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Abstract

The present paper outlines a basic theoretical treatment of decoherence and de-
phasing effects in interferometry based on single component Bose-Einstein con-
densates in double potential wells, where two condensate modes may be involved.
Results for both two mode condensates and the simpler single mode condensate
case are presented. The approach involves a hybrid phase space distribution
functional method where the condensate modes are described via a truncated
Wigner representation, whilst the basically unoccupied non-condensate modes
are described via a positive P representation..The Hamiltonian for the system
is described in terms of quantum field operators for the condensate and non-
condensate modes. The functional Fokker-Planck equation for the double phase
space distribution functional is derived. Equivalent Ito stochastic equations for
the condensate and non-condensate fields that replace the field operators are
obtained, and stochastic averages of products of these fields give the quantum
correlation functions that can be used to interpret interferometry experiments.
The stochastic field equations are the sum of a deterministic term obtained
from the drift vector in the functional Fokker-Planck equation, and a noise field
whose stochastic properties are determined from the diffusion matrix in the
functional Fokker-Planck equation. The stochastic properties of the noise field
terms are similar to those for Gaussian-Markov processes in that the stochastic
averages of odd numbers of noise fields are zero and those for even numbers
of noise field terms are the sums of products of stochastic averages associated
with pairs of noise fields. However each pair is represented by an element of
the diffusion matrix rather than products of the noise fields themselves, as in
the case of Gaussian-Markov processes. The treatment starts from a gener-
alised mean field theory for two condensate modes, where generalised coupled
Gross-Pitaevskii equations are obtained for the modes and matrix mechanics
equations are derived for the amplitudes describing possible fragmentations of
the condensate between the two modes. These self-consistent sets of equations
are derived via the Dirac-Frenkel variational principle. Numerical studies for in-
terferometry experiments would involve using the solutions from the generalised
mean field theory in calculations for the stochastic fields from the Ito stochastic
field equations.
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1. Introduction

The creation of Bose-Einstein condensates (BEC) in cold atomic gases has
enabled the realisation of a controllable quantum system on a macroscopic scale.
With all bosons occupying the same single particle state (or mode) the BEC
exhibits coherence somewhat analogous to the coherence for an idealised single
mode laser and interference effects were soon observed [1], [2]. Interferometry
using BECs was a natural outcome, and much research centres around devel-
oping BEC interferometric systems, motivated not only by wishing to study
coherence, interference and entanglement in macroscopic systems but also be-
cause of their potential applications for precision measurement, including the
development of BEC interferometry for measurements at the Heisenberg limit
[3], [4], [5], [6], [7]. Experiments demonstrating precision beyond the standard
quantum limit have recently been reported [8], [9]. Reviews covering general
aspects of BEC interferometry include [10], [11], [12].

Interferometry with BECs is a quantum effect. In its simplest form quan-
tum interferometry essentially involves transitions between an initial prepared
state and a final measured state for the interferometer system, where the overall
transition probability amplitude for transitions is split into two partial ampli-
tudes associated with different intermediate states, which are then recombined.
The two amplitudes must remain coherent but depend differently on the feature
being measured. A variety of such features can produce interferometric effects,
ranging from a transition frequency between states of interest to an asymme-
try in a trapping potential due to gravity effects. The partial amplitudes for
the differing intermediate states may result from various types of time evolu-
tion, including free evolution stages and interaction stages, where the system is
subjected to external classical fields. As the feature changes, constructive and
destructive interference between the partial amplitudes results, leading to the
changes in measurement probability for the final state.

In the case of interferometry with single atoms, the review by Cronin et al
[12] outlines how Ramsey interferometry can be described in these terms. Here
the interferometric system is a two level atom with internal states |a〉, |b〉, the
first being the initial state and the second is the final state. The feature that
produces the interferometric effect is the transition frequency ωba and the inter-
ferometer is used to obtain a precise measurement of ωba - to use for example in
an atomic clock. The atoms are in a beam with a fixed velocity and pass through
two short interaction regions when a resonant classical field of pulse area π/2
couples the two internal states, turning each into different orthogonal linear
superpositions of |a〉, |b〉 - say |a〉 → (|a〉 + |b〉)/

√
2 and |b〉 → (|a〉 − |b〉)/

√
2.

Between the interaction regions the atoms undergo free evolution for time T ,
with |a〉 → exp(iωaT ) |a〉 and |b〉 → exp(iωbT ) |b〉. The states |a〉, |b〉 also act
as two possible intermediate states for the process a → b, and there are two
distinct pathways a→ b→ b→ b and a→ a→ a→ b whose partial amplitudes
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interfere. In the first pathway the resonant classical field transition a → b oc-
curs in the first step, in the second it is in the last step, and between the first
and last steps free evolution occurs in different states - b for the first pathway
and a for the second. The partial amplitudes are (−1/

√
2) exp(iωbT )(+1/

√
2)

for the first pathway and (+1/
√
2) exp(iωaT )(+1/

√
2) for the second, giving

a total amplitude proportional to sin(ωbaT/2) resulting from interference be-
tween the two partial amplitudes. This produces oscillations in the measure-
ment probability, enabling ωba to be determined. Single atom Mach-Zender
interferometry [13], [14] involving a double well is another case where a similar
description applies. The initial state is the lowest symmetric state |S(0)〉 for
an atom in a single well trap, the final state |AS(T )〉 is the lowest antisym-
metric state in the same single well. The process |S(0)〉 → |AS(T )〉 involves
splitting the single well to a slightly asymmetric double well and then recom-
bining back to the single well during a time T . The intermediate state can be
chosen as two localised states [14] for the actual double well, one |L(T/2)〉 being
localised in the left well the other |R(T/2)〉 in the right well. The two path-
ways whose transition amplitudes interfere are |S(0)〉 → |L(T/2)〉 → |AS(T )〉
and |S(0)〉 → |R(T/2)〉 → |AS(T )〉, the overall process being driven by non-
adiabatic evolution during the splitting and recombination stages. Asymmetry
in the trapping potential produces the interferometric effect. In the case of
single atom Bragg interferometry [15], [10] an atom in a zero momentum state
is subjected to three Bragg pulses with pulse areas π/2, π, π/2, where each
pulse involves counterpropagating photons of two slightly differing wave num-
bers kλ, kµ A two-photon off-resonant Raman process removes a photon from
one of the laser beams in the Bragg pulse and adds a photon to the other
beam. The momentum difference changes the atom’s momentum from zero to
2~k = kλ + kµ. For a given k the wave numbers kλ, kµ can be adjusted to
satisfy energy as well as momentum conservation. Bragg interferometry can be
described in terms of two momentum states |p = 0〉 and |p = 2~k〉 for the atom.
The π/2 pulses change each state.into linear combinations of these two states
- say |0〉 → (|0〉 − exp(−iφ) |2~k〉)/

√
2 and |2~k〉 → (exp(+iφ) |0〉+ |2~k〉)/

√
2.

The π pulse changes each momentum state.into the other state - say |0〉 →
− exp(−iφ) |2~k〉 and |2~k〉 → exp(+iφ) |0〉. Here φ is a phase factor for the
Bragg pulse involved. For an overall process say |0〉 → |0〉 there are two path-
ways each with its own transition amplitude |0〉 → |0〉 → |2~k〉 → |0〉 and
|0〉 → |2~k〉 → |0〉 → |0〉, the successive steps involving the pulses π/2, π, π/2
respectively. If we choose φ = 0 in the first two steps and φ 6= 0 in the final π/2
step, the transition probability is given by (1 + cosφ)/2, giving interferometric
effects as φ is changed.

Ramsey, Mach-Zender and Bragg interferometry [15], [16], [10], [12] can also
be carried out using BECs rather than single atoms, and a generalised version
of the above approach could be used to describe these. Quantum interference in
double well BEC interferometry is discussed qualitatively in [17] in terms of in-
terfering transition amplitudes. However, since BECs involve a large number N
of atoms rather than just one, there are a number of additional complexities that
need to be taken into account, notably associated with the feature that macro-
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scopic numbers of atoms may occupy each single particle state. Firstly, large
numbers of partial transition amplitudes may now be involved in the overall
process, and evaluating all the partial transition amplitudes and then recom-
bining them becomes a formidable task. The analysis for the single atom case
establishes the general point that for interferometry to occur there must be at
least two different single particle states (or modes) that an atom can occupy -
otherwise two or more pathways for the overall process to occur would not be
available. This suggests immediately that interferometry using BECs must at
least be based on a two-mode theory. For single component BECs, the two single
particle states would be represented by two orthogonal, normalised spatial mode
functions φ1(r), φ2(r). Time dependences are left implicit. For double well in-
terferometry, these could be either localised in each of the two potential wells
or delocalised symmetrically or antisymmetrically over the two wells. For Bragg
interferometry the two modes could be two different momentum eigenfunctions.
For two component BECs, with internal (hyperfine) states |F 〉, |G〉 the two
single particle states would be represented by φF (r) |F 〉, φG(r) |G〉, where the
associated normalised spatial mode functions are φF (r), φG(r). The significance
of two-mode theories for BECs is well recognised [18], [19] and points to the ex-
istence of Josephson effect [20] physics in cold quantum gases. The idea of the
BEC being equivalent to a giant spin system, with direct linkages to angular
momentum theory [21], spin squeezing [22] etc. stems from two-mode theory, as
will be outlined below. For the quantum description of Ramsey, double well and
Bragg interferometry with BECs however, even if each atom is restricted to one
of two single particle states there are now N + 1 distinct ways of dividing the
atoms between the two single particle states, corresponding to Fock states with
occupancies given by N

2 −k, N2 +k with (k = −N/2,−N/2+1, .., N/2) in the two
modes. The Fock states can describe BECs that are fragmented, with two modes
having macroscopic occupancy [18], [23]. Consequently, in any overall process
there are a great many pathways involved, so the overall transition amplitude
can contain many contributions. Having more interfering pathways raises both
the possibility of sharper interferometric effects [24] but also the possibility
that effects can be degraded depending on how the phases and magnitudes of
the.partial amplitudes are related. These sorts of effects are also familiar from
multiple slit optical interference. Secondly, the need to consider steps in the
process where the intermediate states already have many atoms occupying each
of the two single particle states raises the possibility of bosonic enhancement of
contributions to the partial transition amplitude from the step involved. These
sorts of effects are familiar from the theory of lasers and in super-radiance. The
effects could occur because two-mode BECs are like a giant spin system rather
than a collection of independent atoms, and implies that the simple analysis
described above for single atoms is no longer valid. However, a closer analysis
(see [25]) suggests that bosonic enhancement and super-radiance effects are not
in fact present. Thirdly, the evolution is not as simple as in the single atom
case, since collisions between the atoms need to be taken into account. Even
with only two single particle states allowed, dephasing between the contributing
amplitudes can occur - which tend to degrade interferometric features but which
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may also produce collapse and revival effects [26], [6]. Also, even if the BEC is
close to zero temperature, collisions could remove atoms from the macroscop-
ically occupied pair of single particle states and deposit them into previously
unoccupied higher energy thermal states. The unoccupied thermal states act as
a kind of environment (or reservoir) so the system defined in terms of the two
macroscopically occupied single particle states suffers decoherence. Collective
phonon-like states of the BEC called Bogoliubov excitations [27], [18], [23] can
be created. These processes again generally result in degradation of interfero-
metric effects. However, some aspects of the interferometric process will still be
similar to the single atom interferometry case. These include the presence of
interaction regions in which the BEC is subjected to external pulsed classical
fields with pulse areas π/2, π that couple internal states, the effect of Bragg
pulses that change the momentum of each atom, the presence of asymmetries
in trapping potentials that confine the BEC, as well as periods of free evolution
of the BEC - though now of course collisions need to be taken into account.
The difference is though a more elaborate theory is needed to treat quantum
interferometry in BECs allowing for all these effects.

Theories of BEC interferometry that take into account the many body na-
ture of the system are of various levels of sophistication [19] depending on the
range of effects taken into account. The Hamiltonian is often expressed in terms
of field operators. For single component BECs the field annihilation operator
Ψ̂(r) destroys a bosonic atom at position r, whilst for two component BECs

the field annihilation operator Ψ̂a(r) (a = F,G) destroys a bosonic atom with
internal state |a〉 at position r. Interferometry experiments are generally inter-
preted in terms of quantum correlation functions, which are expectation values
of products of field annihilation operators with the associated field creation
operators, and are related to bosonic many atom position measurements [28].
Actual measurements of quantum correlation functions may be made via scat-
tering a weak probe beams (atoms, light) off the system, [29]. If boson-boson
interactions were absent and the BEC isolated from the environment, idealised
forms of the quantum correlation functions would result, with clearly visible
interferometric effects. Even where external environmental effects are absent,
the internal boson-boson interactions can still result in dephasing (associated
with interactions within the condensate modes) and decoherence effects (asso-
ciated with interactions causing transitions from the condensate modes) that
degrade the interference pattern. Many treatments of BEC interferometry are
based on the simplest assumption, namely that during the interferometric pro-
cess the condensate is unfragmented, with all bosons occupying the same single
particle state |χ〉. This situation is a special case of a two mode theory, with
the occupied single particle state written as a linear superposition of the two
modes. For single component BEC interferometry linear combinations of the
form 〈r |χ〉 = χ(r) =α1φ1(r) + α2φ2(r) are involved, for two component BEC
interferometry superpositions 〈r |χ〉 = χF (r) |F 〉+χG(r) |G〉 of the two internal
states occur. Equations for the spatial wave functions associated with these
single particle states can be obtained using variational principles [30], [31]. For
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the single component case the well-known Gross-Pitaevskii equation [32], [33]
applies for the so-called condensate wave function χ(r), for the two compo-
nent case coupled Gross-Pitaevskii equations [34], [35] apply for the condensate
wave functions χF (r), χG(r) associated with the two internal states. The Gross-
Pitaevskii equations are non-linear, with collision effects occuring via mean field
terms. Treatments of BEC interferometry based on assuming the condensate is
unfragmented include [36], [37] for the single component case and [38], [39] for
the two component case.

However, there are two distinct single particle states each boson could oc-
cupy, and for N bosons the N+1 dimensional state space for two mode theories
allows for more general quantum states that are fragmented, with macroscopic
occupancy of two single particle states. The basis states can be chosen as Fock
states

∣∣ N
2 , k

〉
(k = −N/2, .., N/2) in which N

2 − k bosons occupy one of the two
single particle states (φ1(r) for the single component case, φF (r) |F 〉 for the two
component case) and N

2 + k bosons occupy the other two single particle states
(φ2(r) for the single component case, φG(r) |G〉 for the two component case).
Each Fock state is a fragmented state, with definite numbers N

2 ∓ k of bosons
respectively in the two modes. In two mode theory the general quantum state
of the N boson system is written as a superposition of the Fock states with
general amplitudes bk. The unfragmented states are just special cases called
binomial states since the amplitudes bk are determined from binomial coeffi-
cients. The Dirac-Frenkel variational principle [30], [31] can be used to obtain
matrix mechanics equations for the N + 1 general amplitudes bk and general-
ized Gross-Pitaevskii equations.for the two mode functions (φ1(r), φ2(r) for the
single component case, φF (r), φG(r) for the two component case). The N + 1
amplitude equations describe the system evolution amongst the possible Fock
states, and involve Fock state Hamiltonian and rotation matrix elements which
depend on the two mode functions. The two coupled Gross-Pitaevskii equations
are again non-linear in the mode functions due to collision terms - which occur
via generalised mean fields - and involve the trap potential, with an additional
intercomponent coupling term in the two component case. They contain as
coefficients one and two body correlation functions that depend quadratically
on the amplitudes, and which reflect the relative importance of the different
Fock states during the interference process. The combined amplitude and mode
equations are self-consistent, and are more general than the equations for the
unfragmented BEC case. It should be noted however that other authors [40],
[41], [42] define the condensate mode functions via a diferent approch, namely in
terms of the eigenfunctions of the first order quantum correlation function that
have macroscopic eigenvalues. This approach is discussed below in Section 3.
Two mode theories similar to the present treatment have previously been devel-
oped for single component BECs with two orthogonal spatial modes (such as in
double-well interferometry) [43], [44], [17], [45], [46], [47], [48] and fragmentation
effects shown in [46], [47], [48]. Two mode theories for the two component case
have been presented in [49], [50] and elsewhere (author?) [25]. Two mode the-
ories incorporate dephasing effects associated with transfers of bosons between
the two modes, but decoherence effects and Bogoliubov excitations are outside
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the scope of the theory. Both the general two-mode theory and the single mode
theory are referred to as mean field theories, since collisional effects occur via
mean fields.

To allow for decoherence and Bogoliubov excitations the theory must include
large numbers of non-condensate modes, which are modes with very small occu-
pancy. Bogoliubov theory is perturbation theory in the interaction between con-
densate and non-condensate modes, and treatments of Bogoliubov excitations
for BEC interferometry have been made [41] by adapting general BEC Bogoli-
ubov theory [51], [40], [52], [42]to treat two-component BECs. Another approach
that could be applied to BEC interferometry is a master equation method [53],
[54], in which a condensate density operator is defined and a master equation is
derived allowing for interactions with non-condensate modes, which constitute
a reservoir. The quantum state is now non-pure so a density operator is needed
to describe the system. The difficulty with this method is that it is hard to
evaluate the non-condensate contributions to quantum correlation functions. A
further approach could be based on the Heisenberg equation method that have
been applied in numerous many-body theory problems. Heisenberg equations
for field operators and products of field operators are derived, and taking the
expectation values with the initial density operator results in a heirarchy of cou-
pled equations for quantum correlation functions. An ansatz (such as assuming
that a suitable high order correlation function factorises) produces a truncated
set of coupled equations from which correlation functions of the required order
can be calculated. The problem with this method is that it is hard to confirm the
validity of the ansatz. In view of there being very large numbers of modes, phase
space theories have also been developed with the density operator represented
by a quasi-distribution functional in a phase space [55]. Quantum correlation
functions are then expressed as functional integrals in the phase space, involv-
ing products of the distribution functional with the several field functions that
replace the field operators. The Liouville-von Neumann equation for the den-
sity operator is replaced by a functional Fokker-Planck equation (FFPE) for
the distribution functional. Finally, the FFPE are finally replaced by coupled
Ito stochastic equations (c-number Langevin equations) for the field functions,
where the Ito equations contain deterministic and random noise terms - identi-
fiable from the FFPE. Stochastic averages of the field functions then give the
quantum correlation functions. Phase space distribution functional treatments
were originally developed to treat problems in quantum optical physics [56], [57],
[58], [59], [60], but have since been adapted for BECs. There are several different
phase space theories that have or could be used to treat BEC interferometry,
depending on the nature of the distribution functional chosen to represent the
density operator. The positive P representation has been used by [61] to treat
spin squeezing in two component BECs. However, because most atoms will be
in one or two highly occupied modes and these bosons can be treated approxi-
mately in terms of mean field theories, a more natural representation to use is
the truncated Wigner representation. Such theories have been developed [55]
and applied to BEC interferometry [62], [63]. In the truncated Wigner FFPE
there are no second order functional derivatives, so there are no random noise
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terms in the Ito equations. Quantum noise is embodied in the initial state, and
Bogoliubov equations are used to describe this state. Based on the truncated
Wigner representation, stochastic modifications of the Gross-Pitaevskii equa-
tion to allow for the effects due to non-condensate modes have been derived for
the case where the condensate modes have macroscopic occupancy, and these
methods could be applied to BEC interferometry. These approaches include
the Projected Gross-Pitaevskii equation method [64], [65] and the Stochastic
Gross-Pitaevskii equation theory [66], [67]. A review of these methods is given
in [68]. In developing a quantum kinetic theory of BECs, Gardiner and Zoller
[53], [54] divided the field operator for the bosonic system as a sum of condensate
and non-condensate mode contributions. An alternative treatment also based
on distinguishing condensate and non-condensate modes is the hybrid represen-
tation, with the highly occupied condensate modes described via a truncated
Wigner representation (since the bosons in condensate modes behave like a
classical mean field), whilst the basically unoccupied non-condensate modes are
described via a positive P representation (these bosons should exhibit quantum
effects). Such an approach has been developed by [69], [70], [71] and in the
present paper. Finally, a more elaborate phase space treatment of BECs called
the Gaussian quantum operator representation has been formulated [72] and
could be applied to BEC interferometry. Pairs of bosonic annihilation, creation
operators as well as single operators are represented by c-numbers in the phase
space distribution function. The approach is based on representing the density
operator via Gaussian rather than just coherent state projectors, as applies for
the simpler phase space theories.

As well as being suitable for studying macroscopic decoherence and dephas-
ing effects, interferometry with Bose-Einsten condensates is closely linked to
another fundamental feature of the quantum physics in macroscopic systems -
entanglement. Entanglement is linked to several important issues such as the
EPR paradox, Bell inequalities and Schrodinger cats. A number of papers have
discussed entanglement for two mode macroscopic systems, including [73], [74],
[75], [76], [77], [78], [7] and [79]. Reviews include [80], [81]. Measures of entan-
glement are more straightforward for bi-partite systems such as bosonic systems
based on two modes, where the two modes constitute the two subsystems. The
entropy of mode entanglement is a useful measure, being the difference in en-
tropy between that for the original state and that associated with the reduced
density operator describing a sub-system, and thus related to the change of
quantum information. The connection to interferometry can be seen with a
simple example [74]. If â, b̂ are the annihilation operators for the modes a,
b then the pure quantum state for the N boson system given in terms of the
corresponding creation operators and the vacuum state |0〉 as

|Φ〉E =
1√
N !

(
â† + b̂†√

2

)N
|0〉 =

(
1√
2

)N N∑

n=0

√
CNn |n〉a |N − n〉b (1)

is an entangled state, being a quantum superposition of separable states |n〉a |N − n〉b
in which there are n bosons in mode a and N − n in mode b. This state is a
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binomial state, since its form is determined by binomial coefficients CNn . The
reduced density operator for the mode a subsystem is easily found to be

ρ̂Ea =

(
1

2

)N N∑

n=0

CNn |n〉a 〈n|a (2)

which is clearly a mixed state and the entropy of entanglement is non-zero.
Another pure state for the N boson system is

|Φ〉NE =
1√
N !

(
â†
)N |0〉 = |N〉a |0〉b (3)

which is a non-entangled state, being a separable product of the states |N〉a and
|0〉b. The reduced density operator for the mode a subsystem is easily found to
be

ρ̂NEa = |N〉a 〈N |a (4)

which is clearly a pure state and the entropy of entanglement is zero. If we now
consider an interferometry experiment applied to each of these two states, we
will see that the entangled and non-entangled states leads to differing interfero-
metric effects. The experiment involves applying a 50:50 beam–splitter process
to each state and then measuring the number of bosons in modes a, b. The
beam splitter process is associated with an evolution operator which transforms
the mode annihilation operators as â→ (â+ b̂)/

√
2, b̂→ (â− b̂)/

√
2. For single

component BEC in a double well with modes localised in each well, such a pro-
cess is associated with quantum tunneling through the potential barrier during
a period short enough that collisions can be ignored. For two component BEC
in a single well, the process is associated with applying a two-photon classical
field during a similar short period. For the two initial states of interest the
states change as

|Φ〉E → 1√
N !

(
â†
)N |0〉 = |N〉a |0〉b

|Φ〉NE → 1√
N !

(
â† + b̂†√

2

)N
|0〉 =

(
1√
2

)N N∑

n=0

√
CNn |n〉a |N − n〉b (5)

Measurements of the mean boson numbers in each mode give
〈
â†â
〉

= N ,〈
b̂†b̂
〉

= 0 for the initially entangled state and
〈
â†â
〉
= N/2,

〈
b̂†b̂
〉

= N/2

for the initially non-entangled state. Hence there is a difference in the inter-
ferometric results for the two cases. More generally, for an arbitrary mixed
non-entangled state for N bosons the density operator is of the form

ρ̂NE =

N∑

n=0

pn |n〉a 〈n|a ⊗ |N − n〉b 〈N − n|b (6)

10



and the reduced density operator for mode a is

ρ̂NEa =
N∑

n=0

pn |n〉a 〈n|a (7)

As there is no entropy change between the original state and the state for
mode a, the entropy of entanglement is zero. In [74] it is shown that applying
the beam-splitter process to this state gives a new state where again

〈
â†â
〉
=

N/2,
〈
b̂†b̂
〉

= N/2. Hence all non-entangled states for for N bosons give

no difference between the output measurements of boson numbers in the two
modes. This contrasts the situation for entangled states, as our example has
shown. Thus interferometry with BEC would be a possible measurement system
for demonstrating entanglement effects.

In the present paper it will be assumed that the interferometry regime is
such that at most two condensate modes have a macroscopic occupancy. The
mean field theory treatment for this case is a time-dependent version of the
approach in an earlier two-mode theory paper [17]. This approach leads to a set
of self consistent equations for the two mode functions and for the probability
amplitudes for finding the system in states with specific occupancies of the two
modes. The mode equations are generalised time-dependent Gross-Pitaevskii
equations involving non-linear mean field terms, and these equations include
coefficients that depend on the amplitudes. The amplitude equations are matrix
mechanics equations involving Hamiltonian and rotation matrix elements, that
depend on the mode functions and their spatial and temporal derivatives. These
self-consistent sets of equations are derived via the Dirac-Frenkel variational
principle. This generalised mean field theory does allow for certain dephasing
effects and for transitions between the two condensate modes. Thermal and
decoherence effects are not included. For the purposes of the present paper it
will be assumed that the solutions to the generalised mean field two mode theory
have been obtained, and are available albeit in numerical form for applications
of the present theory. Numerical solutions of equivalent equations have been
published by Streltsov et al [46], [45], [47].

The present paper outlines a basic theoretical treatment of decoherence and
dephasing effects in interferometry based on single component BECs in dou-
ble potential wells, where we assume that only two condensate modes could
have macroscopic occupancy. Results for both two mode condensates and the
simpler single mode condensate case are presented. The approach involves a
hybrid phase space distribution functional method where the condensate modes
are described via a truncated Wigner representation, whilst the basically un-
occupied non-condensate modes are described via a positive P representation
[69], [70]..The Hamiltonian for the system is described in terms of quantum field
operators for the condensate and non-condensate modes. The functional Fokker-
Planck equation for the double phase space distribution functional is derived.
Equivalent Ito stochastic equations for the condensate and non-condensate fields
that replace the field operators are obtained and stochastic averages of products
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of these fields give the quantum correlation functions that can be used to in-
terpret interferometry experiments. The treatment starts from the generalised
mean field theory for two condensate modes. Numerical studies for interferom-
etry experiments would involve using the solutions from the generalised mean
field theory in calculations for the stochastic fields from the Ito stochastic field
equations.

Previous papers [56], [57], [58], [60], [55] using distribution functional and
stochastic field approaches only contain brief explanations of the method, so the
present paper is aimed at a more complete exposition. In Section 2 the Hamilto-
nian for the single component bosonic system is described in terms of field oper-
ators. The field operators are the sum of condensate and non-condensate mode
contributions. The Hamiltonian is decomposed into contributions scaling with
decreasing powers of

√
N , and within the weak interaction regime some terms

are discarded, leaving a Hamiltonian which allows for Bogoliubov excitations.
Certain linear coupling terms involving both condensate and non-condensate
field operators are written in a new form based aroud the condensate mode func-
tions as obtained from time-dependent Gross-Pitaevskii equations. In Section
3 phase space distribution functionals of a hybrid type are introduced (Wigner
for condensate fields, P+ for non-condensate fields) starting with the charac-
teristic functional, and quantum correlation functions (symmetric ordering for
condensate fields, normal ordering for non-condensate fields) are expressed in
terms of phase space functional integrals, with field functions replacing the field
operators and the distribution functional replacing the density operator. The
justification for these phase space functional integral results is carefully outlined.
Correspondence rules and functional Fokker-Planck equations are obtained in
Section 4, the key steps in the derivation of the correspondence rules and func-
tional Fokker-Planck equations being explicitly covered. The derivation of the
equivalent Ito stochastic field equations is fully set out in Section 5. Results for
both two mode and single mode condensates are presented. The single mode
condensate results are compared with equations recently presented in [71]. The
paper is summarised in Section 6.

Online supplementary material and a website version of this paper [82] con-
tains details for the derivations of results in this paper which are too lengthy
to present in the journal version. Quantities involved in the two-mode theory
equations are listed in Appendix A. In Appendix B the key ideas of functional
calculus involving c-number functions are outlined. Results for quantum correla-
tion functions are derived in Appendix C. The derivation of the correspondence
rules and their application to deriving the functional Fokker-Planck equation is
given in Appendix D and Appendix E respectively. The Ito stochastic equations
details are in Appendix F.
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2. Hamiltonian and field operators

In this section we describe the bosonic system in terms of field operators.
The field operators are written as the sum of two contributions, one associated
with the condensate modes, the other with the non-condensate modes. The
Hamiltonian is introduced for the single component bosonic system within the
zero range approximation for the boson-boson interactions. The situation is
restricted in this paper to the weak interaction regime, and the Hamiltonian
decomposed into contributions that scale with decreasing powers of

√
N , where

N is the number of bosons. After discarding the two smallest contibutions that
scale as (

√
N)−1 and (

√
N)−2, we are left with the Bogoliubov Hamiltonian

[51], [40], [52], [42]. The condensate in this work dealing with applications
in double well interferometry is assumed to involve at most two modes, and
the Dirac-Frenkel principle [30], [31] is used to obtain two coupled generalised
Gross-Pitaevskii equations for the two time-dependent mode functions. For the
single condensate mode situation the same approach gives the standard Gross-
Pitaevskii equation for the mode function. Our previous two mode theory [17]
yielded adiabatic mode functions, rather than the time-dependent modes used
here. Results from the Gross-Pitaevskki equations are then used to simplify
one of the terms in the Bogoliubov Hamiltonian, thereby enabling functional
Fokker-Planck equations to be derived.

2.1. Field Operators for Condensate, Non-Condensate Modes

For the application to double-well BEC interferometry most of the bosons
occupy one or maybe two modes, and that all the other modes are essentially
unoccupied. The two modes with macroscopic occupancy will be referred to as
the condensate modes, the remaining modes are non-condensate modes. These
physically based distinctions between the two types of modes will be embodied
in the theoretical treatment, and it will be convenient to use two different phase
space methods for the condensate and non-condensate bosons. In the present
paper it is assumed that the interferometry regime is such that at most two
condensate modes have a macroscopic occupation.

The field operators can be expanded in mode functions

Ψ̂(r) =
∑

k

âkφk(r) (8)

Ψ̂†(r) =
∑

k

φ∗k(r)â
†
k (9)

where the mode functions are orthonormal
ˆ

drφ∗i (r)φj(r) = δij (10)

Throughout this paper both the mode functions and their accompanying anni-
hilation, creation operators are time dependent in general, but for simplicity of

13



notation the time dependence is usually left implicit. Note however that the
field operators Ψ̂(r) and Ψ̂†(r) are always time independent.

In the mode expansion we will assume that there is a cut-off at some large
mode number K (momentum cut-off). This is to be consistent with using the
zero range approximation in the Hamiltonian. Accordingly the completeness
expression for the mode functions does not give the ordinary delta function but
a restricted delta function δK(r, r′) which is no longer singular when r = r

′.

∑

k

φk(r)φ
∗
k(r

′) = δK(r, r′) (11)

Accordingly although the annihilation, creation operators satisfy the stan-
dard bosonic commutation rules, the field operators satisfy modified rules for
which the non-zero results are

[âk, â
†
l ] = δkl

[Ψ̂(r), Ψ̂†(r′)] = δK(r, r′) (12)

In obtaining these rules those for the annihilation, creation operators are treated
as fundamental and those for the field operators then derived. If the cut-off is
made very large then the restricted delta function approaches the ordinary delta
function.

To exploit the distinction between condensate modes with a macroscopic
occupancy and non-condensate mode the field operator is written as the sum of
a condensate term and a non-condensate term. In the two-mode approximation
it is assumed that there are two condensate modes that may have macroscopic
occupancy, in the standard single mode approximation only one.

