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Abstract
Background—Despite the small but promising body of evidence for cardiac recovery in patients
that have received ventricular assist device (VAD) support, the criteria for identifying and
selecting candidates who might be weaned from VAD support have not been established.

Methods—A clinical decision support system (CDSS) was developed based on a Bayesian Belief
Network that combined expert knowledge with multivariate analysis. Expert knowledge was
derived from interviews of 11 members of the Artificial Heart Program at the University of
Pittsburgh Medical Center. This was supplemented by retrospective clinical data from all VAD
patients considered for weaning between 1996 and 2004 (n=19). Artificial Neural Networks and
Natural Language Processing (NLP) were employed to mine these data and extract 28 most
sensitive variables.

Results—Three decision support models were compared. The model, exclusively based on
expert-derived knowledge, was the least accurate and most conservative. It under-estimated the
incidence of heart recovery: incorrectly identifying 4 of the successfully weaned patients as
transplant candidates. The model derived exclusively from clinical data performed better but mis-
identified two patients: one who was successfully weaned, and one who ultimately needed a
cardiac transplant. An expert-data hybrid model performed best, with 94.74% accuracy and
75.37% ~ 99.07% confidence interval, misidentifying only one patient who was weaned from
support.

Conclusions—A CDSS may both facilitate and improve the identification of VAD patients who
are candidates for cardiac recovery, and may benefit from device removal. It could be potentially
used to translate success of active centers to those less established and thereby expand utilization
of VAD therapy.
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1. Introduction
The use of ventricular assist devices (VADs) for treatment of end-stage heart failure has
steadily increased over the past 20 years [1, 2]. For a growing number of patients with
advanced or refractory cardiac disease, VAD therapy has demonstrated the potential to
extend life, improve the quality of remaining life [3-6], and even lead to cardiac recovery
[7-8]. Following the first report of VAD weaning in 1995 [9], numerous centers have
demonstrated the prospect of cardiac recovery for a subset of VAD patients, including
University of Pittsburgh Medical Center (UPMC), Texas Heart Institute, Berlin Heart
Center, Columbia Presbyterian, Toronto General Hospital, and others. Nevertheless, the
incidence of VAD weaning remains relatively low compared to the volume of patients
treated with VAD therapy [1, 10-13].

Although studies of myocardial function of VAD patients suggest that chronic unloading of
the native heart can lead to “reverse” remodeling [5, 14-16], the underlying cellular,
biochemical, and biomechanical mechanisms remain uncertain and are in fact topics of
active research. It is therefore not surprising that different sets of criteria have been
employed for attempting to wean patients from VAD support [4, 17-20]. Lack of a definitive
marker in turn limits the confidence to screen patients for recovery, and may be partly
responsible for the scarcity of VAD weaning.

The decision to wean a patient from VAD support is further complicated by the distributed
expertise involved in post-operative management. It also entails competitive objectives (e.g.
survival rate, quality of life, patient preference), and alternative treatment strategies. This
complexity confounds efforts to articulate a definitive algorithm for identifying and
facilitating cardiac recovery. Consequently, it also hinders the translation of the success of
experienced centers to those less established.

The complexity and uncertainty of this decision process makes it an excellent candidate for
a clinical decision support system (CDSS). Motivated by success of such systems in
numerous fields of medicine [21-27], this study was undertaken to develop a CDSS
specifically customized to the management of VAD patients, with particular emphasis on
ventricular recovery. The clinical experience at UPMC with 19 VAD patients that were
considered for weaning (between 1996 and 2004) [28-30] was used as the basis for
evaluation of this model.

2. Material and Methods
Two primary sources of procedural knowledge were collected for the current study:
retrospective statistical analysis of patient data and expert knowledge. These are described
briefly below.

