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Abstract: This paper deals with the potential and limitations of using voice and speech processing to detect 

Obstructive Sleep Apnea (OSA). An extensive body of voice features has been extracted from patients who 

present various degrees of OSA as well as healthy controls. We analyze the utility of a reduced set of features for 

detecting OSA. We apply various feature selection and reduction schemes (statistical ranking, Genetic 

Algorithms, PCA, LDA) and  compare various classifiers (Bayesian Classifiers, kNN, Support Vector Machines, 

neural networks, Adaboost). S-fold crossvalidation performed on 248 subjects shows that in the extreme cases 

(that is, 127 controls and 121 patients with severe OSA) voice alone is able to discriminate quite well between 

the presence and absence of OSA. However, this is not the case with mild OSA and healthy snoring patients 

where voice seems to play a secondary role. We found that the best classification schemes are achieved using a 

Genetic Algorithm for feature selection/reduction. 
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1 Introduction 

Obstructive Sleep Apnea Hypoapnea Syndrome (OSA for short) is a common sleep disorder that 

manifests itself by daytime sleepiness caused by a cease in breathing occurring repeatedly during 

sleep, often for a minute or longer and as many as hundreds of times during a single night. 

OSA is associated with a reduced-caliber upper airway, and repetitive effects of apneas and 

hypopneas include oxygen desaturation, reductions in intrathoracic pressure, and central 

nervous system arousals [1]. Diagnosis of the sleep condition is based on the calculation of 

the apnea–hypopnea index (AHI) which measures the frequency of reductions in airflow 

associated with upper-airway collapse or narrowing that occurs with the state change from 

wakefulness to sleep [1]. The gold standard procedure to determine the AHI is polysomnography, 

however it is a quite costly methodology [2]. No other measure has proven to be superior to AHI 

in assessing the overall effect of obstructive sleep apnea. Nevertheless, there is no common 

consensus between laboratories regarding its definition. Other metrics such as the number or 

frequency of arousals during a night sleep might be considered an equally good indicator of 

OSA [1]. Thus, seeking alternative methods of diagnosis that are simpler and more cost 

effective is fully motivated, and in recent years it was advocated that voice may play a central 

role into detection of OSA syndrome. Preliminary findings on speech disorder in OSA have 

been reported firstly in [3] employing a rather small sample (39 subjects) and subjective 

results of acoustic evaluation of voice changes in OSA, followed by a study [4] on a bigger 

sample (252 patients) giving again only subjective judgement results. An attempt to a more 

objective evaluation study was given in [5]. To discriminate between OSA patients and 

controls, the authors apply spectral analysis to vowels, but again the sample taken into 

account is small (28 subjects). Recently, in [Error! No s'ha trobat l'origen de la 

referència.] and [Error! No s'ha trobat l'origen de la referència.] the authors show the 

importance of using voice as a discriminatory factor for detection of severe sleep apnea 

employing Gaussian Mixture Models on phrases (in [Error! No s'ha trobat l'origen de la 

referència.]) and on vowels (in [Error! No s'ha trobat l'origen de la referència.]). 

However, the authors recognize the need for a wider training and validation sets. So far, either 

due to small samples or subjective judgements, it is hard to quantify up to what extent or 

under what circumstances we might consider voice as a good discrimination measure between 

OSA and healthy subjects. Recent efforts such as [6] try to model the upper-airway in OSA 

subjects as compared to controls by employing computational fluid dynamics models, and 

they conclude that there is a clear tendency to closure of the upper-airway in OSA. As the 
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upper-way coincides in part with the vocal tract, the thinning of the lumen and tendency to 

closure experienced in OSA do suggest that there may be an identifiable dysfunction in voice 

also.  

2 Method 

2.1 Subjects 

We have 376 subjects that undertook this study, both controls (proven healthy subjects) as 

well as snoring OSA suspects, mild OSA and severe OSA patients, 123 women and 253 men, 

with ages comprised between 18 and 82. This cross sectional data has been pooled from 

several state hospitals in Spain (namely from Vitoria, Lleida, Cruces and Valdecillas). The 

diagnosis for each patient was confirmed by specialized medical staff through 

polysomnography (PSG) or through respiratory polygraphy (RP) whenever PSG was not 

available.  For the present study we consider AHI  5 as controls (healthy subjects) and AHI 

 30 as severe OSA patients, which is in agreement with the recommendations made by the 

American Academy of Sleep Medicine [9]. For the purpose of clarity, along the present study, 

we call these subjects extreme cases, while in-between we may have mild OSA, or snoring 

non-OSA patients. Thus, among the total of 376 available cases we extract a group of 127 

controls and a group of 121 severe OSA with the following characteristics: 

(Table 1) 

2.2 Voice database 

Speech was recorded using an AKG Perception 100 condenser microphone, a Digidesing M-

box


 sound card (Avid Audio), and a sound acquisition software by Pro Tools


 (Avid Audio). 