For the two mode case

Ψ̂(r) = Ψ̂C(r) + Ψ̂NC(r) (13)

Ψ̂C(r) = â1φ1(r) + â2φ2(r) (14)

Ψ̂†
C(r) = φ∗1(r)â

†
1 + φ∗2(r)â

†
2 (15)

Ψ̂NC(r) =

K∑

k 6=1,2

âkφk(r) (16)

Ψ̂†
NC(r) =

K∑

k 6=1,2

φ∗k(r)â
†
k (17)

where the condensate is described via the two modes φ1(r), φ2(r) and the non-
condensate via the remaining modes φk(r), which are cut off for momenta greater
than K ∼ ~/a where a is the distance scale of the.short range boson-boson
interaction. In view of the orthogonality of the condensate and non-condensate
modes, the contributions to the field operator commute. For the condensate

14



and non-condensate field operator components we have the following non-zero
results

[Ψ̂C(r), Ψ̂
†
NC(r)] = 0

[Ψ̂C(r), Ψ̂
†
C(r

′)] = φ1(r)φ
∗
1(r

′) + φ2(r)φ
∗
2(r

′)

= δC(r, r
′) (18)

[Ψ̂NC(r), Ψ̂
†
NC(r

′)] =
∑

k 6=1,2

φk(r)φ
∗
k(r

′)

= δNC(r, r
′) (19)

The quantities δC(r, r
′) and δNC(r, r

′) act as restricted Dirac delta functions
rather than ordinary delta functions, in that for functions ψC(r) and ψNC(r)
only involving condensate or non-consensate modes respectively (and ψ+

C (r) and
ψ+
NC(r) only involving their complex conjugates), we have

ψC(r) = α1φ1(r) + α2φ2(r) ψ+
C (r) = φ∗1(r)α

+
1 + φ∗2(r)α

+
2 (20)

ψNC(r) =
∑

k 6=1,2

αkφk(r) ψ+
NC(r) =

∑

k 6=1,2

φ∗k(r)α
+
k (21)

ψC(r) =

ˆ

dr′ δC(r, r
′)ψC(r

′) ψ+
C (r) =

ˆ

dr′ ψ+
C (r

′)δC(r
′, r)

ψNC(r) =

ˆ

dr′ δNC(r, r
′)ψNC(r

′) ψ(r) =

ˆ

dr′ ψ+
C (r

′)δC(r
′, r) (22)

Clearly
δK(r, r′) = δC(r, r

′) + δNC(r, r
′) (23)

These features involving restricted delta functions will be useful in deriving the
functional Fokker-Planck equation.

In the single mode case the condensate, non-condensate field operators and
restricted delta functions are now given by

Ψ̂C(r) = â1φ1(r) Ψ̂†
C(r) = φ∗1(r)â

†
1 (24)

Ψ̂NC(r) =

K∑

k 6=1

âkφk(r) Ψ̂†
NC(r) =

K∑

k 6=1

φ∗k(r)â
†
k (25)

δC(r, r
′) = φ1(r)φ

∗
1(r

′) δNC(r, r
′) =

∑

k 6=1

φk(r)φ
∗
k(r

′) (26)

with the time dependences of the mode functions and annihilation, creation
operators left understood as usual. With obvious modifications, (18) - (23) also
apply in the single mode case.
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2.2. Bogoliubov Hamiltonian

The full Hamiltonian in terms of field operators is given by

Ĥ =

ˆ

dr(
~
2

2m
∇Ψ̂(r)† · ∇Ψ̂(r) + Ψ̂(r)†V Ψ̂(r) +

g

2
Ψ̂(r)†Ψ̂(r)†Ψ̂(r)Ψ̂(r))

(27)

= K̂ + V̂ + Û (28)

the sum of a kinetic energy, trap potential energy and boson-boson interac-
tion energy terms. As usual the zero range approximation is made with g =
4π~2aS/m, where aS is the s-wave scattering length.

The condensate mode occupation is of order the total boson number N . For
bosons in a trap of frequency ω, with harmonic oscillator length scale a0 =√
(~/2mω), the density is of order ρ = N/(a0)

3. In the weak interaction regime
[40] we have ρ(aS)

3 ≪ 1, or

N(
aS
a0

)3 ≪ 1 (29)

For Rb87 in a trap with ω = 2π.58 s−1 we have a0 = 1 µm and aS = 5 nm,
so that the weak interaction regime applies for reasonably large boson numbers
N ≪ 107. Also, as has been shown [40], it is possible to consider a situation for
the weak interaction regime where NaS/a0 and kBT/~ω are kept constant but
with N becoming very large whilst aS remains finite so that

gN = gN (30)

where gN is constant. This can be achieved by decreasing the trap frequency.
In the weak interaction regime and with g = gN/N it is convenient to write

the Hamiltonian as the sum of five terms in decreasing powers of
√
N , based on

using Eq.(13) and assuming the condensate operators scale like
√
N . We can

then express the Hamiltonian in the form

Ĥ = Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 + Ĥ5 (31)

where

Ĥ1 =

ˆ

dr(
~
2

2m
∇Ψ̂†

C(r) · ∇Ψ̂C(r) + Ψ̂†
C(r)V Ψ̂C(r)

+
gN
2N

Ψ̂†
C(r)Ψ̂

†
C(r)Ψ̂C(r)Ψ̂C(r)) (32)

Ĥ2 =

ˆ

dr(Ψ̂NC(r)
†

{
− ~

2

2m
∇2Ψ̂C(r) + V Ψ̂C(r) +

gN
N

Ψ̂†
C(r)Ψ̂C(r)Ψ̂C(r)

}

+

{
− ~

2

2m
∇2Ψ̂†

C(r) + Ψ̂C(r)
†V +

gN
N

Ψ̂†
C(r)Ψ̂

†
C(r)Ψ̂C(r)

}
Ψ̂NC(r))(33)
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Ĥ3 =

ˆ

dr(
~
2

2m
∇Ψ̂†

NC(r) · ∇Ψ̂NC(r) + Ψ̂†
NC(r)V Ψ̂NC(r)

+
gN
2N

{
Ψ̂†
NC(r)Ψ̂

†
NC(r)Ψ̂C(r)Ψ̂C(r) + Ψ̂†

C(r)Ψ̂
†
C(r)Ψ̂NC(r)Ψ̂NC(r)

}

+
gN
2N

{
4Ψ̂†

NC(r)Ψ̂
†
C(r)Ψ̂NC(r)Ψ̂C(r)

}
) (34)

Ĥ4 =

ˆ

dr
gN
N

{
Ψ̂†
NC(r)Ψ̂

†
NC(r)Ψ̂NC(r)Ψ̂C(r)) + Ψ̂†

C(r)Ψ̂
†
NC(r)Ψ̂NC(r)Ψ̂NC(r)

}

(35)

Ĥ5 =

ˆ

dr
gN
2N

{
Ψ̂†
NC(r)Ψ̂

†
NC(r)Ψ̂NC(r)Ψ̂NC(r)

}
(36)

The term Ĥ1 is of order N = (
√
N)2 and is the Hamiltonian for the con-

densate. The term Ĥ2 is of order
√
N = (

√
N)1 and describes part of the

interaction between the condensate and the non-condensate that is linear in
the non-condensate field. To obtain this term spatial integration by parts was
used to have ∇ only operate on Ψ̂C(r) or Ψ̂C(r)

†. This term needs further
development to avoid Fokker-Planck equations containing functional deriva-
tives with respect to spatial derivatives of field functions, and this is accom-
plished in the next section. The term Ĥ3 is of order 1 = (

√
N)0 and describes

part of the interaction between the condensate and the non-condensate that is
quadratic in the non-condensate field.plus the kinetic and trap potential terms
for the non-condensate. If the condensate fields are replaced by c-numbers,
this term describes Bogoliubov excitations [40], [51]. The term Ĥ4 is of order
1/

√
N = (

√
N)−1 and describes part of the interaction between the condensate

and the non-condensate that is cubic in the non-condensate field. The term
Ĥ5 is of order 1/N = (

√
N)−2 and describes part of the interaction within the

non-condensate, which is quartic in the non-condensate field.
We now make an approximation and neglect the terms Ĥ4 and Ĥ5. This

leads to the so-called Bogoliubov Hamiltonian, albeit still in a number conserving
form. This Hamiltonian would be adequate to describe Bogoliubov excitations,
so we will use in to treat BEC interferometry in the weak interaction regime.
The Bogoliubov Hamiltonian is

ĤB = Ĥ1 + Ĥ2 + Ĥ3 (37)

The neglected terms would be needed in a theory for BEC interferometry in the
strong interaction regime.

2.3. Two-Mode Theory and Generalised Gross-Pitaevski Equations

The development of a suitable form for the Ĥ2 term in the case where two
condensate modes are involved is based on a general two mode theory for one
component BECs similar to that in [17], though here we apply the Dirac-Frenkel
principle to the dynamic action and obtain Gross-Pitaevski equations for time-
dependent mode functions, rather than the time independent Gross-Pitaevskii
equations for adiabatic mode functions obtained in [17] by applying a variational
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principle to the adiabatic action and involving Lagrange multipliers. In two-
mode theories we write the quantum state |Φ(t)〉 of the N boson system as
a superposition of the N + 1 basis states

∣∣ N
2 , k

〉
, where there are N

2 − k and
N
2 + k bosons (respectively) occupying the two modes with (time dependent)
mode functions φ1(r, t) and φ2(r, t). The amplitude for this basis state is bk(t).

|Φ(t)〉 =
N

2∑

k=−N

2

bk(t)

∣∣∣∣
N

2
, k

〉
. (38)

and the basis states are Fock states given by

∣∣∣∣
N

2
, k

〉
=

(
â1(t)

†
)(N

2
−k)

[(N2 − k)!]
1

2

(
â2(t)

†
)(N

2
+k)

[(N2 + k)!]
1

2

| 0〉 (k = −N/2,−N/2+1, ..,+N/2)

(39)
These basis states are fragmented or number squeezed states, allowing for both
modes to have macroscopic occupancy when |k| ≪ N/2.

The notation N
2 , k for the basis states reflects the feature that the two mode

Bose condensate behaves like a giant spin system. Spin angular momentum
operators can be defined by

Ŝx = (â†2â1 + â†1â2)/2

Ŝy = (â†2â1 − â†1â2)/2i

Ŝz = (â†2â2 − â†1â1)/2 (40)

which satisfy the standard angular momentum commutation rules. The square
of the angular momentum ( Ŝ−→)2 is related to the total two mode boson number

operator N̂ = (â†2â2 + â†1â1)

( Ŝ−→)2 =
∑

a

(Ŝa)
2 =

N̂

2
(
N̂

2
+ 1) (41)

and the Fock state
∣∣ N

2 , k
〉

is a simultaneous eigenstate of ( Ŝ−→)2, Ŝz

( Ŝ−→)2
∣∣∣∣
N

2
, k

〉
=

N

2
(
N

2
+ 1)

∣∣∣∣
N

2
, k

〉

Ŝz

∣∣∣∣
N

2
, k

〉
= k

∣∣∣∣
N

2
, k

〉
(42)

Hence the total angular momentum quantum number j = N
2 is macroscopic,

and k = −N
2 ,−N

2 +1, ..,N2 −1,+N
2 specifies the magnetic quantum number as

well as 2k determining the difference in mode occupancy.
In [17] equations for the amplitudes and adiabatic mode functions have been

determined by applying Principles of Least Action , involving minimising the
dynamic and adiabatic actions respectively for the state vector given by (38),
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subject to the normalisation constraints for the amplitude and orthonormality
constraints for the mode functions

N

2∑

k=−N

2

|bk(t)|2 = 1

ˆ

drφ∗i (r, t)φj(r, t) = δij i, j = 1, 2 (43)

In the present treatment, the Dirac-Frenkel principle [30], [31] is applied to the
dynamic action to obtain equations for the amplitudes bk(t).and time-dependent
mode functions φi(r, t) (i = 1, 2). In applying the Dirac-Frenkel principle no
Lagrange multipliers associated with the equations of constraint (43) are in-
troduced, however mode orthonormality is used in the treatment and the final
amplitude and mode equations can be shown to be consistent with both these
constraints. Such variational principles are well-known in quantum physics,
the Dirac-Frenkel principle applied to the dynamic action for an arbitrary un-
normalised state vector gives the time-dependent Schrodinger equation. The
Hartree-Fock equations for electrons in atoms and molecules and the Gross-
Pitaevskii equations for a single mode condensate are two examples of their
application based on state vectors with restricted forms. In the latter case the
state vector assumed is a special case of (38) such as with just the single term∣∣ N

2 ,−N
2

〉
or a special superposition (binomial state) corresponding to all bosons

being in the same single particle state [17], itself a linear combination of the two
original modes.

In the present case of two condensate modes, the mode functions satisfy the
coupled generalised Gross-Pitaevskii equations

i~
∑

j

Xij
∂

∂t
φj =

∑

j

Xij(−
~
2

2m
∇2 + V )φj

+
∑

j

(g
∑

mn

Yim jn φ
∗
m φn)φj (i = 1, 2). (44)

These mode functions allow for boson-boson interactions and are time-dependent.
They follow the changes in the time dependent potential V (r, t). The quantities
Xij and Yim jn are one-body and two-body correlation functions

Xij = 〈Φ| â†i âj |Φ〉 (45)

Yim jn = 〈Φ| â†i â†mâj ân |Φ〉 (46)

Detailed expressions given in the Appendix A in Eqs. (A.12) and (A.13), show-
ing that Xij and Yim jn are quadratic forms of the amplitudes bk. These are
of order N and N2 respectively. The one body correlation functions can be
expressed in terms of matrix elements between the Fock states of the spin op-
erators, and the two body correlation functions as matrix elements products of
two spin operators. The coupled Gross-Pitaevskii equations are non-linear in
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the mode functions. The non-linear terms (g
∑
mn

Yim jn φ
∗
m φn) that are present

due to the boson-boson interactions scale like the boson particle density and be-
have as generalised mean fields. Hence the approach that produces generalised
Gross-Pitaevskii equations is a form of mean field theory, though not of course
as simple as in the case of a single mode theory. The kinetic energy and trap
potential terms and the mean field terms may also be written as

∑

j

Xij(−
~
2

2m
∇2 + V )φj(r, t)

=
∑

j

〈Φ| â†i
{
− ~

2

2m
∇2

r + V (r, t)

}
âj |Φ〉 φj(r, t) (47)

∑

j

(g
∑

mn

Yim jn φ
∗
m φn)φj(r, t)

=
∑

j

〈Φ| â†i
{
gΨ̂C(r)

†Ψ̂C(r)
}
âj |Φ〉 φj(r, t) (48)

showing the formal relationship of the terms to the state vector |Φ〉.
For the present two mode condensate case the amplitudes satisfy matrix

mechanics equations, as in [17]

i~
∂bk
∂t

=
∑

l

(Hkl − ~Ukl)bl (k = −N/2, .., N/2). (49)

These N +1 equations (49) describe the system dynamics as it evolves amongst
the possible fragmented states. The equations are similar to the standard ampli-
tude equations obtained from matrix mechanics. In these equations the matrix
elements Hkl, Ukl depend on the mode functions φi(r, t). Detailed expressions
for Hkl, Ukl are given in Appendix A in Eqs.(A.10) and (A.7). The matrix

elements Hkl are in fact the matrix elements of the Hamiltonian Ĥ in equation
(32) between the fragmented states

∣∣ N
2 , k

〉
,
∣∣ N

2 , l
〉
. The matrix elements Ukl

are elements of the so-called rotation matrix, and allow for the time dependence
of the mode functions.

Hkl =

〈
N

2
, k

∣∣∣∣ Ĥ
∣∣∣∣
N

2
, l

〉
(50)

Ukl =
1

2i

({
∂t

〈
N

2
, k

∣∣∣∣
} ∣∣∣∣

N

2
, l

〉
−
〈
N

2
, k

∣∣∣∣
{
∂t

∣∣∣∣
N

2
, l

〉})
(51)

The specific forms of the Xij , Yim jn, Hkl, Ukl are not important in what follows,
all that is required is that they have been determined. Equations for the mode
functions and amplitudes similar to (44) and (49) have been obtained by Alon
et al [47] for single component BECs.
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From the amplitude and mode equations it can be shown that

∂

∂t

N

2∑

k=−N

2

|bk(t)|2 = 0 (52)

i~
∑

ij

Xij
∂

∂t

ˆ

drφ∗i (r, t)φj(r, t) = 0 (53)

The first result shows that the amplitudes would remain normalised to unity
and the second result is consistent with the modes remaining orthogonal and
normalised, assuming they were so chosen at t = 0. The second result involves
the trace of the product of a positive definite invertible matrix X with a matrix
which is the time derivative of the mode orthogonality matrix.

Adiabatic solutions to the time dependent coupled Gross-Pitaevskii equa-
tions can be obtained for slowly varying trap potentials via the transformation
to new adiabatic modes ξk(r, t) (k = 1, 2) in the form

φi(r, t) =
∑

k

αki exp(−iµkt) ξk(r, t) (54)

where it is assumed that the coefficients αki and the new modes ξk(r, t) are so
slowly varying with time that their time derivatives can be ignored. All the
time dependence is assumed to be carried in the oscillating exponential factors.
The new modes are required to be orthonormal, and the frequency factors µk
are required to be real, so that the transformation does not diverge for large |t|.
The orthonormality condition shows that the αki form a unitary matrix.

∑

k

α∗
ki αkj = δij

∑

i

α∗
ki αli = δkl (55)

The condensate field operator can also be expressed in terms of the adiabatic
mode functions and their associated annihilation, creation operators as

Ψ̂C(r) = b̂1ξ1(r) + b̂2ξ2(r) Ψ̂†
C(r) = ξ∗1(r)̂b

†
1 + ξ∗2(r)̂b

†
2 (56)

where
b̂k =

∑

i

αki exp(−iµkt) âi b̂†k =
∑

i

α∗
ki exp(+iµkt) â

†
i (57)

and the standard commutation rules apply [̂bk, b̂
†
l ] = δkl.

Substituting for φj(r, t) in the coupled Gross-Pitaevskii equations (44), mul-
tiplying by α∗

li exp(+iµlt) and summing over i gives a pair of time independent
coupled Gross-Pitaevskii equations for the adiabatic mode functions

∑

k

Plk ~µk ξk =
∑

k

Plk(−
~
2

2m
∇2 + V ) ξk

+
∑

k

(g
∑

mn

Qlr ks ξ
∗
r ξs) ξk (l = 1, 2). (58)
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where now the one and two body correlation functions are

Plk = 〈Φ| b̂†l b̂k |Φ〉 (59)

Qlr ks = 〈Φ| b̂†l b̂†rb̂k b̂s |Φ〉 (60)

Equations (47) and (48) were also used in the derivation. These equations are
only meaningful if the trap potential and the adiabatic mode functions are in
fact slowly varying with time. The frequencies µ1, µ2 play the role of generalised
chemical potentials. Noting that the N dependence in the mode equations is
carried in the one and two body correlation functions - these being of O(N) and
O(N2) respectively, it is then possible to show that the chemical potential is
given by

µ =
∂

∂N
〈Φ| Ĥ |Φ〉 =

∑

k

~µk
〈Φ| b̂†k b̂k |Φ〉

N
. (61)

As the quantity 〈Φ| b̂†kb̂k |Φ〉 /N is the fractional number of bosons occupying
the adiabatic mode ξk it follows that ~µk is the chemical potential associated
with that mode.

2.4. Single-Mode Theory and Standard Gross-Pitaevski Equation

For the case where there is just a single condensate mode the state vector
becomes

|Φ(t)〉 =
(
â1(t)

†
)N

[(N)!]
1

2

| 0〉 (62)

The general Gross-Pitaevskii equations (44) then reduce to the single Gross-
Pitaevskii equation.

(
− ~

2

2m
∇2 + V + g(N − 1) |φ1|2

)
φ1 = i~

∂

∂t
φ1 (63)

Note that in the regime of interest with N becoming very large, the factor
gYim jn/N = gNYim jn/N

2 becomes approximately equal to gN tiimes a factor
of order unity. In deriving the single Gross-Pitaevskii equation from (44), the
matrices with elements Xij and Yim jn reduce to 1x1 matrices with non-zero
elements

X11 = N Y1111 = N(N − 1) (64)

since in this case bk = δk,−N/2. As there is now only one mode, there is now a
single Fock state so amplitude equations, spin operators no longer apply.

For the single mode case an adiabatic solution can be obtained via the trans-
formation

φ1(r, t) = exp(−iµ1t) ξ1(r, t) (65)

applied to (63), where it is assumed that the new mode ξ1(r, t) is so slowly
varying with time that its time derivative can be ignored. The time independent
Gross-Pitaevskii equation for the adiabatic mode function becomes

~µ1 ξ1 = (− ~
2

2m
∇2 + V ) ξ1 + g(N − 1) |ξ1|2 ξ1 (66)
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and µ1 is the chemical potential µ1 = ∂
∂N 〈Φ| Ĥ |Φ〉.

2.5. Modified Form for Ĥ2 Term

The previous form (33) of the Ĥ2 term contains spatial derivatives and these
would produce Fokker-Planck equations with functional derivatives with respect
to spatial derivatives of field functions, which cannot be treated in the standard
approach. However, the Ĥ2 term can be put in a form in which spatial deriva-
tives are absent.

2.5.1. Two-Mode Case

It is straightforward to show that the eigenvalues of the 2× 2 matrix of the
Xij are both real, positive and their sum equals N . Apart from special cases
where one of the eigenvalues is zero we see that the matrix of Xij is invertible
and hence we can write

(− ~
2

2m

∑

µ=x,y,z

∂2µ + V )φl = i~
∂

∂t
φl −

∑

ij

X−1
li Zijφj (67)

where the generalised mean field that occurs in the mode equations is defined
by

Zij = g
∑

mn

Yim jn φ
∗
m φn (68)

and is quadratic in the mode functions. Thus we find that the condensate field
annihilation operator satisfies the equation

(
− ~

2

2m
∇2 + V

)
Ψ̂C(r) = i~

∑

l

âl
∂

∂t
φl −

∑

ijl

X−1
li Zijφj âl

= −i~
∑

l

φl
∂

∂t
âl

−g
∑

ijmnl

X−1
li Yim jn φ

∗
mφnφj âl (69)

using ∂
∂t Ψ̂C(r) = 0.

However from (14)

âl =

ˆ

dsφ∗l (s )Ψ̂C(s) (l = 1, 2) (70)

so that the condensate field operator satisfies the integro-differential equation
(
− ~

2

2m
∇2 + V

)
Ψ̂C(r) = −i~

∑

l

φl(r)

ˆ

ds
∂

∂t
φ∗l (s ) Ψ̂C(s)

−g
∑

ijmnl

X−1
li Yim jn φ

∗
m(r)φn(r)φj(r)

×
ˆ

dsφ∗l (s ) Ψ̂C(s) (71)
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Hence operating from the left with Ψ̂NC(r)
† and integrating over r we find that

ˆ

dr Ψ̂NC(r)
†

(
− ~

2

2m
∇2 + V

)
Ψ̂C(r)

= −i~
∑

l

ˆ

dr Ψ̂NC(r)
† φl(r)

ˆ

ds

(
∂

∂t
φ∗l (s )

)
Ψ̂C(s)

−g
∑

ijmnl

X−1
li Yim jn

ˆ

dr Ψ̂NC(r)
† φ∗m(r)φn(r)φj(r)

ˆ

dsφ∗l (s )Ψ̂C(s)

= −g
∑

ijmnl

X−1
li Yim jn

ˆ

dr Ψ̂NC(r)
† φ∗m(r)φn(r)φj(r)

×
ˆ

dsφ∗l (s )Ψ̂C(s) (72)

since the first term on the right hand side is zero because the condensate mode
functions φj(r) are orthogonal to the non-condensate mode functions φ∗k(r )

that are present in the expansion of the non-condensate field operator Ψ̂NC(r)
†.

Thus we can write
ˆ

dr Ψ̂NC(r)
†

{(
− ~

2

2m
∇2 + V

)
Ψ̂C(r)

}
= −gN

N

ˆ ˆ

dr dsF (r, s)Ψ̂NC(r)
† Ψ̂C(s)

(73)
where the kernel F (r, s) is an ordinary spatial function of two positions and is
defined by

F (r, s) =
∑

ijmnl

X−1
li Yim jnφ

∗
m(r)φn(r)φj(r)φ

∗
l (s ) (74)

Note that this kernel is not symmetric in r, s.
Taking the adjoint of the last equation gives

ˆ

dr

{(
− ~

2

2m
∇2 + V

)
Ψ̂†
C(r)

}
Ψ̂NC(r) = −gN

N

ˆ ˆ

dr dsF ∗(s, r)Ψ̂C(r)
†Ψ̂NC(s)

(75)

so the term Ĥ2 can now be written as

Ĥ2 = −
ˆ ˆ

dr ds
gN
N
F (r, s)Ψ̂NC(r)

† Ψ̂C(s)

+

ˆ

dr Ψ̂NC(r)
†
{
+
gN
N

Ψ̂C(r)
†Ψ̂C(r)Ψ̂C(r)

}

+

ˆ

dr
{
+
gN
N

Ψ̂C(r)
†Ψ̂C(r)

†Ψ̂C(r)
}
Ψ̂NC(r))

−
ˆ ˆ

dr ds
gN
N
F ∗(s, r)Ψ̂C(r)

†Ψ̂NC(s) (76)

This eliminates the awkward terms involving integrals of Ψ̂NC with the spatial
derivative of Ψ̂C (and the adjoint expressions). These would lead to Fokker-
Planck equations with functional derivatives with respect to spatial derivatives
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of field functions, which cannot be treated in the standard approach. However,
the term Ĥ2 now involves double spatial integrals of field operators, and these
require special treatment.

We can write Ĥ2 as the sum of two terms, one involving field operators to
the second order, the other involving field operators to the fourth order. Thus

Ĥ2 = Ĥ2U4 + Ĥ2U2 (77)

Ĥ2U4 =
gN
N

ˆ

dr (Ψ̂†
NC(r)Ψ̂

†
C(r) Ψ̂C(r)Ψ̂C(r))

+
gN
N

ˆ

dr (Ψ̂†
C(r)Ψ̂

†
C(r) Ψ̂C(r)Ψ̂NC(r)) (78)

Ĥ2U2 = −gN
N

ˆ ˆ

dr dsF (r, s)Ψ̂NC(r)
† Ψ̂C(s)

−gN
N

ˆ ˆ

dr dsF ∗(s, r)Ψ̂C(r)
†Ψ̂NC(s) (79)

Note that both terms are proportional to the factor gN/N . Thus we see that

Ĥ2 is now associated only with terms analogous to those for boson-boson inter-
actions, both Ĥ2U4 and Ĥ2U2 being proportional to gN/N .

2.5.2. Single Mode Case

If only a single condensate mode was involved the development of Ĥ2 is
simpler. From (63) and (24) similar procedure to the two mode case gives
(
− ~

2

2m
∇2 + V

)
Ψ̂C(r) = −i~φ1(r)

ˆ

ds

(
∂

∂t
φ∗1(s )

)
Ψ̂C(s)−g(N − 1) |φ1(r)|2 Ψ̂C(r)

(80)
so that using the orthogonality of the condensate mode to all the non-condensate
modes

ˆ

dr Ψ̂†
NC(r)

(
− ~

2

2m
∇2 + V

)
Ψ̂C(r)

= −i~
ˆ

dr Ψ̂†
NC(r)φ1(r)

ˆ

ds

(
∂

∂t
φ∗1(s )

)
Ψ̂C(s)

−
ˆ

dr Ψ̂†
NC(r)g(N − 1) |φ1(r)|2 Ψ̂C(r)

= −
ˆ

dr Ψ̂†
NC(r)g(N − 1) |φ1(r)|2 Ψ̂C(r) (81)

This result may also be recognised as a special case of (75). Using the special
forms in (64) for the X−1

li Yim jn we have

F (r, s) =
1

N
N(N − 1)φ∗1(r)φ1(r)φ1(r)φ

∗
1(s )

= (N − 1)φ∗1(r)φ1(r)δC(r, s ) (82)

−gN
N

ˆ ˆ

dr dsF (r, s)Ψ̂NC(r)
† Ψ̂C(s) = −

ˆ

dr Ψ̂NC(r)
†g(N − 1) |φ1(r)|2 Ψ̂C(r)
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as before, where a result from (22) has been used to evaluate the s integral..

We can use (81) and the related adjoint equation involving Ψ̂†
C(r)g(N − 1) |φ1(r)|2 Ψ̂NC(r)

to simplify Ĥ2 into a form

Ĥ2 =

ˆ

dr (Ψ̂†
NC(r)

gN
N

{Ψ̂†
C(r) Ψ̂C(r)−

〈
Ψ̂†
C(r) Ψ̂C(r)

〉
}Ψ̂C(r))

+

ˆ

dr (Ψ̂†
C(r)

gN
N

{Ψ̂†
C(r) Ψ̂C(r)−

〈
Ψ̂†
C(r) Ψ̂C(r)

〉
}Ψ̂NC(r)) (83)

where we use the notation
〈
Ψ̂C(r)

†Ψ̂C(r)
〉
= (N − 1) |φ1(r)|2. We see that for

the single mode condensate case Ĥ2 is also the sum of a term Ĥ2U4 which is
fourth order in the field operators and a term Ĥ2U2 which is second order.

Ĥ2 = Ĥ2U4 + Ĥ2U2 (84)

Ĥ2U4 =
gN
N

ˆ

dr (Ψ̂†
NC(r)Ψ̂

†
C(r) Ψ̂C(r)Ψ̂C(r))

+
gN
N

ˆ

dr (Ψ̂†
C(r)Ψ̂

†
C(r) Ψ̂C(r)Ψ̂NC(r)) (85)

Ĥ2U2 = −gN
N

ˆ

dr (Ψ̂†
NC(r){

〈
Ψ̂†
C(r) Ψ̂C(r)

〉
}Ψ̂C(r))

−gN
N

ˆ

dr (Ψ̂†
C(r){

〈
Ψ̂†
C(r) Ψ̂C(r)

〉
}Ψ̂NC(r)) (86)

Thus we see that Ĥ2 is now associated only with boson-boson interaction terms.
However, unlike the two mode condensate case there is no double spatial integral
involved. The general form of the development for Ĥ2 is a simpler version of
the result (77) for the two mode case.
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3. Phase space distribution functional

In this section the phase space distribution functional is introduced starting
with the characteristic functional. The distribution functional is of a mixed
type, with the condensate fields involving a generalised Wigner form, whilst the
non-condensate fields involving a positive P form. This is to reflect the fea-
ture that many bosons occupy the condensate modes, so a Wigner distribution
is better suited since it descibes fields whose behaviour is close to a classical
mean field situation. On the other hand, there will be few bosons occupying the
non-condensate modes, hence a positive P distribution is better, since the non-
condensate fields may display quantum behaviour. In this section we emphasise
how the phase space distribution functionals determine the quantum correla-
tion functions which are used to describe the probabilities for bosonic position
measurements. The theory in this section is set out for the two-mode situation,
but can be easily modified for the single mode condensate by just restricting
the sums over condensate modes to a single term.

3.1. Characteristic Functional

From the density operator ρ̂ and by introducing four distinct functions
ξ+C (r), ξC(r), ξ

+
NC(r) and ξNC(r) associated with the field operators

Ψ̂C(r), Ψ̂
†
C(r), Ψ̂NC(r) and Ψ̂†

NC(r) respectively, we define the characteristic
functional χ[ξC(r), ξ

+
C (r), ξNC(r), ξ

+
NC(r)] as

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] = Tr(ρ̂ Ω̂[ξC , ξ

+
C , ξNC , ξ

+
NC ]) (87)

with

Ω̂ = Ω̂C Ω̂NC (88)

Ω̂C = exp

ˆ

dr i{ξC(r)Ψ̂†
C(r) + Ψ̂C(r)ξ

+
C (r)} (89)

Ω̂NC = exp

ˆ

dr i{ξNC(r)Ψ̂†
NC(r)} exp

ˆ

dr i{Ψ̂NC(r)ξ+NC(r)} (90)

Thus this mixed characteristic functional is of the Wigner type for the conden-
sate modes and of the Positive P (P+) type for the non-condensate modes. The
basic idea of a functional is explained in Appendix B ([82]) but essentially a
functional F [ψ(x)] of a field function ψ(x) just defines a process that results in
a c-number which depends on all the values of the field function, that is over
the entire range of positions x.
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If the mode expansions are used with

ξC(r) = ξ1φ1(r) + ξ2φ2(r) (91)

ξ+C (r) = φ∗1(r)ξ
+
1 + φ∗2(r)ξ

+
2 (92)

ξNC(r) =

K∑

k 6=1,2

ξk φk(r) (93)

ξ+NC(r) =

K∑

k 6=1,2

φ∗k(r) ξ
+
k (94)

then we have

Ω̂C = exp i{ξ1â†1 + â1ξ
+
1 + ξ2â

†
2 + â2ξ

+
2 } (95)

Ω̂NC = exp i
∑

k 6=1,2

ξkâ
†
k exp i

∑

k 6=1,2

âkξ
+
k (96)

This shows that the characteristic functional χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] is also a char-

acteristic function χb(ξ1, ξ
+
1 , ξ2, ξ

+
2 , .., ξk, ξ

+
k , ..) of the c-number expansion coef-

ficients, a result that is important in deriving expressions based on functionals.