2.1 Data-derived Knowledge
In accordance with HIPAA (Health Insurance Portability and Accountability Act of 1996),
de-identified patient data were obtained from the UPMC VAD registry via an honest broker.
The study protocol was approved by Institutional Review Board at University of Pittsburgh.
Patients included those supported by either left ventricular assist device (LVAD) or bi-
ventricular assist device (BiVAD) who were originally identified as bridge-to-transplant but
later considered for recovery between 1996 and 2004 (n=19). All patients were supported
with the Thoratec (Pleasanton, CA, US) pneumatic paracorporeal systems except one who
received the Thoratec implantable VAD. Of the 19 patients that were considered for
weaning, 10 were eventually weaned and 9 received a cardiac transplant. Table 1 provides
details of this cohort of patients.
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A total of 250 numerical variables from 7 categories were analyzed using commercially
available Artificial Neural Network (ANN) software (Clementine 7.0, SPSS, Chicago, IL) to
identify the most predictive variables and their associated thresholds. The variables were
decimated using the prune algorithm to eliminate those that were weakly correlated with
weaning. To avoid overtraining, only 50% of the data sets were analyzed at a time [31].
Additional analysis was performed on the written shift notes recorded by the clinical staff
responsible for routine monitoring and maintenance of these patients. Language patterns
within the textual data contained therein were identified by Natural Language Processing
(NLP) using the software program Concordance 3.2 (Watt, R.J.C., Dundee, UK) [32]. The
word patterns were tabulated in order of frequency and context and compared between
weaned and transplanted patients.

2.2 Knowledge Acquisition from Expert Panel
Knowledge derived from retrospective experience was elicited through a series of structured
interviews and questionnaires of eleven members of the multi-disciplinary Artificial Heart
Program at UPMC, including: surgery, clinical bioengineering, nursing, and psychiatry. The
interview was conducted individually and in small groups to derive a binary decision
flowchart for selecting VAD weaning candidates. The flowchart was reviewed and revised
in a second interview. The individual flowcharts were combined into final version and were
presented to the full panel for approval. Figure 1 depicts the resulting decision flowchart,
comprised of a 5-tier health status screening followed by a 3-tier evaluation (8 variables) of
cardiac recovery. It defines an optimal weaning candidate as a non-ischemic patient who has
been supported by the VAD greater than 4 weeks, with normal cardiac rhythm, positive
nutritional status, and normal end-organ function. Indices of cardiac recovery, gathered
through echocardiographic (ECHO) measurements[29], were considered optimal if the
patient was able to maintain an ejection fraction (EF) > 40%, ventricular power (PWR) > 4
(mW/cm4), and positive change in stroke area (SA) with temporary suspension of VAD
support. Patients who passed this initial screening were referred for right heart
catheterization (RH CATH). The hemodynamics required to pass this secondary screening
includes pulmonary capillary wedge pressure (PCWP) < 20 mmHg, cardiac index (CI) > 2.2
l/min/m2, and heart rate (HR) < 100 bpm. Satisfactory results of RH CATH allow patients to
undergo treadmill ergometry according to a modified Naughton protocol. Patients capable of
achieving peak oxygen consumption (VO2) > 15 (mg/kg/min) while maintaining a
respiratory exchange ratio (RER) > 1.0 at maximal exercise he/she will be referred to
cardiac surgery for removal of the VAD.

Due to the binary nature of the final decision flowchart, weaning is only recommended if all
variables are in their positive state; while in reality, experts may consider less than ideal
situations (having a combination of variables in their positive and negative states).
Therefore, experts were asked to take part in two 12-item questionnaires in which they were
presented hypothetical case reports in which each of the indices of health and cardiac status
were toggled and asked to express their confidence of successful weaning under those
conditions. These questionnaires were completed in two separate sessions. To ensure
consistency, questions were repeated in reverse order. If the probabilities did not directly
compliment each other, the experts were asked to reevaluate their estimates. A final 8×6
matrix of probabilities was derived from averaging the confidence estimates elicited from all
experts.

2.3 Decision Modeling
The variables extracted from data mining and expert interviews were modeled using a
Bayesian belief network (BBN) using a custom-written software, GeNIe 2.0, developed at
the Decision Support Laboratory at University of Pittsburgh [33]. The decision structure was
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represented graphically by depicting causal influences with arrows from parent variables
(nodes) to children (nodes) [24]. By applying a probability distribution to each node, the
joint probability is expressed as:

where P(Xi | parents(Xi)) represents the conditional probability of variable Xi, given the
occurrence of the parents of this variable.