The microphone was held 20 cm away from the subject’s mouth, by a technician designated 

for this task. The audio signal was sampled at 44.1 kHz with 16 bits per sample, and recording 

was done for two distinct positions for each subject: upright or seated (‘A’ position) and 

supine or stretched (‘E’ position). Before each recording session, during 3 minutes the patient 

was kept as comfortable as possible in order to induce a relaxation feeling as stress is known 

to affect voice [10]. The room’s ambient was kept quiet, in dim comfortable light and no 

external noise. Each subject was asked to emit the 5 vowels present in Spanish language that 

are: /a/, /e/, /i/, /o/, /u/ in a sustained fashion for at least 4 seconds each. Additionally, the 

patients were asked to utter the following sentence (in Spanish): \De golpe nos quedamos a 

oscuras\. Between each utterance a silence gap of 2-3s was enforced through the recording 
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protocol. The reason for using two distinct uttering positions (‘A’ and ‘E’) was that as gravity 

and head position affect differently the vocal tract when seated and when stretched, the sound 

properties also change [11, 12]. Therefore, we add a second source of information per patient 

besides the utterance in the more common position (seated). To the best of our knowledge, 

this is the first attempt to detect OSA through voice analysis that uses this idea. All recordings 

are done by technicians from the sleep units in the 4 hospitals participating in the study, all 

technicians being “blind” with respect to the outcome of the experiment. 

2.3 Voice features 

A total of 253 features per patient where extracted from the utterance of 5 vowels and a 

sentence in two distinct positions. The rationale behind choosing the following listed features 

is that most of these measures have been previously employed for detection or 

characterization of pathological voice. Our working hypothesis is that severe OSA may 

present abnormalities in the voice production, such as increased nasality, harshness or 

dullness, which is also in agreement with previous findings (see [3, 4, 5, Error! No s'ha 

trobat l'origen de la referència.]). The features may be grouped as follows. 

2.3.1 Formant and pitch based 

For each vowel we compute the second formant using the classical algorithm of root finding 

for the Linear Predictive Coefficient polynomial [13], with a previous octave-jump filtering 

step. Next, we extract the Mean Frequency (MF), Coefficient of Variation in Frequency 

(CVF), Jitter Factor (JF), Relative Average Perturbation (RAP), Mean Bandwidth (MBW) 

and Coefficient of Variation of the Bandwidth (CVBW). Definitions of these measures are 

given for example in [14, 15]. Voice pitch is extracted for each vowel employing an improved 

autocorrelation method given in [16]. The postprocessing octave-jump filtering stage and the 

features extracted from pitch are exactly the same as in the case of the second formant. 

2.3.2 Time domain analysis 

The time signal (one signal for each vowel and each subject position) yields a set of features 

that are pitch-synchronous in that we take as a reference signal the pitch extracted in section 

2.3.1. The features (see [17] for detailed definitions) are the Mean Intensity/Amplitude 

(MIA), the Coefficient of Variation of the Intensity/Amplitude, the Shimmer of the signal 

Intensity (SIA) and a measure of the perturbation in the signal amplitude: Amplitude 

Perturbation Quotient (APQ). 
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2.3.3 Voice harshness and turbulence analysis 

The first measure employed is related to the content of harmonics present in voice (versus 

non-harmonics content, denoted as noise) and is commonly designated as Harmonics to Noise 

Ratio (HNR). To compute HNR we took a well-established frequency method described in 

[18] among other more basic variants such as [19, 20]. A particularly useful feature as turned-

out to be from results obtained (see section 3) is the MHNR: the mean HNR computed at the 

beginning (approximately the first second) of vowel \a\. Other measures are the Soft 

Phonation Index (SPI) and the Voice Turbulence Index (VTI). VTI measures the turbulence 

components caused by incomplete or loose adduction of the vocal folds; SPI evaluates the 

poorness of high-frequency harmonic components that may be an indication of loosely 

adducted vocal folds during phonation. In our implementation we compute SPI and VTI 

according to definitions in [14] but employing the improved algorithm in [18] to calculate the 

intra-harmonic and inter-harmonic energies present in the voice signal. 

2.3.4 Linear prediction analysis 

Based on a linear predictions analysis on the voice signal, we extracted the Pitch Amplitude 

(PA) and Spectral Flatness Ratio (SFR) with methods described in [21].  PA measures the 

dominant peak of the residual signal auto-correlation function, and SFR quantifies the flatness 

of the residue signal spectrum. 

2.3.5 Dynamical systems analysis 

To account for significant nonlinear and non-Gaussian random phenomena present in 

disordered sustained vowels we employ two features inspired by dynamical system analysis 

performed on the voice signal. These features were introduced in [22]. The authors apply 

state-space recurrence analysis to produce an entropy measure Hnorm, and Fractal scaling 

analysis that yields a measure called Detrended Fluctuation Analysis (DFA).  

