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Abstract

Because nuclear factor-xB (NF-xB) is a ubiquitously expressed proinflammatory transcription
factor that regulates the expression of over 500 genes involved in cellular transformation, survival,
proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-«xB signaling pathway
has become a potential target for pharmacological intervention. A wide variety of agents can
activate NF-xB through canonical and noncanonical pathways. Canonical pathway involves
various steps including the phosphorylation, ubiquitnation, and degradation of the inhibitor of NF-
kB (IxBa), which leads to the nuclear translocation of the p50- p65 subunits of NF-xB followed
by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus,
agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitnation,
acetylation, methylation, and DNA binding steps have been identified as NF-xB inhibitors. Here,
we review the small molecules that suppress NF-«xB activation and thus may have therapeutic
potential.
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1. Introduction

The nuclear factor-kB (NF-kB) signaling pathway plays a major role in the development,
maintenance, and progression of most chronic diseases. NF-xB controls the expression of
genes involved in a number of physiological responses, including immune inflammatory
responses, acute-phase inflammatory responses, oxidative stress responses, cell adhesion,
differentiation, and apoptosis [1]. Recent studies have suggested that NF-xB dysregulation is
associated with many diseases including AIDS, atherosclerosis, asthma, arthritis, diabetes,
inflammatory bowel disease, stroke, muscle wasting and viral infections. Mounting evidence
indicates that NF-kB acts as a link between inflammation and cancer progression [2-10],
making NF-«xB essential to and a potential drug target in hematological malignancies and
solid tumors [11,12]. NF-«xB was first identified in 1986 by Sen and Baltimore [5] in the
nucleus bound to an enhancer element of the immunoglobulin kappa light chain gene in B

© 2010 Elsevier B.V. All rights reserved.

"To whom correspondence should be addressed: Bharat B Aggarwal, aggarwal@mdanderson.org Phone: 713-794-1817; Fax:
713-745-6339.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Gupta et al.

Page 2

cells [5,13]. It is now known to be ubiquitous in nature present in all the cell types and is
evolutionary conserved. It belongs to the family of Rel proteins that includes c-Rel, RelA
(p65), RelB, NF-xB1 (p50 and its precursor p105), and NF-kB2 (p52 and its precursor p100)
all of which can form hetero- or homodimers [14-16].

NF-«xB activation is tightly regulated mainly through its localization. In resting cells, NF-xB
proteins are kept in the cytoplasm in association with inhibitory IkB proteins including
IxBa, 1B, and IxBe [15] among which I1kBa is the most abundant. NF-xB signaling occurs
through the canonical (classical) pathway initiated by NF-xB1 (p50/p105) and a
noncanonical (alternative) pathway initiated by NF-xB2 (p52/p100) (Fig 1). Before the
active NF-«B is translocated into the nucleus, NF-kB1 and NF-«xB2 are cleaved to the active
p50 and p52 subunits, respectively. While the classical pathway depends on IKK complex
consisting of IKKa, IKKB, IKKy and the inhibitory subunit IxBs, the alternative pathway
depends on IKKa homodimers and NF-xB inducing kinase (NIK) [17-19]. During classical
activation, the IKK complex specifically phosphorylates IkBs on two conserved N-terminal
serine residues which target them for E2- and E3-ligase-mediated polyubiquitination and
subsequent 26S proteasomal mediated degradation. This process releases and activates NF-
kB which now translocates to the nucleus. The activation of alternative pathway, which is
commonly associated with RelB results in regulated processing of the p100 precursor
protein to p52 and subsequent translocation of p52-RelB heterodimers to the nucleus[18].
Although NF-xB activation occurs mainly through canonical and non-canonical pathways,
during the past decade a number of pathways for NF-«xB activation has been elucidated (Fig
1).

Once in the nucleus, activated NF-kB undergoes a series of posttranslational modifications,
including phosphorylation, acetylation, and methylation. These modifications regulate both
the strength and duration of NF-«xB activity. RelA/p65 is directly phosphorylated by cAMP-
dependent protein kinase (PKA) at Ser2’6, casein kinase 11 (CKII) at Ser®29, and IKK at
Ser536 [20,21]. RelA dephosphorylation by protein phosphatase 2A (PP2A) has been
reported to decrease NF-kB activity [22]. RelA is subject to inducible acetylation by p300/
CBP, and acetylated RelA interacts weakly, if at all, with IxBa [23,24], but maintains its
nuclear localization and NF-xB transcriptional response. RelA is also subject to methylation
by lysine methyltransferase Set9 (also called Set7 or KMT7) at Lys314/315 [25].

