearance of mitochondrial markers is consistent with the hypothesis that
mitochondrial degradation is the critical event in yeast cell death. Accordingly, mitochondrial
loss would constitute the commitment point to cell death, beyond which the cell cannot return
to live another day because mitochondria are essential organelles. While we often think of
glycolytic yeast as having no need for mitochondria, this scenario provides a good example of
the other essential functions performed by mitochondria even in glycolytic yeast, as well as
mammalian cells, such as synthesis of iron-sulfur clusters. As implied by this definition of
commitment point, yeast cells with fragmented mitochondria can opt to restore their normal
tubular mitochondrial morphology and ultimately live. For those yeast that stay the course
towards death, mitochondrial loss appears to be mediated by vacuoles, based on electron
microscopy and by genetic studies (18,45,140). A similar model was proposed earlier for
mammalian neurons (141). If true, then the important question is, what are the signaling events
that ultimately lead to mitochondrial loss? Mitochondrial fission was recently suggested to
contribute to mitochondrial degradation by triggering authophagy, possibly signaled by
occasional depolarization of only one of the two daughter mitochondria following a fission
event (142). However, if mitochondrial degradation is a natural consequence of mitochondrial
dysfunction, then the question becomes, what is the cause of irreparable mitochondrial damage
in dying cells? A gene expression analysis in synchronized yeast cultures yielded the striking
finding that most genes in the genome are expressed in a cyclical pattern, and that DNA
synthesis did not occur during periods of oxidative phosphorylation, possibly to protect against
DNA damage (143,144). While destructive reactive oxygen species (ROS) produced by the
electron transport chain on the inner membrane is a popular model, other possibilities remain.
Perhaps mitochondria are victims of assault during cell death, or even the victims of self-
inflicted damage (e.g. ROS production, excessive fission), but these mechanisms may have
first evolved in unicellular species in part to orchestrate destruction of the entire cell.

4. PERSPECTIVES
While we now appreciate that mitochondrial fragmentation is an evolutionarily conserved step
during cell death, the molecular details are not delineated. The conservation of mitochondrial
fission/fragmentation during cell death across diverse species (yeast, worms, flies and
mammals) is consistent with an ancient and conserved role for mitochondria in controlling
programmed cell death. What are the critical events downstream of mitochondrial fission/
fragmentation that trigger mitochondrial dysfunction/destruction and cell death? What is the
difference between mitochondrial fission in healthy and dying cells? Why do healthy
mitochondria undergo fission and fusion constantly while dying cells fail to rectify the
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imbalance between fission and fusion? What is the fundamental difference between a
fragmented mitochondrial segment versus a tubular mitochondrion? What is the relationship
between mitochondrial morphology and mitochondrial energetics in healthy cells? How do
mitochondrial fission factors contribute to cell death when cytochrome c release is dispensable?
What is the biochemical function of Bcl-2 family proteins (e.g. CED-9, Bcl-xL) when they
interact with mitochondrial fission and fusion factors (e.g. Drp1, Mfn2) (110,125)? Is the
normal cellular/biochemical function of Bcl-2 family members to regulate mitochondrial
dynamics? If true, what are the yeast counterparts of Bcl-2? Interestingly, expression of
mammalian Bcl-2 and Bcl-xL proteins in yeast cause a fused or netted mitochondrial
morphology (18). Therefore, yeast may serve as an excellent model for exploring the link
between these two fundamental processes, programmed cell death and mitochondrial
morphology.
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Figure 1. Conserved overlapping cell survival and death pathways
Mitochondrial fission factor Drp1/Dnm1 may have distinguishable biochemical interactions
that facilitate mitochondrial fission in healthy and dying cells.
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Figure 2. Mitochondrial fragmentation during death of both humans to yeast cells
(A) Fluorescence microscopy of HCT116 colon carcinoma cells stained with 100 nM
Mitotracker CMXROS (Molecular Probes) for 15 minutes to visualize mitochondria before
and after thapsigargin treatment. Cells were fixed and imaged with an inverted microscope
(Nikon TE200) microscope at 100×. (B) Log phase wild type yeast (BY4741 strain
background) expressing mitochondria-targeted GFP (106) were imaged live before and after
treatment with 100 mM acetic acid using an upright fluorescence microscope (Nikon Eclipse
800) at 100×. Yeast with fragmented mitochondria can be observed starting at 1 h post-
treatment, and the vast majority of cells exhibited fragmented mitochondria by 3 hours after
treatment with acetic acid.
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