2.3.6 LTAS based 

So far, we introduced features computed on sustained vowels. Next, we present features 

extracted from phrase analysis. The core analysis method of the sentence was Long-Term 

Average Spectrum (LTAS).  In [23, 24] the authors focus on the use of LTAS to quantify 

voice quality, and therefore we find LTAS as a suitable (and quite simple) method for 

detecting a decline in voice quality for severe OSA. Based on LTAS we extract the following 



 6 

features: the Absolute Spectral Slope (SLOPE_LTAS), statistical measures: spectral centroid 

(CENTRAL_LTAS), spectral spread (SPREAD_LTAS), spectral skewness 

(SKEWNESS_LTAS), spectral kurtosis (KURTOSIS_LTAS). Next, we have the spectral 

roll-off (ROLLOFF_LTAS) which, as the SLOPE_LTAS measure, quantifies the energy 

decay at higher frequencies. Finally, we have two measures computed on 5 frequency bands 

of the LTAS: the Spectral Flatness Ratio (SFR15) and Spectral Crest (SC15); the 

frequencies bands are:  175 – 500 Hz, 500 – 1000 Hz, 1000 – 2000 Hz, 2000 – 3000 Hz, and 

3000 – 4000 Hz. 

The nomenclature used for the features is as follows: for vowels we have 

[measure]_V[position]_[vowel] as in, for example, SFR_VE_O, while for the phrase we have 

[measure]_F[position], as in, for example, SC2_ltas_FA. 

2.4 Classification problem 

In order to quantify the utility of voice in detecting OSA, we focus primarily on the binary 

classification problem of the extreme groups: the control group and the severe OSA group. If 

voice were to be considered an important factor in detecting OSA, then it should discriminate 

well at least the most extreme categories.   

2.4.1 Classifiers 

The discrimination power is measured through experiments we perform with several 

classifiers. 

The first classifier employed was a classical Multi Layer Perceptron (MLP) Neural 

Network trained with the Back Propagation technique with an adaptive learning rate [26]. As 

discussed in section 2.5 we will perform a feature input-space reduction to 5 dimensions. We 

choose a two hidden layer MLP with ni:nh1:nh2:no, where the number of inputs  ni = 5, the 

number of nodes on the first hidden layer nh1= 10, the number of nodes on the second hidden 

layer nh2=5, and the number of output nodes no = 2 (as we have two classes). The activation 

function (transfer function) is the hyperbolic tangent sigmoid function. The inputs suffered a 

pre-normalization step, that is: all features values where linearly mapped to  1, 1  ; The 

MLP runs for TMLP =750 iterations (epochs) found sufficient to achieve a low classification 

error margin and a good generalization for most of the runs. 

Next, we apply a Support Vector Machine [27] classifier which is a powerful kernel-

based classification paradigm. We used the simple linear kernel variant SVM (SVMlin) that 
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performs a linear discrimination, and the non-linear kernel variant (SVMpoly) which employs a 

polynomial kernel of degree 3, capable of finding nonlinear decision boundaries between 

classes. 

AdaBoost [28] is a classifier that combines several weak classifiers (in our 

implementation these weak classifiers are decision trees) to produce a powerful classification 

scheme with good generalization capabilities. AdaBoost is quite successful in modern face 

recognition applications [29]. 

We also employed a k-Nearest Neighbour (KNN) classification strategy [32] where 

the number of neighbours was taken to be 5. 

Finally, we checked the performance of a classical Bayesian Classification (BC) 

scheme that uses a multivariate Gaussian model for the distribution of each class, assuming 

independence between features (a diagonal covariance matrix for the model,  implying a 

linear decision boundary) [32, 28]. 

2.4.2 Crossvalidation 

In order to obtain a good estimate of the classifier’s performance on a relatively reduced set of 

patterns, as the one employed in our study, we may first perform a crossvalidation process 

and then draw suitable conclusions on the mean classification errors obtained. We employ an 

S-fold crossvalidation method [28] that consists of dividing the ordered set of patterns into S 

contiguous chunks containing approximately the same number of patterns each, and then 

performing S training-testing experiments as follows: for each chunk  1, 2, ,i S  we hold 

the current chunk for testing the classifier and we perform training on the remaining S-1 

chunks, recording the results. We repeat the S training-testing experiments for a number of  

trials, each trial starting with a random permutation of the whole set of patterns. The main 

result of each training-test experiment is the Correct Classifications Rate (CCR) expressed as 

a percentage. The S-fold crossvalidation yields a matrix of   S of results from each training-

testing experiment.  We denote the matrix as CCR. The process is identical for all classifier 

but the MLP.  It is well-known that neural networks are prone to get stuck in local minima of 

the error surface as basically they perform a gradient-descent or other similar local 

optimization with respect to the free parameters (weights, biases) [26]. Therefore, for a given 

set of training and test patterns it is important to perform several trials with different (usually 

random) starting points (values for weights and biases) and take into account the best run. In 

our case, the S-fold crossvalidation for the MLP performs  runs of the neural network with 
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randomly taken starting points (random initialization), for each of the   S training-testing 

experiment. After one such experiment we record only the best run in  runs. Thus, the matrix 

of recorded results CCR will still be   S dimensional. For all experiments we took S = 5,  = 

50, and  = 20. 