Activated NF-«xB binds to specific DNA sequences in target genes, which are designated as
kB elements, and regulates the transcription of over 500 genes involved in
immunoregulation, growth regulation, inflammation, carcinogenesis, and apoptosis (Fig 2).
NF-«B is frequently constitutively activated in patients with chronic inflammatory
conditions such as cancer and pulmonary, cardiovascular, autoimmune, skin, and
neurodegenerative diseases [26]. NF-kB’s ability to control multiple genes involved in
human diseases makes the NF-«B signaling pathway a novel target for therapy [27,28].

Due to the various levels of regulation, NF-«xB signaling pathway can be potentially targeted
at various levels including kinases, phosphatases, ubiquitination, nuclear translocation, DNA
binding, protein acetyl transferases and methyl transferases (Fig 3).

2. Inhibitors of the NF-kB activation pathway

Given NF-«xB’s relevance in human diseases and the fact that many drugs interfere with NF-
kB signaling, the NF-«B signaling pathway provides a highly attractive target for the
therapeutic development. More than 700 inhibitors of the NF-«xB activation pathway,
including antioxidants, peptides, small RNA/DNA, microbial and viral proteins, small
molecules, and engineered dominant-negative or constitutively active polypeptides have
been described (Table 1). Several of these molecules act as general inhibitors of NF-kB
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activation, while other molecules target specific steps; some molecules possibly target
multiple steps in the NF-xB pathway (Fig 3).

2.1. Inhibition of protein kinases

NF-xB activation requires the phosphorylation, polyubiquitination, and subsequent
degradation of its inhibitory subunit, IxBo. Hence, inhibiting IxBa phosphorylation
ultimately inhibits NF-xB’s transcriptional activity [29,30]. IxBo phosphorylation is carried
out by IKK, a serine/threonine protein kinase composed of three basic subunits: the kinases
IKKa, IKKB, and the regulatory subunit IKKy (NEMO). The IKK activation is usually the
first common step in the integration of many NF-kB-activating pathways; therefore, one
strategy for inhibiting NF-xB activation is to block IKK activation. However, although more
than 150 agents have been shown to inhibit NF-xB activation at the IKK step, few studies
have investigated the mechanism by which a given agent can inhibit IKK or its activation.
The few IKK inhibitors for which a mechanism of action is known can be divided into three
general groups: adenosine triphosphate (ATP) analogs, which show some specificity for
interacting with IKK; compounds that have allosteric effects on IKK structure; and
compounds that interact with a specific cysteine residue (Cys-179) in the activation loop of
IKKB. ATP analogs include natural products such as B-carboline and synthetic compounds
such as SC-839, which has an approximately 200-fold preference for IKKB compared to
IKKa [27,31]. Compounds that have allosteric effects on IKK structure include
BMS-345541, a synthetic compound that binds to an allosteric site on both IKKa and IKKf
and has an approximately 10-fold greater inhibitory effect on IKKp than on IKKa [32].
Compounds that interact with Cys-179 IKKJ include thiol-reactive compounds such as
parthenolide, arsenite, and certain epoxyquinoids [33—36]; these compounds’ interactions
with Cys-179 are believed to interfere with phosphorylation- induced IKKp activation
because Cys-179 is located between Serl’7 and Ser!81, which are required for IKKp
activation in response to upstream signals such as tumor necrosis factor (TNF) and
lipopolysaccharide (LPS) [37,38]. Gene-based inhibitors can also block IKK activation.
Specifically, mutations at the ATP-binding site or in the kinase activation loop can create
dominant-negative IKKa and IKKp, which are capable of blocking NF-xB activation [39—
43]. Because of their distinct roles in the canonical and non-canonical NF-kB activation
pathways, dominant-negative IKK mutants’ can show stimulus-dependent inhibition [44].
Adenoviral-mediated delivery of an IKK dominant-negative kinase has been shown to have
therapeutic potential for airway inflammatory diseases such as asthma [45,46]. NEMO can
also serve as a target for inhibiting the IKK complex. In particular, introducing a cell-
permeable 10 amino-acid peptide that corresponds to the NEMO-binding domain of IKK
can block the binding of NEMO to IKK in response to TNF in the canonical pathway [47].

