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Abstract

This paper presents a framework for the study of convergence when
the nodes’ dynamics may be both piecewise smooth and/or nonidenti-
cal across the network. Specifically, we derive sufficient conditions for
global convergence of all node trajectories towards the same bounded
region of their state space. The analysis is based on the use of set-
valued Lyapunov functions and bounds are derived on the minimum
coupling strength required to make all nodes in the network converge
towards each other. We also provide an estimate of the asymptotic
bound ε on the mismatch between the node states at steady state. The
analysis is performed both for linear and nonlinear coupling protocols.
The theoretical analysis is extensively illustrated and validated via its
application to a set of representative numerical examples.

1 Introduction

The problem of taming the collective behaviour of a network of dynamical
systems is one of the key challenges in modern control theory, see for example
[50, 53] and references therein. Typically, the “simplest” problem is to make
all agents in the network evolve asymptotically onto a common synchronous
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solution. This problem is relevant in a number of different applications [6,
23, 26, 41, 42] and has been the subject of much ongoing research (see for
example [1, 11, 34, 74, 75]).

In general, a network is modeled as an ensemble of N interacting dy-
namical systems [8, 56] or “agents”. Each system is described by a set of
nonlinear ordinary differential equations (ODEs) of the form ẋi = fi(t, xi),
where xi ∈ Rn is the state vector and fi : R+ × Rn → Rn is a nonlinear vec-
tor field describing the system dynamics, often assumed sufficiently smooth
and differentiable. The coupling between neighboring nodes is assumed to
be a nonlinear function η : R+ × Rn → Rn (often called output or coupling
function) of their states. Hence, the equations of motion for the generic i-th
system in the network are:

dxi
dt

= fi(t, xi)− c
N∑
j=1

aijη(t, xi, xj), ∀i = 1, . . . , N (1)

where xi represents the state vector of the i-th agent, c is the overall strength
of the coupling, and aij = aji ≥ 0 is positive if there is an edge between nodes
i and j and 0 otherwise.

Different strategies have been proposed to solve the problem of making
all agents in the network converge onto the same solution. Examples include
strategies for consensus in networks when the agents are linear and coupled
diffusively [57, 58, 73], adaptive approaches to consensus and synchronization
[11, 15, 18, 19, 47, 78] and methods based on distributed leader-follower (or
pinning control) techniques among many others [2, 10, 16, 48, 76].

Most of the results available in the existing literature rely on the following
assumptions which are essential to simplify the study of model (1) and its
convergence. Namely, it is often assumed that

1. the output functions are linear, time-invariant, and typically depend-
ing upon the mismatch between the states of neighbouring nodes, i.e.
η(t, xi, xj) = γij(xi − xj), γij ∈ R+;

2. the nodes’ vector fields, fi, are sufficiently smooth and differentiable

3. all nodes share the same dynamics, i.e. fi = fj, for i, j = 1, . . . , N .

Under the above assumptions, the stability and convergence of network (1)
have been investigated in depth over the last two decades, and interesting
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results have been obtained (for a review see [8, 20, 56, 61, 72]). For example,
when all nodes are identical and described by smooth vector fields, conditions
can be derived under which asymptotic convergence (or complete synchro-
nization) is guaranteed. Namely, it is possible to prove that all nodes asymp-
totically converge onto the manifold in state space where x1 = x2 = . . . = xN .

Unfortunately, in many real-world networks it is often unrealistic to as-
sume that all nodes share the same identical dynamics. Think for example of
biochemical or power networks were parameter mismatches between agents
are unavoidable and usually rather large [5, 23, 32, 44, 67, 71]. The problem
of coordination among heterogeneous nodes is relevant in Networked Cyber-
Physical Systems [43, 45]. Also, in many cases the models in use to describe
the dynamics of the nodes in the network are far from being continuous and
differentiable. Notable cases include the coordinated motion of mechanical
oscillators with friction [31, 69, 70], switching power devices [55, 29], switch-
like models of behaviours of biological cells in pattern formation [64], and all
those networks whose nodes’ dynamics are affected by discontinuous events
on a macroscopic timescale. The aim of this paper is to study the challenging
open problem of characterising convergence and synchronization in networks
whose nodes’ dynamics are nonidentical and possibly described by piecewise
smooth vector fields.

In this case, asymptotic convergence is only possible in specific cases;
for example, when all nonidentical nodes share the same equilibrium [72], for
specific nodes’ dynamics, or in the case where symmetries exist in the network
structure [24, 27, 77]. Nonetheless, for more general complex network models,
these assumptions have to be relaxed. Hence, when either a mismatch is
present in the network parameters and/or perturbations are added to the
vector field of the nodes, it is often desirable to prove bounded (rather than
asymptotic) convergence of all nodes towards each other. As an example, in
power networks, asymptotic convergence of all generator phases towards the
same solution cannot be achieved and it is considered acceptable that the
phase angle differences remain within given bounds [23, 32, 44].

In the literature, few results are available on bounded convergence of
networks of nonidentical nodes. In particular, the case of parameters’ mis-
matches is studied assuming that the nodes’ dynamics are eventually dissipa-
tive [7], or assuming a priori that the node trajectories are bounded [37, 49].
Local stability of networked systems with small parameter mismatches is
studied extending the Master Stability Function approach in [66]. As for
additive perturbations, the specific case of additive noise was considered in
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[46, 60]. A first attempt on giving more general conditions for bounded con-
vergence can be found in [33]. However, the key assumptions guaranteeing
global stability results are difficult to check in practice. Indeed, assumptions
given in [33] rely on boundedness of the average node vector field, defined as∑N

i=1 fi/N , and of its Jacobian evaluated on the average network trajectory,
which is unknown a priori.

In networks of piecewise smooth systems, guaranteeing convergence is a
cumbersome task even when the nodes’ vector fields are identical and only
few results are currently available [14, 62]. Specifically, in [14], local synchro-
nization of two coupled continuously differentiable systems with a specific
additive sliding action is guaranteed with conditions on the generalized Ja-
cobian of the error system, while in [62] convergence of a network of time
switching systems is analyzed when the switching signal is synchronous be-
tween all nodes.

To the best of our knowledge, none of the approaches in the existing
literature can deal with the generic case of networks characterized by the
presence of both piecewise smooth and nonidentical nodes’ dynamics. The
main contributions of this paper can be summarized as follows.

1. Sufficient conditions are derived using set-valued Lyapunov functions
for global bounded convergence of all network nodes towards each other.
Moreover, explicit bounds are estimated for the residual tracking error
and the value of the minimum coupling strength among nodes guaran-
teeing convergence.

2. The classical assumption of linear diffusive coupling functions is re-
laxed. Our stability analysis also encompasses continuous or PWS
nonlinear coupling protocols.

3. When applied to networks of nonidentical smooth systems, the general
conditions derived in this paper give sufficient conditions for global
bounded convergence that are much easier to check or verify if com-
pared to those given in the existing literature reviewed above.

4. This paper significantly extends the preliminary results reported in
[14, 62] guaranteeing boundedness of the synchronization error in net-
works of piecewise smooth systems. In particular, results of bounded
convergence are found for a wider class of systems and of possible
switching signals than those in [14, 62].
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The rest of the paper is structured as follows. In Section 2, some background
is given on PWS dynamical systems. Then, in Section 3, the network model
of interest is presented together with relevant mathematical preliminaries
used in the rest of the paper. In Section 4, bounded convergence for linearly
coupled networks is investigated. The analysis is then extended in Section 5
to the case of nonlinearly coupled networks. All through the presentation,
a set of representative examples is used to illustrate the application of the
theoretical derivation. Conclusions are drawn is Section 7.

2 Piecewise smooth dynamical systems

In this section, we introduce some notation and review some concepts and
definitions on PWS dynamical systems that will be used throughout the
paper. Is denotes the s × s identity matrix, 1s is the s-dimensional vector
[1, . . . , 1]T , ‖·‖p denotes the matrix (vector) p-norm, λmax(M) denotes the
maximum eigenvalue of a matrix M , and diag{mi}si=1 is the s × s diagonal
matrix whose diagonal elements are m1, . . . ,ms. Given a matrix M , its
positive (semi) definiteness is denoted by M > 0 (M ≥ 0). Furthermore,
with D we denote the set of diagonal matrices and with D+ the set of positive
definite diagonal matrices.

Now, we give the definition of a PWS dynamical system according to [21],
p.73.

Definition 1. Let us consider a finite collection of disjoint, open and non-
empty sets S1, . . .Sp, such that D ⊆ ⋃p

k=1 S̄k ⊆ Rn is a connected set, and that
the intersection Σhk := S̄h ∩ S̄k is either a Rn−1 lower dimensional manifold
or it is the empty set. A dynamical system ẋ = f(t, x), with f : R+×D 7→ Rn,
is called a piecewise smooth dynamical system when it is defined by a finite
set of ODEs, that is, when

f(t, x) = Fk(t, x) x ∈ Sk, k = 1, . . . , p, (2)

with each vector field Fk(t, x) being smooth in both the state x and the time
t for any x ∈ Sk. Furthermore, each Fk(t, x) is continuously extended on the
boundary ∂Sk.