2.5 Feature reduction 

Due to the high number of features employed in our study, which is 253, and the relatively 

low number of available subjects (248), in order to avoid the curse of dimensionality [30] (i.e. 

a uniform and sufficiently dense sampling in such high dimensional spaces, requires a huge 

number of data/patients), we must reduce the dimensionality of the feature space. We do so 

using two strategies: feature selection (find a small number of representative features) and 

feature combination (apply a transformation to the input feature space to produce a reduced 

output feature space). In all cases we perform a strong reduction from 253 to 5 variables (i.e. a 

5-dimensional feature vector). 

2.5.1 Feature Ranking 

The first method used to reduce the dimensionality of the feature space is a selection scheme 

that first ranks all features according to a statistical test of the discrimination power of each 

feature. Discrimination refers to the values each feature may take for the two classes involved 

in the comparison: control group and severe OSA.  We observed that most of the features for 

both classes have a distribution that deviates significantly from the normal distribution and 

moreover they present outliers (Fig. 1a). Therefore, the test employed should not rely on 

normality assumptions, and we choose for a nonparametric test that is the two-sample 

unpaired Wilcoxon test (also known as the Mann-Whitney u-test) [31]. The method ranks the 

features in the entire set  of 253 features using the independent evaluation criterion for 

binary classification. This yields a number Z for each feature which is the absolute value of 

the u-statistic. Moreover, we outweigh the Z values using the following equation: 

 final 1Z Z              (1) 

where  0,1  a parameter of the method and  is the Pearson cross-correlation coefficient 

between the candidate feature and all previously selected features. We took  = 0.9, that is we  

outweigh the significance statistic, meaning that features that are highly correlated with the 

features already picked are less likely to be included in the output list. Finally, we sort in 
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decreasing order all features upon Zfinal, taking the 5 features which correspond to the top 5 

Zfinal values. 

2.5.2 Genetic Algorithms-based feature selection 

Genetic Algorithms (GAs) as part of the wider field of Evolutionary Algorithms (EAs) are 

population-based, stochastic search and optimization methods inspired by the natural 

evolution process [33]. The populations consist of a fixed number of potential solutions to the 

optimization problem, called “chromosomes”. That is: 

 1iP x i N   and  1, , , , , 1 , 1i i il ij j jx x x x vlb vub i N j l         R  (2) 

with N the size of the population P and xi the chromosomes in P defined (for the present 

application) as vectors of integer genes xij; vlbj and vubj represent the lower and upper bound 

respectively of the genes’ values. Each chromosome xi bears a utility score F(xi) called fitness 

in direct relationship with the optimization criterion. It is expected that by repeated 

application of selection of the best chromosomes and variation operators called crossover and 

mutation to the whole population, the algorithm evolves such as the average fitness of the 

chromosomes increases/decreases (maximization/minimization). The final populations 

contain the optimal or near optimal solutions.  

For feature selection purpose, each gene corresponds to the index of a feature in , 

thus it is an integer between 1 and 253 (i.e. vlbj =1, vubj =253, j), and l = 5 as we want to 

reduce the dimension of the feature set to 5. That is, the GA seeks the best combination of 5 

unique features from the entire set of available features , according to an optimization 

criterion (fitness function). The termination criterion of the algorithm is the expiration of the 

maximum number of generations the GA is let to run (Tmax). 

Selection is a probabilistic mechanism which chooses the best individuals (i.e. 

minimum fitness) with some probability from the current generation and passes them to the 

next generation. We have adopted a binary tournament selection scheme [33] due to its 

constant selection pressure over time [34]. We prevent losing the best individuals from the 

population [35] by an elitist replacement of the 5 worst individuals in each generation with 

the 5 best individuals in the previous generation. We used a rather high number of elites (i.e. 

5) as we adopt a relative high mutation rate as well (see end of this subsection).  

The fitness function we propose is in direct relationship with the classification 

performance. We choose the fitness function for a given chromosome x (i.e. a given 
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combination of l features) to be proportional to the Error Rate (ER%) obtained after 

measuring how well a classifier discriminates the two classes using the features x. As we 

perform minimization we seek the best combination of l features that minimizes ER or 

equivalently minimizes the quantity 100 – CCR%. We evaluate the performance of the 

classifier by performing an S-fold crossvalidation as described in section 2.4.2. The fitness 

function should penalize the repetition of features in a chromosome x – we seek a vector of l 

unique features. It should also penalize a high variation of the CCR values in the S-fold 

crossvalidation for chromosome x, as we seek, besides high CCR values, a reduced variation 

of CCR between training/testing experiments in the crossvalidation. That is, f(x) should 

increase substantially if we encounter repetitions of the features and should increase mildly 

with the variance of the CCR results after S-fold crossvalidation. The fitness (minimization) is 

taken as:  

          rep

penalty term2penalty term1

( ) 100 vec std vec  rep ,
x

f x x x x e x P      CCR CCR           (3) 

where f(x) is the fitness of feature vector x, “vec” represents the operator that stacks 

the matrix columns into a vector, the upper horizontal bar is the average operator,  is the 

weight of the first penalty term which is the standard deviation of CCR, “rep” is the repetition 

operators that counts how many repeated features occur in the feature vector x, and is used for 

the second penalty term. By increasing f(x) through the penalty terms, due to the selection 

effect in the population, such “bad” chromosomes tend to disappear after several generations 

of the GA.  