While activation of NF-kB by many stimuli depends on the phosphorylation of IxBs at N-
terminal sites by the IKK complex, the mechanism of NF-«xB activation by ultraviolet (UV)
radiation involves the IKK-independent phosphorylation of 1kBa at a cluster of C-terminal
sites that are recognized by casein kinase Il (CKII). CKII activity toward lkBa depends on
p38 mitogen-activated protein kinase (MAPK) activation. CKII’s role as a key survival
signal that activates NF-«kB and protects tumor cells from apoptosis suggests that CKIlI may
be an attractive target for the treatment of diverse cancers. Apigenin, a plant flavonoid, and
emodin, a plant anthraquinone, are competitive inhibitors of CKII that directly interact with
the nucleotide-binding sites of CKII [48].

Besides phosphorylating and subsequently degrading the molecules that inhibit NF-«xB,
protein kinases can also target the functional domains of NF-«xB proteins themselves to
optimally activate NF-xB. NF-«xB proteins can be phosphorylated in the cytoplasm or
nucleus by such kinases as glycogen synthase kinase 3p (GSK3p) [49], TRAF-associated
NF-«kB activator (TANK)-binding kinase 1 (TBK1) [50,51], PKAc [20], mitogen- and
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stress-activated protein kinase-1 (MSK-1) [52], MAP3K NIK[53], Tpl2, PKC-6 [54], PI3K,
Akt [55-57], p38 MAPK [58], protein tyrosine kinase, PKC-4 [59], RHO-kinase 2 [60],
Mitogen activated protein kinase kinase 3 (MEKK3) [61], and receptor tyrosine kinases such
as epidermal growth factor receptor, human epidermal growth factor receptor 2 [62].
Antagonistic antibodies or kinase inhibitors that target these molecules may decrease NF-xB
activation. Some kinase inhibitors that have the potential to inhibit NF-«xB activation include
SB203580 and PD0980589 (MAPK inhibitors) [58]; denbinobin (TAK1 inhibitor) [63];
tyrosine kinase inhibitors [62]; rhein, (an MEKK inhibitor) [64,65]; TNAP, betaine (NIK
inhibitors) [66—68], epoxyquinol B (a TAK1 crosslinker) [69]; M2L (an extracellular signal-
regulated kinase 2 inhibitor) [70,71]; CCK-8 (a p38 kinase kinase inhibitor) [72], KSR2 (an
MEKKS inhibitor) [73], golli BG21 (a PKC inhibitor) [74].

2.2. Inhibition of NF-kB activation by protein phosphatases

Because protein phosphorylation is a dynamic process whereby phosphatases
counterbalance kinase action, phosphatases may be used to inhibit NF-«xB activation. Protein
phosphatase 2A is a serine/threonine phosphatase that has been reported to dephosphorylate
and modulate the activity of IKKp [75]. Cytosine arabinoside, a pyrimidine analogue used to
effectively treat acute leukemia, has been reported to induce apoptosis by activating protein
phosphatases 2A and 2B-A and dephosphorylating the p65 subunit of NF-xB [22,76].
Recently, OspF, a protein phosphatase from Shigella flexneri, was found to dephosphorylate
MAPK and prevent histone H3 phosphorylation at Serl? in a gene-specific manner to block
the activation of a subset of NF-«xB responsive genes [77]. Our previous studies have shown
that protein tyrosine phosphatase (PTP) inhibitors can suppress NF-xB activation and that
phenylarsine oxide, a specific PTP inhibitor, can promote tyrosine 42 phosphorylation of
IxBa [78]. While some PTPs stimulate NF-«B activation, other PTPs negatively regulate
NF-xB activation. For instance, PTEN, a tumor suppressor with phosphatase activity is
known to inhibit NF-kB activation [79]. Recently, Chew et al., [80] found that WIP1, a Ser/
Thr PP2C family of phosphatases act as a negative regulator of NF-«xB activation.
Overexpression of WIP1 was associated with decreased NF-«xB activation, whereas WIP1
knockdown resulted in increased NF-«B activation. The group further showed that WIP1
target Ser>38 of the p65 subunit of NF-«B.

2.3. Proteasome inhibitors and IkB ubiquitination blockers

The step before NF-«xB leaves the cytoplasm involves the ubiquitination of IxB by the SCF-
B-TrCP ubiquitin ligase complex followed by the rapid degradation of ubiquitinated 1xB by
the 26S proteasome [38]. Because IxBa degradation is an important step in the NF-xB
activation pathway, inhibiting the proteasomes that degrade 1xBa may also serve as a tool
for pharmacological intervention. Very specific and potent proteasome inhibitors have been
engineered by coupling boronic acid to dipeptides [81]. The dipeptide boronate, bortezomib,
the most-studied proteasome inhibitor in clinical development [82], has been shown to
inhibit proliferation and induce apoptosis in head and neck [83—-85], prostate [86], pancreatic
[87], gastric [88], and ovarian [89] cancers. Bortezomib’s antitumor properties correlate in
part with its ability to inhibit IxBa degradation [83,90]. Other well-known proteasome
inhibitors include ALLnL, LLM, Z-LLnV, and Z-LLL, lactacystine, N-cbz-Leu-Leu-
leucinal (MG132), MG115, and ubiquitin ligase inhibitors [91]. In addition, we recently
identified a novel proteasome inhibitor, salinosporamide A (NPI-0052), which can suppress
both constitutive and inducible NF-kB activation in a nanomolar range [92].