Notice that in the above definition the value the function f(·) assumes on
the boundaries ∂Sk is left undefined. For PWS system (2), different solution
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concepts can be defined (see [13] and references therein). In this paper, we
focus on Filippov solutions [28]. These solutions are absolutely continuous
curves x(t) : R 7→ Rn satisfying, for almost all t, the differential inclusion:

ẋ(t) ∈ F [f ](t, x), (3)

where F [f ](t, x) is the Filippov set-valued function F [f ] : R+×Rn 7→ B(Rn),
with B(Rn) being the collection of all subsets in Rn, defined as

F [f ](t, x) =
⋂
δ>0

⋂
m(S)=0

co {f(t,Bδ(x)\S)} , (4)

S being any set of zero Lebesgue measure m(·), Bδ(x) an open ball centered
at x with radius δ > 0, and co {I} denoting the convex closure of a set I.

We remark that, for the piecewise smooth system (2), a Filippov solution
exists under the mild assumption of local essential boundedness of the vector
field f , see [13] for further details. In the rest of this paper, we assume
that the PWS system (2) is defined in the whole state space Rn, so that
x ∈ D ≡ Rn.

Computing the Filippov set-valued function (4) can be a nontrivial task.
Here, we report three useful rules that can be used to ease the computations
[59]:

Consistency: If f : R+ ×Rn 7→ Rn is continuous at (t, x) ∈ R+ ×Rn, then

F [f ](t, x) = {f(t, x)} .

Sum: If f1, f2 : R+×Rn 7→ Rn are locally bounded at (t, x) ∈ R+×Rn, then

F [f1 + f2](t, x) ⊆ F [f1](t, x) + F [f2](t, x).

Moreover, if either f1 or f2 is continuous at (t, x), then the equality holds.

Product: If f1, f2 : R+ ×Rn 7→ Rn are locally bounded at (t, x) ∈ R+ ×Rn,
then

F
[(
fT1 , f

T
2

)T]
(t, x) ⊆ F [f1](t, x)×F [f2](t, x).
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Moreover, if either f1 or f2 is continuous at (t, x), then equality holds.
A PWS system is not differentiable everywhere in its domain. Nonethe-

less, as reported in [12], the Rademacher’s Theorem states that a function
which is locally Lipschitz is differentiable almost everywhere (in the sense
of Lebesgue). Then, it is useful to extend the classical gradient definition.
Denoting with Ωu the zero-measure set of points at which a given function u
fails to be differentiable, we report the following definition [12, 13].

Definition 2. Let u : Rn 7→ R be a locally Lipschitz function, and let S ⊂ Rn

be an arbitrary set of zero measure, we define the generalized gradient (also
termed Clarke subdifferential) ∂u : Rn 7→ B(Rn) of u at any x ∈ Rn as

∂u(x) = co

{
lim
k→∞

∂

∂x
u(xk) : xk → x, xk /∈ S ∪ Ωu

}
.

Notice that, if u is continuously differentiable, then it is possible to prove
that ∂u(x) =

{
∂
∂x
u(x)

}
, see [13].

Definition 3. [13] Given a locally Lipschitz function u : Rn 7→ R and a
vector field f : Rn → Rn, the set-valued Lie derivative L

∼
F [f ] : Rn 7→ B(R) of

u with respect to F [f ] at x is defined as

L
∼
F [f ]u(x) :=

{
a ∈ R s.t. there exists v ∈ F [f ](x)⇒ %Tv = a for all % ∈ ∂u(x)

}
.

Lemma 1. [4, 13] Let x(t) be a solution of the differential inclusion (3),
(4), and let u : Rn 7→ R be locally Lipschitz and regular. Then, the following
statements hold:

i) The composition t ∈ R+ 7→ u(x(t)) ∈ R is differentiable for almost
every t;

ii) The derivative of t 7→ u(x(t)) satisfies

d

dt
u(x(t)) ∈ L

∼
F [f ]u(x)

for almost every t.

Notice that a convex function is also regular, see, for instance, [12].
To simplify the notation, in what follows the set valued function F [f ](t, x)

is equivalently denoted by f
∼

(t, x), while an element of f
∼

(t, x) is denoted by

∼
f(t, x). Now, we define the class of QUAD PWS vector fields, that will be
considered throughout the paper.
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Definition 4. Similarly to what stated in [17] we say that, given a pair of
n × n matrices P ∈ D+, W ∈ D, a PWS vector field f : R+ × Rn → Rn is
QUAD(P,W) if and only if the following inequality holds:

(x− y)TP
[∼
f(t, x)−

∼
f(t, y)

]
≤ (x− y)TW (x− y), (5)

for all x, y ∈ Rn, t ∈ R+,
∼
f(t, x) ∈ f

∼
(t, x),

∼
f(t, y) ∈ f

∼
(t, y).

Note that this property is equivalent to the well-known one-sided Lip-
schitz condition for P = In and W = wIn [13]. Furthermore, the QUAD
condition is also related to some relevant properties of the vector fields, such
as contraction properties for smooth systems and the classical Lipschitz con-
dition, see [17] for further details.

We extend the QUAD condition to PWS systems as follows.

Definition 5. A PWS system is said to be QUAD(P,W) Affine iff its vector
field can be written in the form:

f(t, x(t)) = h(t, x(t)) + g(t, x(t)), (6)

where:

1. h is either a continuous or piecewise smooth QUAD(P,W) function.

2. g is either a continuous or piecewise smooth function such that there
exists a positive scalar M < +∞ satisfying∣∣∣∣∣∣∼g(t, x(t))

∣∣∣∣∣∣
2
< M, ∀x ∈ Rn,∀t ∈ R+,∀ ∼g(t, x(t)) ∈ g

∼
(t, x(t)

It is worth mentioning that QUAD Affine systems can exhibit sliding
mode and chaotic solutions, so this hypothesis on the nodes’ dynamics does
not exclude typical behaviors that may arise in PWS systems (see Sec. ??
for some representative examples).

3 Network model and problem statement

In what follows, we analyze the general model (1) of networks of nonidentical
(piecewise) smooth systems, where we assume that the output function is ei-
ther a nonlinear or linear function of the state mismatch among neighbouring
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nodes. Specifically, in the linear case we have:

dxi
dt

= fi(t, xi)− c
N∑
j=1

aijΓ(xi − xj), (7)

where Γ ∈ Rn×n is the so-called inner coupling matrix determining what
state variables are involved in the coupling (see [8, 20]). When the coupling
is nonlinear we get instead:

dxi
dt

= fi(t, xi)− c
N∑
j=1

aijη(t, xi − xj). (8)

In the following sections, we investigate bounded convergence in the
networks above. To give a formal definition of bounded convergence, we
rewrite (7)-(8) in terms of the convergence error defined for each node as

ei =
[
e

(1)
i , . . . , e

(n)
i

]T
with

ei = xi − x̄, , (9)

x̄ being the average (node) trajectory defined by

x̄ =
1

N

N∑
j=1

xj. (10)

Using (9) and (10), from (7) we obtain

ėi = fi(t, xi)−
1

N

N∑
j=1

fj(t, xj)− c
N∑
j=1

aijΓ(ei − ej), (11)

while from (8) we have

ėi = fi(t, xi)−
1

N

N∑
j=1

fj(t, xj)− c
N∑
j=1

aijη(t, ei − ej), (12)

Definition 6. We say that network (8) (or (7)) exhibits ε-bounded conver-
gence iff

lim
t→∞
||e(t)||2 ≤ ε, (13)

9



with e(t) = [eT1 (t), . . . , eTN(t)]T , ε ∈ R+ and ‖·‖2 representing the usual Eu-
clidean norm.1

In what follows, we often use a compact notation both for the network
state equations (8) and (7), and for the network error equations (12) and
(11). To this aim, we introduce the stack vector x := [xT1 , . . . , x

T
N ]T of all node

states. Furthermore, assuming the node vector fields are QUAD affine, we

call Φ(t, x) =
[
hT1 (t, x1), . . . , hTN(t, xN)

]T
the stack vector of the QUAD com-

ponents, Ψ(t, x) =
[
gT1 (t, x1), . . . , gTN(t, xN)

]T
the stack vector of the Affine

components, and Ξ = −1N ⊗ 1
N

∑N
j=1 fj(t, xj) the term taking into account

the dynamics of the average state, with 1N being the vector of N unitary
entries. In this way, equations (8) and the error equation (12) can be recast,
respectively, as

ẋ = Φ(t, x) + Ψ(t, x)− cH(t, x), (14)

ė = Φ(t, x) + Ψ(t, x) + Ξ(t, x)− cH(t, e), (15)

with

H(t, x) =


∑N

j=1 a1jη(t, x1 − xj)
...∑N

j=1 aNjη(t, xN − xj)

 .
If we define the Laplacian matrix L = [`ij] as

`ij =


−aij, if i 6= j and (i, j) ∈ E
0, if i 6= j and (i, j) /∈ E
N∑
k=1
k 6=i

aik, if i = j
,

where E is the set of all the network edges, then, in the case of networks
with linear coupling, the state equation (7) and the error equation (11) can
be recast as

ẋ = Φ(t, x) + Ψ(t, x)− c(L⊗ Γ)x, (16)

1The use of the symbol lim in (13) is not intended in the classical sense of limit. By
(13), we mean that for all ν > 0 there exists a tν > 0 such that for all t > tν we have
that ‖e(t)‖2 ≤ ε + ν. We remark that this does not imply the existence of the limit in a
classical sense.
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ė = Φ(t, x) + Ψ(t, x) + Ξ(t, x)− c (L⊗ Γ) e. (17)

Before giving the main results in the next sections, we recall here a useful
lemma and define matrix sets that will be used in the paper.