The variation operators are: Uniform Crossover (AX) defined in [36] and applied to 

pairs of chromosomes with some probability Pc. Mutation (flip mutation) [33] replaces, with 

some probability Pm, the gene's value at a given locus j with a random value in [vlbj, vub j]. 

The GA population is initialized as follows: half of the chromosomes in the 

population, chosen at random, get theirs initial gene’s values by picking randomly for each 

gene the index of a feature in the top 62 (approximately a quarter of the features in ) of 

previously ranked features. Features are ranked according to the decreasing ordered set of 

Zfinal values as described in section 2.5.1. Thus, we assure that at least half of the population 

has been initialized with good features, the rest of the population being initialized with 

random values in [vlbj, vub j]. Random initialization is a standard procedure for GA that 

allows for a wide exploration of the search space from the first generation. 
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The parameterization of the GA in all our experiments is the following: N = 50 

individuals, Tmax = 100 generations, Pc = 0.9, Pm = 0.2,  = 0.5; the S-fold crossvalidations 

when calculating the fitness have S = 5,  = 10, and in the case of the neural network (MLP)  

= 5. 

2.5.3 Feature combination 

We may reduce the dimensionality of the feature space by performing linear transformation 

and taking the most important components. We adopt Principal Component Analysis (PCA) 

which is a well-known statistical technique that has been widely used in data analysis and 

compression (for example, articles such as [37] and textbooks such as [28] present reviews of 

the method). The goal of the method is the compression of a high-dimensional input data into a 

lower dimensional space, without loss of relevant information. To capture the main features of 

the data set, PCA is looking for directions along which the dispersion or variance of the point 

cloud is maximal. These "principal" directions form a subspace of lower dimension than the 

original input space. The projection of the data onto the respective subspace will yield a 

transformation similar to compression, which minimises the loss of information according to the 

Minimum Mean Square Error criterion. In our case, we perform the transformation over the 

253-dimensional feature space and take only the first 5 principal components. 

Fisher’s Linear Discriminant Analysis  (LDA) is a well known dimensionality reduction 

scheme [32] that projects the patterns onto a lower dimensional subspace such that the classes 

become “more separable” according to a criterion (maximization) called the Fisher Linear 

Discriminant. 

 

3 Results 

3.1 Discriminating potential of voice features 

We may analyze the discriminating potential of voice features (section 2.3) by looking at the 

top 5 features as yielded by the ranking method described in 2.5.1. These features (in 

decreasing order of the Zfinal values) are the following: 'MEAN_HNR_VA_A', 'VTI_VE_A',    

'MBW_formant2_VA_E', ‘MBW_formant2_VE_I', ‘MF_formant2_VE_U'. The best feature 

is therefore 'MEAN_HNR_VA_A' that passes (favours the alternative hypothesis) the 

Wilcoxon two-sampled test of difference in medians with a good p-value, p = 2.09  10
-10

 (the 

null hypothesis states that medians are equal for the two groups – control and severe OSA – 
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and we reject the null hypothesis at a 1% significance level with a quite small p-value, p < 

0.01). From the boxplot in Figure 1, the difference between the distribution of  

'MEAN_HNR_VA_A' is apparent. Moreover, from histograms in Figure 1a and Figure 1b it 

is apparent that distributions for the two groups seem to depart from normality and outliers 

occur. This justifies the use of a non-parametric robust statistical test, in the first place (i.e. 

Wilcoxon test). Furthermore, besides the mean and standard deviation values we gave the 

median values as well, less affected by outliers and heavy tail skewed distributions. It is 

relevant to note that the use of 'MEAN_HNR_VA_A’ was inspired by studies that try to 

discriminate between normal voice and sleepy voice [38], as we consider that severe OSA 

patients may exhibit certain fatigue in voice. Looking at the next 4 features and applying the 

same statistical test, it follows that for all features, the medians between groups cannot be 

considered equal, and this is a strong assertion judging by the very small p–values obtained (p 

< 0.00001): 2.05710
-12

 ('VTI_VE_A'), 1.484310
-8

 ('MBW_formant2_VA_E'), 2.7710
-8

 

(‘MBW_formant2_VE_I'), 1.910
-6 

(‘MF_formant2_VE_U'). Even though 'VTI_VE_A' has a 

smaller p–value than 'MEAN_HNR_VA_A', the ranking method outweighed this feature as it 

was found to be correlated to 'MEAN_HNR_VA_A'. Statistics performed indicate that, at 

least taking into account the top 5 ranked features, voice may be considered distinct between 

the extreme groups: control and severe OSA. 