3.2. Quasi-Distribution Functional

For double phase space distributions as in the present case the quasi-distribution
functional P [ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)] in-

volves four field functions ψC(r), ψ
+
C (r), ψNC(r), ψ

+
NC(r) corresponding to the

field operators Ψ̂C(r), Ψ̂
†
C(r), Ψ̂NC(r) and Ψ̂†

NC(r) respectively, plus their com-
plex conjugate fields ψ∗

C(r), ψ
+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r). It is chosen to give the

characteristic functional χ[ξC(r), ξ
+
C (r), ξNC(r), ξ

+
NC(r)] via a functional inte-

gration process over the four complex field functions, the integration also incor-
porating an exponential factor, which may be written as
exp i

´

dr {ξC(r)ψ+
C (r)+ψC(r)ξ

+
C (r)} exp i

´

dr {ξNC(r)ψ+
NC(r)} exp i

´

dr {ψNC(r)ξ+NC(r)}.
Thus

χ[ξC(r), ξ
+
C (r), ξNC(r), ξ

+
NC(r)]

=

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

×P [ψC(r), ψ+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}. (97)

The justification of this important result is set out below. Note that the quasi-
distribution functional is not necessarily unique, it is only required that the
above functional integral gives the characteristic functional, (which is unique).
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In the present case we will use a weight function of the form based on Eq.(B.60),
but adapted to there being eight real fields, rather than four as in Appendix
B.8.

w(ψ1, ψ
+
1 , .., ψi, ψ

+
i , .., ψn, ψ

+
n , ψ

∗
1 , ψ

+∗
1 , .., ψ∗

i , ψ
+∗
i , .., ψ∗

n, ψ
+∗
n ) =

∏

i

(∆ri)
4

(98)
The power law (∆ri)

4 arises because each field contributes (∆ri)
1/2.

Functional integration is fully explained in Appendix B ([82]), but a brief
summary is as follows. If there are n modes then the range for each function
ψ(x) is divided up into n small intervals ∆xi = xi+1−xi (the ith interval, where
ǫ > |∆xi|), then we may specify the value ψi of the function ψ(x) in the ith
interval via the average

ψi =
1

∆xi

ˆ

∆xi

dxψ(x) (99)

and then any functional F [ψ(x)] may be regarded as a function F (ψ1, ψ2, .., ψi, .., ψn)
of all the ψi, and ordinary integration over the ψi is used to define the func-
tional integral. If each function ψ(x) = ψx(x)+ iψy(x).is written in terms of its
real and imaginary parts, then the functional integration becomes an ordinary
integration over the values ψix, ψiy of these components in each interval i of the
function F (ψ1, ψ2, .., ψi, .., ψn) multiplied by a suitably chosen weight function
w(ψ1, ψ2, .., ψi, .., ψn). Thus

ˆ

D2ψ F [ψ(x)] = lim
n→∞

lim
ǫ→0

ˆ

. . .

ˆ

d2ψ1d
2ψ2..d

2ψi..d
2ψn w(ψ1, ψ2, .., ψi, .., ψn)

×F (ψ1, ψ2, .., ψi, .., ψn) (100)

where the number of modes is increased to infinity along with the space interval
decreasing to zero. The symbolD2ψ stands for d2ψ1d

2ψ2..d
2ψi..d

2ψn w(ψ1, .., ψi, .., ψn),
where the quantity d2ψi means dψixdψiy. The present case involves a generali-
sation to treat four complex fields ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r).

To justify the characteristic functional result (97) mode expansions for the
field functions are used with c-number expansion coefficients αk, α

+
k

ψC(r) = α1 φ1(r) + α2 φ2(r) (101)

ψ+
C (r) = φ∗1(r)α

+
1 + φ∗2(r)α

+
2 (102)

ψNC(r) =
K∑

k 6=1,2

αk φk(r) (103)

ψ+
NC(r) =

K∑

k 6=1,2

φ∗k(r)α
+
k (104)

The P+ quasi-distribution functional
P [ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)] would then be
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equivalent to a distribution function Pb(α1, α
+
1 , .., αk, α

+
k , .., α

∗
1, α

+∗
1 , .., α∗

k, α
+∗
k , ..)

of the c-number expansion coefficients and their complex conjugates. For dou-
ble phase space representations of bosonic systems the connection between the
characteristic function χb(ξ1, ξ

+
1 , ξ2, ξ

+
2 .., ξk, ξ

+
k , ..) and the distribution function

via a phase space integral has been established by Drummond and Gardiner
[83], [84]. The characteristic function is given by

χb(ξ1, ξ
+
1 , ξ2, ξ

+
2 .., ξk, ξ

+
k , ..)

=

ˆ

. . .

ˆ

d2α1d
2α+

1 d
2α2d

2α+
2 ..d

2αkd
2α+

k ..d
2αnd

2α+
n

×Pb(α1, α
+
1 , .., αk, α

+
k , .., α

∗
1, α

+∗
1 , .., α∗

k, α
+∗
k , ..)

× exp i

n∑

k=1

{ξk α+
k } exp i

n∑

k=1

{αk ξ+k } (105)

where αk = αkx + iαky, α
+
k = α+

kx + iα+
ky and d2αk = dαkx dαky , d

2α+
k =

dα+
kx dα

+
ky . If the phase space integration is replaced by functional integration

we can show that Eq.(105) leads to the result (97), which thus demonstrates
that the distribution functional exists. The change from phase space integration
to functional integration is outlined in Appendix B.8 (see Appendix B, [82]).
In deriving the functional integration result for the characteristic function the
expressions

exp i

n∑

k=1

{ξk α+
k } = exp i

∑

j=1,2

{ξj α+
j } exp i

n∑

k 6=1,2

{ξk α+
k }

= exp i

ˆ

dr {ξC(r)ψ+
C (r)} exp i

ˆ

dr {ξNC(r)ψ+
NC(r)}

exp i

n∑

k=1

{αk ξ+k } = exp i
∑

j=1,2

{αj ξ+j } exp i

n∑

k 6=1,2

{αk ξ+k }

= exp i

ˆ

dr {ψC(r)ξ+C (r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

are used.
Note that as each field can be expressed in terms of its real and imagi-

nary components, the distribution functional involving the four fields and their
conjugates may also be considered as a functional of the eight real, imaginary
components.

P [ψC(r), ψ
+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)]

≡ F [ψCX(r), ψ+
CX(r), ψNCX(r), ψ+

NCX(r), ψCY (r), ψ
+
CY (r), ψNCY (r), ψ

+
NCY (r)

This form of the distribution functional is analogous the corresponding form
for the distribution function, which has been used as the basis for deriving Ito
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stochastic equations for the real, imaginary parts of the phase variables [83],
[84].

Pb(α1, α
+
1 , .., αk, α

+
k , .., α

∗
1, α

+∗
1 , .., α∗

k, α
+∗
k , ..)

≡ Fb(α1X , α
+
1X , .., αkX , α

+
kX , .., α1Y , α

+
1Y , .., αkY , α

+
kY , ..) (106)

3.3. Interferometric Measurements

Coherence effects in BECs are described via Quantum Correlation Functions

GN (r1, r2, .., rN ; sN , .., s2, s1) =
〈
Ψ̂ (r1)

† ..Ψ̂ (rN )† Ψ̂ (sN ) .. Ψ̂ (s1)
〉

= Tr(ρ̂(t) Ψ̂ (r1)
† ..Ψ̂ (rN )† Ψ̂ (sN ) .. Ψ̂ (s1)) (107)

Various BEC spatial interference effects can be described via quantum correla-
tion functions, which thereby specify the spatial coherence effects.

If we interchange coordinates of a pair of bosons, say (ri, si) ↔ (rj , sj) we
see that because the commutation properties of the bosonic field operators, the
quantum correlation function is unchanged. The symmetrization principle for
bosonic systems is consistent with measured quantities remaining unchanged
due to interchange of identical particles.

The quantum correlation function with ri = si (i = 1, ..., N) measures the
simultaneous probability of detecting one boson at r1, a second at r2, .., the
Nth at rN , ([28]. Actual measurements of quantum correlation functions may
be made via scattering a weak probe beam (atoms, light) off the system, ([29].
If the field operators are written as the sum of condensate and non-condensate
terms, then the quantum correlation functions will contain purely condensate
terms, purely non-condensate terms and mixed terms involving both condensate
and non-condensate operators.

The quantum averages of symmetrically ordered products of the condensate
field operators {Ψ̂†

C(r1)Ψ̂
†
C(r2)....Ψ̂

†
C(rp)Ψ̂C(sq)..Ψ̂C(s1)} and normally ordered

products of the non-condensate field operators
Ψ̂†
NC(u1)Ψ̂

†
NC(u2)....Ψ̂

†
NC(ur)Ψ̂NC(vs)..Ψ̂NC(v1) may then be expressed as func-

tional integrals of the quasi-distribution functional
P [ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)] with products

of the field functions. Thus, with
〈
Ξ̂
〉
≡ Tr(ρ̂Ξ̂)

〈
{Ψ̂†

C(r1)....Ψ̂
†
C(rp)Ψ̂C(sq)..Ψ̂C(s1)} Ψ̂

†
NC(u1)....Ψ̂

†
NC(ur)Ψ̂NC(vs)..Ψ̂NC(v1)

〉

= Tr
(
ρ̂ {Ψ̂†

C(r1)....Ψ̂
†
C(rp)Ψ̂C(sq)..Ψ̂C(s1)} Ψ̂

†
NC(u1)....Ψ̂

†
NC(ur)Ψ̂NC(vs)..Ψ̂NC(v1)

)

=

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

×P [ψC(r), ψ+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)]

×ψ+
C (r1)ψ

+
C (r2) ..ψ

+
C (rp)ψC(sq) ..ψC(s2).ψC(s1)

×ψ+
NC(u1)ψ

+
NC(u2) ..ψ

+
NC(ur)ψNC(vs) ..ψNC(v2)ψNC(v1) (108)
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and where

{Ψ̂†(r1)Ψ̂
†(r2)....Ψ̂

†(rp)Ψ̂(sq)..Ψ̂(s1)}

=
1

(p+ q)!

∑

R

ℜ(Ψ̂†(r1)Ψ̂
†(r2)....Ψ̂

†(rp)Ψ̂(sq)..Ψ̂(s1)). (109)

In Eq.(109) the sum over R is over all (p + q)! orderings ℜ of the factors

Ψ̂†(r1)Ψ̂
†(r2)....Ψ̂

†(rp)Ψ̂(sq)..Ψ̂(s1). T hus, the condensate field operator Ψ̂†
C(ri)

is replaced by ψ+
C (ri) and Ψ̂C(sj) is replaced by ψ(sj), with analogous replace-

ments for the non-condensate field operators. The proof is given in Appendix
C ([82]) and involves functional differentiation, which is explained in Appendix
B ([82]).

These results together with the equal time commutation rules give the quan-
tum correlation functions. For example, the first order quantum correlation
function (which is used to exhibit macroscopic spatial coherence in a BEC) is
given by

G1(r1; s1)

=
〈
Ψ̂(r1)

† Ψ̂(s1)
〉

=
〈
Ψ̂C(r1)

† Ψ̂C(s1)
〉
+
〈
Ψ̂C(r1)

† Ψ̂NC(s1)
〉

+
〈
Ψ̂NC(r1)

† Ψ̂C(s1)
〉
+
〈
Ψ̂NC(r1)

† Ψ̂NC(s1)
〉

=

〈(
{ Ψ̂C(r1)† Ψ̂C(s1)} −

1

2
δ(r1 − s1)

)〉
+
〈
{Ψ̂C(r1)†} Ψ̂NC(s1)

〉

+
〈
Ψ̂NC(r1)

† {Ψ̂C(s1)}
〉
+
〈
Ψ̂NC(r1)

† Ψ̂NC(s1)
〉

= −1

2
δ(r1 − s1)

+

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

×P [ψC(r), ψ+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)]

×(ψ+
C (r1) + ψ+

NC(r1))(ψC(s1) + ψNC(s1)) (110)

and includes pure condensate terms, pure non-condensate terms and mixed
terms. Note the delta function term which arises because of the difference
between normal and symmetric ordering that applies for the condensate terms.

It is worth noting that some authors [40], [41], [42] determine the mode
functions as the eigenfunctions of the first order quantum correlation function〈
Ψ̂(r1)

† Ψ̂(s1)
〉
. Thus the mode functions ϕi(r) satisfy the eigenvalue equations

ˆ

ds1

〈
Ψ̂(r1)

† Ψ̂(s1)
〉
ϕi(s1) = λiϕi(r1) (111)

The mode functions can be shown to be orthonormal and the eigenvalues real
and positive. The eigenvalues give the occupancy of the modes. For two mode
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condensates in a general fragmented state, two such eigenvalues will have macro-
scopic values ˜N and the other modes will have small eigenvalues. This approach
to determining the mode functions has certain formal advantages, such as lead-
ing to the Ĥ2 term in the Hamiltonian being zero. However, the method would
require knowing the first order correlation function, and it is not clear how this
could be done prior to knowing the mode functions. In the present approach
the formalism is designed as a way to determine all the quantum correlation
functions.
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4. Functional Fokker-Planck equation

In this section we show how the Liouville-von Neumann equation for the
quantum density operator describing the state of the bosonic system is equiv-
alent to a functional Fokker-Planck equation for the phase space distribution
functional. This is accomplished via the use of correspondence rules, wherein
the product of the quantum density operator with the various condensate and
non-condensate field operators (for both product orders) is equivalent to the
operation of functional derivatives or field functions on the distribution func-
tion. The actual results for the functional Fokker-Planck equation in the case
of the present two mode BEC condensate system are set out at the end of the
section. For completeness the corresponding simpler results for a single mode
condensate are also obtained.

4.1. Dynamics

The state of the bosonic system is described by the density operator ρ̂ which
satisfies the Liouville-von Neumann equation

i~
∂

∂t
ρ̂ = [Ĥ, ρ̂] (112)

where the Bogoliubov Hamiltonian 37 will be used.
The approach used will be to turn the Liouville-von Neumann equation for

the density operator ρ̂ into a functional Fokker-Planck equation for a quasi distri-
bution functional P [ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)]

and then replace this by stochastic equations for stochastic field functions
ψ̃C(r,t), ψ̃

+
C (r,t), ψ̃NC(r,t), ψ̃

+
NC(r,t). The latter are c-number Langevin equa-

tions of the Ito type, and in general will contain random noise terms as well as
deterministic terms coupling the field functions.

4.2. Correspondence Rules

We now wish to replace the Liouville-von Neumann equation for the den-
sity operator by a Functional Fokker-Planck Equation for the quasi distribution
functional. To do this we make use of so-called correspondence rules, in which
the effect of a field operator on the density operator corresponds to the effects
of functional differentiation and/or function multiplication on the distribution
functional.

Functional differentiation is fully explained in Appendix B ([82]), but a sum-
mary is as follows. For a functional F [ψ(x)] of a field ψ(x) the functional deriva-

tive δF [ψ(x)]
δψ(x) is defined by

F [ψ(x) + δψ(x)] + F [ψ(x)] +

ˆ

dx δψ(x)

(
δF [ψ(x)]

δψ(x)

)

x

(113)

where δψ(x) is small. In this equation the left side is a functional of ψ(x)+δψ(x)
and the first term on the right side is a functional of ψ(x). The second term on
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the right side is a functional of δψ(x) and thus the functional derivative must
be a function of x, hence the subscript x. In most situations this subscript will
be left understood. If we write δψ(x) = ǫδ(x− y) for small ǫ then an equivalent
result for the functional derivative at x = y is

(
δF [ψ(x)]

δψ(x)

)

x=y

= lim
ǫ→0

(
F [ψ(x) + ǫδ(x− y)]− F [ψ(x)]

ǫ

)
. (114)

Note that for functionals involving both ψ(x), ψ∗(x) we treat these complex
fields as independent, and functional derivatives with respect to both ψ(x),
ψ∗(x) exist. Thus

F [ψ(x) + δψ(x), ψ∗(x) + δψ∗(x)]

+ F [ψ(x), ψ∗(x)] +

ˆ

dx δψ(x)

(
δF [ψ(x), ψ∗(x)]

δψ(x)

)

x

+

ˆ

dx δψ∗(x)

(
δF [ψ(x), ψ∗(x)]

δψ∗(x)

)

x

(115)

For the equivalent functional G[ψX(x), ψY (x)] ≡ F [ψ(x), ψ∗(x)] involving the
real, imaginary components ψX(x), ψY (x) the functional derivatives are defined
by

G[ψX(x) + δψX(x), ψY (x) + δψY (x)]

+ G[ψX(x), ψY (x)] +

ˆ

dx δψX(x)

(
δG[ψX(x), ψY (x)]

δψX(x)

)

x

+

ˆ

dx δψY (x)

(
δG[ψX(x), ψY (x)]

δψY (x)

)

x

(116)

The present case involves a generalisation to treat four complex fields
ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r).

4.2.1. Notation

As the notation is now getting rather cumbersome we will designate

ψ−→(r) ≡ {ψC(r), ψ+
C (r), ψNC(r), ψ

+
NC(r)} (117)

ψ∗

−→(r) ≡ {ψ∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)} (118)

P [ψ−→(r), ψ∗

−→(r)] ≡ P [ψC(r), ψ
+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)]

(119)

ξ−→(r) ≡ {ξC(r), ξ+C (r), ξNC(r), ξ+NC(r)} (120)

χ[ ξ−→(r)] ≡ χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] (121)
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for the fields and the distribution, characteristic functionals. For the expansion
coefficients and the distribution function we introduce the notation

α−→ ≡ {αk, α+
k } (122)

α−→
∗ ≡ {α∗

k, α
+∗
k } (123)

Pb(α−→, α−→
∗) ≡ Pb(αk, α

+
k , α

∗
k, α

+∗
k ) (124)

P [ψ−→(r), ψ∗

−→(r)] ≡ Pb(α−→, α−→
∗) (125)

where the original functional
P [ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)] of the fields

ψC(r), ψ
+
C (r), ψNC(r), ψ

+
NC(r) and their complex conjugates ψ∗

C(r), ψ
+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)

is equivalent to the function Pb(αk, α
+
k , α

∗
k, α

+∗
k ) of the expansion amplitudes

αk, α
+
k and their complex conjugates α∗

k, α
+∗
k .

4.2.2. Correspondence Rules for Condensate and Non-Condensate Fields

For the condensate operators we have

Ψ̂C(s)ρ̂ ↔
(
ψC(s) +

1

2

δ

δψ+
C (s)

)
P [ψ−→(r), ψ∗

−→(r)]

ρ̂Ψ̂C(s) ↔
(
ψC(s)−

1

2

δ

δψ+
C (s)

)
P [ψ−→(r), ψ∗

−→(r)]

Ψ̂†
C(s)ρ̂ ↔

(
ψ+
C (s)−

1

2

δ

δψC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

ρ̂Ψ̂†
C(s) ↔

(
ψ+
C (s) +

1

2

δ

δψC(s)

)
P [ψ−→(r), ψ∗

−→(r)] (126)

and for the non-condensate operators

Ψ̂NC(s)ρ̂ ↔ (ψNC(s))P [ψ−→(r), ψ∗

−→(r)]

ρ̂Ψ̂NC(s) ↔
(
ψNC(s)−

δ

δψ+
NC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

Ψ̂†
NC(s)ρ̂ ↔

(
ψ+
NC(s)−

δ

δψNC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

ρ̂Ψ̂†
NC(s) ↔

(
ψ+
NC(s)

)
P [ψ−→(r), ψ∗

−→(r)] (127)

whilst for the density operator

∂ρ̂

∂t
→

∂P [ψ−→(r), ψ∗

−→(r)]

∂t
(128)

4.2.3. Deriving the Correspondence Rules

The proof of these correspondence rules is dealt with in Appendix D ([82]).
Key steps in the derivation include first establishing the following changes to
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the characteristic functional. For the condensate modes we have

Ψ̂C(s)ρ̂ ↔ 1

i

(
δ

δξ+C (s)
+

1

2
ξC(s)

)
χ[ ξ−→(r)]

ρ̂Ψ̂C(s) ↔ 1

i

(
δ

δξ+C (s)
− 1

2
ξC(s)

)
χ[ ξ−→(r)]

Ψ̂†
C(s)ρ̂ ↔ 1

i

(
δ

δξC(s)
− 1

2
ξ+C (s)

)
χ[ ξ−→(r)]

ρ̂Ψ̂†
C(s) ↔ 1

i

(
δ

δξC(s)
+

1

2
ξ+C (s)

)
χ[ ξ−→(r)] (129)

and for the non-condensate modes

Ψ̂NC(s)ρ̂ ↔ 1

i

(
δ

δξ+NC(s)

)
χ[ ξ−→(r)]

ρ̂Ψ̂NC(s) ↔ 1

i

(
δ

δξ+NC(s)
− ξNC(s)

)
χ[ ξ−→(r)]

Ψ̂†
NC(s)ρ̂ ↔ 1

i

(
δ

δξNC(s)
− ξ+NC(s)

)
χ[ ξ−→(r)]

ρ̂Ψ̂†
NC(s) ↔ 1

i

(
δ

δξNC(s)

)
χ[ ξ−→(r)] (130)

As can be seen from eqs. (101, 102, 103, 104) the distribution function
P [ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)] is a functional

of restricted functions (see Appendix B, [82]). It can also be considered as a
function Pb(αk, α

+
k , α

∗
k, α

+∗
k ) of all the expansion coefficients αk, α

+
k in eqs. (101,

102, 103, 104) and their complex conjugates α∗
k, α

+∗
k . Hence in applying the

correspondence rules the following operator identities for the various functional
derivatives can be used

(
δ

δψC(s)

)

s

≡
∑

k=1,2

φ∗k(s)
∂

∂αk

(
δ

δψNC(s)

)

s

≡
K∑

k 6=1,2

φ∗k(s)
∂

∂αk

(
δ

δψ+
C (s)

)

s

≡
∑

k=1,2

φk(s)
∂

∂α+
k

(
δ

δψ+
NC(s)

)

s

≡
K∑

k 6=1,2

φk(s)
∂

∂α+
k

(131)

where it is understood that the left side operates on the distribution func-
tional P [ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)] of the

restricted functions ψC(r), ψ
+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)

and the right side operates on the equivalent function Pb(αk, α
+
k , α

∗
k, α

+∗
k ). The

related identities for the functional differentiation with respect to the complex
conjugate fields also exist, but are not needed because the correspondence rules
only involve functional derivation with respect to ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r),

37



and any functions arising from the multiplications are only functions of these
fields and not their complex conjugates.

In deriving the correspondence rules that result in functional differentiation
a key step involves a functional integration by parts of the form

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

(
δG[ψ−→(r)]

δψ(r)

)
P [ψ−→(r), ψ∗

−→(r)]

= −
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC G[ψ−→(r)]

(
δP [ψ−→(r), ψ∗

−→(r)]

δψ(r)

)

(132)

where

G[ψ−→(r)] = exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξC(r)ψ+
C (r)} exp i

ˆ

dr {ξNC(r)ψ+
NC(r)}(133)

is a functional of the four fields ψC(r), ψ
+
C (r), ψNC(r), ψ

+
NC(r) and ψ(r) refers to

any one of these. This step relies on the distribution function Pb(αk, α
+
k , α

∗
k, α

+∗
k )

going to zero on the boundaries of phase space, an assumption common to
all correspondence rule derivations. Note that the functional differentiation of
P [ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)] is well-defined,

since P [ψ−→(r), ψ∗

−→(r)] is a functional of both the fields and their complex conju-

gates.

4.2.4. Real and Imaginary Field Components

Note that because G[ψ−→(r)] does not depend on the conjugate fields, its

functional derivative with respect to any ψ∗(r) is zero. Thus we also have

0 =

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

(
δG[ψ−→(r)]

δψ∗(r)

)
P [ψ−→(r), ψ∗

−→(r)]

= −
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC G[ψ−→(r)]

(
δP [ψ−→(r), ψ∗

−→(r)]

δψ∗(r)

)
(134)

Adding an arbitrary multiple λ of the last equation to each side of (132) gives

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

(
δG[ψ−→(r)]

δψ(r)

)
P [ψ−→(r), ψ∗

−→(r)]

= −
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC G[ψ−→(r)]

×
(
δP [ψ−→(r), ψ∗

−→(r)]

δψ(r)
+ λ

δP [ψ−→(r), ψ∗

−→(r)]

δψ∗(r)

)
(135)
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Noting that we can write the field in terms of its real, imaginary components and
replace the distribution functional P [ψ−→(r), ψ∗

−→(r)] with an equivalent functional

F [ψX−→(r), ψY−→(r)] of the components

ψ(r) = ψX(r) + iψY (r) ψ∗(r) = ψX(r) − iψY (r)

ψX(r) = (ψ(r) + ψ∗(r))/2 ψY (r) = (ψ(r) − ψ∗(r))/2i

ψX−→(r) ≡ {ψCX(r), ψ+
CX(r), ψNCX(r), ψ+

NCX(r)}

ψY−→(r) ≡ {ψCY (r), ψ+
CY (r), ψNCY (r), ψ

+
NCY (r)} (136)

P [ψ−→(r), ψ∗

−→(r)] ≡ F [ψX−→(r), ψY−→(r)] (137)

then a straightford application of functional differentiation rules shows that by
choosing λ = 1 or λ = −1 we have

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

(
δG[ψ−→(r)]

δψ(r)

)
P [ψ−→(r), ψ∗

−→(r)]

= −
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC G[ψ−→(r)]

(
δF [ψX−→(r), ψY−→(r)]

δψX(r)

)

(138)

= −
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC G[ψ−→(r)]

(
δF [ψX−→(r), ψY−→(r)]

δ(iψY (r))

)

(139)

This shows that functional differentiation of the distribution functional with re-
spect to ψ(r) is equivalent to functional differentiation of the related distribution
functional F [ψX−→(r), ψY−→(r)] with respect to either ψX(r) or iψY (r). This feature

is useful if we wish to replace the fields by their real, imaginary components.

4.2.5. Applying the Correspondence Rules

In dealing with terms in the Liouville-von Neumann equation the density
operator is often operated on by more than one field operator. To determine
the overall effect on the quasi distribution functional it is necessary to carry
out the above replacements in succession. A couple of examples illustrate the
proceedure.

Ψ̂†
NC(s1)ρ̂Ψ̂C(s2)

→
(
ψ+
NC(s1)−

δ

δψNC(s1)

)(
ψC(s2)−

1

2

δ

δψ+
C (s2)

)
P [ψ−→(r), ψ∗

−→(r)]

Ψ̂†
C(s1)ρ̂Ψ̂C(s2)

→
(
ψ+
C (s1)−

1

2

δ

δψC(s1)

)(
ψC(s2)−

1

2

δ

δψ+
C (s2)

)
P [ψ−→(r), ψ∗

−→(r)].
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Using the rules for functional differentiation we see that the differentiations can
be carried out in either order.

In applying these rules to the BEC problem, the following functional deriva-
tive results can be obtained (see Appendix B, [82]) The general functions ψ(r)
and ψ+(r) each were used to cover the results for condensate and non-condensate
modes. For the case where ψ(r) ≡ ψC(r) the restricted set K refers to the
modes φ1(r) and φ2(r), and for the non-condensate case where ψ(r) ≡ ψNC(r)
the restricted set refers to the remaining modes φk(r). For the case where
ψ+(r) ≡ ψ+

C (r) the restricted set K refers to the conjugate modes φ∗1(r) and
φ∗2(r), and for the non-condensate case where ψ+(r) ≡ ψ+

NC(r) the restricted
set K∗refers to the remaining conjugate modes φ∗k(r). Because the coefficients
are unrelated we are dealing with functionals such as the distribution functional
P [ψ−→(r), ψ∗

−→(r)] in which the functions ψC(r), ψ
+
C (r), ψNC(r), ψ

+
NC(r) are mutu-

ally independent.

δ

δψC(s)
ψC(r) = δC(r, s)

δ

δψ+
C (s)

ψ+
C (r) = δC+(r, s) = δC(s, r)

δ

δψC(s)
ψ+
C (r) = 0

δ

δψ+
C (s)

ψC(r) = 0 (140)

with four other results obtained by replacing C by NC. Note the reverse order
of r, s in the second result. Similarly the functional derivatives of condensate
fields with respect to non-condensate fields are zero, and vice-versa. Thus

δ

δψC(s)
ψNC(r) = 0

δ

δψ+
C (s)

ψ+
NC(r) = 0

δ

δψC(s)
ψ+
NC(r) = 0

δ

δψ+
C (s)

ψNC(r) = 0 (141)

with four other results obtained by interchanging C and NC.
The product rule for functional derivatives

δ

δψ(s)
(F [ψ(r), ψ+(r)]G[ψ(r), ψ+(r)])

= (
δ

δψ(s)
F [ψ(r), ψ+(r)])G[ψ(r), ψ+(r)] + F [ψ(r), ψ+(r)](

δ

δψ(s)
G[ψ(r), ψ+(r)])

δ

δψ+(s)
(F [ψ(r), ψ+(r)]G[ψ(r), ψ+(r)])

= (
δ

δψ+(s)
F [ψ(r), ψ+(r)])G[ψ(r), ψ+(r)] + F [ψ(r), ψ+(r)](

δ

δψ+(s)
G[ψ(r), ψ+(r)])

(142)

is also needed. Here ψ(r) refers to either ψC(r) or ψNC(r) and ψ+(r) refers to
either ψ+

C (r) or ψ+
NC(r).
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In addition the standard approach to space integration gives the result
ˆ

ds {∂µC(s) } = 0 (143)

for functions C(s) that become zero on the boundary. This then leads to the
useful result involving product functions C(s) = A(s)B(s) enabling the spatial
derivative to be applied to either A(s) or B(s)

ˆ

ds {∂µA(s) }B(s) = −
ˆ

dsA(s) {∂µB(s) } (144)

We can assume that the ψ(s) and ψ+(s) become zero on the boundary, since
they both involve condensate mode functions or their conjugates that are lo-
calised due to the trap potential. Also the functional derivatives produce linear
combinations of either the condensate mode functions or their conjugates (see
(131)) so the various C(s) that will be involved should become zero on the
boundary.

The results in this section also apply to the single mode case with obvious
modifications, the sums over condensate modes now restricted to k = 1.

4.3. Condensate Functional Fokker-Planck Equation

The functional Fokker-Planck equation may be written in the form

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H1

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H2

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H3

(145)

This is the sum from the terms in the Bogoliubov Hamiltonian of order N ,
√
N

and 1/
√
N respectively. The derivation of the results for the Fokker-Planck

equation is carried out in Appendix E ([82]).

4.3.1. The Ĥ1 Terms

The contributions to the functional Fokker-Planck equation from the Ĥ1

term, which is equal to the condensate Hamiltonian, may be written in the form

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H1

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H1K

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H1V

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H1U

(146)
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of the sum of terms from the kinetic energy, the trap potential and the boson-
boson interaction. Derivations of the form for each term are given in Appendix
E ([82]). Here and elsewhere ∂µ is short for ∂

∂sµ
.

H1K Terms - Single and Two-Mode Condensates. The contribution to the func-
tional Fokker-Planck equation from the condensate kinetic energy is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H1K

=
−i
~

{
−
ˆ

ds

{
δ

δψ+
C (s)

(
∑

µ

~
2

2m
∂2µψ

+
C (s)

)
P [ψ−→(r), ψ∗

−→(r)]

}}

+
−i
~

{
+

ˆ

ds

{
δ

δψC(s)

(
∑

µ

~
2

2m
∂2µψC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

}}
(147)

H1V Terms - Single and Two-Mode Condensates. The contribution to the func-
tional Fokker-Planck equation from the condensate trap potential is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H1V

=
−i
~

{
−
ˆ

ds

{
δ

δψC(s)
{V (s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+

ˆ

ds

{
δ

δψ+
C (s)

{V (s)ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}
(148)

H1U Terms - Single and Two-Mode Condensates . The contribution to the
functional Fokker-Planck equation from the condensate boson-boson interaction
is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H1U

=
−i
~

{
−gN
N

ˆ

ds
δ

δψC(s)

{
(ψ+
C (s)ψC(s)− δC(s, s))ψC(s)

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds
δ

δψ+
C (s)

{
(ψ+
C (s)ψC(s)− δC(s, s))ψ

+
C (s)

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
gN
N

ˆ

ds
δ

δψC(s)

δ

δψC(s)

δ

δψ+
C (s)

{1
4
ψC(s)}P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds
δ

δψ+
C (s)

δ

δψ+
C (s)

δ

δψC(s)
{1
4
ψ+
C (s)}P [ψ−→(r), ψ∗

−→(r)]

}
(149)

which involves first order and third order functional derivatives. The quantity
δC(s, s) is a diagonal element of the restricted delta function for condensate
modes.
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For the one mode case we note that
ˆ

ds δC(s, s) = 1 (150)

δC(s, s) = |φ1(s)|2 (151)

corresponding to there being a single occupied condensate mode.
For the two mode case we have instead

ˆ

ds δC(s, s) = 2 (152)

δC(s, s) = |φ1(s)|2 + |φ2(s)|2 (153)

corresponding to there being two occupied condensate modes.
The total condensate number given by

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

ˆ

ds(ψ+
C (s)ψC(s))P [ψ−→(r), ψ∗

−→(r)] (154)

which is of order N . The result of order N for the last expression indicates that
the important contributions to the functional integral are where the condensate
fields are of order

√
N . Similar considerations for the much smaller total non-

condensate number indicate that the most important contributions are where
the non-condensate fields are much smaller than

√
N .