Lemma 2. ([30], pp. 279-288)

1. The Laplacian matrix L in a connected undirected network is positive
semi-definite. Moreover, it has a simple eigenvalue at 0 and all the
other eigenvalues are positive.

2. the smallest nonzero eigenvalue λ2(L) of the Laplacian matrix satisfies

λ2(L) = min
zT 1N=0,z 6=0

zTLz

zT z
.

Finally, we define the sets Q and PW , that will be used in the rest of
the paper and whose relevance will be clarified through a set of numerical
example in the following sections.

Definition 7. Given a vector field f : R+ × Rn → Rn, let Q ⊆ D+ be the
(possibly empty) set of matrices such that, for every P ∈ Q, there exists a
diagonal matrix W such that (5) is satisfied. We say that a pair of matrices
(Pi,Wi) belongs to the set PW if and only if Pi ∈ D+ and Wi ∈ D, and (5)
is satisfied for P = Pi and W = Wi.

In the following sections, we provide a set of sufficient conditions for ε-
bounded convergence. Specifically, in Section 4, we study the case of linearly
coupled networks of nonidentical piecewise smooth systems. Then, we extend
the results to the case of networks coupled through nonlinear protocols in
Section 5.

4 Convergence analysis for linearly coupled

networks

We consider a network modeled by equation (7) of N nonidentical piecewise
smooth QUAD(P,Wi) Affine systems, i = 1, . . . , N .

11



Assumption 1. hi(t, xi) is QUAD(P,Wi) with Wi < 0,
∣∣∣∣∣∣∼gi(t, xi)∣∣∣∣∣∣

2
< Mi

for all
∼
gi(t, x) ∈ g

∼
i(t, x), t ∈ R+, x ∈ Rn, i = 1, . . . , N ,

sup
t∈[0,+∞)
i=1,...,N

∣∣∣∣∣∣∼hi(t, 0)
∣∣∣∣∣∣

2
≤ h̄0 < +∞,

for all
∼
hi(t, 0) ∈ h

∼
i(t, 0), and all the systems share a nonempty common set

CD+ ⊆ D+ such that every P ∈ CD+ implies Wi < 0 satisfying inequality (5),
for all i = 1, . . . , N .

We define M as
M = max

i=1,...,N
Mi. (18)

Before illustrating our result, we need to give the following definitions.

Definition 8. Given that Assumption 1 holds, and considering a n×n matrix
Q ∈ CD+, the non-empty set B(Q) ⊂ RNn is

B(Q) =

{
x ∈ RNn : ||x||2 < −

√
N ||Q||2

(
M + h̄0

)
wmax(Q)

}
, (19)

where M is defined in (18) wmax(Q) = max
i=1,...,N

λmax (Wi(Q)), with Wi < 0

such that (Q,Wi) ∈ PW.
Also, we define the matrix Q∗,and the scalar hmax ∈ R+ as

Q∗ = argmax
Q∈CD+

||Q||2
(
M + h̄0

)
wmax(Q)

, (20)

hmax = max
i=1,...,N
z∈B(Q∗)
t∈[0,+∞)

∥∥∥∼hi(t, z)∥∥∥
2
, ∀

∼
hi(t, z) ∈ h

∼
i(t, z), ∀i = 1, . . . , N. (21)

Notice that, in what follows, we always refer to the case in which hi does
not diverge in the finite ball B(Q∗), implying hmax <∞. For this reason, the
set-valued function h

∼
i(t, z) is bounded for all time instants t ∈ R+ and takes

values in the ball B(Q∗) of the origin. Notice also that in (19) and (20) we
state explicitly the dependence of wmax on Q. Indeed, a choice of Q generally
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implies the selection of suitable matrices W1(Q), . . . ,WN(Q) < 0 satisfying
relation (5).

Here, we define

Wmax = diag

{
max

i=1,...,N
λ1(Wi), . . . , max

i=1,...,N
λN(Wi)

}
< 0. (22)

Notice that, in (22), Wmax depends on the choice of P , as well as the matrices
W1, . . . ,WN < 0, and that (P,Wmax) belongs to the set PW . Furthermore,
we also define the pair of matrices P ∗ and Wmax∗ as

(P ∗,Wmax∗) = argmin
P∈CD+ ,

(P,Wmax(P ))∈PW

√
N ||P ||2(M + hmax)

m (c, P,Wmax(P ))
, (23)

where the real function m(c, P,Wmax) is defined as

m(c, P,Wmax) = −max
{
λmax(Wmax

l )− cλ2(L⊗ PlΓl), λmax(Wmax
n−l )

}
, (24)

with Wmax
l and Pl being the l × l upper-left block of matrices Wmax and P

respectively, while Wmax
n−l is the (n− l)× (n− l) lower-right block of matrix

Wmax.
Now, we are ready to give the main stability results for linearly cou-

pled networks. Specifically, we focus on the case of diagonal inner coupling
matrix, while the extension to the case of nondiagonal Γ is encompassed
in the study of nonlinear coupling functions. Henceforth, here we consider
Γ = diag{γi}ni=1. Without loss of generality, we assume

γi =

{
γ̄i > 0 i = 1, . . . , l,
0 i = l + 1, . . . , n,

(25)

with l ∈ {0, 1, . . . , n}. To use a compact notation, we denote by Γl the l × l
upper-left block of matrix Γ.

Theorem 1. Network (7) of N QUAD(P,Wi) Affine systems satisfying As-
sumption 1, with diagonal inner coupling matrix Γ ≥ 0, achieves ε-bounded
convergence for any value of the coupling strength c > 0, and an upper bound
for ε is given by

ε̄ = min

{
ε̄1 := −2

√
N ||Q∗||2(M + h̄0)

wmax(Q∗)
, ε̄2 :=

√
N ||P ∗||2(M + hmax)

m(c, P ∗,Wmax(P ∗))

}
,

(26)
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where the function m is defined in (24), and Q∗, hmax and P ∗ are defined in
(20), (21), and (23) respectively.

Proof. The proof consists of two steps. Firstly, we show the existence of an
invariant region for the state trajectories of the nodes. Then, we derive the
upper bound on ε as a function of the coupling gain c.

Step 1. Given equation (16), let us consider the quadratic function

U =
1

2
xT (IN ⊗Q)x, (27)

where Q ∈ CD+ . The time derivative of U along the trajectories of the
network satisfies

U̇(x) ∈ L
∼
F [χ1]U(x),

where χ1(t, x) = Φ(t, x) + Ψ(t, x) − c (L⊗ Γ)x. Applying the sum rule re-
ported in Section 2, we can write

U̇(x) ∈ L
∼
F [χ1]U(x) ⊆ L

∼
F [Φ]+F [Ψ]+F [χγ ]U(x), (28)

where χγ(t, x) = −c (L⊗ Γ)x.
Applying the consistency rule to the smooth coupling term χγ, we can

write2

L
∼
F [Φ]+F [Ψ]+F [χγ ]U(x) = UL =

{
xT (IN ⊗Q) Φ

∼
+xT (IN ⊗Q) Ψ

∼
−cxT (L⊗QΓ)x

}
.

(29)

Now, adding and subtracting xT (IN ⊗Q) Φ
∼

0, where Φ
∼

0 = F [Φ](t, 0), and

using the product rule, we obtain

UL ⊆ VL =

{
N∑
i=1

xTi Qh∼
i(t, xi) + xT (IN ⊗Q) Ψ

∼
−cxT (L⊗QΓ)x+ xT (IN ⊗Q) Φ

∼
0 −

N∑
i=1

xTi Qh∼
i(t, 0)

}
.

(30)

2Here and in what follows, given a vector y and a set-valued function f
∼

of coherent

dimension, by yT f
∼

we mean

{
yT

∼
f ,∀

∼
f ∈ f

∼

}
.
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Therefore, using the QUAD assumption (5), for a generic element of the set
vl ∈ VL, the following inequality holds

vl ≤ xT [IN ⊗ wmax(Q)In − cL⊗QΓ]x+xT (IN ⊗Q)
∼
Ψ +xT (IN ⊗Q)

∼
Φ0, ∀

∼
Ψ ∈ Ψ

∼
,∀
∼
Φ0 ∈ Φ

∼
0.