For each variable, mutually exclusive and cumulatively exhausted states were defined.
Figure 2 shows an example of two of the nodes of the present model, illustrating the
relationship between primary device and outcome (transplanted/weaned), and demonstrating
their states, prior and conditional probabilities. Assuming all nodes were conditionally
independent, all relevant variables identified by data mining were combined in a naïve BBN
each having a direct relationship with outcome prediction. Three such BBN’s were
developed: (1) a Data-driven Model, comprised of 33 variables, (2) an Expert Model
comprised of 15 variables, and (3) a Hybrid Model comprised of the combined set of 48
variables. The models were evaluated for each of the 19 patients in the study group by
introducing the subset of available variables at the time of transplant or weaning to calculate
the probability of weaning. These probability results were converted into a binary decision
(wean or transplant) based on a threshold of 50%.

3. Results
The decision structure of the BBN models is shown in Figure 3. The variables (nodes)
associated with the expert and data-driven models are separated by the dashed outline. The
full set of nodes comprises the hybrid model.

3.1 Data-Driven Model
Data mining of the 250 numerical variables from 6 categories (demographics, complications,
laboratory tests, exercise tests, RH CATH, and echocardiographic tests) using ANN yielded
28 variables that were most closely correlated with outcome, representing an 89% reduction
in the data set. (See Table 2a-f.) In terms of Demographics, the ANN analysis identifies an
ideal candidate for weaning as one who was supported by an LVAD rather than a BiVAD,
implanted for < 100 days, < 38 years old, Caucasian, female, and non-ischemic (Table 2a).
As noted in the analysis of the Complications variables (Table 2b), an ideal candidate for
weaning is one with no history of renal complications or reoperation, and free from
tamponade or other complications associated with bleeding. In terms of Laboratory Tests
(Table 2c), the ANN analysis associated a greater chance of weaning with patients who had
normal values for aspartate amino transferase (AST), creatinine clearance (CREAT), blood
urea nitrogen (BUN), reticulocyte count (RET), magnesium (MG) and lactate
dehydrogenase (LD). Based on the Exercise test (Table 2d), optimal candidates include
those who are able to exercise for >= 5 minutes, with peak oxygen consumption > 45%
(VO2%), metabolic equivalents > 4 (METS), and can perform at greater than 80% of
maximum predicted heart rate (HR% target). Optimal RH Catheterization variables (Table
2e) include pulmonary capillary wedge pressure (PCWP) < 24 mmHg, pulmonary vascular
resistance (PVR) < 1.1, mean pulmonary artery pressure (MPAP) < 25 mmHg, and a
transpulmonary gradient (TPG) < 10 mmHg. Finally, the optimal Echocardiographic
measurements associated with successful weaning (Table 2f) include ventricular power
(PWR) > 4 mW/cm4, a positive increase in stroke area (SA), stable systolic arterial pressure
(ApSys), and stable fractional area change (FAC).
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This set of data with 28 elements was augmented with the frequency of keywords identified
by NLP analysis within free text of the shift notes of the clinical engineers. These were
clustered according to five contextual categories: (1) VAD malfunction, (2) socialization, (3)
ambulation, (4) positive descriptor, and (5) nutrition. (See Error! Reference source not
found. Table 3) When compared to transplanted patients, weaned patients were associated
with fewer reports of VAD malfunction, better nutritional status, greater activity level,
greater prevalence of positive descriptors, and received more visits from families and
friends, as shown in Figure 4.

The predictions by this data-driven model summarized in Table 4a, mis-identified 2 of the
19 patients: classifying one patient that was successfully weaned as a transplant candidate,
and one who was transplanted which the model identified as a candidate for weaning.

3.2 Expert Model
The predictive accuracy of the expert model is presented in Table 4b. This model was less
accurate than the data model: identifying 6 of the 10 patients that were successfully weaned
from VAD support; while the other 4 weaned patients were incorrectly identified as
transplant candidates.

3.3 Hybrid Model
The hybrid model inherited the structure and numerical parameters from the previous two
models. This model performed the best: producing only one incorrect prediction:
recommending that a patient who had been weaned should have received a cardiac
transplant. (See Table 4c.) This model has a prediction accuracy of 94.74% with 95%
confidence interval between 75.37% and 99.07%. It is worthy of note that this patient
eventually required a cardiac transplant within one year of weaning from VAD support.