Several serine protease inhibitors with chymotrypsin-like specificity, including DCIC,
TPCK, TLCK, BTEE, APNE, are also able to block proteasome function. However, unlike
other protease inhibitors that block only 1xB degradation, serine protease inhibitors can
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block IkB phosphorylation as well as degradation. However, not all serine protease
inhibitors can inhibit NF-«xB activation [93-95].

Among IxB ubiquitination blockers, the YopJ protein of the bacterial pathogen Yersinia
deubiquitinates and stabilizes IxBa to prevent NF-xB nuclear translocation [96]. The small
molecule R0196-9920 has been reported to inhibit IxBa ubiquitination and oral
inflammation in mouse models [97,98]. Yaron et al., [98] blocked TNFo-induced IxBa
degradation by microinjecting phosphopeptides that corresponded to 1xBa’s signal-
dependent phosphorylation site. Presumably these phosphopeptides acted as competitive
inhibitors for binding to the ubiquitin ligase complex essential to IxBa degradation.
Inhibiting B-TrCP (the recognition subunit of the SCF E3 ligase complex) by specific RNAI
treatment or by overexpression of dominant-negative B-TrCP mutants blocked NF-xB
activity and sensitized breast cancer cells to chemotherapeutic agents [99]. Recently, A20
(TNFAIP3), a cytoplasmic zinc finger protein, was shown to inhibit NF-xB activation in the
TNFR and TLR pathways. The ubiquitin editing property of A20 was shown to be essential
for NF-«B inhibition [100].

2.4. Blockage of NF-kB nuclear translocation

One approach for inhibiting NF-«B activation is to use small peptides that cross the cell
membrane and block the nuclear translocation of the NF-xB complex [101-103]. For
example, SN50, a forty-one-residue synthetic peptide that contains a hydrophobic
membrane-translocating region and the nuclear localization sequence of NF-kB p50 [101],
can enter cells and compete with NF-xB complexes for the machinery responsible for the
nuclear translocation of NF-xB. SN50 effectively inhibits the LPS- and TNF-a-induced
nuclear translocation of NF-«B in different cell lines [101,104-107] and mitigates
inflammatory responses in vivo [108,109]. However, SN50 also blocks the nuclear
translocation of a number of other transcription factors [102].
Dehydroxymethylepoxyquinomicin, a fungal epoxyquinoid that has anti-inflammatory and
antitumor activity in several mouse models, has been reported to be a specific inhibitor of
NF-xB nuclear translocation [110].

2.5. Blocking NF-kB activation by inhibitors of p65 acetylation

The activated p65 subunit of NF-kB undergoes acetylation in the nucleus at multiple lysine
residues including K122, K123 K218 K221 gnd K310 [23,111]. The opposing activities of
histone acetyltransferases and histone deacetylases (HDACS) regulate p65 complex
acetylation [24]. Acetylation of p65 also depends on coactivators such as p300 and CREB-
binding protein (CBP) [112]. The K221 and K310 acetylation are associated with increased
NF-«kB target gene transcription [112] and are required for p65 activation [24], which is
supported by the observations that SIRT driven deacetylation at K310 inhibits NF-«B target
gene transcription [113]. Additionally, K122 and K123 acetylation reduces p65 DNA binding
affinity and increases I«xB interaction and nuclear export [111]. Site-specific p300-mediated
p65 acetylation thus regulates the specificity of NF-xB- dependent gene expression
[111,114].