(31)
From standard matrix algebra, we have (denoting wmax(Q) as wmax for the
sake of brevity)

vl ≤ xT [IN ⊗ wmaxIn − cL⊗QΓ]x+‖x‖2 ‖IN ⊗Q‖2

√
NM+‖x‖2 ‖IN ⊗Q‖2

√
Nh̄0.

(32)
Combining (28)-(32), it follows that

U̇ ≤ xT [IN ⊗ wmaxIn − cL⊗QΓ]x+‖x‖2 ‖IN ⊗Q‖2

√
NM+‖x‖2 ‖IN ⊗Q‖2

√
Nh̄0.

Rewriting the state vector as x = ax̂, with x̂ = x
‖x‖2

, we finally have

U̇ ≤ wmaxa
2 + a

√
N ||Q||2

(
M + h̄0

)
. (33)

Therefore, as wmax < 0, if a > −
√
N ||Q||2

(
M + h̄0

)
/wmax, then U̇ < 0.

Hence, we can say that all the trajectories of network (16) eventually converge
to the set B(Q∗), where B is given in Definition 8 and Q∗ is defined in (20).
Thus, we can conclude that network (7) achieves ε-bounded convergence,
with ε = −2

√
N ||Q∗||2

(
M + h̄0

)
/wmax, being the bound on the convergence

error. Note that this estimate of the bound on ε might be conservative. We
now derive an alternative bound.

Step 2. Let us consider equation (17) and the following quadratic form

V (e) =
1

2
eT (IN ⊗ P )e,

where P ∈ CD+ . The time derivative of V is

V̇ (e) ∈ L
∼
F [χ2]V (e), (34)

where χ2(t, x, e) = Φ(t, x) + Ψ(t, x) + Ξ(t, x) − c (L⊗ Γ) e. Using the sum
and consistency rules, we obtain

V̇ (e) ∈ L
∼
F [χ2]V (e) ⊆ UL =

{
eT (IN ⊗ P ) Φ

∼
+eT (IN ⊗ P ) Ψ

∼
+eT (IN ⊗ P ) Ξ

∼
−eT (L⊗ PΓ) e

}
.

(35)
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Now, from the properties of the Filippov set-valued function, and adding and
subtracting eT (IN ⊗ P ) Φ

∼
x̄, with Φ

∼
x̄ = F [Φ](t, x̄), and using the product rule

we can write UL ⊆ VL, where VL is

VL =

{
N∑
i=1

eTi Ph∼
i(t, xi) + eT (IN ⊗ P ) Ψ

∼
+

N∑
i=1

eTi P ξ
∼
−ceT (L⊗ PΓ) e+ eT (IN ⊗ P ) Φ

∼
x̄ −

N∑
i=1

eTi Ph∼
i(t, x̄),

}
,

with ξ
∼
∈ F

[
− 1
N

∑N
j=1 fj(t, xj)

]
. As

∑N
i=1 ei = 0, we have

∑N
i=1 e

T
i P ξ

∼
= 0.

Considering the QUAD Affine assumption, a generic element vl of the set VL
satisfies the following inequality:

vl ≤ eT [IN ⊗Wmax − cL⊗ PΓ] e+eT (IN ⊗ P )
∼
Ψ +eT (IN ⊗ P )

∼
Φx̄, ∀

∼
Ψ ∈ Ψ

∼
,∀
∼
Φx̄ ∈ Φ

∼
x̄

From the properties of the norm, and for all initial conditions x(0) chosen in
the set B(Q), we have

vl ≤ eT [IN ⊗Wmax − cL⊗ PΓ] e+‖e‖2 ‖IN ⊗ P‖2

√
NM+‖e‖2 ‖IN ⊗ P‖2

√
Nhmax,

where hmax is defined in (21). Hence, we have that

V̇ (e) ∈ L
∼
F [χ2]V (e) ⊆ VL,

and we can write

V̇ (e) ≤ eT [IN ⊗Wmax − cL⊗ PΓ] e+ ‖e‖2 ‖IN ⊗ P‖2

√
N
(
M + hmax

)
.

(36)
From the properties of the Kronecker product [35], we have ‖IN ⊗ P‖2 =
‖IN‖2 ‖P‖2 = ‖P‖2. Now, notice that the error vector e can be decom-
posed in two parts: one is related to the coupled state components, namely

ẽl =
[
e

(1)
1 , . . . , e

(l)
1 , . . . , e

(1)
N , . . . , e

(l)
N

]T
, and the other, denoted by ẽn−l =[

e
(l+1)
1 , . . . , e

(n)
1 , . . . , e

(l+1)
N , . . . , e

(n)
N

]T
, to the uncoupled components. Further-

more, we define ēi =
[
e

(i)
1 , e

(i)
2 , . . . , e

(i)
N

]T
. So, from (25), we can rewrite (36)

as

V̇ ≤
l∑

i=1

[wmax
i ēTi ēi−cpiγ̄iēTi Lēi]+

n∑
i=l+1

wmax
i ēTi ēi+‖e‖2 ‖IN ⊗ P‖2

√
N
(
M + hmax

)
,
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where wmax
i are the diagonal entries of the diagonal matrix Wmax. From

Lemma 2 and from matrix algebra, we have

V̇ ≤ [λmax(Wmax
l )− cλ2(L⊗ PlΓl)] ẽTl ẽl+λmax(Wmax

n−l )ẽTn−lẽ
T
n−l+‖e‖2 ‖IN ⊗ P‖2

√
N
(
M + hmax

)
.

Then, rewriting the convergence error as e = aê, with ê = e
‖e‖2

, for all initial

conditions x(0) ∈ B(Q) we finally obtain

V̇ (e) ≤ −m (c, P,Wmax) a2 + a
√
N ‖P‖2

(
M + hmax

)
, (37)

withm (c, P,Wmax) defined according to (24). Therefore, if a >
√
N ‖P‖2

(
M + hmax

)
/m (c, P,Wmax),

then V̇ < 0. From (37), the optimization problem (23) immediately follows.
The minimum value of the bound in (26), with Q∗ defined in (20), is trivially
obtained by combining (33) and (37).

Remark 1. Notice that in the case where hi = hj for all i, j (which im-
plies Wi = W < 0 for all i = 1, . . . , N), ε-bounded convergence is trivially
guaranteed under the assumptions of Theorem 1, as the QUAD component of
each system is contracting [51], as reported in [17]. In particular, asymptotic
convergence (ε = 0) is achieved if gi = 0 for all i = 1, . . . , N , even if the
systems are decoupled.

Now, we study the stability properties of a networks of QUAD Affine
systems, which differ only for the bounded component g. In this case we
relax the assumption made earlier to prove Theorem 1 and assume instead
the following.

Assumption 2. Let us consider N nonidentical piecewise smooth QUAD(P,W)
Affine systems described by

ẋi = hi(t, xi) + gi(t, xi) ∀i = 1, . . . , N, (38)

where
hi(t, s) = hj(t, s), ∀i, j = 1, . . . , N,

with s ∈ Rn and t ∈ R+. Furthermore, we call M = maxi=1,...,N Mi, with Mi

such that
∣∣∣∣∣∣∼gi(t, x)

∣∣∣∣∣∣
2
< Mi, for all

∼
gi(t, x) ∈ g

∼
i(t, x) and for all t > 0 and

x ∈ Rn.
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Notice that, differently from Assumption 1, here we do not make any ad-
ditional assumption on the matrix W which characterizes the QUAD com-
ponents. Even though the matrix W is in general undefined, some of its
diagonal elements may be negative.

According with the definition of Γl given in Section 4, we denote by Wl

the l×l upper-left block of matrix W = diag{wi}ni=1, by Pl the l×l upper-left
block of matrix P , and by Wn−l the (n− l)× (n− l) lower-right block of W .
Also, we define the set PW l

d as follows:

Definition 9. Given a positive scalar d, PW l
d ⊆ PW is the subset of PW

such that if (P,W ) ∈ PW l
d, then dλ2(L⊗ PlΓl) > λmax(Wl), where L is the

Laplacian matrix of network (7).

Now, we are ready to state the following theorem.

Theorem 2. Consider the network (7) of N nonidentical QUAD(P,W)
Affine systems satisfying Assumption 2. Without loss of generality, we as-
sume the first l̄ ∈ {0, . . . , n} diagonal elements of W to be non-negative,
while the remaining n − l̄ are negative. If the diagonal elements of matrix
Γ ∈ D can be defined as in equation (25), with l ≥ l̄, then there always exists
a c̄ < ∞ so that, for any coupling gain c > c̄, the linearly coupled network
(7) achieves ε-bounded convergence. Furthermore,

1. a conservative estimate, say c̃, of the minimum coupling gain c̄ ensuring
bounded convergence is

c̃ = min
(P,W )∈PW

c(P,W ), (39)

where c(P,W ) = max

{
λmax(Wl)

λ2(L⊗ PlΓl)
, 0

}
.