4. Comments
The decision to wean a patient from VAD support entails processing complex, uncertain,
and incomplete data which are dynamically evolving. In lieu of a definitive set of
quantitative criteria, the decisions ultimately rely on the expert intuition and experience of
the clinician. Consequently, those centers with greater patient volume are at an advantage
compared to those treating only a few VAD patients per year. The introduction of clinical
decision support system (CDSS) provides the potential to translate valuable expert
knowledge to standardize, personalize and optimize VAD weaning therapy based on multi-
factorial criteria. This may ultimately lead to a greater proportion of patients who are
considered for weaning, which may in turn increase the proportion of patients initially
referred for VAD insertion.

The translation of expert knowledge is not necessarily straightforward. In the present study,
the counter-intuitive inaccuracy of the expert model suggests that the experts are not fully
able to articulate the algorithm(s) by which they themselves formulate their treatment
strategy. The data-driven model was also imperfect. It is also counter-intuitive that the
combination of two imperfect models would yield an improved model. This may suggest
that incorporation of expert knowledge serves to partially offset the effects of the small
sample size of the data-driven model.

Conversely, the results of this study may be interpreted as suggesting that an otherwise
imperfect model of the expert’s decision process may be improved by the addition of
quantitative, statistical data. Accordingly, the variables that were excluded from the expert
model (Figure 1), yet shown to be statistically relevant can be subdivided into two sets:
those which are consistent with clinical expectations and those which are either counter-
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intuitive or for which there is no clinical benchmark. The former variables, such as such as:
duration of implantation, gender, age, race, etc. can be readily introduced into the expert
model – with the approval of the expert – to correct for omissions that were “overlooked”
when originally interrogating the expert(s). The counter-intuitive variables would be more
appropriate for inclusion in the Bayesian component of the hybrid model.

A limitation of this study is the apparent bias introduced by the exclusive use of a single-
center experience. The decision model would clearly benefit from enlarging the data set to
include multiple centers and enlarging the expert knowledge base beyond the 11 polled in
this study. Implementing this system across multiple medical centers will provide an
opportunity to combine expert understanding of causal and/or synergistic relationships
between parameters, which may improve the topology of the Bayesian network, compared
to the naïve structure of the present model. On the other hand, it might be advisable to limit
the data to the most experienced and/or successful centers, so as to translate their success to
less experienced centers.

An additional bias was introduced by the pre-selection of the 19 patients used for this study.
Although the prediction accuracy of the hybrid CDSS reported herein was very good
(94.74%), the associated 95% confidence interval was relatively wide (75.37% ~ 99.07%).
To achieve 94% lower bound of the confidence interval would require 1500 patients
according to statistical power analysis. By virtue of the retrospective treatment of these data,
it was not advantageous to include the 172 VAD patients that were not considered for
weaning (between 1996-2004 at UPMC) since there is no way to discriminate
retrospectively between patients that could have been entered into the weaning protocol.
Likewise there is no way of knowing if the historic clinical decisions of the 19 patients are
necessary correct or optimal decisions. Accordingly, an ongoing prospective study is
currently being conducted wherein every consenting patient who receives a VAD is
enrolled. By also evaluating long-term outcomes and adverse events, this ongoing study is
hoped to provide a more informative and accurate decision support model.
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Abbreviation List

Term Abbreviation

Artificial neural network ANN

Systolic Arterial Pressure ApSys

Aspartate Amino Transferase AST

Bayesian Belief Network BBN

Bi-ventricular assist device BiVAD

Blood Urea Nitrogen BUN

Clinical decision support system CDSS

Cardiac Index CI

Creatinine Clearance CREAT

Echocardiography ECHO
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Term Abbreviation