Similar expressions for the functional Fokker-Planck equation in the case of
a pure Wigner representation (but not involving a doubled phase space) are
given in the paper by Steel et al [55] (see Eq. (23)). Comparisons can be made
after substituting ψ+

C (s) with ψ∗
C(s). In their result however, the restricted delta

function δC(s, s) term in the condensate interaction contribution is replaced by
1. For the single condensate mode case unity is of course the integral of the
restricted delta function, but it is not equal to it.

4.3.2. The Ĥ2 Term

The contributions to the functional Fokker-Planck equation from the Ĥ2

term, which is equal to terms in the interaction between the condensate and
non-condensate Hamiltonian that are linear in the non-condensate fields, may
be written in the form

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H2

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H2U4

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H2U2

(155)

These two contributions may be written as the sum of terms which are linear,
quadratic, cubic and quartic in the number of functional derivatives. Derivations
of the form for each term are given in Appendix E ([82]).
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H2U4 Terms - Single and Two-Mode Condensates. The contribution to the
functional Fokker-Planck equation from the Ĥ2U4 term is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H2U4

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

H2U4

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

H2U4

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

H2U4

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)4

H2U4

(156)

where

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

H2U4

=
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)
{[2ψ+

C(s)ψC(s)− δC(s, s)]ψ
+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψ+
C
(s)

)
{[ψ+

C (s)ψ
+
C (s)]ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψC(s)

)
{[2ψC(s)ψ

+
C (s)− δC(s, s)]ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψC(s)

)
{[ψC(s)ψC(s)]ψ+

NC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψNC(s)

)
{[ψ+

C(s)ψC(s)− δC(s, s)]ψC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψ+
NC(s)

)
{[ψC(s)ψ+

C (s)− δC(s, s)]ψ
+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(157)
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

H2U4

=
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{ψ+

C(s)ψC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{ψC(s)ψ+

C (s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

){
1

2
δC(s, s)

}}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

){
1

2
δC(s, s)

}}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψNC(s)

)
{1
2
ψC(s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
C (s)ψ

+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(158)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

H2U4

=
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψC(s)

)
{1
4
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
C (s)

)
{1
4
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{1
4
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{1
4
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψC(s)

)(
δ

δψNC(s)

)
{1
2
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(159)
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)4

H2U4

=
−i
~

{
gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψC(s)

)(
δ

δψNC(s)

)
{1
8
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{1
8
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(160)

The contribution to the functional Fokker-Planck equation from the Ĥ2U2

term is

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H2U2

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

H22

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

H22

(161)

H2U2 Terms - Two-Mode Condensate. For the two mode condensate case
(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

H2U2

=
−i
~

{
−gN
N

ˆ ˆ

ds du

{(
δ

δψ+
C (u)

)
{F (s,u)ψ+

NC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ ˆ

ds du

{(
δ

δψC(s)

)
{F (u, s)∗ ψNC(u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ ˆ

ds du

{(
δ

δψ+
NC(u)

)
{F (u, s)∗ ψ+

C (s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ ˆ

ds du

{(
δ

δψNC(s)

)
{F (s,u)ψC(u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

and
(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

H2U2

=
−i
~

{
+
gN
N

ˆ ˆ

ds du

{(
δ

δψ+
C (u)

)(
δ

δψNC(s)

)
{1
2
F (s,u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ ˆ

ds du

{(
δ

δψC(s)

)(
δ

δψ+
NC(u)

)
{1
2
F(u, s)∗}

}
P [ψ−→(r), ψ∗

−→(r)]

}

These terms now involve double spatial integrals, and in the case of the quadratic
term there are second order functional derivatives with respect to field func-
tions at different spatial positions. This is different to the standard functional
Fokker-Planck equation and requires special considerations for conversion to Ito
stochastic equations for the field functions. The linear term is not so difficult to
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treat, though it still leads to an integro-differential equation. By changing the
spatial variables we see that the linear term is

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

H2U2

=
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)
{
ˆ

duF (u, s)ψ+
NC(u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψC(s)

)
{
ˆ

duF (u, s)∗ ψNC(u)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
NC(s)

)
{
ˆ

duF (s,u)∗ ψ+
C (u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψNC(s)

)
{
ˆ

duF (s,u)ψC(u)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(162)

so the quantity inside the inner brackets is just another functional. The quadratic
term is left unchanged except for interchanging positions to make the expression
more symmetrical

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

H2U2

=
−i
~

{
+
gN
N

ˆ ˆ

ds du

{(
δ

δψ+
C (s)

)(
δ

δψNC(u)

)
{1
2
F (u, s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ ˆ

ds du

{(
δ

δψC(s)

)(
δ

δψ+
NC(u)

)
{1
2
F(u, s)∗}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(163)

H2U2 Term - Single Mode Condensate. For the case of a single mode condensate
the result is simpler

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

H2U2

=
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
NC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψNC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(164)
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

H2U2

=
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{1
2

〈
Ψ̂C(s)

†Ψ̂C(s)
〉
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{1
2

〈
Ψ̂C(s)

†Ψ̂C(s)
〉
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(165)

Derivations of the form for each term are given in Appendix E ([82]). We can
show using the particular form of F (r, s) for a single mode condensate, that the
results for the single mode condensate can be obtained from those for the two
mode condensate (see Appendix E, [82]).

4.3.3. The Ĥ3 Term

The contributions to the functional Fokker-Planck equation from the Ĥ3

term, which is equal to the sum of the kinetic energy and trap potential terms
in the non-condensate Hamiltonian plus the terms in the interaction between
the condensate and non-condensate that are quadratic in the non-condensate
fields, may be written in the form

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H3

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H3K

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H3V

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H3U

(166)

Derivations of the form for each term are given in Appendix E ([82]).

H3K Terms - Single and Two-Mode Condensates. The contribution to the func-
tional Fokker-Planck equation from the non-condensate kinetic energy term is

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H3K

=
−i
~

{
−
ˆ

ds

{
δ

δψ+
NC(s)

(
∑

µ

~
2

2m
∂2µψ

+
NC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

}}

+
−i
~

{
+

ˆ

ds

{
δ

δψNC(s)

(
∑

µ

~
2

2m
∂2µψNC(s)

)
P [ψ−→(r), ψ∗

−→(r)])

}}

(167)
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H3V Terms - Single and Two-Mode Condensates. The contribution to the func-
tional Fokker-Planck equation from the non-condensate trap potential term is

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H3V

=
−i
~

{
−
ˆ

ds

{
δ

δψNC(s)
{V (s)ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+

ˆ

ds

{
δ

δψ+
NC(s)

V (s)ψ+
NC(s)

}
P [ψ−→(r), ψ∗

−→(r)]

}
(168)

H3U Terms - Single and Two-Mode Condensates. The contribution to the func-
tional Fokker-Planck equation from the Ĥ3U term is

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

H3U

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

H3U

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

H3U

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

H3U

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)4

H3U

(169)

where

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

H3U

=
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)
{[ψ+

NC(s)ψC(s) + 2ψ+
C (s)ψNC(s)]ψ

+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψC(s)

)
{[ψNC(s)ψ+

C (s) + 2ψC(s)ψ
+
NC(s)]ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψ+
NC(s)

)
{[ψ+

C (s)ψ
+
C (s)]ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψNC(s)

)
{[ψC(s)ψC(s)]ψ+

NC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψ+
NC(s)

)
{[2ψC(s)ψ+

C (s)− δC(s, s)]ψ
+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψNC(s)

)
{[2ψ+

C(s)ψC(s)− δC(s, s)]ψNC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(170)
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

H3U

=
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{ψ+

NC(s)ψC(s) + ψ+
C (s)ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{ψNC(s)ψ+

C (s) + ψC(s)ψ
+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψNC(s)

)
{ψNC(s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{ψ+

C (s)ψ
+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{1
2
ψC(s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
C (s)ψ

+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(171)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

H3U

=
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{1
4
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{1
4
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{1
2
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+
gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{1
2
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)4

H3U

=
−i
~

{
gN
N

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{1
8
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−gN
N

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{1
8
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(173)
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Derivations of the form for each term are given in Appendix E ([82]).
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5. Ito stochastic equations

In this section we show how the functional Fokker-Planck equations for the
phase space distribution functional are equivalent to Ito stochastic equations
for stochastic fields. This first involves truncating the Fokker-Planck equations
to only include terms with at most second order functional derivatives. The
stochastic fields are defined via the expansion of the phase space field func-
tions in terms of mode functions and then treating the expansion coefficients as
stochastic variables. The derivation of the Ito equations for the stochastic fields
is based on well-known Ito equations for stochastic expansion coefficients. The
Ito stochastic field equations are the sum of a deterministic term associated
with the first order functional derivatives in the FFPE (the drift terms) and
a quantum noise term associated with the second order functional derivatives
in the FFPE (the diffusion terms). The two mode condendsate case results in
non-local drift and diffusion terms, so a special treatment is required to derive
the Ito equations. Results for the Ito equations for the stochastic condensate
and non-condensate fields are obtained for the two mode condensate case. Also,
the corresponding simpler Ito equations for the single mode condensate case
are presented. In this section we emphasise how the phase space distribution
functionals which determine the quantum correlation functions can then be re-
placed by stochastic averages involving products of the stochastic condensate
and non-condensate fields.

5.1. General Results

The derivation of Ito stochastic equations the the condensate and non-
condensate fields is based on approximating the functional Fokker-Planck equa-
tion by neglecting all terms involving third and fourth order functional deriva-
tives. The justification for this is as follows. The condensate fields are of order√
N in the regions of phase space important to the determination of the corre-

lation functions via the functional integrals (108), whereas the non-condensate
fields are much smaller. Hence terms like the third order functional deriva-
tives in (149) scale like 1/N2 whereas the second order functional derivatives in
(158) scale like 1/

√
N . This enables all such third and fourth order terms from

the functional Fokker-Planck equation based on the Bogoliubov Hamiltonian
to be discarded. The resulting functional Fokker-Planck equation is then in a
standard form involving just first and second order functional derivatives, from
which Ito stochastic equations can be obtained.

The remaining first and second order functional derivative terms that are
left are referred to as the drift and diffusion terms respectively, and the Ito
stochastic equations for the stochastic fields can expressed in terms of the drift
and diffusion terms. The stochastic fields will be indicated with a tilde, ψ̃C(s,t),

..,ψ̃+
NC(s,t). The Ito stochastic field equations are the sum of two terms. The

first is obtained from the drift term in the functional Fokker-Planck equation and
is the so-called deterministic term, the second is obtained from the diffusion term
and is the stochastic noise term. The stochastic fields are expanded in terms of
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a convenient set of real,orthonormal mode functions, with the expansion coeffi-
cients regarded as stochastic quantities. The original stochastic noise terms in
the Ito stochastic field equations depends on two types of stochastic quantities.
One type are stochastic space dependent fields that involve the mode functions
and quantities depending on the stochastic expansion coefficients that are ob-
tained from the diffusion terms. The other type are time dependent stochastic
Gaussian-Markov noise terms that would be the noise terms in Ito equations for
the expansion coefficients. The derivation of the Ito equations for the stochastic
fields is based on well-known Ito equations for stochastic expansion coefficients.
Details of the derivation of the Ito stochastic equations are given in Appendix
F ([82]). Here we will summarise the key features and results.

5.1.1. Symmetric Form of Functional Fokker-Planck Equation

The derivation begins with the functional Fokker-Planck equation set out
in Section 4, but now with all terms having functional derivatives of third and
fourth order ignored. For convenience we now introduce a simpler notation for
listing the fields, namely we list ψC ≡ ψC−, ψ

+
C ≡ ψC+, ψNC ≡ ψNC−, ψ

+
NC ≡

ψNC+ as ψ1, ψ2, ψ3, ψ4 respectively. Now with ψ−→(r) ≡ {ψ1(r), ψ2(r), ψ3(r), ψ4(r)} ≡
{ψK(r)} and ψ∗

−→(r) ≡ {ψ∗
1(r), ψ

∗
2(r), ψ

∗
3(r), ψ

∗
4(r)} ≡ {ψ∗

K(r)} the functional

Fokker-Planck equations from Section 4 are as follows.
For the two mode condensate case we have.

∂P

∂t
=

∑

A

ˆ

dx
δ

δψA(x)
AA(ψ−→(x), x)P

+
∑

A≤B

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψB(y)
HAB(ψ−→(x), x, ψ−→(y), y)P (174)

and for the single mode condensate case

∂P

∂t
=

∑

A

ˆ

dx
δ

δψA(x)
AA(ψ−→(x), x)P

+
∑

A≤B

ˆ

dx
δ

δψA(x)

δ

δψB(x)
HAB(ψ−→(x), x)P (175)

Here we use x, y to denote the spatial variables and in accord with the ex-
pressions in Section 4 the restriction to A ≤ B in the double sum is to avoid
repetition of double functional derivatives. Since there are four fields involved
´

A,B = 1, 2, 3, 4. In both cases the distribution functional is P [ψ−→, ψ−→
∗] and

AA(ψ−→(x), x) is the A element of a drift column vector. For the single mode con-

densate case HAB(ψ−→(x), x) is the A,B element of a local diffusion matrix, and

for the two mode condensate case HAB(ψ−→(x), x, ψ−→(y), y) is the A;B element

of a non-local diffusion matrix. In the latter case a double spatial integral is
involved. Also, AA and HAB may depend on spatial derivatives ∂xψK(x).etc.
but in order to avoid too many symbols we have not shown this. For simplicity
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the Fokker-Planck equation has been written with just one-dimensional spa-
tial variables x, y, but the generalisation to three dimensional variables r, s is
straight-forward.

To proceed further the functional Fokker-Planck equations need to be recast
with a symmetrical diffusion term. The details are covered in Appendix F ([82]).
If we define a new diffusion matrix such that

DAB(ψ−→(x), x, ψ−→(y), y) = HAB(ψ−→(x), x, ψ−→(y), y) A < B

DAB(ψ−→(x), x, ψ−→(y), y) = HBA(ψ−→(y), y, ψ−→(x), x) A > B

DAA(ψ−→(x), x, ψ−→(y), y) = HAA(ψ−→(x), x, ψ−→(y), y) +HAA(ψ−→(y), y, ψ−→(x), x) A = B

(176)

we see that the functional Fokker-Planck equation for the two mode case be-
comes

∂P

∂t
=

∑

A

ˆ

dx
δ

δψA(x)
AA(ψ−→(x), x)P

+
1

2

∑

A,B

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψB(y)
DAB(ψ−→(x), x, ψ−→(y), y)P(177)

The expressions have been defined so that DAB is symmetric. For the two mode
condensate case

DAB(ψ−→(x), x, ψ−→(y), y) = DBA(ψ−→(y), y, ψ−→(x), x) (178)

For the single mode condensate case we may also write the functional Fokker-
Planck equation in the symmetric form

∂P

∂t
=

∑

A

ˆ

dx
δ

δψA(x)
AA(ψ−→(x), x)P

+
1

2

∑

A,B

ˆ

dx
δ

δψA(x)

δ

δψB(x)
DAB(ψ−→(x), x)P (179)

The proof is similar but now

DAB(ψ−→(x), x) = HAB(ψ−→(x), x) A < B

DAB(ψ−→(x), x) = HBA(ψ−→(x), x) A > B

DAA(ψ−→(x), x) = 2HAA(ψ−→(x), x) A = B (180)

and again DAB is symmetric.

DAB(ψ−→(x), x) = DBA(ψ−→(x), x) (181)

Results (180) and (176) enable us to identify the diffusion coefficients in the
general forms (179) and (177) from those in the original functional Fokker-
Planck equation forms (175) and (174).
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5.1.2. Fokker-Planck Equation for Distribution Function

The field functions ψA(x) may be expanded

ψA(x) =
∑

i

αAi ξ
A
i (x) (182)

where the ξAi (x) are a convenient set of orthonormal mode functions for the A
field satisfying

ˆ

dxξAi (x)
∗ξAj (x) = δij (183)

∑

i

ξAi (x)ξ
A
i (y)

∗ = δ(x− y) (184)

For the various ψA(x) these orthonormal mode functions may be interrelated.
Thus if for ψ1(x) ≡ ψC(x) the mode functions are ξi(x) (i = 1, 2), then those
for ψ2(x) ≡ ψ+

C (x) are ξi(x)
∗ (i = 1, 2). Mode functions for different fields also

may be orthogonal, thus for ψ3(x) ≡ ψNC(x) if the mode functions are ξi(x)
(i 6= 1, 2), and those for ψ4(x) ≡ ψ+

NC(x) are ξi(x)
∗ (i 6= 1, 2), then the ξ1i (x)

and ξ3i (x) are mutually orthogonal, as are ξ2i (x) and ξ4i (x). However, these
features are not required, the main requirement is that the mode functions for
each specific field are orthonormal. The mode functions may be time dependent,
but this will not be made explicit.

The derivation of the Ito stochastic field equation is based on first converting
the functional Fokker-Planck equation to an ordinary Fokker-Planck equation
via expanding the field functions and replacing the functional derivatives with
ordinary derivatives

AA(ψ−→(x), x) → AA(α−→)

DAB(ψ−→(x), x, ψ−→(y), y) or DAB(ψ−→(x), x) → DAB(α−→)

P [ψ−→, ψ−→
∗] → Pb(α−→, α−→

∗)

δ

δψA(x)
→

∑

i

ξAi (x)
∗ ∂

∂αAi
(185)

where AA is the drift vector, DAB is the symmetric diffusion matrix and Pb(α−→, α−→
∗)

is the phase space distribution function. The drift and diffusion elements de-
pend on the expansion coefficients α−→ ≡ {αk, α+

k } and the distribution function

depends on α−→
∗ ≡ {α∗

k, α
+∗
k } also. The explicit expressions are

AA
i (α−→) =

ˆ

dx ξAi (x)
∗AA(ψ−→(x), x) (186)

DAB
ij (α−→) =

ˆ ˆ

dx dy ξAi (x)
∗DAB(ψ−→(x), x, ψ−→(y), y) ξBj (y)

∗ Two Mode

DAB
ij (α−→) =

ˆ ˆ

dx ξAi (x)
∗DAB(ψ−→(x), x) ξBj (x)∗ One Mode (187)
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These relationships can be inverted using the completeness relationships to give

AA(ψ−→(x), x) =
∑

i

ξAi (x)AA
i (α−→) (188)

DAB(ψ−→(x), x, ψ−→(y), y) =
∑

ij

ξAi (x)DAB
ij (α−→)ξBj (y) Two Mode

DAB(ψ−→(x), x)δ(x − y) =
∑

ij

ξAi (x)DAB
ij (α−→)ξBj (y) One Mode(189)

The diffusion matrix is symmetric

DBA
ji (α−→) = DAB

ij (α−→) (190)

this result being easily obtained from (181) or (178). As a result we can always
write the diffusion matrix D in the form

D = BBT (191)

where B has the same dimension as D. This result is known as the Takagi
factorisation [85]. A proof may be found in the textbook by Horn et al. [86]. A
non-square matrix B can also be found, this is shown in Appendix F ([82]).

The ordinary Fokker-Planck equation that is obtained is given by

∂Pb(α−→, α−→
∗)

∂t
=

∑

Ai

∂

∂αAi
AA
i (α−→)Pb(α−→, α−→

∗)

+
1

2

∑

AiBj

∂

∂αAi

∂

∂αBj
DA;B
i ;j (α−→)Pb(α−→, α−→

∗) (192)

This Fokker-Planck equation is equivalent to Ito stochastic equations, as is de-
scribed in standard textbooks (see [83], [84]). The procedure involves replacing
the time independent phase space variables αAi by time dependent stochastic
variables α̃Ai (t). The Ito stochastic equations for the α̃Ai (t) are such that phase
space averages of functions of the αAi give the same result as stochastic aver-
ages of the same functions of the α̃Ai (t). The derivation of the Ito stochastic
equations requires that the complex diffusion matrix D is symmetric, a result
we have now obtained.

5.1.3. Ito Equations for Stochastic Expansion Coefficients

The Ito equations for the stochastic expansion coefficients α̃Ci can be written
in several forms

δα̃Ai (t) = α̃Ai (t+ δt)− α̃Ai (t)

= −AA
i ( α̃−→(t))δt+

∑

Dk

BA;D
i;k ( α̃−→(t))

ˆ t+δt

t

dt1Γ
D
k (t1) (193)

d

dt
α̃Ai (t) = −AA

i ( α̃−→(t)) +
∑

Dk

BA;D
i;k ( α̃−→(t))

d

dt
wDk (t) (194)

= −AA
i ( α̃−→(t)) +

∑

Dk

BA;D
i;k ( α̃−→(t))ΓDk (t+) (195)
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where α̃−→(t) ≡ {α̃Ai (t)} ≡ {α̃k(t), α̃+
k (t)} and the matrix B is related to the

diffusion matrix D as in (191).

DA;B
i j ( α̃−→(t)) =

∑

Dk

BA;D
i;k ( α̃−→(t))BB;D

j;k ( α̃−→(t)) (196)

The matrix elements BA;D
i;k ( α̃−→(t)) are functions of the α̃Ai (t). The quantity t+

is to indicate that if the Ito stochastic equation is integrated from t to t +
δt, the Gaussian-Markoff noise term is integrated over this interval whilst the
AA
i (α̃

C
j (t)) and BA;D

i;k (α̃Cj (t)) are left at time t..

The quantities wDk (t) and ΓDk (t) are Wiener and Gaussian-Markoff stochastic
variables. The Gaussian-Markoff quantities ΓDk satisfy the stochastic averaging
results

ΓDk (t1) = 0

{ΓDk (t1)ΓEl (t2)} = δDEδklδ(t1 − t2)

{ΓDk (t1)ΓEl (t2)ΓFm(t3)} = 0

{ΓDk (t1)ΓEl (t2)ΓFm(t3)ΓGn (t4)} = {ΓDk (t1)ΓEl (t2)} {ΓFm(t3)ΓGn (t4)}
+{ΓEk (t1)ΓFm(t3)} {ΓEl (t2)ΓGn (t4)}
+{ΓDk (t1)ΓGn (t4)} {ΓEl (t2)ΓFm(t3)}
... (197)

with stochastic averages being denote with a bar. The stochastic average of an
odd number of noise terms is always zero, whilst that for an even number is the
sum of all products of stochastic averages of two noise terms. The Gaussian-
Markoff noise terms ΓDk are related to the Wiener stochastic variables wDk via

wDk (t) =

ˆ t

0

dt1 Γ
D
k (t1) (198)

δwDk (t) = wDk (t+ δt)− wDk (t) =

ˆ t+δt

t

dt1 Γ
D
k (t1) (199)

d

dt
wDk (t) = lim

δt→0

(
δwDk (t)

δt

)
= ΓDk (t+) (200)

One of the rules in stochastic averaging is

∑

a

Fa( α̃−→(t)) =
∑

a

Fa( α̃−→(t)) (201)

so the stochastic average of the sum is the sum of the stochastic averages. Also,in
Ito stochastic calculus the noise terms ΓDk (t1) within the interval t, t + δt are
uncorrelated with any function of the α̃Ci (t) at the earlier time t, so that the
stochastic average of the product of such a function with a product of the noise
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terms factorises

F ( α̃−→(t1)){ΓDk (t2)ΓEl (t3)ΓFm(t4)...ΓXa (tl)}

= F ( α̃−→(t1)) {ΓDk (t2)ΓEl (t3)ΓFm(t4)...ΓXa (tl)} t1 < t2, t3, .., tl (202)

These key features of Ito stochastic calculus are important in deriving the prop-
erties of the noise fields in the stochastic field equations.

5.1.4. Derivation of Ito Stochastic Field Equations

The stochastic fields ψ̃A(x, t) are defined via the same expansion as for the
time independent field functions ψA(x) by replacing the time independent phase
space variables αAi by time dependent stochastic variables α̃Ai (t)

ψ̃A(x, t) =
∑

i

α̃Ai (t)ξ
A
i (x) (203)

The expansion coefficents in (203) are restricted to those required in expanding

the particular field function ψA(x). Also, stochastic variations in ψ̃A(x, t) are
chosen as to only being due to stochastic fluctuations in the α̃Ai (t). Although the
mode functions may be time dependent, their time variations are not stochastic
in origin, so the stochastic field equations for the ψ̃A(x, t) do not allow for time
variations in the mode functions.

The Ito stochastic equation for the stochastic fields ψ̃A(x, t) can then be
derived from the Ito stochastic equations for the expansion coefficients. Using
(188) the drift term in the stochastic equation gives

−
∑

i

AA
i ( α̃−→(t)) ξAi (x) δt = −AA( ψ̃−→(x, t))δt (204)

which involves the drift vector AA evaluated at the stochastic fields ψ̃−→(x, t).

The diffusion term in the stochastic equation gives

∑

i

∑

Dk

BA;D
i;k ( α̃−→(t)) ξAi (x)

ˆ t+δt

t

dt1Γ
D
k (t1) =

∑

Dk

ηA;D
k ( ψ̃−→(x, t))

ˆ t+δt

t

dt1Γ
D
k (t1)

(205)
where

ηA;D
k ( ψ̃−→(x, t)) =

∑

i

BA;D
i;k ( α̃−→(t)) ξAi (x) (206)

is related via BA;D
i;k ( α̃−→(t)) to the diffusion matrix DAB evaluated at the stochas-

tic fields ψ̃−→(x, t) or ψ̃−→(x, t), ψ̃−→(y, t).
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The stochastic field equations can then be written in several ways

δψ̃A(x, t) = ψ̃A(x, t+ δt)− ψ̃A(x, t)

= −AA( ψ̃−→(x, t))δt+
∑

Dk

ηA;D
k ( ψ̃−→(x, t))

ˆ t+δt

t

dt1Γ
D
k (t1)

= −AA( ψ̃−→(x, t))δt+ δG̃A( ψ̃−→(x, t), Γ−→(t+)) (207)

∂

∂t
ψ̃A(x, t) = −AA( ψ̃−→(x, t)) +

∑

Dk

ηA;D
k ( ψ̃−→(x, t))

d

dt
wDk (t)

= −AA( ψ̃−→(x, t)) +
∑

Dk

ηA;D
k ( ψ̃−→(x, t)) ΓDk (t+)

= −AA( ψ̃−→(x, t)) +
∂

∂t
G̃A( ψ̃−→(x, t), Γ−→(t+)) (208)

Here we denote ψ̃−→(x, t) ≡ {ψ̃A(x, t)} ≡ {ψ̃1(x, t), ψ̃2(x, t), ψ̃3(x, t), ψ̃4(x, t)} and

Γ−→(t+) ≡ {Γ1
k(t+),Γ

2
k(t+),Γ

3
k(t+),Γ

4
k(t+)}. The first form gives the change in

the stochastic field over a small time integral t.t + δt, the second is in the
form of a partial differential equation. The first term in the Ito equation for
the stochastic fields (208) −AA( ψ̃−→(x, t)) is the deterministic term and is ob-

tained from the drift vector in the functional Fokker-Planck equation and the
second term ∂

∂t G̃A( ψ̃−→(x, t), Γ−→(t+)) is the quantum noise field whose statistical

properties are obtained from the diffusion matrix, and which depends both on
the stochastic fields ψ̃−→(x, t) and on the Gaussian-Markoff stochastic variables

Γ−→(t+).
The noise field term is

∂

∂t
G̃A( ψ̃−→(x, t), Γ−→(t+)) =

∑

Dk

ηA;D
k ( ψ̃−→(x, t))

d

dt
wDk (t) =

∑

Dk

ηA;D
k ( ψ̃−→(x, t)) ΓDk (t+)

(209)

where the stochastic field ηA;D
k ( ψ̃−→(x, t)) is related to the diffusion matrix ex-

pressed in terms of the stochastic fields ψ̃−→(x, t) or ψ̃−→(x, t), ψ̃−→(y, t).
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5.1.5. Properties of Noise Fields

To determine the properties of the noise field we first establish the connection
between the ηA;D

k and the DAB.

∑

Dk

ηA;D
k ( ψ̃−→(x1, t))η

B;D
k ( ψ̃−→(x2, t))

=
[
η( ψ̃−→(x1, t))η( ψ̃−→(x2, t))

T
]
AB

=
∑

Dkij

ξAi (x1)BA;D
ik ( α̃−→(t)) ξBj (x2)BB;D

jk ( α̃−→(t))

=
∑

ij

ξAi (x1)DA;B
ij ( α̃−→(t)) ξBj (x2)

= DAB( ψ̃−→(x1, t), x1, ψ̃−→(x2, t), x2) Two Mode

(210)

= DAB( ψ̃−→(x1,2, t), x1,2) δ(x1 − x2) One Mode

(211)

using (196) and (189). Thus for the single mode condensate
[
η( ψ̃−→(x1, t))η( ψ̃−→(x2, t), t)

T
]
AB

is delta function correlated in space and equal to the local diffusion matrix el-
ement, whereas in the two-mode condensate case this quantity is equal to the
non-local diffusion matrix element.

The stochastic averages of the noise field terms can now be obtained. These
results follow from (211), (210) and the properties (197), (201), (202) and are
derived in Appendix F ([82]). For the stochastic average of each noise term

(
∂

∂t
G̃A( ψ̃−→(x, t), Γ−→(t+))

)
= 0 (212)

showing that the stochastic average of of each noise field is zero. For the stochas-
tic average of the product of two noise terms we have

(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)

= DAB( ψ̃−→(x1, t1,2), x1, ψ̃−→(x2, t1,2), x2)

×δ(t1 − t2) Two Mode (213)

= DAB( ψ̃−→(x1,2, t1,2), x1,2)

×δ(x1 − x2)δ(t1 − t2) One Mode (214)

The stochastic average of the product of two noise terms is always delta func-
tion correlated in time. In the single mode condensate case this average is
also delta function correlated in space, and the spatial correlation is given by
the stochastic average of the local diffusion term DAB( ψ̃−→(x1,2, t), x1,2) in the
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original functional Fokker-Planck equation (179). However for the two mode
condensate it is not delta function correlated in space. Instead the spatial
correlation is given by the stochastic average of the non-local diffusion term
DAB( ψ̃−→(x1, t), x1, ψ̃−→(x2, t), x2).in the original functional Fokker-Planck equa-

tion (177).
However, although the noise fields have some of the features in (197), they

are not themselves Gaussian-Markov processes. The stochastic averages of
products of odd numbers of noise fields are indeed zero, but although aver-
ages of products of even numbers of noise fields can be written as sums of
products of stochastic averages of pairs of stochastic quantities with the same
delta function time correlations as in (197), the pairs involved are the diffusion

matrix elements DAB( ψ̃−→(x1, t), x1, ψ̃−→(x2, t), x2) rather than products of noise

fields such as
(
∂
∂t G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂
∂t G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)
. Never-

theless, the stochastic averages of the noise field terms are either zero or are
determined from stochastic averages only involving the diffusion matrix ele-
ments DAB( ψ̃−→(x1, t), x1, ψ̃−→(x2, t), x2). There is thus never any need to actu-

ally determine the matrices η( ψ̃−→(x, t)) such that η( ψ̃−→(x1, t))η( ψ̃−→(x2, t))
T =

D( ψ̃−→(x1, t), x1, ψ̃−→(x2, t), x2) or D( ψ̃−→(x1,2, t), x1,2)δ(x1 −x2), so all the required

expressions for treating the stochastic properties of the noise fields are provided
in the functional Fokker-Planck equation. Detailed expressions for stochastic
averages of more than two noise fields are derived in Appendix F ([82]) as Eqns.
(F.17), (F.18), (F.23) and (F.24).

For the two mode condensate case the results are

{
(
∂
∂t G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂
∂t G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)

×
(
∂
∂t G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)
}

= 0 (215)

for three noise fields and

{
(
∂
∂t G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂
∂t G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)

×
(
∂
∂t G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)(
∂
∂t G̃D( ψ̃−→(x4, t4), Γ−→(t4+))

)
}

=
[
DAB( ψ̃−→(x1, t1,2), x1, ψ̃−→(x2, t1,2), x2)

] [
DCD( ψ̃−→(x3, t3,4), x3, ψ̃−→(x4, t3,4), x4)

]

×δ(t1 − t2)δ(t3 − t4)

+
[
DAC( ψ̃−→(x1, t1,3), x1, ψ̃−→(x3, t1,3), x3)

] [
DBD( ψ̃−→(x2, t2,4), x2, ψ̃−→(x4, t2,4), x4)

]

×δ(t1 − t3)δ(t2 − t4)

+
[
DAD( ψ̃−→(x1, t1,4), x1, ψ̃−→(x4, t1,4), x2)

] [
DBC( ψ̃−→(x2, t2,3), x2, ψ̃−→(x3, t2,3), x3)

]

×δ(t1 − t4)δ(t2 − t3) (216)
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for four noise fields. The result for the stochastic average of four noise field
terms is not quite the same as

{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)
}

×{
(
∂

∂t
G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)(
∂

∂t
G̃D( ψ̃−→(x4, t4), Γ−→(t4+))

)
}

+{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)
}

×{
(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)(
∂

∂t
G̃D( ψ̃−→(x4, t4), Γ−→(t4+))

)
}

+{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃D( ψ̃−→(x4, t4), Γ−→(t4+))

)
}

×{
(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)(
∂

∂t
G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)
} (217)

because in general the stochastic average of a product of two diffusion matrix el-
ements is not the same as the product of the stochastic averages of each element.
Results analogous to (215) and (216) apply also for the single mode condensate

case. For four noise fields factors such as DAB( ψ̃−→(x1, t1,2), x1, ψ̃−→(x2, t1,2), x2)

are just replaced byDAB( ψ̃−→(x1,2, t1,2), x1)δ(x1−x2) etc., (see Appendix F ([82]),

Eqs.(F.23) and (F.24).