2. for a given c > c̃, we can give the following upper bound on ε

ε̄ = min
(P,W )∈PWl

c

M
√
N ||P ||2

m(c, P,W )
, (40)

where m(c, P,W ) is a real function defined as

m(c, P,W ) = −max {λmax(Wl)− cλ2(L⊗ PlΓl), λmax(Wn−l)} . (41)
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Proof. See Appendix A.

Notice that the computation of bound (39) requires the solution of the
following optimization problem:

min
(P,W )∈PW

max

{
λmax(Wl)

λ2(L⊗ PlΓl)
, 0

}
. (42)

Trivially, if f is QUAD(P ,W ) Affine for some W < 0, the solution of the
optimization problem (42) is c̃ = 0. Otherwise, if a matrix W < 0 such that
h is QUAD(P ,W ) with P ∈ D+ does not exist (this is the case, for instance,
of the Lorenz and Chua’s chaotic systems), then the optimization problem
(42) is non-trivial and, since λmax(W ) > 0, it can be rewritten as

min
(P,W )∈PW

λmax(Wl)

λ2(L⊗ PlΓl)
. (43)

This is a constrained optimization problem that in scalar form can be written
as:

min
(P,W )∈PW
i=1,...,l

maxiwi
λ2(L)minipiγi

, (44)

and which can be easily solved using the standard routines for constrained
optimization, such as, for instance, those included in the MATLAB optimiza-
tion toolbox.

Remark 2. Here, we discuss the meaning of the assumptions and bounds
obtained in Theorem 2. Firstly, notice that the assumption on the vector
field implies that the uncoupled components of the state vector are associ-
ated to contracting dynamics of the individual nodes. The minimum coupling
strength needed to achieve bounded convergence is the minimum coupling en-
suring shrinkage of the coupled part of the nodes’ dynamics. Hence, the cou-
pling configuration compensates for possible instabilities associated to positive
diagonal elements of W . This minimum strength c̃ depends on the network
topology. Specifically, the smaller c̃ is, the higher is λ2(L). Once an appropri-
ate coupling gain is selected, the width of the bound ε depends on m(c, P,W )
and on M . Clearly, M gives a measure of the heterogeneity between the
vector fields, and so the higher it is, the higher ε is. On the other hand,
m(c, P,W ) embeds both the information on both the nodes’ dynamics and the
structure of their interconnections. In particular, the elements pi and wi of
matrices P and W , respectively, are related to the nodes’ dynamics, while the
information on the network topology are again embedded in λ2(L).
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When Γ ∈ D+, it is useful to consider the following corollary.

Corollary 1. Consider a network of N QUAD(P,W) Affine systems satis-
fying Assumption 2. If the coupling matrix Γ ∈ D+, then

1. there exists a c̄ <∞ so that, for any coupling gain c > c̄, network (7)
achieves ε-bounded convergence.

2. a conservative estimate, say c̃, of the minimum coupling gain ensuring
ε-bounded convergence is

c̃ = min
(P,W )∈PW

c(P,W ), (45)

where c(P,W ) = max

{
λmax(W )

λ2(L⊗ PΓ)
, 0

}
, and PW is defined according

to Definition 7.

3. for a given ĉ > c̃, we can give the following upper bound on ε

ε̄ = min
(P,W )∈PWn

ĉ

M
√
N ‖P‖2

ĉλ2(L⊗ PΓ)− λmax(W )
, (46)

where the set PWn
ĉ is defined according to Definition 9.

Proof. If Γ ∈ D+, then clearly l = n ≥ l̄ in the proof of Theorem 2 for any
W ∈ D and from Theorem 2, the thesis follows.

5 Convergence analysis for nonlinearly cou-

pled networks

Now, we address the problem of guaranteeing ε-bounded convergence of (8)
with a nonlinear coupling function η. Specifically, the analysis is performed
for nonlinear coupling functions satisfying the following assumption.

Assumption 3. The (possibly discontinuous) coupling function η(t, z) : R+×
Rn 7→ Rn is component-wise odd (η(−v) = η(v)) and the following inequality
holds

zT
∼
η(t, z) ≥ zTΥz, ∀t ∈ R+, ∀z : ‖z‖2 ≤ emax, ∀

∼
η(t, z) ∈ η

∼
(t, z),

(47)
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where emax > 0 and Υ is a diagonal matrix whose i-th diagonal element is
υi ≥ 0, with

∑N
i=1 = υi > 0. Without loss of generality, we consider υi > 0

for all i ≤ r, with r ≤ n, while υi = 0 otherwise.

Convergence to a bounded steady-state error is proved by assuming Q = I
and P = I. This choice, which is less general than the one considered in
Theorem 1, allows however to analyze a more general nonlinear protocol.
Following the same notation as in Section 4, we define Υr as the r× r upper
left block of the matrix Υ in Assumption 3. Also, we define the scalars rmax

and hmax as

rmax = max

{
ε̄1 = −

√
N
(
M + h̄0

)
wmax

, ν = ‖x(0)‖2

}
+ δ, (48)

with δ > 0 being a arbitrarily small positive scalar, and

hmax = max
i=1,...,N
‖z‖2≤rmax
t∈[0,+∞)

∥∥∥∼hi(t, z)∥∥∥
2
, ∀

∼
hi(t, z) ∈ h

∼
i(t, z), ∀i = 1, . . . , N. (49)

Theorem 3. Consider the nonlinearly coupled network (8) of N negative
definite QUAD(I,Wi) Affine systems and suppose that the nonlinear coupling
protocol satisfies Assumption 3. Also, suppose that, in (49), hmax < +∞,
and that each node of the network satisfies Assumption 1 with P = I. If

(i) The initial error satisfies ‖e(0)‖2 ≤ emax/2, with emax defined in As-
sumption 3;

(ii)

−
√
N(M + hmax)

λmax(Wmax
n−r )

<
emax

2

where Wmax is defined in (22) and with Wmax
r and Wmax

n−r being its upper-
left and lower-right blocks, respectively;

then, network (8) achieves ε-bounded convergence if the coupling gain c is
chosen greater than c̃ given by

c̃ = max

{
1

λ2(L⊗Υr)

(
2
√
N(M + hmax)

emax

+ λmax(Wmax
r )

)
, 0

}
. (50)
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Furthermore, an upper bound on ε is given by

ε̄ = min

{
ε̄1, ε̄2 =

√
N(M + hmax)

m(c,Wmax)

}
, (51)

with ε̄1 defined as in (48), and

m(c,Wmax) = −max
{
λmax(Wmax

r )− cλ2(L⊗Υr), λmax(Wmax
n−r )

}
.

Proof. To prove the theorem, we separately analyze the two possible cases:
ε̄1 ≤ ν and ε̄1 > ν, where ν is defined in (48).

Case (a): ε̄1 ≤ ν.
In this case, from (48) we have rmax = ‖x(0)‖2 + δ. Now, we first study the
conditions for the existence of an invariant region in the error space, and
then show the existence of an invariant region in state space. We start by
evaluating the derivative of the function V (e) = 1

2
eT e. We have

V̇ (e) ∈ L
∼
F [χ1]V (e),

where χ1 = Φ(t, x) + Ψ(t, x) + Ξ(t, x)− cH(t, e). Using the sum rule, we can
write

V̇ (x) ∈ UL =

{
eT Φ
∼

+eT Ψ
∼

+eT Ξ
∼
−ceT H

∼

}
. (52)

Adding and subtracting eTΦ
∼
x̄, with Φ

∼
x̄ = F [Φ](t, x̄), and using the product

rule, we have that

V̇ (e) ∈ UL ⊆ VL =

{
N∑
i=1

eTi h∼
i(t, xi) + eT Ψ

∼
+

N∑
i=1

eTi ξ
∼
−1

2
c

N∑
i=1

∑
j=i

wij(ei − ej)T η
∼

(t, ei − ej) + eTΦ
∼
x̄

−
N∑
i=1

eTi h∼
i(t, x̄)

}
, (53)

with ξ
∼
∈ F

[
− 1
N

∑N
j=1 fj(t, xj)

]
. As

∑N
i=1 ei = 0, we have

∑N
i=1 e

T
i ξ
∼

= 0.