Ejection Fraction EF

Fractional Area Change FAC

Heart Rate HR

Dehydrogenase LD

Left ventricular assist device LVAD

Magnesium MG

Mean Pulmonary Artery Pressure MPAP

Natural language processing NLP

Pulmonary Capillary Wedge Pressure PCWP

Pulmonary Vascular Resistance PVR

Ventricular Power PWR

Respiratory Exchange Ratio RER

Reticulocyte Count RET

Right Heart Catheterization RH CATH

Stroke Area SA

Transpulmonary Gradient TPG

University of Pittsburgh Medical Center UPMC

Ventricular assist device VAD

Peak Oxygen Consumption VO2
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Figure 1.
Flowchart of the knowledge derived model for assessment of patients’ readiness for
weaning, based on expert interviews. (ECHO: echocardiogram weaning study, LV: left
ventricle, EF: ejection fraction, SA: stroke area, RH CATH: right heart catheterization,
PCWP: pulmonary capillary wedge pressure, CI: cardiac index, HR: heart rate, MVO2: Peak
oxygen consumption, RER: respiratory exchange ratio)
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Figure 2.
Simple example of relationship between variables “Primary Device” and “Outcome”
illustrating nodes, states and probabilities.
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Figure 3.
Hybrid BBN model combining expert and data models.
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Figure 4.
Results of natural language processing (NLP) of shift notes.
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Table 2
Artificial neural network (ANN) analysis results of 28 independent variables, organized
by data category; corresponding states for each variable and patient numbers of two
outcomes under different variable states

(a) Minimized set of patient Demographics variables

Node Name State Wean Transplant

Primary Device
Bi-VAD 5 7

LVAD 5 2

Days Implanted
<100 8 2

>100 2 7

Age
<=37 7 3

>37 3 6

Race

Caucasian 9 7

Oriental 1 0

Black 0 1

Arabic 0 1

Sex
Female 7 5

Male 3 4

Diagnosis

DM Postpartum 4 2

DM Myocarditis 3 0

DM Idiopathic 1 3

DM Ischemic 1 1

Acute Ischemic HD 1 2

Valvular HD 0 1

(b) Minimized set of Complication variables

Node Name State Wean Transplant

Bleeding
No 6 2

Yes 4 7

Re-Operation
No 4 2

Yes 6 7

Tamponade
No 9 7

Yes 1 2

Renal
No 10 7

Yes 0 2

(c) Minimized set of Laboratory Test variables

Node Name State Wean Transplant
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(a) Minimized set of patient Demographics variables

Node Name State Wean Transplant

AST
0-250 6 4

>250 4 5

CREAT
0-1.9 7 2

>1.9 3 6

BUN
2.0-47.0 7 2

out of range 3 7

RET
3.2-10 5 3

out of range 2 5

MG
1-2.6 7 2

out of range 3 7

LD
167-1022 5 2

out of range 5 6

(d) Minimized set of Exercise Test variables

Node Name State Wean Transplant

Exercise Time
>= 5 mins 7 1

< 5 mins 0 3

VO2%
> 45 6 1

< 45 1 2

METS
> 4 6 0

< 4 1 3

HR% Target
> 80 6 1

< 80 1 2

(e) Minimized set of RH Catheterization variables

Node Name State Wean Transplant

PCWP
< 24 7 3

> 24 2 4

PVR
< 1.1 5 1

> 1.1 4 4

MPAP
< 25 7 3

>= 25 2 4

TPG
< 10 7 2

>= 10 1 4
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(a) Minimized set of patient Demographics variables

Node Name State Wean Transplant

(f) Minimized set of Echocardiographic variables

Node Name State Wean Transplant

PWR
> 4 7 1

< 4 1 7

SA

increased > 0.2 5 0

maintained 2 1

decreased >0.2 2 6

ApSys
change < 40 5 0

change > 40 0 4

FAC
change < 10 6 2

change > 10 3 5
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Table 3
Word examples for five contextual categories in NPL processing

VAD malfunction Socialization Ambulation Positive descriptor Nutrition

alarm
positive flash
(poor filling)

visiting
family
friends

walked
stairs

bike, chair
outside

physical therapy

happy
good

improving
talkative

eating
cafeteria

(good) appetite
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Table 4
Predictions of each of three models compared to actual clinical strategies. Note, one
“falsely” predicted transplant who was actually weaned from VAD ultimately received
transplant at 1-year

(a) Model 1: Data-Derived Knowledge

Actual

Wean Transplant

Predicted
Wean 9 1

Transplant 1 8

Total: 10 9

(b) Model 2: Expert Derived Knowledge

Actual

Wean Transplant

Predicted
Wean 6 0

Transplant 4 9

Total: 10 9

(c) Model 3: Hybrid (Expert + Data)

Actual

Wean Transplant

Predicted
Wean 9 0

Transplant 1* 9

Total: 10 9

*
required transplant at 1-year post-weaning
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