5.1.6. Classical Field Equations

Classical field equations can be obtained from the Ito equations by ignoring
the quantum noise term. The classical field equations are

∂ψclassA (x, t)

∂t
= −AA(ψ−→

class(x, t), x) (218)

for both the single and two mode condensate cases. Such equations are not
of course really classical as they involve Planck’s constant. As will be seen in
specific cases (see Eq. (244)) their leading terms are often similar to Gross-
Pitaevskii equations, so they could be referred to as generalised mean field
equations.

5.1.7. Noise Fields for Single Mode Condensate

Having now established the general results for the stochastic averages of
products of one, two, .. noise fields we can show for single mode condensates
that the noise field terms can be written in a different form in which the noise
fields are just functions of the stochastic fields ψ̃−→(x, t) and new fundamental

Gaussian-Markoff stochastic fields Θ−→(x, t+) ≡ {Θk(x, t+)}, pairs of which are

delta function correlated in both space and time [55]. These now replace the
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Γ−→(t+). Similarly to the Γ−→(t+) the Θ−→(x, t+) are defined by their stochastic
averages

Θk(x1, t1) = 0

{Θk(x1, t1)Θl(x2, t2)} = δklδ(t1 − t2)

{Θk(x1, t1)Θl(x2, t2)Θm(x3, t3)} = 0

{Θk(x1, t1)Θl(x2, t2)Θm(x3, t3)Θn(x4, t4)} = {Θk(x1, t1)Θl(x2, t2)} {Θm(x3, t3)Θn(x4, t4)}
+{Θk(x1, t1)Θm(x3, t3)} {Θl(x2, t2)Θn(x4, t4)}
+{Θk(x1, t1)Θn(x4, t24)} {Θl(x2, t2)Θm(x3, t3)}
... (219)

with stochastic averages being denoted with a bar. The stochastic average of an
odd number of noise field terms is always zero, whilst that for an even number
is the sum of all products of stochastic averages of two noise field terms. Also,in
Ito stochastic calculus the noise terms Θk(x, t) within the interval t, t + δt are

uncorrelated with any function of the ψ̃−→(x, t) at the earlier time t, so that the

stochastic average of the product of such a function with a product of the noise
field terms factorises

F ( ψ̃−→(x1, t1)){Θk(x2, t2)Θl(x3, t3)Θm(x4, t4)...Θa(xl, tl)}

= F ( ψ̃−→(x1, t1)) {Θk(x2, t2)Θl(x3, t3)Θm(x4, t4)...Θa(xl, tl)} t1 < t2, t3, ..., tl

(220)

As previously, the stochastic average of a sum is the sum of stochastic averages.
These key features of Ito stochastic calculus are important in deriving the prop-
erties of the noise fields in the stochastic field equations. In the case of the single
mode condensate the diffusion matrix is symmetric (181). Hence we can write
the diffusion matrix D in the form D(ψ−→(x, t), x) = B(ψ−→(x, t), x)B(ψ−→(x, t), x)T

so that

DAB(ψ−→(x, t), x)) =
∑

k

BAk (ψ−→(x, t), x))BBk (ψ−→(x, t), x)) (221)

Note that in this case only a single space variable is involved. Now consider the
new stochastic noise field terms defined by

∂

∂t
H̃A( ψ̃−→(x, t), Θ−→(x, t+)) =

∑

k

BAk ( ψ̃−→(x, t), x)Θk(x, t+) (222)

This is a function of the stochastic fields ψ−→(x, t) and the Gaussian-Markoff

stochastic fields Θ−→(x, t). It is straightforward to determine results for the new
stochastic noise field terms. For the stochastic average of each noise term
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(
∂

∂t
H̃A( ψ̃−→(x, t), Θ−→(x, t+)

)
= 0 (223)

showing that the stochastic average of of each new noise field is zero as before.
For the stochastic average of the product of two new noise field terms we have

(
∂

∂t
H̃A( ψ̃−→(x1, t1), Θ−→(x1, t1+))

)(
∂

∂t
H̃B( ψ̃−→(x2, t2), Θ−→(x2, t2+))

)

= DAB( ψ̃−→(x1,2, t1,2), x1,2)× δ(x1 − x2)δ(t1 − t2) (224)

giving the same result as before. For products of three, four, .. new noise field
terms the results are again as before, so we can now write the original noise field
term as

∂

∂t
G̃A( ψ̃−→(x, t), Γ−→(t+)) =

∂

∂t
H̃A( ψ̃−→(x, t), Θ−→(x, t+))

=
∑

k

BAk ( ψ̃−→(x, t), x)Θk(x, t+) (225)

This form of the noise field is useful when the diffusion matrix D(ψ−→(x, t), x)is

easily factorised, as in Section 5.3.

5.2. Ito Equations for Two-Mode Condensate

The theory involved in writing down Ito stochastic equation for the conden-
sate and non-condensate fields is non-standard. From above, the terms can be
written down from the general form (208) by identifying the relevant terms in
the functional Fokker-Planck equations set out in Section 4. All stochastic fields
depend on t, but this is left implicit.

For the condensate stochastic field the Ito equation is

∂

∂t
ψ̃C(s,t)

= − i

~
[− ~

2

2m
∇2ψ̃C(s) + V (s)ψ̃C(s) +

gN
N

{ψ̃+
C (s)ψ̃C(s)− |φ1(s)|2 − |φ2(s)|2}ψ̃C(s)

+
gN
N

{2ψ̃+
C (s)ψ̃C(s)− |φ1(s)|2 − |φ2(s)|2 }ψ̃NC(s)−

gN
N

ˆ

duF (u, s)∗ψ̃NC(u)

+
gN
N

{ψ̃C(s)ψ̃C(s)}ψ̃+
NC(s)

+
gN
N

{2ψ̃+
NC(s)ψ̃NC(s)}ψ̃C(s) +

gN
N

{ψ̃NC(s)ψ̃NC(s)}ψ̃+
C (s)]

+
∂

∂t
G̃C( ψ̃−→(s, t), Γ−→(t+)) (226)

where ∂
∂t G̃C( ψ̃−→(s, t), Γ−→(t+)) is the noise field.
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For the non-condensate stochastic field the Ito equation is

∂

∂t
ψ̃NC(s,t)

= − i

~
[+
gN
N

{ψ̃+
C (s)ψ̃C(s)− |φ1(s)|2 − |φ2(s)|2}ψ̃C(s)−

gN
N

ˆ

duF (s,u)ψ̃C(u)

− ~
2

2m
∇2ψ̃NC(s) + V (s)ψ̃NC(s) +

gN
N

{2ψ̃+
C(s)ψ̃C(s)− |φ1(s)|2 − |φ2(s)|2}ψ̃NC(s)

+
gN
N

{ψ̃C(s)ψ̃C(s)}ψ̃+
NC(s)]

+
∂

∂t
G̃NC( ψ̃−→(s, t), Γ−→(t+)) (227)

where ∂
∂t G̃NC( ψ̃−→(s, t), Γ−→(t+)) is the noise field. Similar equations apply for

ψ̃+
C (s) and ψ̃+

NC(s). The stochastic condensate and non-condensate fields are
coupled together and each is affected by stochastic noise fields. For the con-
densate field, the first line in the equation reads like a time-dependent Gross-
Pitaevskii equation if ψ̃C(s,t) is regarded as the order function. The three terms
are the kinetic energy, the trap potential energy and the non-linear mean field
energy contributions. Note that for the condensate equation the condensate
density ψ̃+

C (s)ψ̃C(s) is depleted by two bosons due to the |φ1(s)|2 and |φ2(s)|2
terms. Both Ito stochastic equations are integro-differential equations due to
the terms involving

´

duF (s,u) or
´

duF (u, s)∗ - thus on the right side there
are terms depending on stochastic fields at different spatial points. The first
line in the condensate equation comes from the Ĥ1 term, the second and third
from the Ĥ2 term and the fourth from the Ĥ3 term. The first line in the non-
condensate equation is a term coupling in the condensate field and comes from
the Ĥ2 term, the second and third from the Ĥ3 term. The latter two lines differ
somewhat from the form of a time-dependent Gross-Pitaevskii equation, which
is not surprising since these refer to the relatively unoccupied non-condensate
modes.

The stochastic averages of the noise fields are given in (213), where the
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non-zero diffusion matrix elements are

DC+;NC−( ψ̃−→(s1, t), s1, ψ̃−→(s2, t), s2)

= +
i

~

gN
N

{ψ̃+
C (s1,2)ψ̃C(s1,2)−

1

2
(|φ1(s1,2)|2 + |φ2(s1,2)|2)}δ(s1 − s2)

+
i

~

gN
N

{ψ̃+
NC(s1,2)ψ̃C(s1,2) + ψ̃+

C (s1,2)ψ̃NC(s1,2)}δ(s1 − s2)

− i

~

gN
N

{1
2
F (s2, s1)}

= DNC−;C+( ψ̃−→(s2, t), s2, ψ̃−→(s1, t), s1) (228)

DC−;NC+( ψ̃−→(s1, t), s1, ψ̃−→(s2, t), s2)

= − i

~

gN
N

{ψ̃C(s1,2)ψ̃+
C (s1,2)−

1

2
(|φ1(s1,2)|2 + |φ2(s1,2)|2)}δ(s1 − s2)

− i

~

gN
N

{ψ̃NC(s1,2)ψ̃+
C (s1,2) + ψ̃C(s1,2)ψ̃

+
NC(s1,2)}δ(s1 − s2)

+
i

~

gN
N

{1
2
F (s2, s1)

∗}

= DNC+;C−( ψ̃−→(s2, t), s2, ψ̃−→(s1, t), s1) (229)

DC−;NC−( ψ̃−→(s1, t), s1, ψ̃−→(s2, t), s2)

= − i

~

gN
N

{1
2
ψ̃C(s1,2)ψ̃C(s1,2) + ψ̃NC(s1,2)ψ̃C(s1,2)}δ(s1 − s2)

= DNC−;C−( ψ̃−→(s2, t), s2, ψ̃−→(s1, t), s1) (230)

DC+;NC+( ψ̃−→(s1, t), s1, ψ̃−→(s2, t), s2)

= +
i

~

gN
N

{1
2
ψ̃+
C (s1,2)ψ̃

+
C (s1,2) + ψ̃+

NC(s1,2)ψ̃
+
C (s1,2)}δ(s1 − s2)

= DNC+;C+( ψ̃−→(s2, t), s2, ψ̃−→(s1, t), s1) (231)

DNC−;NC−( ψ̃−→(s1, t), s1, ψ̃−→(s2, t), s2)

= − i

~

gN
N

{ψ̃C(s1,2)ψ̃C(s1,2)}δ(s1 − s2) (232)

DNC+;NC+( ψ̃−→(s1, t), s1, ψ̃−→(s2, t), s2)

= +
i

~

gN
N

{ψ̃+
C (s1,2)ψ̃

+
C (s1,2)}δ(s1 − s2) (233)

with the notation DAB( ψ̃−→(s1, t), s1, ψ̃−→(s2, t), s2) for

DAB(ψ̃1(s1, t), ψ̃2(s1, t), ψ̃3(s1, t), ψ̃4(s1, t), s1,ψ̃1(s2, t), ψ̃2(s2, t), ψ̃3(s2, t), ψ̃4(s2, t), s2)
and replacements for AB as follows: 1 ≡ C−, 2 ≡ C+, 3 ≡ NC−, 4 ≡ NC+.
Also we write s1,2 = s1 = s2 for the delta function terms. The presence of the
terms F (s2, s1), F (s2, s1)

∗ reflects the non-local nature of the diffusion matrix
and also give an explicit s1, s2 dependence. We see that the average of the
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product of any pair of noise fields is delta function correlated in time but not
in space, and is then given by the diffusion matrix element that appears in the
functional Fokker-Planck equation. The stochastic averages of products of odd
numbers of noise fields is zero and the stochastic averages of products of even
numbers of noise fields can be written as sums of products of stochastic averages
of pairs of diffusion matrix elements in accordance with (215) and (216).

The classical field equations for the condensate field are

∂

∂t
ψclassC (s,t)

= − i

~
[− ~

2

2m
∇2ψC(s) + V (s)ψC(s) +

gN
N

{ψ+
C (s)ψC(s)− |φ1(s)|2 − |φ2(s)|2}ψC(s)

+
gN
N

{2ψ+
C (s)ψC(s)− |φ1(s)|2 − |φ2(s)|2 }ψNC(s)−

gN
N

ˆ

duF (u, s)∗ψNC(u)

+
gN
N

{ψC(s)ψC(s)}ψ+
NC(s)

+
gN
N

{2ψ+
NC(s)ψNC(s)}ψC(s) +

gN
N

{ψNC(s)ψNC(s)}ψ+
C (s)]

(234)

and for the non-condensate stochastic field

∂

∂t
ψclassNC (s,t)

= − i

~
[+
gN
N

{ψ+
C (s)ψC(s)− |φ1(s)|2 − |φ2(s)|2}ψC(s)−

gN
N

ˆ

duF (s,u)ψC(u)

− ~
2

2m
∇2ψNC(s) + V (s)ψNC(s) +

gN
N

{2ψ+
C(s)ψC(s)− |φ1(s)|2 − |φ2(s)|2}ψNC(s)

+
gN
N

{ψC(s)ψC(s)}ψ+
NC(s)]

(235)

with corresponding equations for ψ+ class
C and ψ+ class

NC . These also are integro-
differential equations.

5.3. Ito Equations for Single Mode Condensate

We will next consider the simpler case where the BEC only involves a single
mode. Here the Ito stochastic equations are relatively standard. From above,
the terms can be written down from the general form (208) by identifying the
relevant terms in the functional Fokker-Planck equations set out in Section 4.
All stochastic fields depend on t, but this is left implicit.
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For the condensate stochastic field the Ito stochastic equation is

∂

∂t
ψ̃C(s,t)

= − i

~
[− ~

2

2m
∇2ψ̃C(s) + V (s)ψ̃C(s) +

gN
N

{ψ̃+
C(s)ψ̃C(s)− |φ1(s)|2}ψ̃C(s)

+
gN
N

{2ψ̃+
C(s)ψ̃C(s)−N |φ1(s)|2 }ψ̃NC(s) +

gN
N

{ψ̃C(s)ψ̃C(s)}ψ̃+
NC(s)

+
gN
N

{2ψ̃+
NC(s)ψ̃NC(s)}ψ̃C(s) +

gN
N

{ψ̃NC(s)ψ̃NC(s)}ψ̃+
C (s)]

+
∂

∂t
G̃C( ψ̃−→(s, t), Γ−→(t+)) (236)

where ∂
∂t G̃C( ψ̃−→(s, t), Γ−→(t+)) is the noise field.

For the non-condensate stochastic field the Ito stochastic equation is

∂

∂t
ψ̃NC(s,t)

= − i

~
[+
gN
N

{ψ̃+
C (s)ψ̃C(s)−N |φ1(s)|2}ψ̃C(s)

− ~
2

2m
∇2ψ̃NC(s) + V (s)ψ̃NC(s) +

gN
N

{2ψ̃+
C(s)ψ̃C(s)− |φ1(s)|2}ψ̃NC(s)

+
gN
N

{ψ̃C(s)ψ̃C(s)}ψ̃+
NC(s)]

+
∂

∂t
G̃NC( ψ̃−→(s, t), Γ−→(t+)) (237)

where ∂
∂t G̃NC( ψ̃−→(s, t), Γ−→(t+)) is the noise field. Similar equations apply for

ψ̃+
C (s) and ψ̃+

NC(s). The stochastic condensate and non-condensate fields are
coupled together and each is affected by stochastic noise fields. For the con-
densate field, the first line in the equation reads like a time-dependent Gross-
Pitaevskii equation if ψ̃C(s,t) is regarded as the order function. The three terms
are the kinetic energy, the trap potential energy and the non-linear mean field
energy contributions. Note that for the condensate equation the condensate
density ψ̃+

C (s)ψ̃C(s) is depleted by one boson due to the |φ1(s)|2 term. The first

line in the condensate equation comes from the Ĥ1 term, the second from the Ĥ2

term and the third from the Ĥ3 term. The first line in the non-condensate equa-
tion is a term coupling in the condensate field and comes from the Ĥ2 term, the
second and third from the Ĥ3 term. The latter two lines differ somewhat from
the form of a time-dependent Gross-Pitaevskii equation, which is not surprising
since these refer to the relatively unoccupied non-condensate modes.

The stochastic averages of the noise fields are given in (214), where the
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non-zero diffusion matrix elements are

DC+;NC−( ψ̃−→(s, t), s) =
i

~

gN
N

{ψ̃+
C (s)ψ̃C(s)−

1

2
N |φ1(s)|2}

+
i

~

gN
N

{ψ̃+
NC(s)ψ̃C(s) + ψ̃+

C (s)ψ̃NC(s)}

= DNC−;C+( ψ̃−→(s, t), s) (238)

DC−;NC+( ψ̃−→(s, t), s) = − i

~

gN
N

{ψ̃C(s)ψ̃+
C (s)−

1

2
N |φ1(s)|2}

− i

~

gN
N

{ψ̃NC(s)ψ̃+
C (s) + ψ̃C(s)ψ̃

+
NC(s)}

= DNC+;C−( ψ̃−→(s, t), s) (239)

DC−;NC−( ψ̃−→(s, t), s) = − i

~

gN
N

{1
2
ψ̃C(s)ψ̃C(s) + ψ̃NC(s)ψ̃C(s)}

= DNC−;C−( ψ̃−→(s, t), s) (240)

DC+;NC+( ψ̃−→(s, t), s) = +
i

~

gN
N

{1
2
ψ̃+
C (s)ψ̃

+
C (s) + ψ̃+

NC(s)ψ̃
+
C (s)}

= DNC+;C+( ψ̃−→(s, t), s) (241)

DNC−;NC−( ψ̃−→(s, t), s) = − i

~

gN
N

{ψ̃C(s)ψ̃C(s)} (242)

DNC+;NC+( ψ̃−→(s, t), s) = +
i

~

gN
N

{ψ̃+
C (s)ψ̃

+
C (s)} (243)

with the notation DAB( ψ̃−→(s, t), s) for

DAB(ψ̃1(s, t), ψ̃2(s, t), ψ̃3(s, t), ψ̃4(s, t), s) and replacements for AB as follows:

1 ≡ C−, 2 ≡ C+, 3 ≡ NC−, 4 ≡ NC+. Note that the |φ1(s)|2 terms give an
explicit s dependence as well as that in the stochastic fields. We see that the
average of the product of any pair of noise fields is delta function correlated in
both space and time, and is then given by the diffusion matrix element that
appears in the functional Fokker-Planck equation. The stochastic averages of
products of odd numbers of noise fields is zero and the stochastic averages of
products of even numbers of noise fields can be written as sums of products of
stochastic averages of pairs of diffusion matrix elements analogous to (215) and
(216) (see 5.1.5).

The classical field equations for the condensate field are

∂

∂t
ψclassC (s,t)

= − i

~
[− ~

2

2m
∇2ψC(s) + V (s)ψC(s) +

gN
N

{ψ+
C(s)ψC(s)− |φ1(s)|2}ψC(s)

+
gN
N

{2ψ+
C(s)ψC(s)−N |φ1(s)|2 }ψNC(s) +

gN
N

{ψC(s)ψC(s)}ψ+
NC(s)

+
gN
N

{2ψ+
NC(s)ψNC(s)}ψC(s) +

gN
N

{ψNC(s)ψNC(s)}ψ+
C (s)] (244)
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and for the non-condensate stochastic field

∂

∂t
ψclassNC (s,t)

= − i

~
[+
gN
N

{ψ+
C (s)ψC(s)−N |φ1(s)|2}ψC(s)

− ~
2

2m
∇2ψNC(s) + V (s)ψNC(s) +

gN
N

{2ψ+
C(s)ψC(s)− |φ1(s)|2}ψNC(s)

+
gN
N

{ψC(s)ψC(s)}ψ+
NC(s)] (245)

with corresponding equations for ψ+ class
C and ψ+ class

NC . If the coupling terms
to the non-condensate modes are ignored then the equation for ψclassC (s,t) has

a solution ψclassC (s,t) =
√
N φ1(s), ψ

+ class
C (s,t) =

√
N φ∗1(s) for large N , where

φ1(s) satisfies the standard single mode Gross-Pitaevskii equation (63). Assum-
ing the effects of coupling with the non-condensate field are small, this result
shows that ψclassC (s,t) is similar to the usual mean field solution.

5.4 Approximate Solutions - Single Mode Condensate

In general the coupled stochastic field equations are difficult to solve, even
numerically. Approximate solutions can however be obtained which enable some
features of the physics to be explored. As an illustration of how such approx-
imate solutions can be obtained we consider the single mode condensate case
for large N . By applying certain approximations to (236) - (245) the equations
obtained by Krachmalnicoff et al. [71] can be obtained. Their approach is also
based on a hybrid Wigner P+ distribution functional.

Firstly, we ignore all but the first line in of the Ito equation for the stochastic
condensate field (236). Thus the noise field term is ignored as are the coupling
terms involving non-condensate stochastic fields. The latter are higher order in
(
√
N)−1, so this a reasonable first approximation. Consistency in neglecting the

noise field term then requires that the only non-zero diffusion matrix elements
in (236) that are retained are those just involving the non-condensate stochastic
fields, DNC−;NC− and DNC+;NC+ . Consistency with the classical condensate
field equation (244) also requires neglecting the coupling terms involving the
non-condensate fields. The condensate stochastic field then satisfies

i~
∂

∂t
ψ̃C(s,t)

= − ~
2

2m
∇2ψ̃C(s) + V (s)ψ̃C(s) +

gN
N

{ψ̃+
C(s)ψ̃C(s)− |φ1(s)|2}ψ̃C(s)

(246)

We see from the Gross-Pitaevskii equation (63) that a solution is given by

ψ̃C(s,t) = ψclassC (s,t) =
√
N φ1(s), ψ̃

+
C (s,t) = ψ+ class

C (s,t) =
√
N φ∗1(s). Hence

the condensate field now becomes non-stochastic.
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Secondly, the first line in the Ito equation (237) for the stochastic non-
condensate field then becomes zero leaving just the second and third line to-
gether with the noise field term. As the diffusion matrix is now diagonal then
using (225) we can write the noise field as

∂

∂t
G̃NC( ψ̃−→(x, t), Γ−→(t+)) =

√
−i
~

gN
N

(ψ̃C)
2 Θ−

NC(x, t) (247)

∂

∂t
G̃+
NC( ψ̃−→(x, t), Γ−→(t+)) =

√
+i

~

gN
N

(ψ̃+
C )

2 Θ+
NC(x, t) (248)

where with a, b = +,− we introduce two Gaussian-Markoff stochastic fields
Θ±
NC(x, t). The stochastic average for two stochastic fields is

ΘaNC(x1, t1)Θ
b
NC(x2, t2) = δ(x1 − x2) δ(t1 − t2) δab (a, b = +,−) (249)

and the results for products of other numbers of fields satisfy the standard
Gaussian-Markoff rules. It is then straightforward to show that the two noise
fields ∂

∂t G̃NC and ∂
∂t G̃

+
NC satisfy the correct results in (214) etc. for stochastic

averages.
For large N the − |φ1(s)|2 term can be neglected, so the Ito equation (237)

for the stochastic non-condensate field is then

i~
∂

∂t
ψ̃NC(s,t) = − ~

2

2m
∇2ψ̃NC(s) + V (s)ψ̃NC(s) + 2

gN
N

{ψ̃+
C (s)ψ̃C(s)}ψ̃NC(s)

+
gN
N

{ψ̃C(s)ψ̃C(s)}ψ̃+
NC(s) +

√
+i~

gN
N

(ψ̃C)
2 Θ−

NC(x, t) (250)

This equation is equivalent to Eq.(5) in the paper by Krachmalnicoff et al. [71].
Note however that the derivation involves making approximations to the actual
stochastic field equations for single mode condensates, in particular the neglect
of noise terms in the equation for the stochastic condensate field.

5.4. Stochastic Averages for Quantum Correlation Functions

The quantum averages of symmetrically ordered products of the condensate
field operators {Ψ̂†

C(r1)Ψ̂
†
C(r2)....Ψ̂

†
C(rp)Ψ̂C(sq)..Ψ̂C(s1)} and normally ordered

products of the non-condensate field operators
Ψ̂†
NC(u1)Ψ̂

†
NC(u2)....Ψ̂

†
NC(ur)Ψ̂NC(vs)..Ψ̂NC(v1) are now given by stochastic

averages. These replace the functional integrals involving quasi distribution
functional given above in (108). We have

Tr[ρ̂ {Ψ̂†
C(r1)..Ψ̂

†
C(rp)Ψ̂C(sq)..Ψ̂C(s1)}

×Ψ̂†
NC(u1)..Ψ̂

†
NC(ur)Ψ̂NC(vs)..Ψ̂NC(v1)]

=
ψ+
C (r1) ..ψ

+
C (rp)ψC(sq) ..ψC(s1)×

×ψ+
NC(u1) ..ψ

+
NC(ur)ψNC(vs)..ψNC(v1)

(251)

where the bar denotes a stochastic average.
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6. Summary

The present paper sets up a general approach for treating both dephasing
and decoherence effects due to collisions in interferometry experiments using
single component Bose-Einstein condensates in double well situations, where
two condensate modes may be involved. The treatment starts from a descrip-
tion of dephasing and fragmentation effects in two mode condensates in which
the two modes satisfy generalised coupled Gross-Pitaevskii equations, and the
amplitudes describing the fragmentation of the condensate into the two modes
satisfy matrix equations. The two sets of equations, which are coupled and self-
consistent, are derived from the Dirac-Frenkel variational principle. The treat-
ment of decoherence effects requires the consideration of non-condensate modes
and a full phase space method involving a distribution functional is used, where
the highly occupied condensate modes are described via a truncated Wigner rep-
resentation (since the bosons in condensate modes behave like a classical mean
field), whilst the basically unoccupied non-condensate modes are described via
a positive P representation (these bosons should exhibit quantum effects). The
functional Fokker-Planck equation is derived using the correspondence rules and
then Ito equations for the stochastic fields associated with the condensate and
non-condensate field annihilation and creation field operators are determined.
The Ito stochastic field equations contain a deterministic term which is obtained
from the drift term in the functional Fokker-Planck equation, and a noise field
term whose stochastic properties are obtained from the diffusion term in the
functional Fokker-Planck equation. The link with interferometry experiments
is via the quantum correlation functions, which are shown to be equal to phase
space functional integrals of products of field functions with the distribution
functional. These phase space functional integrals are then shown to be de-
termined by stochastic averages of products of the stochastic fields, and in the
present approach the quantum correlation functions would be evaluated numer-
ically via such stochastic averages. Clearly, the general approach presented here
is rather complex, so in order that the reader can understand what is involved
this paper contains a full coverage of all the important steps in the derivations
of the key expressions obtained for the quantum correlation functions, corre-
spondence rules, functional Fokker-Planck equations and Ito stochastic field
equations. These are not covered in any of the standard textbooks and previous
papers only provide a brief outline of how such results are obtained.

For the condensate field, the first line in the Ito stochastic field equation
reads like a time-dependent Gross-Pitaevskii equation if the condensate field is
regarded as the order function. The first line in the non-condensate equation is a
term coupling in the condensate field. The results for the two mode condensate
have unusual features such as the Ito stochastic field equations being integro-
differential equations and the diffusion matrix being non-local. These features
are not found in the situation where there is only one condensate mode, where
the Ito equations are differential equations and the diffusion matrix is local.
The stochastic properties of the noise field terms are determined and are similar
to those for Gaussian-Markov processes in that the stochastic averages of odd
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numbers of noise fields are zero and those for even numbers of noise field terms
are the sums of products of stochastic averages associated with pairs of noise
fields. However each pair is represented by an element of the diffusion matrix
rather than products of the noise fields themselves, as in the case of Gaussian-
Markov processes. Hence it is only stochastic averages involving diffusion matrix
elements that determine all the stochastic properties. Results for both two mode
condensates and the simpler single mode condensate case are presented here.

The Ito stochastic field equations for single mode condensate have been
compared to similar equations in the recent paper by Krachmalnicoff et al.
[71]. We see that their equations are an approximate version for large N of
those presented here, the approximation involving the neglect of noise terms and
higher order terms in the condensate stochastic field equations - which requires
ignoring off-diagonal terms in the diffusion matrix. In this approximation the
condensate fields are non-stochastic and given by the

√
N times the normalised

solution to the single mode Gross-Pitaevskii equation, or its complex conjugate.
The non-condensate fields are stochastic and involves two Gaussian-Markoff
delta correlated stochastic fields.

Numerical applications to a range of actual and potential interferometry
experiments with Bose-Einstein condensates are planned. These include the
Heisenberg-limited interferometry experiment proposed by Dunningham and
Burnett [6], where the existing theory is based on the Josephson Hamiltonian
in which the two mode functions are unchanged during each stage of the pro-
cess. A more comprehensive analysis of this potentially important experiment
by a theory that allows for changes to the two mode functions and decoherence
effects would be of interest. Future theoretical work will involve the extension
of the present theory to two component condensates in single wells, where there
are also two spatial mode functions involved, and where interferometry exper-
iments of the Ramsey type have already been performed [39]. However, the
current theoretical treatment [39] ignores decoherence and is based on a single
mode theory. A theory along the lines of that presented here for single compo-
nent condensates would enable both decoherence effects and the possibility of
fragmentation effects to be studied.
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Appendix A. - Amplitude and Mode Equations for Two-Mode The-
ory

Appendix A.1. Angular Momentum Quantities

In the two-mode approximation the N boson system behaves like a giant
spin system with spin quantum number j = N/2 and which can be described via
angular momentum eigenstates

∣∣ N
2 , k

〉
, where k = −N/2, ..,+N/2 is a magnetic

quantum number which describes fragmented states of the bosonic system with
(N2 − k) bosons in mode φ1(r, t) and (N2 + k) bosons in mode φ2(r, t). Details
of the spin operator treatment for two mode theory are given in [17]. It is
therefore not surprising that the basic equations will involve expressions arising
from angular momentum theory. These are the quantities X ij

kl and Y im jn
kl which

are defined as

X11
kl = (

N

2
−k)δkl X12

kl = {(N
2
−k)(N

2
+l)}

1
2 δk,l−1

X21
kl = {(N

2
−l)(N

2
+ k)}

1
2

δl,k−1 X22
kl = (

N

2
+k)δkl (A.1)

Y 11 11
kl = (

N

2
−k)(N

2
−k − 1)δkl

Y 22 22
kl = (

N

2
+k)(

N

2
+k − 1)δkl

Y 12 12
kl = Y 12 21

kl = Y 21 12
kl = Y 21 21

kl = (
N

2
−k)(N

2
+k)δkl

Y 11 12
kl = Y 11 21

kl = (
N

2
−l){(N

2
−k)(N

2
+l)}

1
2 δk,l−1

Y 12 22
kl = Y 21 22

kl = (
N

2
+k){(N

2
−k)(N

2
+l)}

1
2 δk,l−1

Y 12 11
kl = Y 21 11
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2
−k){(N

2
−l)(N

2
+ k)}

1
2

δl,k−1

Y 22 12
kl = Y 22 21
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N

2
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2
−l)(N

2
+ k)}

1
2

δl,k−1

Y 11 22
kl = {(N

2
−l+1)(

N

2
−k)(N

2
+l)(

N

2
+ k + 1)}

1
2

δk,l−2

Y 22 11
kl = {(N

2
− k + 1)(

N

2
−l)(N

2
+ k)(

N

2
+l+1)}

1
2 δl,k−2. (A.2)

These results would apply for the general two-mode theory before the localisa-
tion assumption is made.