As ε̄1 < ν, inequality (47) is satisfied for all t ∈ [0, tc], where tc is the time
instant at which the average state trajectory may cross the ball of the origin
of radius rmax, i.e. ‖x̄(t)‖2 > rmax for t > tc (later we will show that such
time instant does not exist and therefore (47) is satisfied for all t ∈ [0,+∞)
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). Indeed, from Assumptions 1 and 3, we have that a generic element of the
set vl ∈ VL satisfies the following inequality

vl ≤ eT [IN ⊗Wmax − cL⊗Υ] e+eT
∼
Ψ +eT

∼
Φx̄, ∀t ∈ [0, tc], ∀

∼
Ψ ∈ Ψ

∼
,∀
∼
Φx̄ ∈ Φ

∼
x̄,

(54)
and so, decomposing the error e as ẽr and ẽn−r as in the proof of Theorem
1, and following similar steps, we have that

V̇ (e) ≤ −m (c,Wmax) a2 + a
√
N
(
M + hmax

)
, ∀t ∈ [0, tc]. (55)

Therefore, since hypothesis (ii) holds, it is now clear that if c > c̃, then
relation (47) is feasible as the region ‖e‖2 ≤ ε̄2 < emax/2 is an invariant
region in the error space. The feasibility of relation (47) holds until the
crossing instant tc. After tc, (49) would not be guaranteed any more, as well
as inequalities (54) and (55). To complete the proof of Case (a), we now
show that the crossing event never happens and so we can set tc = +∞. Let
us consider the quadratic function U = 1

2
xTx and evaluate the derivative of

U along the trajectories of the network. We have

U̇(x) ∈ L
∼
F [χ2]U(x),

where χ2(t, x) = Φ(t, x) + Ψ(t, x) − cH(t, x). Now, using the sum rule, and
following similar steps as in Theorem 1, we can write

U̇(x) ∈ UL =

{
xT Φ
∼

+xT Ψ
∼
−cxT H

∼

}
.

Adding and subtracting xTΦ
∼

0, with Φ
∼

0 = F [Φ](t, 0), and using the product

rule, we can show that UL is included in the set VL. Namely,

UL ⊆ VL =

{
N∑
i=1

xTi h∼
i(t, xi) + xT Ψ

∼
−1

2
c

N∑
i=1

N∑
j=i

wij(xi − xj)T η
∼

(t, xi − xj) + xTΦ
∼

0 −
N∑
i=1

xTi h∼
i(t, 0)

}
.

Notice that, as stated above, relation (47) holds for all the t ∈ [0, tc] and
so, using Assumptions 3 and 1, for a generic element of the set vl ∈ VL, the
following inequality holds

vl ≤ xT [IN ⊗ wmaxIn − cL⊗Υ]x+xT
∼
Ψ +xT

∼
Φ0, ∀t ∈ [0, tc], ∀

∼
Ψ ∈ Ψ

∼
,∀
∼
Φ0 ∈ Φ

∼
0.
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Then, following the same steps in the proof of Theorem 1 we obtain

U̇ ≤ wmaxa
2 + a

√
N
(
M + h̄0

)
, ∀t ∈ [0, tc]. (56)

From (56), we get the radius ε̄1 of an invariant region ‖x‖2 ≤ ε̄1 for system
(14). In particular, for any r ≥ ε̄1, the region ‖x‖2 ≤ r is invariant. Since
we are considering the case ε̄1 ≤ ν, then ‖x‖2 ≤ rmax is an invariant region
for the overall system (14). So, the state x, as well as x̄, will never cross the
ball of radius rmax and equations (55) and (56) hold with tc = +∞. Then
comparing these two expressions, bound (51) holds and the proof for ε̄1 ≤ ν
is completed.

Case (b): ε̄1 > ν
In this case, we have rmax = ε̄1 + δ. Again, we firstly consider the invariant
region in the error space and then we analyze invariance in the state space.
In particular, for the error invariant region we can follow the same steps of
Case (a) and obtain again equation (55). About the invariance in the state
space, it is immediate to see that ε̄1 is invariant. Indeed, if the trajectory
x(t) does not cross the boundary ‖x‖2 = ε̄1, then it is trivially invariant. On
the other hand, if there exists an instant t̄ such that ‖x(t)‖2 = ε̄1, then it is
possible to show invariance of region ‖x‖2 ≤ ε̄1 considering the proof of Case
(a) from the initial time t̄ and initial state x(t̄ ).

Concluding, also in this case, equations (55) and (56) hold with tc = +∞
and the theorem is then proved.

From Theorem 3, an useful corollary follows.

Corollary 2. Consider the nonlinearly coupled network (8) of N negative
definite QUAD(I,Wi) Affine systems and suppose that the nonlinear coupling
protocol satisfies Assumption 3 with emax =∞. Suppose also that each node
of the network satisfies Assumption 1 with the choice P = I. Then, network
(8) achieves ε−bounded convergence and an upper bound on ε is (51).

Proof. As emax → +∞, the hypotheses (i), (ii), in Theorem 3 are always
satisfied and c̃ = 0. Then, from Theorem 3 follows the thesis.

As in Section 4, we now extend the analysis to the case of networks (8)
of QUAD Affine(P,W ) systems, with P = I, differing only for a bounded
component. As in Theorem 3, we denote by Υr the r× r upper left block of
matrix Υ.
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Theorem 4. Let us consider the nonlinearly coupled network (8) of N
QUAD(I,W ) Affine systems satisfying assumption 2. Without loss of gen-
erality, we assume the first r̄ ∈ {0, . . . , N} diagonal elements of W to be
non-negative, while the remaining n− r̄ are negative. If Assumption 3 holds
with r ≥ r̄ and the following hypotheses hold:

(i) The initial error satisfies ‖e(0)‖2 ≤ emax/2, with emax being defined in
Assumption 3;

(ii)

−
√
NM

λmax(Wn−r)
≤ emax

2

with, as usual, Wr and Wn−r being the upper-left and the lower-right
blocks of matrix W , respectively.

Then, choosing a coupling gain c > c̃, with

c̃ = max

{
1

λ2(L⊗Υr)

(
2
√
NM

emax

+ λmax(Wr)

)
, 0

}
, (57)

network (8) achieves ε-bounded convergence. Furthermore, an upper bound
on ε is

ε̄ =
M
√
N

mnl(c,W )
, (58)

where the function mnl is a real function defined as

mnl(c,W ) = −max {λmax(Wr)− cλ2(L⊗Υr), λmax(Wn−r)} . (59)

Proof. See Appendix B.

As in Section 4, we also provide a useful corollary.

Corollary 3. Let us consider the nonlinearly coupled network (8) of N
QUAD(I,W ) Affine systems satisfying Assumption 2 and Assumption 3 with
emax = ∞. Choosing a coupling gain ĉ ≥ c̃, with c̃ defined in (57), network
(8) achieves ε-bounded convergence with an upper bound on ε given in (58).

Proof. As emax → +∞, the hypotheses (i) and (ii) of Theorem 4 are always
satisfied. Then, from Theorem 4, the thesis follows.
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6 Applications

Here, we validate and illustrate the theoretical derivation using a set of repre-
sentative numerical examples. Specifically, in Section 6.1, a network of Ikeda
systems is considered to validate Theorems 1 and 3, while Theorem 2 is
used in Section 6.2 to estimate the minimum coupling strength guaranteeing
bounded synchronization in networks of Chua’s circuits. Then, in Section 6.3,
Corollary 1 is used to study convergence of coupled chaotic relays. Finally,
in Section 6.4 we study the convergence properties of nonuniform Kuramoto
oscillators applying Theorem 4.

6.1 Networks of Ikeda systems

To clearly illustrate Theorems 1 and 3, we study the convergence of a network
of nonidentical Ikeda systems. The Ikeda model has been proposed as a
standard model of optical turbulence in nonlinear optical resonators, see
[38, 39, 40] for further details. The optical resonator can be described by

ẋi = −aixi + bi sin(xi(t− τi)),

where ai, bi and τi are positive scalars. As reported in [37], this system
exhibits chaotic behavior when τi = 2, ai = 1 and bi = 4. Synchronization
of coupled Ikeda systems with parameter mismatches was studied in many
recent works, see for instance [36, 37, 63], but it is assumed a priori that the
trajectory of each node is bounded. Applying Theorem 1, we do not need
this assumption, and we can show that a network of coupled Ikeda oscillators
converges to a bounded set. In facts, it is easy to show that the assumptions
of Theorem 1 are satisfied: the vector field fi(t, xi) describing the nodes’
dynamics is a QUAD(P,W) Affine system of the form

ẋi = hi(t, xi) + gi(t, xi),

where hi(t, xi) = −aixi is QUAD with P = p > 0 and W = w such that
−pai ≤ w < 0, and gi(t, xi) = bi sin(xi(t−τi)) is the affine bounded (smooth)
term, with |gi(t, xi)| ≤ bi. Notice that the presence of the delayed state does
not prevent the application of Theorems 1 and 3, as it affects a bounded
component. Hence, from Theorem 1, we obtain a strong result: a network of
nonidentical Ikeda systems is ε-bounded synchronized for any possible value
of the positive scalars ai, bi and τi, and for any positive coupling strength
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(a) State evolution.
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Figure 1: Network of 10 linearly coupled nonidentical Ikeda systems. Cou-
pling gain c = 20.
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Figure 2: Network of 10 linearly coupled nonidentical Ikeda systems, c = 20:
transient dynamics.

c > 0, . Here, it is worth remarking that this result is independent from
the value of the delays τi and from the choice of c. In all previous works,
τ was considered identical from node to node and bounded synchronization
was proven only for c > c̄, with c̄ > 0 [36, 37, 63]. Moreover, Theorem 1 also
provides an estimation of the bound ε, that can be made arbitrarily small by
increasing c.