During the last 5 years, a number of compounds have been reported to inhibit NF-xB by
inhibiting acetylation. Gallic acid obtained from natural products such as gallnuts, sumac,
oak bark, and green tea was recently reported to possess anti-histone acetyltransferase
activity, thus showing potential to downregulate NF-xB activation [115]. Daxx, a protein
associated with the death domain of Fas receptor, has been reported to suppress NF-xB
transcriptional activity by inhibiting p300/CBP-mediated p65 acetylation [116]. Anacardic
acid derived from traditional medicinal plants can also inhibit NF-xB activation by
inhibiting p65 acetylation [117].
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2.6. Blocking NF-kB activation by methyltransferases

The RelA subunits of NF-xB undergo various posttranslational modifications that create
specific marks to recruit different effectors to control NF-xB’s temporal and spatial
activation [118]. RelA is subject to monomethylation by lysine methyltransferase Set9 (also
called Set7 or KMT7) at Lys314/315 in vitro and in vivo in response to stimuli [25]. RelA
methylation at these two residues negatively regulates NF-xB function by triggering the
ubiquitination and proteasome-mediated degradation of promoter-associated RelA. RelA
methylation also serves as a “death” signal for the destruction of DNA-bound, activated NF-
kB [25]. Because RelA subunit methylation negatively impacts NF-xB function, designing a
molecule that activates Set9 function could potentiate NF-xB inhibition.

2.7. Blockage of NF-kB to DNA binding

The most direct strategy for blocking NF-xB activation is to block NF-kB from binding to
specific kB sites on DNA. Some sesquiterpene lactones (SLs) have been reported to inhibit
NF-«xB [119] by interacting with Cys-38 in the DNA-binding loop of RelA [120,121]. Most
SLs can also inhibit DNA binding through an analogous Cys residue in the DNA-binding
loops of p50 and c-Rel. Recently, a computer-based structural comparison of 103 SLs
predicted that a methylene-carbonyl substructure is important for SL-based inhibition of
RelA at Cys-38 [122]. Some SLs, including parthenolide, have been shown to inhibit IKKf
through the reactive Cys-179 in the kinase activation loop [34,121]. Thus, SLs, which target
both IKK activity and NF-xB subunit DNA binding [36], have multistep inhibitory activity
within the NF-xB signaling pathway.

Blocking specific NF-kB-DNA binding can also be accomplished with decoy
oligodeoxynucleotides (ODNs). These ODNs have kB sites and competes for NF-kB dimer
binding to specific genomic promoters [123-125]. These oligonucleotides have
modifications to increase their stability and their affinity for NF-xB in vivo [126-128].
Decoy ODNSs have been reported to have therapeutic potential in a number of animal models
of inflammation and cancer; for example, directly injecting NF-xB decoy ODNs into
implanted adenocarcinoma colon 26 tumors in mice inhibited cachexia without affecting
tumor growth [129].

2.8. Other mechanisms of NF-kB inhibition

2.8.1. By gene transfer—One strategy to block NF-xB activation is through the transfer
of genes that code for proteins shown to suppress NF-kB activation. The most direct target is
IxBa. IkBa mutation at specific phosphorylation sites (Ser32 and Ser36 replaced to alanine)
and ubiquitination sites (Lys?! and Lys?2 mutated to arginine) results in a nondegradable
form of IxBa. This results in a stable cytoplasmic pool of IkBa, thereby preventing NF-xB
activation [130-132]. Injecting a nonphosphorylatable form of IxBa into bone marrow
macrophages has been shown to inhibit osteoclastogenesis and block bone resorption [133].
Additionally, specific C-terminal serine-to-alanine mutations are sometimes included to
reduce the constitutive turnover of IxBa [134]. These super-repressor forms of IkBa can still
interact with NF-xB dimers to keep the dimers in the cytoplasm permanently [132,134,135].
Such molecules have been used succesfully to inhibit NF-xB activity and to study its role in
tumor development [136,137] and to sensitize tumor cells to apoptosis-inducing agents
[134,135]. Inhibiting NF-xB through the expression of an IxBa. super-repressor (I1kBaSR)
has also been used to sensitize chemoresistant tumors to TNFa- and CPT-11-induced
apoptosis, resulting in tumor regression [138], and to inhibit the proliferation of human head
and neck carcinoma cells in vitro and in vivo [139]. However, IkBaSRs have also been
shown to interact with and affect the activity of non-NF-xB pathway proteins including p53
[140], cyclin-dependent kinase 4 [141], and HDACs [142]. Furthermore, IkBaSR
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overexpression has been associated with the spontaneous development of squamous cell
carcinoma in a murine model [143].