Appendix A.2. Hamiltonian and Rotation Matrices

The Hamiltonian and rotation matrix elements Hkl and Ukl that occur in
the amplitude equations (A.14) involve spatial integrals involving the mode
functions φ1 and φ2. They are therefore functionals of the mode functions. The
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expressions depend also on the spatial and time derivatives of the mode functions
through the quantities W̃ij(r, t), Ṽim jn(r, t) and T̃ij(r, t), where (i, j,m, n =
1, 2), and which are defined by

W̃ij(r, t) =
~
2

2m

∑

µ=x,y,z

∂µφ
∗
i ∂µφj + φ∗iV φj (A.3)

Ṽim jn(r, t) =
g

2
φ∗i φ

∗
m φj φn (A.4)

T̃ij(r, t) =
1

2i
(∂tφ

∗
i φj − φ∗i ∂tφj) (A.5)

The rotation matrix elements Ukl (−N
2 ≤ k, l ≤ +N

2 ) are given by

Ukl =
1

2i
[(∂t

〈
N

2
, k

∣∣∣∣ )
∣∣∣∣
N

2
, l

〉
−
〈
N

2
, k

∣∣∣∣ (∂t
∣∣∣∣
N

2
, l

〉
)] = U∗

lk (A.6)

=

ˆ

dr Ũkl(φi,φ
∗
i ,∂tφi,∂tφ

∗
i ). (A.7)

In the expression (A.7) for the rotation matrix the quantity Ũkl is

Ũkl =
∑

ij

X ij
kl T̃ij . (A.8)

The result involves the angular momentum theory quantities X ij
kl . Thus for the

rotation matrix, space integrals of the mode functions and their time derivatives
are involved.

The Hamiltonian matrix elements Hkl (−N
2 ≤ k, l ≤ +N

2 ) are given by

Hkl =

〈
N

2
, k| Ĥ |N

2
, l

〉
= H∗

lk (A.9)

=

ˆ

dr H̃kl(φi,φ
∗
i ,∂µφi,∂µφ

∗
i ). (A.10)

In the expression (A.10) for the Hamiltonian matrix the quantity H̃kl is a Hamil-
tonian density and is given by

H̃kl =
∑

ij

X ij
kl W̃ij +

∑

ijmn

Y im jn
kl Ṽim jn. (A.11)

This result involves the angular momentum theory quantities X ij
kl and Y im jn

kl .
Thus for the Hamiltonian matrix, space integrals of the mode functions and
their spatial derivatives are involved.

The coefficients Xij and Yim jn (i, j,m, n = 1, 2) that occur in the generalized
Gross-Pitaevskii equations (A.15) for the mode functions are quadratic functions
of the amplitudes bk (−N

2 ≤ k, l ≤ +N
2 )

Xij =
∑

k,l

b∗kX
ij
kl bl = X∗

ji ∼ N (A.12)

Yim jn =
∑

k,l

b∗k Y
im jn
kl bl = Y ∗

jn im ∼ N2 (A.13)
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Note the Hermitian properties of these quantities and the N dependence of their
order of magnitude.

Appendix A.3. Supplementary Equations

Amplitude Equations

i~
∂bk
∂t

=
∑

l

(Hkl − ~Ukl)bl (k = −N/2, .., N/2). (A.14)

Mode Equations

i~
∑

j

Xij
∂

∂t
φj =

∑

j

Xij(−
~
2

2m
∇2 + V )φj

+
∑

j

(g
∑

mn

Yim jn φ
∗
m φn)φj (i = 1, 2).(A.15)
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Appendix B. - Functional Calculus

The basic ideas of functional calculus are outlined here for the case of c-
number quantities. The two main processes of interest are functional differenti-
ation and functional integration, but we begin by explaining what is meant by
a functional.

Appendix B.1. Definition of Functional

A functional F [ψ(x)] maps a c-number function ψ(x) onto a c-number that
depends on all the values of ψ(x) over its entire range. The independent variable
x could in some cases refer to a position coordinate, in other cases it may refer
to time. If x does refer to position then ψ(x) is refered to as a field function.
Note that the functional is written with square brackets to distinguish it from
a function, written with round brackets.

We will assume that c-number functions ψ(x) can be expanded in terms of a
suitable orthonormal set of mode functions with c-number expansion coefficients
αk

ψ(x) =
∑

k

αk φk(x) (B.1)

where the orthonormality conditions are

ˆ

dxφ∗k(x)φl(x) = δkl (B.2)

This gives the well-known result for the expansion coefficients

αk =

ˆ

dxφ∗k(x)ψ(x) (B.3)

and the completeness relationship is

∑

k

φk(x)φ
∗
k(y) = δ(x − y). (B.4)

As the value of the function at any point in the range for x is determined
uniquely by the expansion coefficients {αk}, then the functional F [ψ(x)] must
therefore also just depend on the expansion coefficients, and hence may also be
viewed as a function f(α1, α2, .., αk, ..αn) of the expansion coefficients, a useful
equivalence when functional differentiation and integration are considered.

F [ψ(x)] ≡ f(α1, α2, .., αk, ..αn) (B.5)

It is sometimes convenient to expand a field function in terms of the complex
conjugate modes φ∗k(x). Thus ψ+(x) given by

ψ+(x) =
∑

k

φ∗k(x)α
+
k (B.6)
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is also a field function, and if α+
k = α∗

k then ψ+(x) = ψ∗(x), the complex
conjugate field.

The idea of a functional can be extended to cases of the form F [ψ(x1, x2, .., xn)]
where ψ(x1, x2, .., xn) is a function of several variables x1, x2, .., xn. For 3D
fields the situation x1 = x, x2 = y, x3 = z is such an application. In addi-
tion, cases F [ψ̂(x)] where ψ̂(x) is an operator function rather than a c-number

function occur. For example, ψ̂(x) may be a bosonic field operator. In this

case F [ψ̂(x)] maps the operator function onto an operator. Also functionals
F [ψ1(x), ψ2(x), .., ψi(x), ..ψn(x)] involving several functions ψ1(x), ψ2(x), .., ψi(x), ..ψn(x)

occur. For example, a bosonic field operator ψ̂(x) may be associated with a field

function ψ1(x) = ψ(x) and the field operator ψ̂(x)† may be associated with a dif-
ferent field function ψ2(x) = ψ+(x), so functionals of the form F [ψ(x), ψ+(x)]
are involved. Of particular relevance are cases where the functional involves
fields and their complex conjugates, such as F [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)]. Func-
tional derivatives and functional integrals can be defined for all of these cases.

Appendix B.2. Examples of Functionals

A typical example of a functional involves an integration process:

F [ψ(x)] =

b
ˆ

a

dxφ(ψ(x)) (B.7)

where φ(ψ(x)) is some function of ψ(x).
The scalar product of ψ(x) with a fixed function χ(x) is a typical example

of a functional (written χ[ψ(x)]) since

χ[ψ(x)] =

ˆ

dxχ∗(x)ψ(x). (B.8)

A functional F [ψ(x)] may take the form of an integral of a function F(ψ(x), ∂
x
ψ(x))

involving the spatial derivative ∂xψ(x) as well as ψ(x)

F [ψ(x)] =

ˆ

dxF(ψ(x), ∂xψ(x)) (B.9)

A function ψ(y) may also be expressed as a functional Fy[ψ(x)]

Fy[ψ(x)] =

ˆ

dx δ(x − y)ψ(x).

= ψ(y) (B.10)

Another example involves the spatial derivative ▽yψ(y) which may also be
expressed as a functional F∇y [ψ(x)]

F∇y [ψ(x)] =

ˆ

dx δ(x − y)▽xψ(x)

= ▽yψ(y) (B.11)
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A functional is said to be linear if

F [c1ψ1(x) + c2ψ2(x)] = c1F [ψ1(x)] + c2F [ψ2(x)] (B.12)

where c1, c2 are constants. The scalar product is a linear functional.

Appendix B.3. Functional Differentiation

The functional derivative δF [ψ(x)]
δψ(x) is defined by

F [ψ(x) + δψ(x)] + F [ψ(x)] +

ˆ

dx δψ(x)

(
δF [ψ(x)]

δψ(x)

)

x

(B.13)

where δψ(x) is small. In this equation the left side is a functional of ψ(x)+δψ(x)
and the first term on the right side is a functional of ψ(x). The second term on
the right side is a functional of δψ(x) and thus the functional derivative must
be a function of x, hence the subscript x. In most situations this subscript will
be left understood. If we write δψ(x) = ǫδ(x− y) for small ǫ then an equivalent
result for the functional derivative at x = y is

(
δF [ψ(x)]

δψ(x)

)

x=y

= lim
ǫ→0

(
F [ψ(x) + ǫδ(x− y)]− F [ψ(x)]

ǫ

)
. (B.14)

This definition of a functional derivative can be extended to cases where
ψ(x1, x2, .., xn) is a function of several variables or where ψ̂(x) is an operator
function rather than a c-number function. Also functionals F [ψ1(x), ψ2(x), .., ψi(x), ..ψn(x)]
involving several functions ψ1(x), ψ2(x), .., ψi(x), ..ψn(x) occur, and functional
derivatives with respect to any of these functions can be defined. For exam-
ple, the functional F [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)] leads to functional derivatives
with respect to all four fields defined via an obvious generalisation of (B.13), the
conjugate fields ψ(x), ψ∗(x) and ψ+(x), ψ+∗(x) being regarded as independent
of each other.

Finally, higher order functional derivatives can be defined by applying the
basic definitions to lower order functional derivatives.

Appendix B.4. Examples of Functional Derivatives

For the case of the functional Fy[ψ(x)] in Eq.(B.10) that gives the function
ψ(y)

(
δFy[ψ(x)]

δψ(x)

)

x

=

(
δψ(y)

δψ(x)

)

x

= lim
ǫ→0

(´
dz δ(z − y) {ψ(z) + ǫδ(z − x)} −

´

dz δ(z − y)ψ(z)

ǫ

)

= δ(x− y) (B.15)

so here the functional derivative is a delta function.
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A similar situation applies to the case where the functional F∇y [ψ(x)] in
Eq.(B.11) that gives the spatial derivative function ▽yψ(y). Using integration
by parts

F∇y [ψ(x) + δψ(x)] =

ˆ

dx δ(x − y)▽x(ψ(x) + δψ(x))

= F∇y [ψ(x)] +

ˆ

dx δ(x − y)▽xδψ(x)

= F∇y [ψ(x)] −
ˆ

dx▽xδ(x− y) δψ(x)

= F∇y [ψ(x)] +

ˆ

dx▽yδ(x− y) δψ(x)

Hence
(
δF∇y [ψ(x)]

δψ(x)

)

x

=

(
δ▽yψ(y)

δψ(x)

)

x

= ▽yδ(x− y) = −▽xδ(x− y)

(B.16)

so here the functional derivative is the derivative of a delta function.

Appendix B.5. Functional Derivative and Mode Functions

If a mode expansion for ψ(x) as in Eq.(B.113) etc. is used, then we can
obtain an expression for the functional derivative in terms of mode functions.
By writing

δψ(x) =
∑

k

δαk φk(x)

we see that

F [ψ(x) + δψ(x)] − F [ψ(x)] +

ˆ

dx δψ(x)

(
δF [ψ(x)]

δψ(x)

)

x

+

∑

k

δαk

ˆ

dxφk(x)

(
δF [ψ(x)]

δψ(x)

)

x

But the left side is the same as

f(α1 + δα1, .., αk + δαk, ..)− f(α1, .., αk, ..) +
∑

k

δαk
∂f(α1, .., αk, ..)

∂αk

Equating the coefficients of the independent δαk and then using the complete-
ness relationship in Eq.(B.4) gives the key result

(
δF [ψ(x)]

δψ(x)

)

x

=
∑

k

φ∗k(x)
∂f(α1, .., αk, ..)

∂αk
(B.17)

∂f(α1, .., αk, ..)

∂αk
=

ˆ

dxφk(x)

(
δF [ψ(x)]

δψ(x)

)

x

(B.18)
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These relate the functional derivative to the mode functions and to the ordinary
partial derivatives of the function f(α1, α2, .., αk, ..αn) that was equivalent to
the original functional F [ψ(x)]. Again, we see that the result for the functional
derivative is a function of x.

For the case of the functional F [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)] whose equiva-
lent function based on the expansions (B.1) and (B.6) is f(αk, α

+
k , α

∗
k, α

+∗
k ), the

generalisation of (B.17) is

(
δF [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)]

δψ(x)

)

x

=
∑

k

φ∗k(x)
∂f(αk, α

+
k , α

∗
k, α

+∗
k )

∂αk
(
δF [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)]

δψ+(x)

)

x

=
∑

k

φk(x)
∂f(αk, α

+
k , α

∗
k, α

+∗
k )

∂α+
k

(
δF [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)]

δψ∗(x)

)

x

=
∑

k

φk(x)
∂f(αk, α

+
k , α

∗
k, α

+∗
k )

∂α∗
k

(
δF [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)]

δψ+∗(x)

)

x

=
∑

k

φ∗k(x)
∂f(αk, α

+
k , α

∗
k, α

+∗
k )

∂α+∗
k

(B.19)

and

∂f(αk, α
+
k , α

∗
k, α

+∗
k )

∂αk
=

ˆ

dxφk(x)

(
δF [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)]

δψ(x)

)

x

∂f(αk, α
+
k , α

∗
k, α

+∗
k )

∂α+
k

=

ˆ

dxφ∗k(x)

(
δF [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)]

δψ+(x)

)

x

∂f(αk, α
+
k , α

∗
k, α

+∗
k )

∂α∗
k

=

ˆ

dxφ∗k(x)

(
δF [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)]

δψ∗(x)

)

x

∂f(αk, α
+
k , α

∗
k, α

+∗
k )

∂α+∗
k

=

ˆ

dxφk(x)

(
δF [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)]

δψ+∗(x)

)

x

(B.20)

which relate the functional derivatives and the derivatives with respect to the
mode amplitudes.

Appendix B.6. Rules for Functional Derivatives

Rules can be established for the functional derivative of the sum of two
functionals. It is easily shown that

(
δ{F [ψ(x)] +G[ψ(x)]}

δψ(x)

)

x=y

=

(
δ{F [ψ(x)]}
δψ(x)

)

x=y

+

(
δ{G[ψ(x)]}
δψ(x)

)

x=y

(B.21)
Also, rules can be established for functional derivative of the product of two

functionals. We will keep these in order to cover the case where the functionals
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are operators
(
δ{F [ψ(x)]G[ψ(x)]}

δψ(x)

)

x=y

=

(
δF [ψ(x)]

δψ(x)

)

x=y

G[ψ(x)]+F [ψ(x)]

(
δG[ψ(x)]

δψ(x)

)

x=y

(B.22)
A chain rule for functional differentiation can also be derived for the case

where a functional G[ψy(x)] involves not just one function ψ(x), but a set of
functions each labelled by a variable y. Since G[ψy(x)] maps ψy(x) onto a c-
number which depends on y, we can regard the functional G[ψy(x)] also as a
function G(y) of the variable y.Now consider a second functional F [G(y)] of this

function G(y), and we could determine the functional derivative
(
δF [G(y)]
δG(y)

)
y
.

But F [G(y)] is also a functional of the ψy(x) via

F [G[ψy(x)]] ≡ F [G(y)]

We obtain the chain rule
(
δF [G[ψy(x)]]

δψy(x)

)

x

=

ˆ

dy

(
δF [G(y)]

δG(y)

)

y

(
δF [G(y)]

δG(y)

)

x

(B.23)

where we have left the order of the factors as they appeared in order to allow
for operator cases.

We may also define the spatial derivative of the functional derivative. Thus

∂y

(
δF [ψ(x)]

δψ(x)

)

x=y

= lim
∆y→0




(
δF [ψ(x)]
δψ(x)

)
x=y+∆y

−
(
δF [ψ(x)]
δψ(x)

)
x=y

∆y




= −
ˆ

dx

(
∂

∂x
δ(x− y)

)

x=y

(
δF [ψ(x)]

δψ(x)

)

x

(B.24)

This expresses the spatial derivative as an integral involving the functional
derivative and the spatial derivative of the delta function. The result will be a
function of s.

A number of other rules may also be established.
(1) Power rule

F [ψ(x)] =

ˆ

dxψ(x)n

δF [ψ(x)]

δψ(x)
= nψ(x)n−1 (B.25)

(2) Function rule

F [ψ(x)] =

ˆ

dxφ(ψ(x))

δF [ψ(x)]

δψ(x)
= φ′(ψ(x)) (B.26)
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(3) Power derivative rule

F [ψ(x)] =

ˆ

dx (
dψ(x)

dx
)n

δF [ψ(x)]

δψ(x)
= −n d

dx
((
dψ(x)

dx
)n−1) (B.27)

(4) Function derivative rule

F [ψ(x)] =

ˆ

dxφ(
dψ(x)

dx
)

δF [ψ(x)]

δψ(x)
= − d

dx
((

dφ

d(dψdx )
)) (B.28)

(5) Convolution rule

Fy[ψ(x)] =

ˆ

dxK(y, x)ψ(x)

(
δFy[ψ(x)]

δψ(x)

)

x

= K(y, x) (B.29)

(6) Trivial rule

Fy[ψ(x)] = ψ(y)(
δFy[ψ(x)]

δψ(x)

)

x

=

(
δψ(y)

δψ(x)

)

x

= δ(x− y) (B.30)

This was proved above.
(7) Gradient rule

F∇y [ψ(x)] = ▽yψ(y)(
δF∇y [ψ(x)]

δψ(x)

)

x

= ▽yδ(x − y) = −▽xδ(x− y) (B.31)

This was proved above.
(8) Exponential rule

F [ψ(x)] = expG[ψ(x)]

δF [ψ(x)]

δψ(x)
= expG[ψ(x)]

δG[ψ(x)]

δψ(x)
(B.32)

The exponential rule only applies in this form if F [ψ(x)] and G[ψ(x)] are c-
numbers.

All these rules have obvious generalisations for functionals involving several
fields, such as F [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)].
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Appendix B.7. Functional Integration

If the range for the function ψ(x) is divided up into n small intervals ∆xi =
xi+1 − xi (the ith interval), then we may specify the value ψi of the function
ψ(x) in the ith interval via the average

ψi =
1

∆xi

ˆ

∆xi

dxψ(x) (B.33)

and then the functional F [ψ(x)] may be regarded as a function F (ψ1, ψ2, .., ψi, .., ψn)
of all the ψi.

Introducing a suitable weight function w(ψ1, ψ2, .., ψi, .., ψn) we may then
define the functional integral for the case of real functions as

ˆ

DψF [ψ(x)] = lim
n→∞

lim
ǫ→0

ˆ

. . .

ˆ

dψ1dψ2..dψi..dψn w(ψ1, ψ2, .., ψi, .., ψn)

×F (ψ1, ψ2, .., ψi, .., ψn) (B.34)

where ǫ > ∆xi. Thus the symbolDψ stands for dψ1dψ2..dψi..dψn w(ψ1, ψ2, .., ψi, .., ψn).
If the functions are complex then the functional integral is

ˆ

D2ψ F [ψ(x)] = lim
n→∞

lim
ǫ→0

ˆ

. . .

ˆ

d2ψ1d
2ψ2..d

2ψi..d
2ψn w(ψ1, ψ2, .., ψi, .., ψn)

×F (ψ1, ψ2, .., ψi, .., ψn) (B.35)

The symbol D2ψ stands for d2ψ1d
2ψ2..d

2ψi..d
2ψn w(ψ1, ψ2, .., ψi, .., ψn), where

with ψi = ψix + iψiy the quantity d2ψi means dψixdψiy , involving integration
over the real, imaginary parts of the complex function.

For cases involving several complex functions such as F [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)]
the functional integrals are of the form

ˆ ˆ

D2ψD2ψ+ F [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)]

= lim
n→∞

lim
ǫ→0

ˆ

. . .

ˆ

d2ψ1d
2ψ2..d

2ψi..d
2ψn lim

n→∞
lim
ǫ→0

ˆ

. . .

ˆ

d2ψ+
1 d

2ψ+
2 ..d

2ψ+
i ..d

2ψ+
n

×w(ψ1, .., ψi, .., ψn, ψ
+
1 , .., ψ

+
i , .., ψ

+
n , ψ

∗
1 , .., ψ

∗
i , .., ψ

∗
n, ψ

+∗
1 , .., ψ+∗

i , .., ψ+∗
n )

×F (ψ1, .., ψi, .., ψn, ψ
+
1 , .., ψ

+
i , .., ψ

+
n , ψ

∗
1 , .., ψ

∗
i , .., ψ

∗
n, ψ

+∗
1 , .., ψ+∗

i , .., ψ+∗
n ) (B.36)

where D2ψ D2ψ+ stands for

d2ψ1..d
2ψi..d

2ψn d
2ψ+

1 ..d
2ψ+

i ..d
2ψ+

n w(ψ1, .., ψi, .., ψn, ψ
+
1 , .., ψ

+
i , .., ψ

+
n , ψ

∗
1 , .., ψ

∗
i , .., ψ

∗
n, ψ

+∗
1 , .., ψ+∗

i , .., ψ+∗
n )

and where with ψ+
i = ψ+

ix + iψ+
iy, the quantity d2ψ+

i means dψ+
ixdψ

+
iy.

A functional integral of a functional of a c-number function gives a c-number.
Unlike ordinary calculus, functional integration and differentiation are not re-
lated as inverse processes.
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Appendix B.8. Functional Integrals and Phase Space Integrals

We first consider the case of a functional F [ψ(x)] of a real function ψ(x),
which we expand in terms of real, orthogonal mode functions. The expansion co-
efficients in this case will be real also. If a mode expansion such as in Eq.(B.113)
etc. is used then the value φki of the mode function in the ith interval is also
defined via the average

φki =
1

∆xi

ˆ

∆xi

dxφk(x) (B.37)

and hence
ψi =

∑

k

αk φki. (B.38)

This shows that the values in the ith interval of the function ψi and the mode
function φki are related via the expansion coefficients αk. For simplicity we will
choose the same number n of intervals as mode functions. Using the expression
Eq.(B.3) for the expansion coefficients we then obtain the inverse formula to
Eq.(B.38)

αk =
∑

i

∆xi φki.ψi. (B.39)

Note that this involves a sum over intervals i and the interval size ∆xi is also
involved.

The relationship in Eq.(B.38) shows that the functions F (ψ1, ψ2, .., ψi, .., ψn)
and w(ψ1, ψ2, .., ψi, .., ψn) of all the interval values ψi can also be regarded as
functions of the expansion coefficients αk which we may write as

f(α1, .., αk, ..αn) ≡ F (ψ1(α1, .., αk, ..αn), ..., ψi(α1, .., αk, ..αn), .., ψn)

(B.40)

v(α1, .., αk, ..αn) ≡ w(ψ1(α1, .., αk, ..αn), ..., ψi(α1, .., αk, ..αn), .., ψn)

(B.41)

Thus the various values ψ1, ψ2, .., ψ1, ψ2, .., ψi, .., ψn, .., ψn of that the function
ψ(x) takes on in the n intervals - and which are integrated over in the functional
integration process - are all determined by the choice of the expansion coeffi-
cients α1, α2, .., αk, ..αn. Hence integration over all the ψi will be equivalent to
integration over all the αk.

This enables us to express the functional integral in Eq.(B.34) as a phase
space integral over the expansion coefficients α1, α2, .., αk, ..αn. We have

ˆ

DψF [ψ(x)] = lim
n→∞

lim
ǫ→0

ˆ

. . .

ˆ

dα1dα2..dαk..dαn ||J(α1, α2, .., αk, ..αn)||

×v(α1, α2, .., αk, ..αn) f(α1, α2, .., αk, ..αn) (B.42)
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where the Jacobian is given by

||J(α1, α2, .., αk, ..αn)|| =

∥∥∥∥∥∥∥∥∥

∂ψ1

∂α1

∂ψ1

∂α2
... ∂ψ1

∂αn
∂ψ2

∂α1

∂ψ2

∂α2
...

∂ψ2

∂αn

... ... ... ...
∂ψn

∂α1

∂ψn

∂α2

∂ψn

∂αn

∥∥∥∥∥∥∥∥∥
(B.43)

Now using Eq.(B.38)
∂ψi
∂αk

= φki (B.44)

and evaluating the Jacobian using after showing that (JJT )ik = δik/∆xi using
the completeness relationship in Eq.(B.4) we find that

||J(α1, α2, .., αk, ..αn)|| =
∏

i

1

(∆xi)1/2
(B.45)

and thus
ˆ

DψF [ψ(x)] = lim
n→∞

lim
ǫ→0

ˆ

. . .

ˆ

dα1dα2..dαk..dαn
∏

i

1

(∆xi)1/2

×v(α1, α2, .., αk, ..αn) f(α1, α2, .., αk, ..αn) (B.46)

This key result expresses the original functional integral as a phase space integral
over the expansion coefficients αk of the function ψ(x) in terms of the mode
functions φk(x).

The general result can be simplified with a special choice of the weight
function

w(ψ1, ψ2, .., ψi, .., ψn) =
∏

i

(∆xi)
1/2 (B.47)

and we then get a simple expression for the functional integral
ˆ

DψF [ψ(x)] = lim
n→∞

lim
ǫ→0

ˆ

. . .

ˆ

dα1dα2..dαk..dαn f(α1, α2, .., αk, ..αn)

(B.48)
In this form of the functional integral the original functional F [ψ(x)] has been
replaced by the equivalent function f(α1, α2, .., αk, ..αn) of the expansion co-
efficients αk, and the functional integration is now replaced by a phase space
integration over the expansion coefficients.

The relationship between the functional integral and the phase space integral
can be generalised to cases involving several complex functions. For the case of
the functional F [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)], where ψ(x), ψ+(x) are expanded
in terms of complex mode functions as in (B.1), (B.6) and ψi, ψ

+
i defined as in

(B.33) we have

ψi =
∑

k

αk φki. αk =
∑

i

∆xi φ
∗
ki.ψi.

ψ+
i =

∑

k

α+
k φ

∗
ki. α+

k =
∑

i

∆xi φki.ψ
+
i .

(B.49)
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For variety we will turn the phase space integral into a functional integral. We
first have the transformation involving real quantities

αkX =
∑

i

∆xi (φkiX .ψiX + φkiY .ψiY )

αkY =
∑

i

∆xi (φkiX .ψiY − φkiY .ψiX)

α+
kX =

∑

i

∆xi (φkiX .ψ
+
iX − φkiY .ψ

+
iY )

α+
kY =

∑

i

∆xi (φkiX .ψ
+
iY + φkiY .ψ

+
iX) (B.50)

In the standard notation with αk = αkX + iαkY , α+
k = α+

kX + iα+
kY and d2αk =

dαkXdαkY , d2α+
k = dα+

kXdα
+
kY the phase space integral is of the form

ˆ ˆ

d2α d2α+ f(α, α+, α∗, α+∗)

=

ˆ

. . .

ˆ

d2α1d
2α2..d

2αk..d
2αn

ˆ

. . .

ˆ

d2α+
1 d

2α+
2 ..d

2α+
k ..d

2α+
n f(αk, α

+
k , α

∗
k, α

+∗
k )

(B.51)

and after transforming to the new variables ψiX , ψiY , ψ
+
iX , ψ

+
iY we get

ˆ

. . .

ˆ

d2α1d
2α2..d

2αk..d
2αn

ˆ

. . .

ˆ

d2α+
1 d

2α+
2 ..d

2α+
k ..d

2α+
n f(αk, α

+
k , α

∗
k, α

+∗
k )

=

ˆ

. . .

ˆ

d2ψ1d
2ψ2..d

2ψi..d
2ψn

ˆ

. . .

ˆ

d2ψ+
1 d

2ψ+
2 ..d

2ψ+
i ..d

2ψ+
n ||J(αk, α+

k , α
∗
k, α

+∗
k )||

×F (ψ1, .., ψi, .., ψn, ψ
+
1 , .., ψ

+
i , .., ψ

+
n , ψ

∗
1 , .., ψ

∗
i , .., ψ

∗
n, ψ

+∗
1 , .., ψ+∗

i , .., ψ+∗
n ) (B.52)

where the Jacobian can be written in terms of the notation αkX → αk1, αkY →
αk2, α

+
kX → αk3, α

+
kY → αk4 and ψiX → ψi1,ψiY → ψi2,ψ

+
iX → ψi3,ψ

+
iY → ψi4

in which the Jacobian is the determinent of the matrix J where

Jkµ iν =
∂αkµ
∂ψiν

(k = 1, .., n; i = 1, .., n;µ = 1, .., 4; ν = 1, .., 4)

||J(αk, α+
k , α

∗
k, α

+∗
k )|| = ‖Jkµ iν‖ (B.53)

The elements in the 4x4 submatrix Jk i are obtained from (B.50) and are

[Jk i] =




∆xi φkiX ∆xi φkiY 0 0
−∆xi φkiY ∆xi φkiX 0 0

0 0 ∆xi φkiX −∆xi φkiY
0 0 ∆xi φkiY ∆xi φkiX


 (B.54)

The completeness relationship (B.4) can then be used to show that

∆xi∆xj
∑

k

(φkiX φkjX + φkiY φkjY ) = ∆xi δi j

∆xi∆xj
∑

k

(−φkiX φkjY + φkiY φkjX ) = 0 (B.55)
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which is the same as
∑

kµ

Jkµ iνJkµ jξ = ∆xi δi jδν ξ

[
JT J

]
iν jξ

= ∆xi δi jδν ξ (B.56)

Hence

‖Jkµ iν‖ =
n∏

i=1

(∆xi)
2 (B.57)

so that we have finally after letting n → ∞ and ∆xi → 0 and with d2α =∏
k

d2αk, d
2α+ =

∏
k

d2α+
k

ˆ ˆ

d2α d2α+ f(α, α+, α∗, α+∗) (B.58)

= lim
n→∞

lim
ǫ→0

ˆ

. . .

ˆ

d2α1d
2α2..d

2αk..d
2αn

×
ˆ

. . .

ˆ

d2α+
1 d

2α+
2 ..d

2α+
k ..d

2α+
n f(αk, α

+
k , α

∗
k, α

+∗
k )

= lim
n→∞

lim
ǫ→0

ˆ

. . .

ˆ

d2ψ1d
2ψ2..d

2ψi..d
2ψn

ˆ

. . .

ˆ

d2ψ+
1 d

2ψ+
2 ..d

2ψ+
i ..d

2ψ+
n

×w(ψ1, .., ψi, .., ψn, ψ
+
1 , .., ψ

+
i , .., ψ

+
n , ψ

∗
1 , .., ψ

∗
i , .., ψ

∗
n, ψ

+∗
1 , .., ψ+∗

i , .., ψ+∗
n )

×F (ψ1, .., ψi, .., ψn, ψ
+
1 , .., ψ

+
i , .., ψ

+
n , ψ

∗
1 , .., ψ

∗
i , .., ψ

∗
n, ψ

+∗
1 , .., ψ+∗

i , .., ψ+∗
n )

=

ˆ ˆ

D2ψ D2ψ+ F [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)] (B.59)

whereD2ψD2ψ+ =
∏
i

d2ψi
∏
i

d2ψi w(ψ1, .., ψn, ψ
+
1 , .., ψ

+
n , ψ

∗
1 , .., ψ

∗
n, ψ

+∗
1 , .., ψ+∗

n )

and the weight function is

w(ψ1, .., ψn, ψ
+
1 , .., ψ

+
n , ψ

∗
1 , .., ψ

∗
n, ψ

+∗
1 , .., ψ+∗

n ) =

n∏

i=1

(∆xi)
2 (B.60)

and is independent of the functions. The power law (∆xi)
2 is consistent with

there being four real functions involved instead of the single function as previ-
ously.

Appendix B.9. Functional Integration Rules

A useful integration by parts rule can often be established from Eq.(B.22).
Consider the functional H [ψ(x)] = F [ψ(x)]G[ψ(x)]. Then

F [ψ(x)]

(
δG[ψ(x)]

δψ(x)

)
=

(
δ{F [ψ(x)]G[ψ(x)]}

δψ(x)

)
−
(
δF [ψ(x)]

δψ(x)

)
G[ψ(x)]

Then
ˆ

DψF [ψ(x)]

(
δG[ψ(x)]

δψ(x)

)
=

ˆ

Dψ

(
δH [ψ(x)]

δψ(x)

)
−
ˆ

Dψ

(
δF [ψ(x)]

δψ(x)

)
G[ψ(x)]
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If we now introduce mode expansions and use Eq.(B.17) for the functional
derivative of H [ψ(x)] and Eq.(B.48) for the first of the two functional integrals
on the right hand side of the last equation then

ˆ

Dψ

(
δH [ψ(x)]

δψ(x)

)
= lim

n→∞
lim
ǫ→0

ˆ

. . .

ˆ

dα1dα2..dαk..dαn
∑

k

φ∗k(x)
∂h(α1, .., αk, ..)

∂αk

= lim
n→∞

lim
ǫ→0

∑

k

φ∗k(x)

ˆ

. . .

ˆ

dα1dα2..

×{h(α1, .., αk, ..)αk→+∞ − h(α1, .., αk, ..)αk→−∞}..dαn

so that the functional integral of this term reduces to contributions on the
boundaries of phase space. Hence if h(α1, .., αk, ..) → 0 as all αk → ±∞ then
the functional integral involving the functional derivative of H [ψ(x)] vanishes
and we have the integration by parts result

ˆ

DψF [ψ(x)]

(
δG[ψ(x)]

δψ(x)

)
= −
ˆ

Dψ

(
δF [ψ(x)]

δψ(x)

)
G[ψ(x)] (B.61)

All these rules have obvious generalisations for functionals such as
F [ψ(x), ψ+(x), ψ∗(x), ψ+∗(x)] involving several fields.