As an example, we consider a randomly generated network of 10 nodes.
The initial conditions are taken randomly from a normal distribution. Fur-
thermore, we assume that ai = a + δai, bi = b + δbi and τi = τ + δτi, where
a = 1, b = 4, and τ = 2 are the nominal values of the parameters, while the
parameters’ mismatches are represented by δai, δbi and δτi, and are taken
randomly from a uniform distribution in [−0.25, 0.25]. As expected from
the the theoretical predictions, the representative simulation with coupling
gain c = 20 shown in Figure 1 confirms that ε-bounded synchronization is
achieved. In Figure 2, the onset of the state evolution is depicted to illus-
trate the transient dynamics. Then, in Figure 3, we report the upper bound
for the steady-state error norm estimated for coupling strength c ranging
from 1 to 100 (Figure 3(b)), which is consistent with the maximum steady-
state error norm evaluated numerically (Figure 3(a)). This upper bound is
clearly conservative, but allows us to predict the exponential decay of ε as c
increases.

Now, we consider a network of Ikeda systems with the same coupling
gain, but we introduce the following piecewise smooth nonlinear coupling
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Figure 3: Network of 10 nonidentical Ikeda systems.
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(a) State evolution.
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Figure 4: Network of 10 nonlinearly coupled nonidentical Ikeda systems.
Coupling gain c = 20.

η(z) : R 7→ R:

η(z) =

{
sign(z) if |z| < 1,

sign(z)[(|z| − 1)2 + 1] if |z| ≥ 1.
(60)

This nonlinear coupling has no physical meaning, but has been introduced to
show how ε-bounded convergence can also be enforced through a piecewise
smooth coupling satisfying Assumption 3. Figures 4(a) and 4(b) confirm that
bounded convergence is achieved considering the same coupling gain c = 20.
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6.2 Networks of Chua’s circuits

Let us consider now a network of Chua’s circuits [52] – a paradigmatic ex-
ample often used in the literature on synchronization of nonlinear oscillators
– assuming each circuit is forced by a squarewave input. Namely, the own
dynamics of the i-th system can be written as ẋi = h(t, xi) + gi(t, xi). The
unforced dynamics are described by h = [h1, h2, h3]T . Namely,

h1(xi) = α [xi2 − xi1 − ϕ(xi1)] ,

h2(xi) = xi1 − xi2 + xi3,

h3(xi) = −βxi2,

where, according to [52], α = 10, β = 17.30, and ϕ(xi1) = bxi1 + (a −
b)(|xi1 + 1|− |xi1 − 1|)/2, with a = −1.34, b = −0.73. The squarewave input
gi = [gi1, 0, 0]T acts on the first variable and is defined as

gi1(t) = sgn(sin(t− iπ/N)).

Notice that the vector fields of the Chua’s circuits are nonidentical QUAD(P,W)
Affine and satisfy Assumption 2. In fact, for any P ∈ D+, and for any
x, y ∈ R3, we can write

(x− y)TP (h(x)− h(y)) = −10p1e
2
1 − p2e

2
2 + (10p1 + p2)e1e2 + (p2 − 17.3p3)e2e3 + 10p1e1(ϕ(y1)− ϕ(x1))

≤ 3.4p1e
2
1 − p2e

2
2 + (10p1 + p2)e1e2 + (p2 − 17.3p3)e2e3,

where e = x − y, and where we have considered the maximum slope of the
nonlinear function ϕ(·) to get the above inequality. Taking p2 = 17.3p3, and
being e1e2 ≤ ‖e1e2‖ ≤ (ρe2

1 + e2
2/ρ)/2 for all ρ > 0, one has

(x− y)TP (h(x)− h(y)) ≤ 3.4p1e
2
1 − p2e

2
2 + (10p1 + p2)e1e2

≤ 3.4p1e
2
1 − p2e

2
2 + (10p1 + p2)(ρe2

1 + e2
2/ρ)/2

=

(
3.4p1 + ρ

10p1 + p2

2

)
e2

1 +

(
10p1 + p2

2ρ
− p2

)
e2

2.

(61)

Moreover, for all x ∈ R3, ‖g(t, x)‖ ≤ M = 1. Therefore, one finally obtains
that the forced Chua’s circuit are QUAD(P,W) Affine systems for any pair
(P,W) such that p2 = 17.3p3 and w1 ≥ 3.4p1 + ρ(10p1 + p2)/2 and w2 ≥
−p2 + (10p1 + p2)/2ρ. Therefore, it is possible to take p1, p2 and ρ such that

31



w2 can be negative. Hence, if we select Γ = diag {1, 0, 1}, we have that all
the assumptions of Theorem 2 are satisfied with l = 2.3

Notice that Theorem 2 can be used to estimate the minimum coupling
strength guaranteeing bounded synchronization. From (39) and (61) follows
that the estimation c̃ is the solution of the following constrained optimization
problem:

c̃ =
1

λ2(L)
min
p1,p2,ρ

3.4p1 + ρ10p1+p2
2

min
{
p1,

p2
17.3

}
10p1 + p2

2ρ
− p2 < 0

p1, p2, ρ > 0

where the first constraint ensures that P is selected so that the system is
QUAD(P,W), with w2 < 0, thus allowing the selection of Γ = diag {1, 0, 1}
according to Theorem 2. Using the standard Matlab routines for constrained
optimization problems, one easily obtains c̃ = 14.17/λ2(L). In this example,
we consider a network of N = 10 nodes with a connected random graph [25]
with λ2(L) = 2.22, from which follows that c̃ = 6.4. Accordingly, we select
c = 10 > c̃. Figure 5 shows the time evolution for the first component of the
Chua’s oscillators, both for the uncoupled and the coupled case. It is pos-
sible to observe that a a reduced mismatch between the nodes’ trajectories
remains, as can be noted from the plot of the error norm, depicted in Figure
6. This simulation has been obtained considering random initial conditions
in the domain of the chaotic attractor. However, it is worth mentioning
that since Theorem 2 gives global synchronization conditions, bounded syn-
chronization is ensured also in the case of divergent dynamics, as shown in
Figure 7, where some initial conditions have been randomly chosen outside
the domain of the attractor.

6.3 Networks of chaotic relays

Several examples of piecewise smooth systems whose dynamics are consistent
with Assumption 2 can be made. In particular, any QUAD system with a
piecewise smooth feedback nonlinearity such as relay, saturation or hysteresis

3The application of Theorem 2 requires a trivial reordering of the state variables, that
we omit here.
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Figure 5: Time evolution of component x
(1)
i (t) for the network of Chua cir-

cuits: (a) uncoupled case; (b) coupled case.

is also a QUAD Affine system. Here, we consider a network of five classical
relay systems, e.g. [68], whose dynamics are described by:

ẋi = Axi +Bri, yi = Cxi, ri = −sgn(yi),

where
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Figure 6: Time evolution of the norm of the synchronization error for the
network of Chua circuits: (a) uncoupled case; (b) coupled case.

A =

 1.35 1 0
−99.93 0 1
−5 0 0

 ,
B = [1,−2, 1]T , C = [1, 0, 0] ,

As shown in [21, 22], with this choice of parameter values, each relay exhibits
both sliding motion and chaotic behavior.

The Laplacian matrix describing the network topology is
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Figure 7: Time evolution of the norm of the synchronization error for a
divergent Chua network: (a) uncoupled case; (b) coupled case.

L =


3 −1 0 −1 −1
−1 4 −1 −1 −1
0 −1 2 −1 0
−1 −1 −1 4 −1
−1 −1 0 −1 3

 ,
while the inner coupling matrix is Γ = I3, that is, the nodes are coupled

through all the state vector, and so the requirement Γ ∈ D+ of Corollary 1
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is satisfied.
It easy to see that the network nodes satisfy Assumption 2. In particular,

the QUAD term is h(t, xi) = Axi and the affine bounded (switching) term is
gi(t, xi) = Bri. Hence, we can use Corollary 1 to obtain an upper bound on
the minimum coupling gain guaranteeing ε-bounded synchronization. Notice
that, choosing for the sake of clarity P = I3, we have

(x− y)T (h(x)− h(y)) = (x− y)TA (x− y) =

(x− y)TAsym (x− y) ≤ λmax (Asym) (x− y)T (x− y) ,

where Asym = 1
2
(A+ AT ).

In this example, we have λmax(Asym) = 50, while λ2(Π) = λ2(L⊗ I3) = 2.
Therefore, with the choice of P = I3 and from (45), the lower bound c̃ is
25. In our simulation, we set the coupling gain ĉ = 50, while the initial
conditions are chosen randomly. Considering that M = 2, and using (46),
we can conclude that an upper bound for the norm of the stack error vector
e is ε̄ = 0.25. In Figures 8, 9 and 10, we compare the behavior of the coupled
network with the case of disconnected nodes. In particular, Figures 8 and
9 show the time evolution of the second component of the synchronization
error for each node, for both the uncoupled and coupled case, while Figure
10 shows the evolution in the state space.