2.8.2. Antioxidants—Antioxidants were suggested as possible NF-«xB inhibitors many
years ago [144,145]. Treatment with oxidants such as hydrogen peroxide can activate NF-
kB in many cell types. In some cell types, antioxidants can inhibit the induction of NF-xB
activity in response to a variety of stimuli (e.g., interleukin-1, LPS, TNFa) [146,147].
However, using antioxidants as NF-kB inhibitors is now regarded with increasing scepticism
because the NF-xB-inhibiting properties of pyrrolidine dithiocarbamate, a thiol-containing
compound, cannot be attributed to its antioxidant function but rather to its effects as an
inhibitor of 1xB ubiquitin ligase activity [148]. The ways in which antioxidants block NF-xB
activation remain unclear, but it is likely that they act at different steps in the NF-xB
pathway in different cell types. Antioxidants have been suggested to inhibit NF-kxB
activation by scavenging reactive oxygen intermediates that act as signaling molecules to
activate the NF-xB pathway and by directly inhibiting IKK kinase activity by modifying
critical Cys residues in the IKK kinase activation loop [146,147]. Mitochondrial electron
transport inhibitors that suppress reactive oxygen intermediate production (e.g., rotenone)
and overexpression of antioxidizing enzymes (e.g., manganese superoxide dismutase and
catalase) can block TNFa-induced NF-«B activation [149-151]. Caffeic acid phenethyl
ester, a phenolic antioxidant, has been reported to cause direct interference with DNA
binding by NF-xB [152] that can be reversed by dithiothreitol [78]. Other antioxidants, viz.,
N-acetylcysteine, calcium chelators (e.g., EGTA, lacidipine), and vitamin C and E
derivatives have been reported to inhibit hydrogen peroxide- or stimulus-induced NF-«xB
activation.

2.8.3. Bacterial, fungal, and viral proteins—Several microorganisms and viruses
encode proteins that can inhibit NF-«xB activation. Many viruses have developed a number
of mechanisms to inhibit NF-«xB signaling [153], and three viruses—African swine fever
virus (ASFV) [154], rabbit myxoma virus [155], and insect Microplitis demolitor bracovirus
[156]—encode IxB-like NF-xB inhibitors. The ASFV encodes the A238L IxB-like protein,
which can stably interact with RelA to inhibit TNFa-, IFN-y-, and phorbol ester-induced
NF-kB-DNA binding [157]. The poliovirus 3C protease cleaves RelA to reduce NF-xB
signaling [158]. In addition, several viruses have adaptor-like or small proteins that inhibit
IKK activity [153]. For example, the MC160 protein of Molluscum contagiosum [159] and
the nonstructural 5B protein of the hepatitis C virus [160] appear to be IKKa-specific and
thus may specifically inhibit the noncanonical NF-kB pathway.

The YopJ protein, a Src homology 2 domain protein encoded by Yersinia
pseudotuberculosis, inhibits NF-«xB activation by preventing the phosphorylation and
degradation of 1xBa [161]. YopJ has also been shown to bind directly to IKK in vitro and
in vivo [162]. The Salmonella typhimurium AvrA protein also inhibits NF-«xB activation,
although its mechanism of action may be different than that of the YopJ protein [163].

Gliotoxin produced by the fungus Aspergillus fumigatus has been reported to inhibit NF-xB
activation by preventing IxB degradation [164]. Several other small molecules synthesized
by microorganisms or designed derivatives of such compounds that have NF-kB-inhibiting
potential include panepoxydone (from Lentinus crinitus) [165], 5,6 epoxycyclohexenone
compounds (from Amycolatopsis), and cycloepoxydon [166]. Such compounds may affect
distinct parts of the NF-xB pathway including DNA binding, nuclear translocation, and IxBa.
phosphorylation and degradation.

2.8.4. Anti-inflammatory and immunosuppressive agents—Various anti-
inflammatory agents including glucocorticoids, non-steroid anti-inflammatory drugs
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(NSAIDs), and immunosuppressants have been developed to block NF-«kB activation.
Glucocorticoids, which are commonly used as anti-inflammatory drugs, strongly inhibit NF-
kB activation by mechanisms that are not completely understood but likely include
inhibition of DNA binding, IKK activity and transactivation [167]. The glucocorticoids
dexamethasone, prednisone and methylprednisolone have been reported to inhibit NF-xB
activation. In addition, estrogen and selective estrogen receptor modulators (SERMs) such
as raloxifene can act through the estrogen receptor to inhibit NF-«xB activation [168,169].