3.2 Classifier comparison 

The results of the S-fold crossvalidation for all classifiers and feature reduction schemes are 

given in Table 2. It follows that the best strategy in terms of CCR (average 82.04%), 

Sensitivity (average 81.74%) and Specificity (average 82.40%) is the Bayesian Classifier 

(BC) with featured selected by the GA (denoted as BC-GA for short). BC-GA also achieves 

the smallest standard deviations of the CCR/Sensitivity/Specificity triplet among all classifiers 

and all feature selection methods. The second best strategy is the SVM with linear kernel 

(SVMlin) and features selected by the GA, and the third best is the MLP with a dimensionality 

reduction through LDA. GA achieves the best or close to best 5 features for each classifier, 

and therefore is the best feature selection scheme, while LDA is the best feature combination 

method. 

 A closer look at the results of the BC – GA (Fig. 2) indicates that Sensitivity (Fig. 2a) 

and Specificity (Fig. 2b) present a skewed distribution with longer tails for smaller than 70% 

values (the skewness is -0.47 for Sensitivity and -0.21 for Specificity), therefore we might 

consider that the most representative (probable) values for the Sensitivity and Specificity are 
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closer to the mode than to the mean of the distribution (Sensitivity  83%, and Specificity  

88%). 

 

(Figure 1)  

 

It is instructive to see what are the 5 features selected by the GA in the case of BC-GA: 

'CVF_pitch_VE_A', 'VTI_VE_A', ‘MBW_formant2_VE_E', 'APQ_VE_I', 'SC2_ltas_FA'. 

One of the features is related to the phrase analysis and is the Spectral Crest of the LTAS for 

the second frequency band 500 – 1000 Hz ('SC2_ltas_FA', see section 2.3.6).  Thus, both 

vowel processing and phrase processing are important in decision making. 

The best triplet (CCR, Sensitivity and Specificity) in a single training – test run of the 

BC-GA during the S-fold crossvalidation is CCR = 96%, Sensitivity = 96% and Specificity = 

96%. 

Next, we consider an ensemble of the three best classifiers: BC-GA, SVMlin-GA and 

MLP-LDA. We apply majority vote for the outputs of the classifiers to decide the class to 

which each pattern pertains. For the whole ensemble we apply the S-crossvalidation process 

as before and get a slight improvement of the results as given in Table 3.  The best triplet 

(CCR, Sensitivity and Specificity) in a single training – test run of the ensemble classifier 

during the S-fold crossvalidation is CCR = 95.91%, Sensitivity = 92.85% and Specificity = 

100%. 

Next, we check the performance on “in-between cases”, that are snoring patients and 

mild OSA. These cases have an AHI between 5 and 30. We check the performance of the BC-

GA on a group of 128 patients, where we consider AHI = 15 as the border between non-OSA 

(below this threshold) and OSA (above this threshold). We have 65 non-OSA and 63 OSA 

patients, 24 women and 104 men, with ages comprised between 21 and 76, mean 48, median 

48 and mode 42. BMI ranges from 18 to 47, mean 29, median 28 and mode 26. We train the 

BC-GA on all 248 extreme cases (patterns considered in previous sections) and test the 

classifier on the 128 intermediate cases only.  

 

 

 

(Table 2) 

(Figure 2) 
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(Table 3) 

 

 

We get a CCR = 70.31%, with a Sensitivity = 73.01% and a Specificity = 67.69%. This is a 

clear drop in performance with respect to validation on extreme cases, meaning that it is 

difficult to discriminate between milder OSA and non-OSA/snoring patients based solely on 

knowledge acquired from the voice in the extreme cases group. Moreover, we may perform 

an S-fold crossvalidation (S = 5,  = 50) on the intermediate patients alone. In this case, we 

get the results presented in Table 4, which again show a dramatic drop in performance. We 

may conclude at this point that it is hard to build an efficient classifier using the intermediate 

cases alone, and is preferable to build the classifier on the extreme cases (this assures, at least, 

a good recognition rate for the extreme cases: CCR above 80%) and a recognition rate (CCR) 

for the intermediate validation cases around 70%.  For completion, we also perform a S-fold 

crossvalidation on all 376 patterns (union between extreme and intermediate cases). Results 

are given in Table 5. 

  The classifier trained on extreme cases achieves the best results when validated on 

extreme cases, and significantly worse results when validated on intermediate cases. A 

potential means of sieving-out the intermediate cases prior to application of the classifier (in a 

screening scenario, for example) would be the use of simple parameters from the patient’s 

medical or clinical record, readily available standard measures such as age, BMI, neck 

circumference, Epworth sleepiness scale (EPW), blood pressure, etc. Numerous studies such 

as [39, 40, 41, 43] are investigating the relationships and correlations between such standard 

measures and the OSA. We may perform a quick check of these relationships by computing 

the Pearson linear correlation coefficient () between basic measures and AHI on our body of 