Appendix B.10. Restricted Functions

It is necessary to also consider functionals involving c-number field functions
ψK(x) which are still based on an expansion in terms of orthonormal mode
functions φk(x), but where there is some restriction on the modes that are
included. Such functions will be referred to as restricted functions. Examples
include the fields ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r) used for condensate and non-

condensate modes in the theory of Bose condensates, where even the combined
condensate and non-condensate modes are subject to a restriction, in that modes
associated with a momentum greater than a cut-off value are excluded.

Thus we have

ψK(x) =

K∑

k

βk φk(x) (B.62)

where the specific restricted mode expansion for the restricted set K is signi-
fied by the symbol K. Other restricted sets involving different modes will be
designated L, M etc., with expansion coefficients γk, δk etc.

Orthonormality conditions still apply to all modes

ˆ

dxφ∗k(x)φl(x) = δkl (B.63)

and this gives the well-known result for the expansion coefficients

βk =

ˆ

dxφ∗k(x)ψ
K(x) (B.64)
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However the completeness relationship is now

K∑

k

φk(y)φ
∗
k(x) = δK(y, x). (B.65)

which defines the restricted delta function δK(y, x) for the K set. This is a
function of two variables x and y, and does not depend on y − x.

The restricted delta functions have some interesting properties

¨

dx dy φ∗l (y) δK(y, x)φm(x) = δl,m (l,m ∈ K)

= 0 (l /∈ K, m /∈ K) (B.66)

ˆ

dx δK(y, x).δL(x, z) =

ˆ

dx

K∑

k

φk(y)φ
∗
k(x)

L∑

l

φl(x)φ
∗
l (z)

=

K∑

k

φk(y) δk,l

L∑

l

φ∗l (z)

= δK,L δK(y, z) (B.67)

and
ˆ

dx δK(x, x) = NK (B.68)

where NK is the number of mode functions in the set K. Unlike the normal
delta function the restricted delta functions are non-singular and can be treated
as standard c-number functions within expressions.

Appendix B.11. Functionals of Restricted Functions

As for general functions, a functional F [ψK(x)] of restricted functions ψK(x)
maps the c-number function ψK(x) onto a c-number that depends on all the
values of ψK(x) over its entire range.

The restricted function ψK(y) can be expressed as a functional Fy [ψ
K(x)]

of the restricted function ψK(x). In terms of the restricted delta function we
have

ψK(y) =

ˆ

dx δK(y, x).ψK(x)

= Fy [ψ
K(x)] (B.69)

showing how ψK(y) can still be written as a functional Fy[ψ
K(x)] of ψK(x), but

now Eq. (B.69) applies which involves the restricted delta function δK(y, x) as
a kernal, rather than Eq. (B.10) which involved the normal delta function and
applied to functions ψ(x) with unrestricted mode expansions.
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The spatial derivative ∇yψ
K(y) of the restricted function ψK(y) can also be

expressed as a functional F∇y [ψ
K(x)] of ψK(x). Using (B.69) we have

∇yψ
K(y) =

ˆ

dx∇yδK(y, x).ψK(x)

= F∇y [ψ
K(x)] (B.70)

which now involves ∇yδK(y, x) as a kernal. We can confirm the validity of
(B.70) by substituting for ψK(x) from (B.62) which gives

ˆ

dx∇yδK(y, x).ψK(x) =

K∑

k

βk

ˆ

dx∇yδK(y, x).φk(x)

=

K∑

k

βk

K∑

l

ˆ

dx∇yφl(y)φ
∗
l (x).φk(x)

=

K∑

k

βk∇yφk(y)

= ∇yψ
K(y)

as required.
As the value of the function at any point in the range for x is determined

uniquely by the expansion coefficients {βk}, then the functional F [ψK(x)] must
therefore also just depend on the c-number expansion coefficients, and hence
may also be viewed as a function g(β1, β2, .., βk, ..βn) of the expansion coeffi-
cients, a useful equivalence when functional differentiation and integration are
considered.

F [ψK(x)] ≡ g(β1, β2, .., βk, ..βn) (B.71)

Appendix B.12. Related Restricted Function Sets

We may also consider restricted functions based on the conjugate modes.
This set will be referred to as K∗ or K+. Thus the previous equations become

ψK+(x) =

K∑

k

φ∗k(x)β
+
k (B.72)

β+
k =

ˆ

dxφk(x)ψ
K+(x) (B.73)

δK+(y, x) =

K∑

k

φ∗k(y)φk(x) (B.74)

where the last equation defines the restricted delta function for the K+ case.
We note that the restricted delta function δK+(y, x) is related to the previous
one via

δK+(y, x) = δK(x, y). (B.75)
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We can again write the restricted function ψK+(y) as a functional Fy[ψ
K+(x)]

via

ψK+(y) =

ˆ

dx δK+(y, x).ψ
K+(x)

=

ˆ

dx δK(x, y).ψK+(y)

= Fy[ψ
K+(x)] (B.76)

Similarly the spatial derivative ∇yψ
K+(y) of the restricted function is also

a functional F∇y
[ψK+(x)] given by

∇yψ
K+(y) =

ˆ

dx∇yδK+(y, x).ψ
K+(x)

=

ˆ

dx∇yδK(x, y).ψK+(x)

= F∇y
[ψK+(x)] (B.77)

Note that considered as a function of y, the restricted delta function δK(y, x)
is a member of theK set of restricted functions ψK(y) (the expansion coefficients
are φ∗k(x)). On the other hand, considered as a function of x the restricted delta
function δK(y, x) is a member of the conjugate set K+ of mode functions φ∗k(x)
(the expansion coefficients are φk(y)).

As the value of the function at any point in the range for x is determined
uniquely by the expansion coefficients {β+

k }, then the functional F [ψK+(x)]
must therefore also just depend on the c-number expansion coefficients, and
hence may also be viewed as a function g+(β+

1 , β
+
2 , .., β

+
k , ..β

+
n ) of the expansion

coefficients, a useful equivalence when functional differentiation and integration
are considered.

F [ψK+(x)] ≡ g+(β+
1 , β

+
2 , .., β

+
k , ..β

+
n ) (B.78)

A second related restricted set is the complementary set K which includes
all the other orthonormal mode functions not included in the K set.

Clearly, any function can be expanded in terms of modes in the K and K
restricted sets. Thus we now have

ψ(x) =

K∑

k

γk φk(x) +

K∑

k

γk φk(x) (B.79)

γk =

ˆ

dxφ∗k(x)ψ(x) k ∈ K,K (B.80)

δK(y, x) =

K∑

k

φk(y)φ
∗
k(x) =

∑

L 6=K

δL(y, x) (B.81)
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and now the full Dirac delta function is

δ(y, x) =
K∑

k

φk(y)φ
∗
k(x) +

K∑

k

φk(y)φ
∗
k(x) (B.82)

The general function ψ(y) may be written as a functional Fy[ψ(x)] of ψ(x)
involving the full delta function

ψ(y) =

ˆ

dx δ(y, x).ψ(x)

= Fy[ψ(x)] (B.83)

Applying (B.67) we obtain the interesting result

ˆ

dx δK(y, x).δK(x, z) = 0 (B.84)

Note that the full delta function is still written as a function of x and y.
Because the total set of functions is still restricted it will have a narrow though
finite width and can be treated like a normal function.

Appendix B.13. Functional Derivatives for Restricted Functions

The functional derivative δF [ψK(x)]

δψK(x)
is defined by

F [ψK(x) + δψK(x)] + F [ψK(x)] +

ˆ

dx δψK(x)

(
δF [ψK(x)]

δψK(x)

)

x

(B.85)

where δψK(x) is a small change in ψK(x). Since as in (B.71) the functional is
equivalent to a function of the expansion coefficients βk, the only meaningful
change to ψK(x) would be associated with changes δβk in these expansion coef-
ficients and thus δψK(x) will be within the K restricted function space. In this
equation the left side is a functional of ψK(x) + δψK(x) and the first term on
the right side is a functional of ψK(x). The second term on the right side is a
functional of δψK(x) and thus the functional derivative must be a function of x,
hence the subscript x. In most situations this subscript will be left understood.

Thus the functional derivative will be defined in terms of changes to the
restricted function of the form

δψK(x) =

K∑

k

δβk φk(x) (B.86)

As the functional derivative is just a function of x we can expand it in
terms of all the conjugate modes (these also form a full basis set of orthogonal
functions) (

δF [ψK(x)]

δψK(x)

)

x

=
∑

l

ηl φ
∗
l (x)
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then we have

ˆ

dx δψK(x)

(
δF [ψK(x)]

δψK(x)

)

x

=
∑

l

ηl

ˆ

dx δψK(x)φ∗l (x)

=

K∑

k

ηkδβk

since the contributions from modes l not in theK+ set will be zero using orthogo-
nality. This shows that any contribution to the functional derivative from modes
φ∗l (x) outside the K+ set cannot contribute to F [ψK(x)+ δψK (x)]−F [ψK(x)],
and hence can be arbitarily set to zero in determining the functional derivative
with respect to restricted functions ψK(x) in the K set. Thus we have

(
δF [ψK(x)]

δψK(x)

)

x

=
K∑

k

ηk φ
∗
k(x) (B.87)

showing that the functional derivative is a function in the K+ ≡ K∗ set.
Noting that the function δK(x, y) is within the restricted function space, we

may obtain a useful expression for the functional derivative by applying (B.69)
for a function in the K∗ set. Since δK+(y, x) = δK(x, y) this shows that the
functional derivative may be obtained by choosing δψK(x) = ǫδK(x, y) for small
ǫ in the definition (B.85)

(
δF [ψK(x)]

δψK(x)

)

y

=

ˆ

dx δK+(y, x)

(
δF [ψK(x)]

δψK(x)

)

x

= lim
ǫ→0

(
F [ψK(x) + ǫδK(x, y)]− F [ψK(x)]

ǫ

)
.

To confirm that the right side of the last equation does in fact give
(
δF [ψK(x)]

δψK(x)

)
y

we substitute from (B.87)

ˆ

dx δK(x, y)

(
δF [ψK(x)]

δψK(x)

)

x

=

K∑

k

ηk

ˆ

dx δK(x, y)φ∗k(x)

=
K∑

k

ηk

K∑

l

φ∗l (y)

ˆ

dxφl(x)φ
∗
k(x)

=

K∑

k

ηk φ
∗
k(y)

=

(
δF [ψK(x)]

δψK(x)

)

y
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as required. Thus we have the useful expression for the functional derivative of
restricted functions

(
δF [ψK(x)]

δψK(x)

)

y

= lim
ǫ→0

(
F [ψK(x) + ǫδK(x, y)]− F [ψK(x)]

ǫ

)
(B.88)

We may also have functionals F [ψK(x), ψL(x)] that involve two functions
ψK(x), ψL(x) in two different restricted sets K, L. The straight-forward gen-
eralisation of useful result (B.88) is

(
δF [ψK(x), ψL(x)]

δψK(x)

)

y

= lim
ǫ→0

(
F [ψK(x) + ǫδK(x, y), ψL(x)] − F [ψK(x), ψL(x)]

ǫ

)

(B.89)
(
δF [ψK(x), ψL(x)]

δψL(x)

)

y

= lim
ǫ→0

(
F [ψK(x), ψL(x) + ǫδL(x, y)] − F [ψK(x), ψL(x)]

ǫ

)

(B.90)

Similar results apply for the functional derivative δF [ψK+(x)]
δψK+(x) with respect to

the restricted function ψK+(x) in the K+ ≡ K∗ set, which is defined by

F [ψK+(x)+δψK+(x)] + F [ψK+(x)]+

ˆ

dx δψK+(x)

(
δF [ψK+(x)]

δψK+(x)

)

x

(B.91)

where δψK+(x) is a small change in ψK+(x). The function δψK+(x) be asso-
ciated with changes δβ+

k in these expansion coefficients and thus δψK+(x) will
be within the K+ restricted function space. We then have

(
δF [ψK+(x)]

δψK+(x)

)

x

=

K∑

k

η+k φk(x) (B.92)

showing that the functional derivative is a function in the K set.
Also the function δK+(x, y) is within the restricted function space, we may

obtain a useful expression for the functional derivative as

(
δF [ψK+(x)]

δψK+(x)

)

y

= lim
ǫ→0

(
F [ψK+(x) + ǫδK+(x, y)]− F [ψK+(x)]

ǫ

)

= lim
ǫ→0

(
F [ψK+(x) + ǫδK(y, x)]− F [ψK+(x)]

ǫ

)
(B.93)

Appendix B.14. Examples of Restricted Functional Derivatives

To obtain the functional derivative of the function ψK(y) with respect to
ψK(x), we note that this derivative exists as a function of x in the K+ ≡ K∗
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restricted set since ψK(y) is also a functional ψK(y) = Fy[ψ
K(x)]. We can thus

use the expression (B.88)

(
δ

δψK(x)
ψK(y)

)

x

= lim
ǫ→0

(
Fy [ψ

K(u) + ǫδK(u, x)]− Fy[ψ
K(u)]

ǫ

)

= lim
ǫ→0

(´
du δK(y, u){ψK(u) + ǫδK(u, x)} −

´

du δK(y, u)ψK(u)

ǫ

)

= lim
ǫ→0

(
ˆ

du δK(y, u) δK(u, x)

)

= δK(y, x) (B.94)

where (B.67) has been used. As noted before considered as a function of x, the
derivative of ψK(y) with respect to ψK(x) is in the K∗ restricted set, but is in
the K set considered as a function of y. This result is the modification of (B.15)
for restricted functions.

A further result can be derived for when the functional derivative is with
respect to ψL(x) is in a different L restricted set. Applying (B.90) we get

(
δ

δψL(x)
ψK(y)

)

x

= lim
ǫ→0

(
Fy[ψ

K(u), ψL(u) + ǫδL(u, x)]− Fy[ψ
K(u), ψL(u)]

ǫ

)

= lim
ǫ→0

(´
du δK(y, u)ψK(u)−

´

du δK(y, u)ψK(u)

ǫ

)

= 0 (B.95)

since the functional ψK(y) = Fy[ψ
K(x), ψL(x)] does not involve ψL(x) at all.

For the functional derivative of the spatial derivative ∇yψ
K(y) of the func-

tion ψK(y) with respect to ψK(x), we note that this derivative exists as a
function of x in the K+ ≡ K∗ restricted set since ∇yψ

K(y) is also a functional
∇yψ

K(y) = F∇y
[ψK(x)]. We can thus use the expression (B.88)

(
δ

δψK(x)
∇yψ

K(y)

)

x

= lim
ǫ→0

(
Fy[ψ

K(u) + ǫδK(u, x)]− Fy[ψ
K(u)]

ǫ

)

= lim
ǫ→0

(´
du∇yδK(y, u){ψK(u) + ǫδK(u, x)} −

´

du∇y δK(y, u)ψK(u)

ǫ

)

= lim
ǫ→0

(
ˆ

du∇yδK(y, u) δK(u, x)

)

= ∇y

(
ˆ

du δK(y, u) δK(u, x)

)

= ∇yδK(y, x) (B.96)

showing that the functional derivative involves a spatial derivative of the re-
stricted delta function with respect to y. As pointed out previously, considered
as a function of x the functional derivative is in the K+ set. Note also that
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we see that the functional derivative and the spatial derivative processes can be
carried out in either order

(
δ

δψK(x)
∇yψ

K(y)

)

x

= ∇y

(
δ

δψK(x)
ψK(y)

)

x

= ∇yδK(y, x) (B.97)

We also can obtain similar results for the function ψK+(y) which is in the
K+ ≡ K∗ restricted set, and can be written as a functional Fy[ψ

K+(x)] ≡
ψK+(y). Thus

(
δ

δψK+(x)
ψK+(y)

)

x

= lim
ǫ→0

(
Fy [ψ

K+(u) + ǫδK+(u, x)]− Fy[ψ
K+(u)]

ǫ

)

= lim
ǫ→0

(´
du δK+(y, u){ψK+(u) + ǫδK+(u, x)} −

´

du δK+(y, u)ψ
K+(u)

ǫ

)

= lim
ǫ→0

(
ˆ

du δK+(y, u) δK+(u, x)

)

= δK+(y, x)

= δK(x, y) (B.98)

For the spatial derivative ∇yψ
K+(y) of the function ψK+(y) we have

(
δ

δψK+(x)
∇yψ

K+(y)

)

x

= lim
ǫ→0

(
F∇y

[ψK+(u) + ǫδK+(u, x)]− F∇y
[ψK+(u)]

ǫ

)

= lim
ǫ→0

(´
du∇yδK+(y, u){ψK+(u) + ǫδK+(u, x)} −

´

du∇yδK+(y, u)ψ
K+(u)

ǫ

)

= lim
ǫ→0

(
ˆ

du∇yδK+(y, u) δK+(u, x)

)

=

(
ˆ

du∇yδK(u, y) δK(x, u)

)

= ∇yδK(x, y)

= ∇yδK+(y, x) (B.99)

as expected. Note also

(
δ

δψK+(x)
∇yψ

K+(y)

)

x

= ∇y

(
δ

δψK+(x)
ψK+(y)

)

x

= ∇yδK+(y, x) (B.100)

Appendix B.15. Restricted Functional Derivatives and Mode Functions

We can obtain an expression for the functional derivative
(
δF [ψK(x)]

δψK(x)

)
x
with

respect to restricted function ψK(x) in terms of the ordinary derivatives of the
function (B.71) that is equivalent to the functional.
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Substituting from (B.86) we see that

F [ψK(x) + δψK(x)]− F [ψK(x)] +

ˆ

dx δψK(x)

(
δF [ψK(x)]

δψK(x)

)

x

+

K∑

k

δβk

ˆ

dxφk(x)

(
δF [ψ(x)]

δψ(x)

)

x

But the left side is the same as

g(β1 + δβ1, .., βk + δβk, ..)− g(β1, .., βk, ..) +

K∑

k

δβk
∂g(β1, .., βk, ..)

∂βk

Equating the coefficients of the independent δαk and then using the complete-
ness relationship in Eq.(B.74) gives the key result

(
δF [ψK(x)]

δψK(x)

)

x

=
K∑

k

φ∗k(x)
∂g(β1, .., βk, ..)

∂βk
(B.101)

This relates the functional derivative to the mode functions and to the ordinary
partial derivatives of the function g(β1, .., βk, ..βn) that was equivalent to the
original functional F [ψK(x)]. Again, we see that the result is a function of
x. Note that the functional derivative involves an expansion in terms of the
conjugate mode functions φ∗k(x) rather than the original modes φk(x).

The last result can be put in the form of a useful operator identity

(
δ

δψK(x)

)

x

=
K∑

k

φ∗k(x)
∂

∂βk
(B.102)

where it is understood that the left side operates on an arbitary functional
F [ψK(x)] of the restricted function ψK(x) and the right side operates on the
equivalent function g(β1, .., βk, ..).

We can obtain a similar expression for the functional derivative
(
δF [ψK+(x)]
δψK+(x)

)
x
with

respect to restricted function ψK+(x) in the K+ set in terms of the ordinary
derivatives of the function (B.78) that is equivalent to the functional.

(
δF [ψK+(x)]

δψK+(x)

)

x

=

K∑

k

φk(x)
∂g+(β+

1 , .., β
+
k , ..)

∂β+
k

(B.103)

The last result can be put in the form of a useful operator identity

(
δ

δψK+(x)

)

x

=

K∑

k

φk(x)
∂

∂β+
k

(B.104)

where it is understood that the left side operates on an arbitary functional
F [ψK+(x)] of the restricted function ψK+(x) and the right side operates on the
equivalent function g+(β+

1 , .., β
+
k , ..).
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The spatial derivative of a functional derivative can be found from

∇x

(
δF [ψK(x)]

δψK(x)

)

x

=

K∑

k

{∇xφ
∗
k(x)}

∂g(β1, .., βk, ..)

∂βk
(B.105)

∇x

(
δF [ψK+(x)]

δψK+(x)

)

x

=

K∑

k

{∇xφk(x)}
∂g+(β+

1 , .., β
+
k , ..)

∂β+
k

(B.106)

in the two cases of functionals of ψK(x) or ψK+(x). Clearly the spatial derivative
acts only on either the φ∗k(x) or the φk(x).

The last results can be put in the form of operator identities

∇x

(
δ

δψK(x)

)

x

=

K∑

k

{∇xφ
∗
k(x)}

∂

∂βk
(B.107)

∇x

(
δ

δψK+(x)

)

x

=

K∑

k

{∇xφk(x)}
∂

∂β+
k

(B.108)

where it is understood that the left side operates on an arbitary functional
F [ψK(x)] or F [ψK+(x)] of the restricted function ψK(x) or ψK+(x) respec-
tively, and the right side operates on the equivalent function g(β1, .., βk, ..) or
g+(β+

1 , .., β
+
k , ..). These operator forms are useful in deriving results for applying

functional derivatives in succession.
As an example of applying these operator identities consider the case of the

functionals Fy[ψ
K(x)] ≡ ψK(y) =

∑
k

βkφk(y) and Fy[ψ
K+(x)] ≡ ψK+(y) =

∑
k

φ∗k(y)β
+
k . Since in these cases

∂g(β1, .., βk, ..)

∂βk
= φk(y)

∂g+(β+
1 , .., β

+
k , ..)

∂β+
k

= φ∗k(y)

we have

(
δψK(y)

δψK(x)

)

x

=
K∑

k

φ∗k(x)φk(y) = δK(y, x)

(
δψK+(y)

δψK+(x)

)

x

=

K∑

k

φk(x)φ
∗
k(y) = δK+(y, x)

for the functional derivatives as before, and

∇x

(
δψK(y)

δψK(x)

)

x

=
K∑

k

{∇xφ
∗
k(x)}φk(y) = ∇xδK(y, x) (B.109)

∇x

(
δψK+(y)

δψK+(x)

)

x

=

K∑

k

{∇xφk(x)}φ∗k(y) = ∇xδK+(y, x) (B.110)
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for the spatial derivatives of the functional derivatives.
Similarly for the spatial derivative functionals F∇y [ψ

K(x)] ≡ ∇yψ
K(y) =∑

k

βk∇yφk(y) and F∇y[ψ
K+(x)] ≡ ∇yψ

K+(y) =
∑
k

∇yφ
∗
k(y)β

+
k . Since in these

cases

∂g(β1, .., βk, ..)

∂βk
= ∇yφk(y)

∂g+(β+
1 , .., β

+
k , ..)

∂β+
k

= ∇yφ
∗
k(y)

we have

(
δ∇yψ

K(y)

δψK(x)

)

x

=

K∑

k

φ∗k(x)∇yφk(y) = ∇yδK(y, x)

(
δ∇yψ

K+(y)

δψK+(x)

)

x

=

K∑

k

φk(x)∇yφ
∗
k(y) = ∇yδK+(y, x)

which are the same results as before. Note the distinction between
(
δ∇yψ

K(y)

δψK(x)

)
x

and ∇x

(
δψK(y)

δψK(x)

)
x
- the first being the functional derivative of the y spatial

derivative ∇yψ
K(y) with respect to ψK(x), the second being the x spatial

derivative of the functional derivative of ψK(y) with respect to ψK(x).

Appendix B.16. Functional Derivatives in Theory of Bose-Einstein Condensates

The theory of Bose-Einstein condensates (BEC) often requires separate con-
sideration of certain highly occupied modes - the condensate modes, and other
sparsely occupied modes - the non-condensate modes. In phase space distribu-
tion functional methods these two types of modes can be used in defining conden-
sate fields and non-condensate fields as restricted functions, and the treatment
presented in this section can then be used in evaluating the various functional
derivatives.

In applying these rules to the BEC problem, the following functional deriva-
tive results can be obtained as straightforward generalisations of (B.94) and
(B.95). The general functions ψ(r) and ψ+(r) each will be used to cover
the results for condensate and non-condensate modes. For the case where
ψ(r) ≡ ψC(r) the restricted set K refers to two modes φ1(r), φ2(r), and for
the non-condensate case where ψ(r) ≡ ψNC(r) the restricted set K refers to the
remaining modes φk(r). For the case where ψ+(r) ≡ ψ+

C (r) the restricted setK+

≡ K∗ refers to two conjugate modes φ∗1(r), φ
∗
2(r), and for the non-condensate

case where ψ+(r) ≡ ψ+
NC(r) the restricted set K

+
refers to the remaining con-

jugate modes φ∗k(r). Because the coefficients are unrelated we are dealing with
functionals such as the distribution functional
P [ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)] which involve
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eight independent functions, namely ψC(r), ψ
+
C (r), ψNC(r), ψ

+
NC(r) plus the com-

plex conjugates ψ∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r).

δ

δψ(s)
ψ(r) = δK(r, s)

δ

δψ+(s)
ψ+(r) = δK+(r, s) = δK(s, r)

δ

δψ(s)
ψ+(r) = 0

δ

δψ+(s)
ψ(r) = 0 (B.111)

Note the reverse order of r, s in the second result, due to (B.95). The func-
tional ψ(r) is not a functional of ψ+(s) and vice-versa, the other two functional
derivatives are zero. Similarly the functional derivatives of condensate fiels with
respect to non-condensate fields are zero, and vice-versa. Thus

δ

δψC(s)
ψNC(r) = 0

δ

δψ+
C (s)

ψ+
NC(r) = 0

δ

δψC(s)
ψ+
NC(r) = 0

δ

δψ+
C (s)

ψNC(r) = 0 (B.112)

with four other results obtained by interchanging C and NC.

Appendix B.17. Supplementary Equations

Field Expansions

ψC(r) = α1 φ1(r) + α2 φ2(r) (B.113)

ψ+
C (r) = φ∗1(r)α

+
1 + φ∗2(r)α

+
2 (B.114)

ψNC(r) =
K∑

k 6=1,2

αk φk(r) (B.115)

ψ+
NC(r) =

K∑

k 6=1,2

φ∗k(r)α
+
k (B.116)
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Appendix C. - Quantum Averages

To prove Eq.(C.1) it will be convenient to treat the condensate operators first
ignoring the non-condensate operators and with the quasidistribution functional
being purely of the Wigner type. Following that we then reverse the process
by treating the non-condensate operators with the quasidistribution functional
being of the positive P type.

Appendix C.1. The Condensate Averages

The functional derivative of the symmetrically ordered characteristic func-
tional with respect to say, ξ(r) is defined by

(
δχW [ξ(r), ξ+(r)]

δξ(r)

)

r=r1

= lim
ǫ→0

(
χW [ξ(r) + ǫδ(r− r1), ξ

+(r)]− χW [ξ(r), ξ+(r)]

ǫ

)
.

It is not difficult to see that

χW [ξ(r) + ǫδ(r− r1), ξ
+(r)]

=

˘

D2ψD2ψ+W [ψ(r), ψ+(r)]

× exp i

ˆ

dr {(ξ(r) + ǫδ(r− r1))ψ
+(r) + ψ(r)ξ+(r)}

= χW [ξ(r), ξ+(r)]

+iǫ

˘

D2ψD2ψ+W [ψ(r), ψ+(r)]ψ+(r1) exp i

ˆ

dr {ξ(r)ψ+(r) + ψ(r)ξ+(r)}

Thus the functional derivative is
(
δχW [ξ(r), ξ+(r)]

δξ(r)

)

r=r1

=

˘

D2ψD2ψ+W [ψ(r), ψ+(r)]

×iψ+(r1) exp i

ˆ

dr {ξ(r)ψ+(r) + ψ(r)ξ+(r)}.

Note that the field function at position r1 is still subject to the functional
integration.

Similarly

(
δχW [ξ(r), ξ+(r)]

δξ+(r)

)

r=r1

=

˘

D2ψD2ψ+W [ψ(r), ψ+(r)]

×iψ(r1) exp i
ˆ

dr {ξ(r)ψ+(r) + ψ(r)ξ+(r)}.

Thus we see that these functional derivatives are in the form of expressions for
characteristic functionals in whichW [ψ(r), ψ+(r)] is replaced by iψ+(r1)W [ψ(r), ψ+(r)]
or iψ(r1)W [ψ(r), ψ+(r)].
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Continuing in this way we may establish a result for higher order functional
derviatives

(
δp+qχW [ξ(r), ξ+(r)]

δpξ(r) δqξ+(r)

)

r1,r2,..,rp;sq,..,s2,s1;

=

˘

D2ψD2ψ+W [ψ(r), ψ+(r)]

×ip+q ψ+(r1)ψ
+(r2) ..ψ

+(rp)ψ(sq) ..ψ(s2)ψ(s1)

× exp i

ˆ

dr {ξ(r)ψ+(r) + ψ(r)ξ+(r)}.

where for bosonic systems the functional differentiation can be carried out in
any order but with the differentiation with respect to ξ(r) involving positions
r1, r2, .., rp and the ξ+(r) differentiation involving positions sq, .., s2, s1.

Evaluating the functional derivatives and then letting ξ(r), ξ+(r) all ap-
proach zero (symbolically ξ −→ 0), we have for bosonic systems

(
δp+qχW [ξ(r), ξ+(r)]

δpξ(r) δqξ+(r)

)ξ→0

r1,r2,..,rp;sq,..,s2,s1;

=

˘

D2ψD2ψ+W [ψ(r), ψ+(r)]

×ip+q ψ+(r1)ψ
+(r2) ..ψ

+(rp)ψ(sq) ..ψ(s2).ψ(s1)

We then apply the same process to the definition of the characteristic func-
tional

χW [ξ(r), ξ+(r)] = Tr(ρ̂ exp

ˆ

dr i{ξ(r)Ψ̂†(r) + Ψ̂(r)ξ+(r)}

=
∑

n

1

n!
Tr(ρ̂

(
ˆ

dr iξ(r) Ψ̂†(r) +

ˆ

dr Ψ̂(r) iξ+(r)

)n
.

Now with Â[ξ(r)] =
´

dr iξ(r) Ψ̂†(r) and B̂[ξ+(r)] =
´

dr Ψ̂(r) iξ+(r) there are

N(p, q) = (p+q)!/p!q! ways that the operator Â appears p times and the operator

B̂ appears q times when we expand (Â+ B̂)n (where n = p+ q) and each order

of these operators appears once. We can introduce the symbol {(Â)p (B̂)q} to
denote the average of these N(p, q) ordered products

{(Â)p (B̂)q} =
1

N(p, q)

(
(Â)p (B̂)q + (Â)p−1 (B̂)q (Â) + ...+ (B̂)q (Â)p

)

and write

χW [ξ(r), ξ+(r)] =
∑

p,q

1

p!q!
Tr(ρ̂ {(Â)p (B̂)q}).
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In this form it is convenient to calculate the functional derivatives, since
Â[ξ(r)] and B̂[ξ+(r)] are functionals only of ξ(r) and ξ+(r).respectively, so their
functional derivatives with respect to the other function will be zero. Then

(
δÂ[ξ(r)]

δξ(r)

)

r=r1

= lim
ǫ→0

(
Â[ξ(r) + ǫδ(r− r1)]− Â[ξ(r)]

ǫ

)

= lim
ǫ→0

(
iǫΨ̂†(r1)

ǫ

)

= iΨ̂†(r1)

Similarly (
δB̂[ξ+(r)]

δξ+(r)

)

r=s1

= iΨ̂(s1)

We see that each time that either Â[ξ(r)] is differentiated with respect to ξ(r) or

B̂[ξ+(r)] is differentiated with respect to ξ+(r) an operator results, and there-
fore no further functional differentiation can occur. We also note that as ξ −→ 0

both Â[ξ(r)] and B̂[ξ+(r)] become zero. To proceed further we need to calcu-

late functional derivatives of products of Â[ξ(r)] and B̂[ξ+(r)]. This can be
carried out by applying the general rule for functional derivatives of products of
functionals. Consider the term {(Â)p (B̂)q} (which is the average of the N(p, q)

ordered products where Â[ξ(r)] appears p times and B̂[ξ+(r)] appears q times).If

each of the terms in {(Â)p (B̂)q} is differentiated less than p times with respect

to ξ(r) then there will be at least one factor Â[ξ(r)] still remaining and thus as
ξ −→ 0 the result of the differentiation will be zero. Similar conclusions apply if
the term in {(Â)p (B̂)q} is differentiated less than q times with respect to ξ+(r).