Despite the presence of sliding motion, we observe the coupling to be
effective in causing all nodes to synchronize, and the bound ε̄ ≤ 0.25 is
consistent with what is observed in Figure 8(b).

6.4 Nonuniform Kuramoto oscillators

A classical example of nonlinearly coupled heterogeneous systems is the net-
work of nonuniform Kuramoto oscillators, described by equation

θ̇i = ωi +
K

N

N∑
j=1

aij sin(θj − θi), θi ∈ (−π, π] i = 1, . . . , N. (62)

Synchronization of Kuramoto oscillators has been widely studied in litera-
ture, see for instance [54, 65, 9, 3], where the coupling is generally supposed
to be all-to-all, and ad hoc results about synchronization can be found.

Here, we show how Theorem 4 can be also applied to a network of nonuni-
form Kuramoto systems (62) and it provides an upper bound for the mini-
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Figure 8: Time evolution of error components e
(2)
i (t) for the network of

chaotic relays: (a) uncoupled case; (b) coupled case.

mum coupling. The error system, defined as in equation (9), is given by

ėi = ω̄i +
K

N

N∑
j=1

aij sin(ej − ei), θi ∈ (−π, π] i = 1, . . . , N. (63)

Now, if we take any initial condition θ(0) = [θ1(0), . . . , θN(0)]T such that
|θi(0) − θj(0)| < π for all i, j = 1, . . . , N , and if we set c = K/N , we have
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showing bounded convergence.

that each system in the network (63) satisfies Assumption 2 with h = 0 and
gi = ωi.

In this example, we consider a network of N = 4 nonuniform Kuramoto
oscillators, whose topology is described by the Laplacian matrix

L =


2 1 0 1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2

 .
The individual frequencies ωi are taken from a normal distribution , while

initial conditions are selected randomly in such that |θi(0)− θj(0)| < emax =
π/3 for all i, j = 1, . . . , N . From Theorem 4, we obtain an upper bound for
the minimum coupling c̃ = 0.73. Figures 11(a) and 11(b) show the error
trajectories for each oscillators, respectively for the case of uncoupled and
coupled network with K = 3 (c = 0.75).

For the uncoupled case the error diverges, while for the coupled case
the global upper bound for the error norm predicted through Theorem 4 is
ε̄ = 1.04, which is consistent with the value of 0.34 that we obtain for the
initial conditions given in our numerical simulation.

38



(a)

(b)

Figure 10: State space evolution for the network of chaotic relays: (a) un-
coupled case; (b) coupled case.

7 Conclusions

In this paper, we have presented a framework for the study of convergence
and synchronization in networks whose nodes can be both piecewise smooth
and/or nonidentical dynamical systems. Specifically, using a set-valued Lya-
punov approach, we derived sufficient conditions for global convergence of all
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Figure 11: Time evolution of the errors for the network of Kuramoto oscilla-
tors: (a) uncoupled case; (b) coupled case.

nodes towards the same bounded region of their state space and determined
bounds on the minimum coupling strength required to achieve bounded syn-
chronization. The residual synchronization bound ε was also estimated as a
function of the mismatch between the nodes’ dynamics and properties of both
the network structure and the coupling function used across the network.

Differently from previous approaches in the literature, we do not require
that the trajectories of the coupled systems are bounded a priori or that con-
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ditions of synchrony among switching signals are satisfied. Also, the results
presented in the paper allow to investigate convergence in networks of generic
piecewise smooth systems including those exhibiting sliding motion, as the
chaotic relay systems presented in Section 6.3. This represents a notable
advantage of the approach presented in the paper when compared to what
is currently available in the literature on networks of hybrid or piecewice
smooth system. The analysis has been performed both for linear and non-
linear coupling protocols and extensively validated on a set of representative
numerical examples.

We wish to emphasise that the analytical tools presented in the paper
can be used also to synthesise coupling functions and local controllers able to
guarantee convergence of a network of interest. In particular, local nonlinear
control actions can be added to nodes in a given network to make sure the
relevant assumptions we use in our derivations are guaranteed together with
appropriately designed coupling protocols. The in-depth investigation of our
approach as a tool for the synthesis of distributed nonlinear control strategies
for complex networked systems is currently under investigation and will be
the subject of future of research.
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A Proof of Theorem 2

Consider the following candidate Lyapunov function

V (e) =
1

2
eT (IN ⊗ P )e, (64)

where we choose P ∈ Q+. Notice that PΓ ≥ 0 and that the stack equation of
the error evolution is given in (17). Evaluating the derivative of V along the
trajectory of such error system, and proceeding as in the step 2 of the proof
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of Theorem 1, we get (35). From Assumption 2, hi(t, x̄) = hj(t, x̄) = h(t, x̄)
for all i, j = 1, . . . , N . Now, from the properties of the Filippov set-valued
function, and adding and subtracting

∑N
i=1 e

T
i Ph∼

(t, x̄), and using the product

rule we can write UL ⊆ VL, where VL is

VL =

{
N∑
i=1

eTi Ph∼
(t, xi) + eT (IN ⊗ P ) Ψ

∼
+

N∑
i=1

eTi P ξ
∼
−ceT (L⊗ PΓ) e+

N∑
i=1

eTi Ph∼
(t, x̄)−

N∑
i=1

eTi Ph∼
(t, x̄)

}

with ξ
∼
∈ F

[
− 1
N

∑N
j=1 fj(t, xj)

]
. As

∑N
i=1 ei = 0, we have that

∑N
i=1 e

T
i P ξ

∼
=

0 and
∑N

i=1 e
T
i Ph∼

(t, x̄) = 0. Considering the QUAD Affine assumption, and

denoting vl a generic element of the set VL, the following inequality holds:

V̇ (e) ≤ vl ≤ eT [IN ⊗W − cL⊗ PΓ] e+ eT (IN ⊗ P )
∼
Ψ, ∀

∼
Ψ ∈ Ψ

∼

From trivial matrix properties, it follows that

V̇ (e) ≤ eT [IN ⊗W − cL⊗ PΓ] e+
√
N ‖e‖2 ‖IN ⊗ P‖2M, (65)

with M = maxi=1,...,N Mi. Now, decomposing e in ẽl and ẽn−l as in the proof
of Theorem 1, we obtain

V̇ ≤ [λmax(Wl)− cλ2(L⊗ PlΓl)] ẽTl ẽl+λmax(Wn−l)ẽ
T
n−lẽ

T
n−l+

√
N ||e||2||P ||2M.

Defining m(c, P,W ) according to (41), and rewriting the synchronization
error as e = aê, with ê = e

‖e‖2
, we obtain

V̇ ≤−m(c, P,W )eT e+
√
N ||e||2||P ||2M

=−m(c, P,W )a2 + aM
√
N ||P ||2. (66)

If we choose any c > c̃, then we can always select a couple (P,W ) ∈ PW such
thatm(c, P,W ) > 0. Then, from (66), we have that a > M

√
N ||P ||2/m(c, P,M)

implies V̇ < 0. Hence, network (7) is ε-bounded synchronized with

ε ≤ M
√
N ||P ||2

m(c, P,M)
. (67)

Bound (40) follows trivially from (67).
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B Proof of Theorem 4

Considering the candidate Lyapunov function V (e) = 1
2
eT e, and evaluating

its derivative as in the step 2 of the proof of Theorem 3, we obtain equation
(52). Adding and subtracting

∑N
i=1 e

T
i h∼

(t, x̄), and using the product rule, we

have that

V̇ (e) ∈ VL =

{
N∑
i=1

eTi h∼
(t, xi) + eT Ψ

∼
+

N∑
i=1

eTi ξ
∼
−1

2
c

N∑
i=1

∑
j=i

wij(ei − ej)T η
∼

(t, ei − ej) +
N∑
i=1

eTi h∼
(t, x̄)

−
N∑
i=1

eTi h∼
(t, x̄)

}
,

with ξ
∼
∈ F

[
− 1
N

∑N
j=1 fj(t, xj)

]
. As

∑N
i=1 ei = 0, we have that

∑N
i=1 e

T
i ξ
∼

=

0, and
∑N

i=1 e
T
i h∼

(t, x̄) = 0. From Assumptions 2 and 3, the following inequal-

ity holds:

V̇ (e) ≤ eT [IN ⊗W − cL⊗Υ] e+ eT
∼
Ψ, ∀

∼
Ψ ∈ Ψ

∼
.

Notice that, as in the proof of Theorem 3, the upper bound c̃ for the minimum
coupling and hypothesis (ii) guarantee that the inequality (47) is always
feasible. Decomposing the error vector e in the two parts ẽr and ẽn−r and
following similar steps as in Theorem 2, the thesis follows.
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