248 extreme cases. We obtain  = 0.60 (p-value < 10
-25

) for the correlation between AHI and 

age,  = 0.49 (p-value < 10
-20

), for the correlation between AHI and BMI, and  = 0.29 (p-

value < 10
-20

), for the correlation between AHI and EPW. These values indicate that we can 

rely on the assumptions that these measures (especially age) are correlated to AHI, therefore 

they may be employed to cull-out potential intermediate cases. For example, cases with ages 

between 30-45, relatively low or medium BMI, medium EPW values, evidence of snoring 

during nightsleep, may be discarded as intermediate cases prior to the application of the 

classifier. Such intermediate cases need a deeper analysis, and fusion with other more 

traditional sources of information (such as the established means of diagnosis: RP, or PSG). 
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 Finally, it is worth mentioning that more complex classifiers such as SVMpoly or KNN 

that attain nonlinear decision boundaries have less generalization capabilities than simpler 

classifiers such as BC or SVMlin that use linear decision boundaries. The explanation is that 

such complex classifiers seem to present overfitting, in that they are capable of learning very 

well the training patters with all incorporated noise and spurious information, but the complex 

decision border is not able to classify well the new test patterns. Simpler (linear) decision 

borders seem better for the current distribution of patterns. Actually, by looking at several 

runs in the S-fold crossvalidation of the MLP, we found that many times overfitting of the 

neural networks [44] occurs: when monitoring the learning curve, at some point in time as the 

learning error keeps decreasing the classification error of the test patterns starts to increase. 

For such runs we performed early-stopping, that is we stopped learning for an epoch less than 

TMLP when the error on the test set began increasing. 

4 Conclusions 

The present study focuses on voice alone as a primary discriminating source of information 

between healthy subjects and severe OSA. Both statistical analysis on several voice extracted 

features, as well as performance of several classifiers indicate that voice has a clear potential 

to detect severe OSA among healthy subjects. The performance of the classifiers has been 

estimated using robust statistical techniques (S – fold crossvalidation) while counting with a 

relatively large body of subjects (i.e. 248), larger than most of the present studies analyzing 

the relationship between voice and OSA. The group of subjects involved in our experimental 

design increases to 376, when including the intermediate cases as well. We may get a better 

grasp on the relationship between OSA and voice by looking at the extreme cases that also 

have a clear-cut diagnosis. The results in terms of CCR, Sensitivity and Specificity, all above 

80% for several classifiers point out the good potential of voice as a discriminating factor 

between healthy subjects and severe OSA.  

Careful analysis on subjects with different degrees of OSA reinforced our prior belief 

that voice may act as a good discriminating factor for most of the severe cases. However, for 

intermediate cases where upper-airway closure may not be so pronounced (thus voice not 

much affected), we cannot rely on voice alone for making a good discrimination between 

OSA and non-OSA.  
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  Analysing the features discovered by the feature reduction methods, we conclude that 

both vowel and phrase features are useful (more vowel features are selected, however) and 

both uttering positions as well, with more features selected from the stretched (‘E’) uttering. 

The GA feature selection method proved to be the best reduction scheme that is well 

adapted to the classifier, and that achieves the best CCR, Sensitivity and Specificity with a 

small variance of these results due to the specifically designed fitness function (see eq. 3), for 

almost all cases involved in comparison. The GA is capable of discovering useful associations 

between voice features, and that are not apparent beforehand, the degree of utility being in 

direct relationship to the classifier performance.  

Feature selection is a crucial stage in our design as there are many features that can be 

extracted from voice and speech but there is no apriori knowledge regarding the most 

discriminant to be employed in the detection of the OSA cases. Therefore, we would like to 

highlight the use of GAs as one of the most innovative aspects in the present study. GAs have 

turned out to be the perfect choice when it comes to salient feature discovery, achieving good 

adaptation with the classification tools employed. 

For a screening application that detects severe OSA cases among healthy people we 

may employ an ensemble classifier that combines the output of various classifiers to yield a 

more robust decision. As seen from section 3.2 such an ensemble classifier achieves slightly 

better results than the best classifier (BC-GA). Moreover, fusion with other measures from the 

subject’s medical record (i.e. sex, age, BMI, EPW, blood pressure) is expected to increase the 

overall performance. Such parameters are correlated with the AHI index and thus with the 

presence or absence of OSA, and may shed light into the suitable discrimination of the 

intermediate subjects as well (mild OSA, snoring subjects), subjects that are difficult to 

classify by voice analysis only. A multiclass approach, instead of a binary classification, is 

also expected to increase the classification performance. We might consider more than 2 

classes, such as, for example: controls, healthy snoring subjects, mild-OSA, and severe-OSA, 

and we may make a differentiation between sexes, as well.  