NSAIDs such as sodium salicylate (aspirin) and sulindac have been reported to inhibit NF-
kB activation by inhibiting IxBa phosphorylation [170,171]. At higher concentrations,
aspirin has been shown to block NF-«B activity by directly binding to and inhibiting the
kinase activity of IKKp by reducing its ability to bind ATP [172]. More recently, aspirin was
reported to inhibit proteasome activity [173]. As such, high-dose aspirin therapy may have
applications in treating diseases in which NF-xB activity is involved, including cancer [174],
diabetes [175], and heart disease [176]. Other NSAIDs such as ibuprofen and indomethacin
have also been reported to inhibit NF-xB activation in cell culture [177-180].

Several well known immunosuppressants are known to target NF-«xB by distinct
mechanisms, some precluding NF-kB nuclear translocation [181], some through inhibiting
calcineurin [182], some by binding heat-shock proteins [183] and some by modulating the
DNA binding or transactivation potential of NF-kB [184-187]. Examples of
immunosuppressants having inhibitory effect on NF-«xB activation include cyclosporin A
(CsA) [181], FK506 [188,189], PG490 (diterpene triepoxide) [187] and deoxyspergualin
[183].

2.8.5. p53 induction—It is known that p53 and NF-«xB pathways play opposing roles in
human cancer, with p53 acting as a tumor suppressor and NF-kxB acting as a tumor activator.
The crosstalk between p53 and NF-xB indicates that p53 and NF-xB repress each other’s
activities owing to their competition for transcriptional coactivator proteins p300 and CBP
[190]. A recent study has proposed an additional mechanism of how CBP phosphorylation
by IKKa determines whether CBP binds to p53 or NF-xB [191]. Although a number of
studies have focused on identifying p53 activators and NF-«B inhibitors individually, few
studies have investigated the molecules that target both the pathways simultaneously.
Identifying molecules that simultaneously activate p53 and inhibit NF-xB would have great
potential in combination therapy for cancer and various other diseases and could provide
helpful tools to better understand the crosstalk between the p53 and NF-«xB pathways.
Quinacrine, an antimalarial drug, and other derivatives of 9 aminoacridine have been shown
to simultaneously repress NF-xB and activate p53 in renal cell carcinoma [192]. Other
molecules with similar potential include nutlins [193,194], cisplatin [195,196], leptomycin B
[197,198], adenosine-2,3-dialdehyde [199], the NSAID JTE-522 [200], and the cyclin-
dependent kinase inhibitors R-roscovitine [201,202]; and flavopiridol [203,204].

3. Conclusions and future perspective

NF-kB has been implicated in almost all chronic diseases, and more than 40,000 studies on
NF-kB have been published with 9000 on its inhibitors. Although more than 700 different
inhibitors (aspirin to IkBa super repressor) of this transcription factor have been reported,
yet no NF-«B blocker has been approved for human use. Various steroids and NSAIDs have
been found to block NF-«B, but their effects are highly pleiotropic. The molecules that
block NF-«B activation lack specificity and thus interfere with NF-xB’s physiological roles
in immunity, inflammation, and cellular homeostasis. Additionally, whether the
concentrations of inhibitors used in tissue culture experiments can be applied in vivo is often
unclear. Therefore, one of the major challenges facing researchers is to develop NF-xB
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inhibitors aimed at treating different diseases based on their ability to target specific
pathways or cells, thereby avoiding the risk of undesired side effects. Future studies should
also focus on validating in vitro data in vivo.
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Figure 1.

Schematic representation of major NF-kB activation pathways. In the classical pathway,
binding of TNFa to the receptor triggers the sequential recruitment of the adaptors TRADD,
TRAF2 and RIP to the membrane. TRAF2 then recruits the IKK complex composed of
IKKa, IKKB and IKKy (NEMO) through mediation of kinases like TAK1, MEKK1,
MEKKS3. Activation of the IKK complex leads to the phosphorylation and ubiquitination of
IxBa at specific residues followed by its degradation via the proteasome pathway. The p105
subunit of NF-xB then undergoes GSK3p and Tpl2 mediated phosphorylation at $%03 and
$907 and subsequent degradation. The heterodimer p50-p65 is then released and migrates to
the nucleus where it undergoes a series of posttranslational modifications including
phosphorylation, acetylation and methylation and binds to specific kB sites and activates
NF-«kB target genes [49,205,206]. The alternative pathway is IKKy independent and is
triggered by binding of the CD40, RANK, LTBR, BAFF ligands to their receptor, leading to
recruitment of TRAF proteins and the sequential activation of NIK and IKKa. Activation of
IKKa then induces the processing of the inhibitory protein p100. p100 proteolysis releases
p52 which then translocates to the nucleus and triggers transcription of NF-«xB target genes
[207]. NF-xB activation in response to UV-C does not depend on IKK activation and relies
on sequential recruitment of p38MAPK and CKII. Activated CKII phosphorylates IkxBa at
C-terminus (S283-T299), The phosphorylated l«Bo undergoes ubiquitination and degradation
leading to release of active NF-xB in to the nucleus [208,209]. EGF induced NF-xB
activation proceeds without serine phosphorylation and ubiquitination of IkBa and is IKK
independent. It relies on phosphorylation of l«Bo at Tyr42 through mediation of tyrosine
kinases that triggers its proteasome mediated degradation and subsequent release of active
NF-«kB to the nucleus [210]. NF-«B activation in response to bacterial endotoxin LPS
involves Toll like receptor and is mediated through recruitment of MyD88, TRAF6 and
ECSIT. Recruitment of these adaptors leads to sequential activation of IRAK1/2 and IKK
and eventual release of active NF-kB [211]. NF-«B activation by pervanadate and H,0,
induces phosphorylation of l1kBa at Tyr42 by protein tyrosine kinase like Syk. The Tyr
phosphorylation does not lead to 1kBa degradation but makes the binding weak thereby
dissociating the IxBa and releasing active NF-xB to the nucleus [212,213]. Antigen receptor
viz., T-cell receptor and B-cell receptor mediated signaling to NF-«xB activation depends on
recruitment of a trimolecular protein complex CARMA1-BCL10-MALTL. In this pathway
PKCH (in T cells) and PKCp (in B cells) alongwith other kinases act upstream to the
trimolecular complex to promote IKKy polyubiquitination and consequent IKK activation.
Activation of IKK through this pathway involves mediation of TRAF2, TRAF6, TAK1 and
TAB1 [214,215]. A novel pathway of NF-«B activation originating from the nucleus is
associated with DNA damage. Double-stranded DNA breaks in response to genotoxic agents
initiate signals that trigger SUMOylation of nuclear-localized IKKy, preventing its nuclear
export. Concomitantly, these breaks activate ATM which phosphorylates SUMO-maodified
IKKy, promoting the removal of SUMO and enhancing IKKy ubiquitination. Ubiquitinated
IKKy then translocates to the cytoplasm, where it activates IKK in cooperation with ATM
and the ELKS protein, leading to 1kBa phosphorylation and degradation, p65 nuclear
translocation and induction of NF-xB dependent target genes [216-219]. NF-«xB can also be
regulated by phosphatases. WIP1, a Ser/Thr phosphatase was recently shown to negatively
regulate NF-«B activation by dephosphorylating p65 at Ser36 [80].

Abbreviations: AgR, antigen receptor; ATM, ataxia-telangiectasia mutant; BAFF, B-cell
activating factor; BCL, B-cell lymphoma; BCR, B cell receptor; CARMA, CARD-
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containing MAGUK protein; CD40L, CD40 ligand; CK, casein kinase; DSBS, Double-
stranded DNA breaks; ECSIT, evolutionary conserved signaling intermediates on Toll
pathways; EGF, epidermal growth factor; EGFR, EGF receptor; ELKS, glutamate, leucine,
lysine, serine-rich protein; GSK, glycogen synthase kinase; Hsp90, heat shock protein 90;
IxB, inhibitor of NF-«xB; IKK, I«B kinase; IRAK, IL-1R-associated kinase; LTp,
lymphotoxin B; LPS, lipopolysaccharide; MALT, mucosa-associated lymphoid tissue;
MAPK, mitogen activated protein kinase; MAPK/Erk kinase kinase; MyD88, myeloid
differentiation factor; NF-xB, nuclear factor-xB; NIK, NF-kB-inducing kinase; NEMO, NF-
kB essential modulator; PDK, Phosphoinositide-dependent kinase; PI3K,
phosphatidylinositol 3-kinase; PKC, protein kinase C; PLC, phospholipase C; RANKL,
receptor activator of NF-«xB ligand; RIP, receptor-interacting protein; Syk, Spleen tyrosine
kinase; TAB, TAK1-binding protein; TAK, transforming growth factor-f-activated kinase;
TCR, T cell receptor; TLR, Toll-like receptor; TNF, tumour necrosis factor; TNFR1, TNF
receptor 1; Tpl2, tumour progression locus-2; TRADD, TNF-receptor-associated death
domain protein; TRAF, TNF-receptor-associated factor.

Biochim Biophys Acta. Author manuscript; available in PMC 2011 October 1.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Gupta et al.

Figure 2.
A list of gene products regulated by NF-«B.
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Figure 3.
Potential targets for inhibiting the NF-«xB activation pathway.
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