So far, results presented as an S-fold crossvalidation for several classifiers are by no 

means a substitute for a clinical validation study. Crossvalidation served us to better estimate 

the discriminating potential of voice, and the expected correct classification rate, sensitivity 

and specificity. Actually, during each training-testing experiment involved in the S-fold 

crossvalidation only a fifth of the total number of subjects (about 50, for the extreme cases 

problem) was employed for validation purposes, the rest being used to train the classifier. For 
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future work, we will seek to produce clinical validation results for a comprehensive body of 

new subjects, with an already trained classifier using the model developed in this paper. 
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Fig. 1  Boxplot a) and histograms b) of the MEAN_HNR_VA_A features for the control and severe OSA group 
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a) 

 

b) 

 

c) 

Fig. 2  Histograms of the a) CCR, b) Sensitivity and  c) Specificity for the S-fold crossvalidation of the Bayesian 

Classifier  with features selected by the GA. 
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Table 1 Considered database for this study. Gender, Age (range, mean, median and mode) and Body Mass 

Index (range, mean, median and mode) of both groups are provided.   

 

Control group  

        Gender 48 men, 79 women 

        Ages 18÷64, mean 29.68, median 24, mode 21 

        Body Mass Index (BMI) 18÷64, mean 29.68, median 24, mode 21 

  

Severe OSA group  

        Gender 101 men, 20 women 

        Ages 28÷82, mean 54.04, median 55, mode 62 

        Body Mass Index (BMI) 23÷53, mean 32.56, median 31.2, mode 34.6 
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Table 2 Results in terms of Average (AVG), Median (MED), Mode (MOD), Standard Deviation (STD) for the 

Correct Classification Rate (CCR), Sensitivity and Specificity for all classifiers and feature reduction methods

    

   Ranked PCA LDA GA 

M
L

P
 

CCR [%] AVG 78.98 77.37 79.98 79.76 

MED 79.59 77.77 80 80 

MOD 76 78 82 80 

STD 4.64 4.95 5.03 4.80 

Sensitivity [%] AVG 75.01 73.77 83.75 77.13 

MED 77.27 76.92 86.36 80.76 

MOD 83.33 80 87.5 88 

STD 13.17 14.56 10.4 15.04 

Specificity [%] AVG 75.58 76.64 78.3 77.07 

MED 77.27 78.26 89.32 78.26 

MOD 81 76.92 81 88 

STD 11.46 13.82 10.59 11.18 

S
V

M
li

n
 

CCR [%] AVG 74.22 72.66 77.16 81.10 

MED 74 73.46 77.55 81.63 

MOD 76 74 78 80 

STD 6.12 5.02 5.38 5.41 

Sensitivity [%] AVG 72.29 71.97 74.9 77.87 

MED 72.72 72 75 77.77 

MOD 75 66.66 75 75 

STD 9.6 8.56 8.73 8.52 

Specificity [%] AVG 76.34 73.55 79.14 84.74 

MED 76.92 74 79.31 85.71 

MOD 78.26 74 81 88.88 

STD 8.87 9.45 6.91 7.14 

S
V

M
p

o
ly

 

CCR [%] AVG 65.35 68.74 74.05 72.87 

MED 66 69.38 74 73.46 

MOD 66 70 74 70 

STD 6.67 6.12 5.54 6.13 

Sensitivity [%] AVG 63.76 70.14 71.82 72.75 

MED 65 70.83 71.19 73.79 

MOD 66.66 70 71 75 

STD 10.51 9.18 8.92 9.39 

Specificity [%] AVG 67.06 67.65 76.44 73.11 

MED 66.66 68.18 77.77 73.07 

MOD 66.66 66.66 78.57 73 

STD 10.46 9.07 8.82 9.6 
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Table 3 Results in terms of Average (AVG), Median (MED), Mode (MOD), Standard Deviation (STD) for the 

Correct Classification Rate (CCR), Sensitivity and Specificity for the ensemble classifier (BC-GA + SVMlin-GA 

+ MLP-LDA) 

  Ensemble 

CCR [%] AVG 82.85 

MED 82 

MOD 83 

STD 4.83 

Sensitivity [%] AVG 81.49 

MED 81.48 

MOD 84 

STD 7.57 

Specificity [%] AVG 84.69 

MED 85.71 

MOD 87 

STD 6.52 

 

Table 4 Results in terms of Average (AVG), Median (MED), Mode (MOD), Standard Deviation (STD) for the 

Correct Classification Rate (CCR), Sensitivity and Specificity for the BC-GA classifier on the 128 intermediate 

cases. 

  BC-GA 

CCR [%] AVG 64.23 

MED 64.69 

MOD 69.23 

STD 8.26 

Sensitivity [%] AVG 55.36 

MED 55.55 

MOD 60 

STD 14.34 

Specificity [%] AVG 72.94 

MED 73.33 

MOD 69.23 

STD 11.68 
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Table 5 Results in terms of Average (AVG), Median (MED), Mode (MOD), Standard Deviation (STD) for the 

Correct Classification Rate (CCR), Sensitivity and Specificity for the BC-GA classifier on the 128 intermediate 

cases + 248 extreme cases. 

  BC-GA 

CCR [%] AVG 74.9 

MED 74.66 

MOD 73.33 

STD 4.92 

Sensitivity [%] AVG 71.39 

MED 71.42 

MOD 70 

STD 8.34 

Specificity [%] AVG 78.23 

MED 78.57 

MOD 80 

STD 5.99 
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