On the other hand if ach of the terms in {(Â)p (B̂)q} is differentiated more than
p times with respect to ξ(r) then the result of the differentiation must be zero

because after the pth differentiation all of the Â[ξ(r)] will have been replaced

by a factor iΨ̂†(ri) and therefore further functional differentiation with respect

to ξ(r) will give zero. Similar conclusions apply if if the term in {(Â)p (B̂)q}
is differentiated more than q times with respect to ξ+(r). Hence only the p, q
term in the last expression for χ[ξ(r), ξ+(r)] contributes in the required result
for

(
δp+qχW [ξ(r), ξ+(r)]

δpξ(r) δqξ+(r)

)ξ→0

r1,r2,..,rp;sq,..,s2,s1;

=
1

p!q!
Tr


ρ̂

(
δp+q{(Â)p (B̂)q}
δpξ(r) δqξ+(r)

)ξ→0

r1,r2,..,rp;sq,..,s2,s1;



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Now consider the pth functional derivative of any term in {(Â)p (B̂)q} with

respect to the ξ(r), where the q factors B̂[ξ+(r)] are just represented by dots.

The result will be the sum of products of factors iΨ̂†(r1), iΨ̂
†(r2), .., iΨ̂

†(rp) in
all p! orders

(
δp(Â[ξ(r)]..Â[ξ(r)]..Â[ξ(r)]..Â[ξ(r)])p,q

δpξ(r)

)ξ→0

r1,r2,..,rp

= ip
∑

P

(Ψ̂†(rµ1
)..Ψ̂†(rµ2

)..Ψ̂†(rµi
)..Ψ̂†(rµp

))

where the sum is over all permutations P =↑
(
µ1

1
µ2

2 ..
µi

i ..
µp

p

)
of 1, 2, .., i, ..p.

Considering also the qth functional derivative of the same term in {(Â)p (B̂)q}
with respect to the ξ+(r) we get overall

(
δp+q(Â[ξ(r)]..B̂[ξ+(r)]..Â[ξ(r)]..B̂[ξ+(r)]..Â[ξ(r)..B̂[ξ+(r)]])p,q

δpξ(r) δqξ+(r)

)ξ→0

r1,r2,..,rp;sq,..,s2,s1

= ip+q
∑

P,Q

(Ψ̂†(rµ1
)..Ψ̂(sλq

)..Ψ̂†(rµ2
)..Ψ̂(sλ2

)..Ψ̂†(rµp
)..Ψ̂(sλ1

))

where the second sum is over all permutationsQ =↑
(
λq

q ..
λj
j ..

λ2

2
λ1

1

)
of q, .., i, .., 2, 1.

Now within each of the N(p, q) = (p + q)!/p!q!orderings of products of Â

and B̂ where Â appears p times and B̂ appears q times, there are p! order-
ings of the Ψ̂† operators and q!orderings of the Ψ̂ operators, giving a total of
M(p, q) = N(p, q) p!q! = (p + q)! different orderings of the p operators Ψ̂† and

the q operators Ψ̂, and all possible orderings are present in view of the sum over
the permutations P,Q. Taking into account the factor 1/p!q! we see that the

when the differentiation is applied to the quantity {(Â)p (B̂)q} itself we see that

we just get ip+q{Ψ̂†(r1)Ψ̂
†(r2)....Ψ̂

†(rp)Ψ̂(s1)..Ψ̂(sq)}. Thus

(
δp+qχW [ξ(r), ξ+(r)]

δpξ(r) δqξ+(r)

)ξ→0

r1,r2,..,rp;sq,..,s2,s1;

=ip+qTr
(
ρ̂ {Ψ̂†(r1)Ψ̂

†(r2)....Ψ̂
†(rp)Ψ̂(sq)..Ψ̂(s1)}

)

where the symmetric ordering symbol is given by

{Ψ̂†(r1)Ψ̂
†(r2)....Ψ̂

†(rp)Ψ̂(sq)..Ψ̂(s1)}

=
1

(p+ q)!

∑

R

ℜ(Ψ̂†(r1)Ψ̂
†(r2)....Ψ̂

†(rp)Ψ̂(sq)..Ψ̂(s1))

In the the sum over R is over all (p+ q)! orderings ℜ of the factors

Ψ̂†(r1)Ψ̂
†(r2)....Ψ̂

†(rp)Ψ̂(sq)..Ψ̂(s1).
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Hence we obtain the following key result for the quantum average of the
symmetrically ordered product {Ψ̂†(r1)Ψ̂

†(r2)....Ψ̂
†(rp)Ψ̂(sq)..Ψ̂(s1)} of the field

operators

〈
{Ψ̂†(r1)Ψ̂

†(r2)....Ψ̂
†(rp)Ψ̂(sq)..Ψ̂(s1)}

〉

= Tr
(
ρ̂ {Ψ̂†(r1)Ψ̂

†(r2)....Ψ̂
†(rp)Ψ̂(sq)..Ψ̂(s1)}

)

=

˘

D2ψD2ψ+W [ψ(r), ψ+(r)]

×ψ+(r1)ψ
+(r2) ..ψ

+(rp)ψ(sq) ..ψ(s2)ψ(s1)

This result gives the required synmmetrically ordered average as a functional
integral involving the quasi-distribution functional W [ψ(r), ψ+(r)] times the

product of the field functions, with the field operator Ψ̂†(ri) being replaced by

ψ+(ri) and Ψ̂(sj) being replaced by ψ(sj).

Appendix C.2. The Non-Condensate Averages

The functional derivative of a normally ordered characteristic functional with
respect to say, ξ(r) is defined by

(
δχN [ξ(r), ξ+(r)]

δξ(r)

)

r=r1

= lim
ǫ→0

(
χN [ξ(r) + ǫδ(r− r1), ξ

+(r)]− χN [ξ(r), ξ+(r)]

ǫ

)
.

It is not difficult to see that

χN [ξ(r) + ǫδ(r− r1), ξ
+(r)]

=

˘

D2ψD2ψ+ P+[ψ(r), ψ+(r)]

× exp i

ˆ

dr {(ξ(r) + ǫδ(r− r1))ψ
+(r)} exp i

ˆ

dr {ψ(r)ξ+(r)}

= χN [ξ(r), ξ+(r)]

+iǫ

˘

D2ψD2ψ+ P+[ψ(r), ψ+(r)]ψ+(r1) exp i

ˆ

dr {ξ(r)ψ+(r)} exp i
ˆ

dr {ψ(r)ξ+(r)}

Thus the functional derivative is
(
δχN [ξ(r), ξ+(r)]

δξ(r)

)

r=r1

=

˘

D2ψD2ψ+ P+[ψ(r), ψ+(r)]

×iψ+(r1) exp i

ˆ

dr {ξ(r)ψ+(r)} exp i
ˆ

dr {ψ(r)ξ+(r)} .

Note that the field function at position r1 is still subject to the functional
integration.
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Similarly

(
δχN [ξ(r), ξ+(r)]

δξ+(r)

)

r=r1

=

˘

D2ψD2ψ+ P+[ψ(r), ψ+(r)]

×iψ(r1) exp i
ˆ

dr {ξ(r)ψ+(r) exp i

ˆ

dr {ψ(r)ξ+(r)} .

Thus we see that these functional derivatives are in the form of expressions for
characteristic functionals in which P+[ψ(r), ψ+(r)] is replaced by iψ+(r1)P

+[ψ(r), ψ+(r)]
or iψ(r1)P

+[ψ(r), ψ+(r)].
Continuing in this way we may establish a result for higher order functional

derviatives

(
δp+qχN [ξ(r), ξ+(r)]

δpξ(r) δqξ+(r)

)

r1,r2,..,rp;sq,..,s2,s1;

=

˘

D2ψD2ψ+ P+[ψ(r), ψ+(r)]

×ip+q ψ+(r1)ψ
+(r2) ..ψ

+(rp)ψ(sq) ..ψ(s2)ψ(s1)

× exp i

ˆ

dr {ξ(r)ψ+(r) exp i

ˆ

dr {ψ(r)ξ+(r)} .

where for bosonic systems the functional differentiation can be carried out in
any order but with the differentiation with respect to ξ(r) involving positions
r1, r2, .., rp and the ξ+(r) differentiation involving positions sq, .., s2, s1.

Evaluating the functional derivatives and then letting ξ(r), ξ+(r) all ap-
proach zero (symbolically ξ −→ 0), we have for bosonic systems

(
δp+qχN [ξ(r), ξ+(r)]

δpξ(r) δqξ+(r)

)ξ→0

r1,r2,..,rp;sq,..,s2,s1;

=

˘

D2ψD2ψ+ P+[ψ(r), ψ+(r)]

×ip+q ψ+(r1)ψ
+(r2) ..ψ

+(rp)ψ(sq) ..ψ(s2)ψ(s1)

We then apply the same process to the definition of the characteristic func-
tional

χN [ξ(r), ξ+(r)]

= Tr(ρ̂ exp

ˆ

dr i{ξ(r)Ψ̂†(r)} exp

ˆ

dr i{Ψ̂(r)ξ+(r)}

=
∑

p,q

1

p!q!
Tr(ρ̂

(
ˆ

dr iξ(r) Ψ̂†(r)

)p(ˆ
dr Ψ̂(r) iξ+(r)

)q
).
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Now with Â[ξ(r)] =
´

dr iξ(r) Ψ̂†(r) and B̂[ξ+(r)] =
´

dr Ψ̂(r) iξ+(r) we see
that

χN [ξ(r), ξ+(r)] =
∑

p,q

1

p!q!
Tr(ρ̂ (Â)p (B̂)q).

keeping strictly to the operator order.
In this form it is convenient to calculate the functional derivatives, since

Â[ξ(r)] and B̂[ξ+(r)] are functionals only of ξ(r) and ξ+(r).respectively, so their
functional derivatives with respect to the other function will be zero. Then

(
δÂ[ξ(r)]

δξ(r)

)

r=r1

= lim
ǫ→0

(
Â[ξ(r) + ǫδ(r− r1)]− Â[ξ(r)]

ǫ

)

= lim
ǫ→0

(
iǫΨ̂†(r1)

ǫ

)

= iΨ̂†(r1)

Similarly (
δB̂[ξ+(r)]

δξ+(r)

)

r=s1

= iΨ̂(s1)

We see that each time that either Â[ξ(r)] is differentiated with respect to ξ(r) or

B̂[ξ+(r)] is differentiated with respect to ξ+(r) an operator results, and therefore
no further functional differentiation can occur. We also note that as ξ −→ 0

both Â[ξ(r)] and B̂[ξ+(r)] become zero. To proceed further we need to calculate

functional derivatives of powers of Â[ξ(r)] and B̂[ξ+(r)]. This can be carried out
by applying the general rule for functional derivatives of products of functionals.
Consider the term (Â)p (B̂)q where Â[ξ(r)] appears p times and B̂[ξ+(r)] appears

q times.If each of the terms in (Â)p (B̂)q is differentiated less than p times with

respect to ξ(r) then there will be at least one factor Â[ξ(r)] still remaining and
thus as ξ −→ 0 the result of the differentiation will be zero. Similar conclusions
apply if the term (Â)p (B̂)q is differentiated less than q times with respect to

ξ+(r). On the other hand if each of the terms in (Â)p (B̂)q is differentiated more
than p times with respect to ξ(r) then the result of the differentiation must be

zero because after the pth differentiation all of the Â[ξ(r)] will have been replaced

by a factor iΨ̂†(ri) and therefore further functional differentiation with respect

to ξ(r) will give zero. Similar conclusions apply if (Â)p (B̂)q is differentiated
more than q times with respect to ξ+(r). Hence only the p, q term in the last
expression for χN [ξ(r), ξ+(r)] contributes in the required result for
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(
δp+qχN [ξ(r), ξ+(r)]

δpξ(r) δqξ+(r)

)ξ→0

r1,r2,..,rp;sq,..,s2,s1;

=
1

p!q!
Tr


ρ̂

(
δp+q((Â)p (B̂)q)

δpξ(r) δqξ+(r)

)ξ→0

r1,r2,..,rp;sq,..,s2,s1;




Now consider the pth functional derivative of (Â)p (B̂)q with respect to the

ξ(r), where the q factors B̂[ξ+(r)] are always to the right of the Â[ξ(r)]. The

result will be the sum of products of factors iΨ̂†(r1), iΨ̂
†(r2), .., iΨ̂

†(rp) in all p!
orders

(
δp(Â[ξ(r)] Â[ξ(r)]...Â][ξ(r)] )pB̂[ξ+(r)]q

δpξ(r)

)ξ→0

r1,r2,..,rp

= ip
∑

P

(Ψ̂†(rµ1
)..Ψ̂†(rµ2

)..Ψ̂†(rµi
)..Ψ̂†(rµp

)B̂[ξ+(r)]q)

where the sum is over all permutations P =↑
(
µ1

1
µ2

2 ..
µi

i ..
µp

p

)
of 1, 2, .., i, ..p.

Considering also the qth functional derivative of (Â)p (B̂)q with respect to the
ξ+(r) we get overall

(
δp+q(Â[ξ(r)]..Â[ξ(r)]...Â[ξ(r)].B̂[ξ+(r)]..B̂[ξ+(r)]..B̂[ξ+(r)]])p,q

δpξ(r) δqξ+(r)

)ξ→0

r1,r2,..,rp;sq,..,s2,s1

= ip+q
∑

P,Q

(Ψ̂†(rµ1
)..Ψ̂†(rµ2

)...Ψ̂†(rµp
).Ψ̂(sλq

)...Ψ̂(sλ2
) Ψ̂(sλ1

))

where the second sum is over all permutationsQ =↑
(
λq

q ..
λj
j ..

λ2

2
λ1

1

)
of q, .., i, .., 2, 1.

Now all of the p! products of the Ψ̂† operators commute with each other and can
therefore be set out in the order Ψ̂†(r1).Ψ̂

†(r2)...Ψ̂
†(rp). Similarly, all of the q!

products of the Ψ̂ operators commute with each other and can therefore be set
out in the order Ψ̂(sq)...Ψ̂(s2) Ψ̂(s1). Thus the sum over the permutations P,Q

just cancells out the 1/p!q! factor and we just get ip+q{Ψ̂†(r1)Ψ̂
†(r2)....Ψ̂

†(rp)Ψ̂(sq)..Ψ̂(s1)}.
Thus

(
δp+qχN [ξ(r), ξ+(r)]

δpξ(r) δqξ+(r)

)ξ→0

r1,r2,..,rp;sq,..,s2,s1;

=ip+qTr
(
ρ̂ Ψ̂†(r1)Ψ̂

†(r2)....Ψ̂
†(rp)Ψ̂(sq)..Ψ̂(s1)

)
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Hence we obtain the following key result for the quantum average of the nor-
mally ordered product Ψ̂†(r1)Ψ̂

†(r2)....Ψ̂
†(rp)Ψ̂(sq)..Ψ̂(s1) of the field operators

〈
Ψ̂†(r1)Ψ̂

†(r2)....Ψ̂
†(rp)Ψ̂(sq)..Ψ̂(s1)

〉

= Tr
(
ρ̂ Ψ̂†(r1)Ψ̂

†(r2)....Ψ̂
†(rp)Ψ̂(sq)..Ψ̂(s1)

)

=

˘

D2ψD2ψ+ P+[ψ(r), ψ+(r)]

×ψ+(r1)ψ
+(r2) ..ψ

+(rp)ψ(sq) ..ψ(s2)ψ(s1)

This result gives the required synmmetrically ordered average as a functional
integral involving the quasi-distribution functional P+[ψ(r), ψ+(r)] times the

product of the field functions, with the field operator Ψ̂†(ri) being replaced by

ψ+(ri) and Ψ̂(sj) being replaced by ψ(sj).

Appendix C.3. Supplementary Equations

Quantum Correlation Function

〈
{Ψ̂†

C(r1)....Ψ̂
†
C(rp)Ψ̂C(sq)..Ψ̂C(s1)} Ψ̂

†
NC(u1)....Ψ̂

†
NC(ur)Ψ̂NC(vs)..Ψ̂NC(v1)

〉

= Tr
(
ρ̂ {Ψ̂†

C(r1)....Ψ̂
†
C(rp)Ψ̂C(sq)..Ψ̂C(s1)} Ψ̂

†
NC(u1)....Ψ̂

†
NC(ur)Ψ̂NC(vs)..Ψ̂NC(v1)

)

=

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

×P [ψC(r), ψ+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)]

×ψ+
C (r1)ψ

+
C (r2) ..ψ

+
C (rp)ψC(sq) ..ψC(s2).ψC(s1)

×ψ+
NC(u1)ψ

+
NC(u2) ..ψ

+
NC(ur)ψNC(vs) ..ψNC(v2)ψNC(v1) (C.1)
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Appendix D. - Correspondence Rules

As the expressions can get cumbersome we find it convenient at times to use
the following notation:

ξ−→(r) ≡ {ξC(r), ξ+C (r), ξNC(r), ξ+NC(r)} (D.1)

ξC−→(r) ≡ {ξC(r), ξ+C (r)} ξ−→
NC(r) ≡ {ξNC(r), ξ+NC(r)} (D.2)

χ[ ξ−→(r)] ≡ χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] (D.3)

ψ−→(r) ≡ {ψC(r), ψ+
C (r), ψNC(r), ψ

+
NC(r)} (D.4)

ψ∗

−→(r) ≡ {ψ∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)} (D.5)

P [ψ−→(r), ψ∗

−→(r)] ≡ P [ψC(r), ψ
+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)]

(D.6)

Appendix D.1. Functional Derivative Rules - Condensate Operators

To proceed further we need to establish some rules for functional derivatives
of operator expressions.Consider

Ω̂C [ξC , ξ
+
C ] = exp Ĝ[ξC , ξ

+
C ]

Ĝ[ξC , ξ
+
C ] =

ˆ

dr i{ξC(r)Ψ̂†
C(r) + Ψ̂C(r)ξ

+
C (r)}

(1) We first establish a result for Ω̂C [ξC , ξ
+
C ] Ψ̂

†
C(s). Now

(
δΩ̂C [ξC , ξ

+
C ]

δξC

)

r=s

= lim
ǫ→0

(
exp Ĝ[ξC(r)+ǫδ(r− s), ξ+C (r)]− exp Ĝ[ξC(r), ξ

+
C (r)]

ǫ

)

= lim
ǫ→0

(
exp{Ĝ[ξC(r), ξ+C (r)] + ǫiΨ̂†

C(s)} − exp Ĝ[ξC(r), ξ
+
C (r)]

ǫ

)

Now we can use the Baker-Haussdorf theorem which is that exp(Â + B̂) =

exp(Â) exp(B̂) exp{− 1
2 [Â, B̂]}, if the commutator commutes with Â and B̂, so

with Â = Ĝ[ξC(r), ξ
+
C (r)] and B̂ = ǫiΨ̂†

C(s) we have

exp{Ĝ[ξC(r), ξ+C (r)] + ǫiΨ̂†
C(s)} = exp Ĝ[ξC(r), ξ

+
C (r)] exp ǫiΨ̂

†
C(s) exp

1

2
ǫξ+C (s)

+ exp Ĝ[ξC(r), ξ
+
C (r)] {1 + ǫ(iΨ̂†

C(s) +
1

2
ξ+C (s))}
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since using Eqs.(19, 22)

[Ĝ[ξC(r), ξ
+
C (r)], ǫiΨ̂

†
C(s) ] = ǫi

ˆ

dr i[{ξC(r)Ψ̂†
C(r) + Ψ̂C(r)ξ

+
C (r)}, Ψ̂

†
C(s)]

= ǫi2
ˆ

dr ξ+C (r)[Ψ̂C(r), Ψ̂
†
C(s)]

= ǫi2
ˆ

dr ξ+C (r)δC(r, s)

= −ǫξ+C (s)

noting that the ξ+C (r) only involve complex conjugates of condensate modes.
Hence

(
δΩ̂C [ξC , ξ

+
C ]

δξC

)

r=s

= Ω̂C [ξC , ξ
+
C ] (iΨ̂

†
C(s) +

1

2
ξ+C (s))

Ω̂C [ξC , ξ
+
C ] Ψ̂

†
C(s) =

1

i

(
δΩ̂C [ξC , ξ

+
C ]

δξC

)

r=s

− 1

i
Ω̂C [ξC , ξ

+
C ]

1

2
ξ+C (s)

(D.7)

(2) We next establish a result for Ω̂C [ξC , ξ
+
C ] Ψ̂C(s). Similarly

(
δΩ̂C [ξC , ξ

+
C ]

δξ+C

)

r=s

= lim
ǫ→0

(
exp Ĝ[ξC(r), ξ

+
C (r)+ǫδ(r− s)]− exp Ĝ[ξC(r), ξ

+
C (r)]

ǫ

)

= lim
ǫ→0

(
exp{Ĝ[ξC(r), ξ+C (r)] + ǫiΨ̂C(s)} − exp Ĝ[ξC(r), ξ

+
C (r)]

ǫ

)

Using the Baker-Haussdorf theorem again but now with Â = Ĝ[ξC(r), ξ
+
C (r)]

and B̂ = ǫiΨ̂C(s) we have

exp{Ĝ[ξC(r), ξ+C (r)] + ǫiΨ̂C(s)} = exp Ĝ[ξC(r), ξ
+
C (r)] exp ǫiΨ̂C(s) exp−

1

2
ǫξC(s)

+ exp Ĝ[ξC(r), ξ
+
C (r)] {1 + ǫ(iΨ̂C(s)−

1

2
ξC(s))}

since using Eqs.(19, 22)

[Ĝ[ξC(r), ξ
+
C (r)], ǫiΨ̂C(s) ] = ǫi

ˆ

dr i[{ξC(r)Ψ̂†
C(r) + Ψ̂C(r)ξ

+
C (r)}, Ψ̂C(s)]

= ǫi2
ˆ

dr ξC(r)[Ψ̂
†
C(r), Ψ̂C(s)]

= ǫ

ˆ

dr ξC(r)δC(s, r)

= ǫξC(s)
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noting that the ξC(r) only involve condensate modes. Hence

(
δΩ̂C [ξC , ξ

+
C ]

δξ+C

)

r=s

= Ω̂C [ξC , ξ
+
C ] (iΨ̂C(s)−

1

2
ξC(s))

Ω̂C [ξC , ξ
+
C ] Ψ̂C(s) =

1

i

(
δΩ̂C [ξC , ξ

+
C ]

δξ+C

)

r=s

+
1

i
Ω̂C [ξC , ξ

+
C ]

1

2
ξC(s)

(D.8)

(3) We next establish a result for Ψ̂†
C(s) Ω̂C [ξC , ξ

+
C ] . From above

(
δΩ̂C [ξC , ξ

+
C ]

δξC

)

r=s

= lim
ǫ→0

(
exp{Ĝ[ξC(r), ξ+C (r)] + ǫiΨ̂†

C(s)} − exp Ĝ[ξC(r), ξ
+
C (r)]

ǫ

)

Now we use the Baker-Haussdorf theorem with Â = ǫiΨ̂†
C(s) and B̂ = Ĝ[ξC(r), ξ

+
C (r)]

we have

exp{Ĝ[ξC(r), ξ+C (r)] + ǫiΨ̂†
C(s)} = exp ǫiΨ̂†

C(s) exp Ĝ[ξC(r), ξ
+
C (r)] exp−

1

2
ǫξ+C (s)

+ {1 + ǫ(iΨ̂†
C(s)−

1

2
ξ+C (s))} exp Ĝ[ξC(r), ξ+C (r)]

using the commutation result derived earlier
Hence
(
δΩ̂C [ξC , ξ

+
C ]

δξC

)

r=s

= (iΨ̂†
C(s)−

1

2
ξ+C (s)) Ω̂C [ξC , ξ

+
C ]

Ψ̂†
C(s) Ω̂C [ξC , ξ

+
C ] =

1

i

(
δΩ̂C [ξC , ξ

+
C ]

δξC

)

r=s

+
1

i

1

2
ξ+C (s) Ω̂C [ξC , ξ

+
C ]

(D.9)

(4) We next establish a result for Ψ̂C(s) Ω̂C [ξC , ξ
+
C ] . From above

(
δΩ̂C [ξC , ξ

+
C ]

δξ+C

)

r=s

= lim
ǫ→0

(
exp{Ĝ[ξC(r), ξ+C (r)] + ǫiΨ̂C(s)} − exp Ĝ[ξC(r), ξ

+
C (r)]

ǫ

)

Using the Baker-Haussdorf theorem again but now with Â = ǫiΨ̂C(s) and B̂ =

Ĝ[ξC(r), ξ
+
C (r)] we have

exp{Ĝ[ξC(r), ξ+C (r)] + ǫiΨ̂C(s)} = exp ǫiΨ̂C(s) exp Ĝ[ξC(r), ξ
+
C (r)] exp+

1

2
ǫξC(s)

+ {1 + ǫ(iΨ̂C(s) +
1

2
ξC(s))} exp Ĝ[ξC(r), ξ

+
C (r)]

using the commutation rule derived earlier.
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Hence
(
δΩ̂C [ξC , ξ

+
C ]

δξ+C

)

r=s

= (iΨ̂C(s) +
1

2
ξC(s)) Ω̂C [ξC , ξ

+
C ]

Ψ̂C(s) Ω̂C [ξC , ξ
+
C ] =

1

i

(
δΩ̂C [ξC , ξ

+
C ]

δξ+C

)

r=s

− 1

i

1

2
ξC(s) Ω̂C [ξC , ξ

+
C ]

(D.10)

(5) To establish a result for Ω̂C [ξC , ξ
+
C ] ∂µΨ̂

†
C(s) we start with

∂µΨ̂
†
C(s) = lim

∆sµ→0

(
Ψ̂†
C(s +∆sµ)− Ψ̂†

C(s)

∆sµ

)

so we can use previous results in Eq.(D.7) for Ω̂C [ξC , ξ
+
C ] Ψ̂

†
C(s). Using the

previous results we have

Ω̂C [ξC , ξ
+
C ] ∂µΨ̂

†
C(s) = lim

∆sµ→0

1

i

1

∆sµ



(
δΩ̂C [ξC , ξ

+
C ]

δξC

)

r=s+∆sµ

−
(
δΩ̂C [ξC , ξ

+
C ]

δξC

)

r=s




− lim
∆sµ→0

1

i
Ω̂C [ξC , ξ

+
C ]

1

2

(
1

∆sµ

(
ξ+C (s +∆sµ)− ξ+C (s)

))

=
1

i

(
∂µ

(
δΩ̂C [ξC , ξ

+
C ]

δξC

))

r=s

− 1

i
Ω̂C [ξC , ξ

+
C ]

1

2

(
∂µξ

+
C

)
r=s

so that from the definition of the spatial derivative we obtain the result

Ω̂C [ξC , ξ
+
C ] (∂µΨ̂

†
C(s)) =

1

i

(
∂µ
δΩ̂C [ξC , ξ

+
C ]

δξC

)

r=s

− 1

i
Ω̂C [ξC , ξ

+
C ]

1

2
∂µξ

+
C (s)

(D.11)

(6) To establish a result for Ω̂C [ξC , ξ
+
C ] ∂µΨ̂C(s) we start with

∂µΨ̂C(s) = lim
∆sµ→0

(
Ψ̂C(s +∆sµ)− Ψ̂C(s)

∆sµ

)

so we can use previous results in Eq.(D.8) for Ω̂C [ξC , ξ
+
C ] Ψ̂C(s). Using the

previous results we have

Ω̂C [ξC , ξ
+
C ] ∂µΨ̂C(s) = lim

∆sµ→0

1

i

1

∆sµ



(
δΩ̂C [ξC , ξ

+
C ]

δξ+C

)

r=s+∆sµ

−
(
δΩ̂C [ξC , ξ

+
C ]

δξ+C

)

r=s




+ lim
∆sµ→0

1

i
Ω̂C [ξC , ξ

+
C ]

1

2

(
1

∆sµ
(ξC(s +∆sµ)− ξC(s))

)

=
1

i

(
∂µ

(
δΩ̂C [ξC , ξ

+
C ]

δξ+C

))

r=s

+
1

i
Ω̂C [ξC , ξ

+
C ]

1

2
(∂µξC)r=s
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so that from the definition of the spatial derivative we obtain the result

Ω̂C [ξC , ξ
+
C ] (∂µΨ̂C(s)) =

1

i

(
∂µ
δΩ̂C [ξC , ξ

+
C ]

δξ+C

)

r=s

+
1

i
Ω̂C [ξC , ξ

+
C ]

1

2
∂µξC(s)

(D.12)

(7) To establish a result for ∂µΨ̂
†
C(s) Ω̂C [ξC , ξ

+
C ] we can use Eq.(D.9) and

follow the previous procedure to obtain the result

∂µΨ̂
†
C(s) Ω̂C [ξC , ξ

+
C ] =

1

i

(
∂µ
δΩ̂C [ξC , ξ

+
C ]

δξC

)

r=s

+
1

i

1

2
∂µξ

+
C (s) Ω̂C [ξC , ξ

+
C ]

(D.13)

(8) To establish a result for ∂µΨ̂C(s) Ω̂C [ξC , ξ
+
C ] we can use Eq.(D.10) and

follow the previous procedure to obtain the result

∂µΨ̂C(s) Ω̂C [ξC , ξ
+
C ] =

1

i

(
∂µ
δΩ̂C [ξC , ξ

+
C ]

δξ+C

)

r=s

− 1

i

1

2
∂µξC(s) Ω̂C [ξC , ξ

+
C ]

(D.14)

Appendix D.2. Condensate Operators

(1) If ρ̂ is replaced by Ψ̂C(s)ρ̂ then the characteristic function becomes

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(Ψ̂C(s)ρ̂ Ω̂[ξC , ξ

+
C , ξNC , ξ

+
NC ])

= Tr(ρ̂ Ω̂[ξC , ξ
+
C , ξNC , ξ

+
NC ]Ψ̂C(s))

= Tr(ρ̂ Ω̂C [ξC , ξ
+
C ] Ψ̂C(s) Ω̂NC)

using the cyclic property of the trace and the feature that condensate operators
commute with non-condensate operators.

Hence from Eq.(D.8)

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂

1

i

(
δΩ̂C [ξC , ξ

+
C ]

δξ+C (s)
+ Ω̂C [ξC , ξ

+
C ]

1

2
ξC(s)

)
Ω̂NC)

Hence

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

1

i

(
δ

δξ+C (s)
+

1

2
ξC(s)

)
χ[ξC , ξ

+
C , ξNC , ξ

+
NC ]
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Then using the relationship to the distribution functional we see that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → 1

i

(
δ

δξ+C (s)
+

1

2
ξC(s)

)
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

=

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

×[

(
ψC(s)−

1

2

δ

δψ+
C (s)

)
exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}]

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

since from the functional differentiation rules withG[ψC , ξ
+
C , ξC , ψ

+
C ] = i

´

dr {ξC(r)ψ+
C (r)+

ψC(r)ξ
+
C (r)}

1

i

δ

δξ+C (s)
exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

=
1

i
expG[ψC , ξ

+
C , ξC , ψ

+
C ]
δG[ψC , ξ

+
C , ξC , ψ

+
C ]

δξ+C (s)

=
1

i
expG[ψC , ξ

+
C , ξC , ψ

+
C ] iψC(s)

= ψC(s) expG[ψC , ξ
+
C , ξC , ψ

+
C ] (D.15)

−1

2

δ

δψ+
C (s)

exp i

ˆ

dr {ξC(r)ψ+
C
(r) + ψC(r)ξ

+
C
(r)}

= −1

2
expG[ψC , ξ

+
C , ξC , ψ

+
C ]
δG[ψC , ξ

+
C , ξC , ψ

+
C ]

δψ+
C (s)

= −1

2
expG[ψC , ξ

+
C , ξC , ψ

+
C ] iξC(s) (D.16)

1

i

1

2
ξC(s) expG[ψC , ξ

+
C , ξC , ψ

+
C ]

= −1

2

δ

δψ+
C (s)

exp i

ˆ

dr {ξC(r)ψ+
C
(r) + ψC(r)ξ

+
C
(r)} (D.17)

To proceed further we need to replace the functional differentiation of the
exponential functional with a functional differentiation of the quasi distribution
functional itself. This can be accomplished using a functional integration by
parts result, which requires the condition that the mode expansion form of the
product functional P [ψ−→(r), ψ∗

−→(r)] exp i
´

dr {ξC(r)ψ+
C
(r) + ψC(r)ξ

+
C
(r)} goes to

zero as the expansion coefficients become large (note that there is no normal-
isation condition on the ψC(r), ψ

+
C (r) that bounds the expansion coefficients).

121



Using this integration by parts result we then find that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

×{
(
ψC(s) +

1

2

δ

δψ+
C (s)

)
P [ψ−→(r), ψ∗

−→(r)]}

× exp i

ˆ

dr {ξC(r)ψ+
C
(r) + ψC(r)ξ

+
C
(r)}]

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

Hence the change to the characteristic functional if ρ̂ is replaced by Ψ̂C(s)ρ̂
is equivalent to then the quasi distribution functional is replaced as follows

P [ψ−→(r), ψ∗

−→(r)] →
(
ψC(s) +

1

2

δ

δψ+
C (s)

)
P [ψ−→(r), ψ∗

−→(r)] (D.18)

Thus P [ψ−→(r), ψ∗

−→(r)] is both multiplied by ψC(s), the field function that the

operator Ψ̂C(s) is mapped onto and functionally differentiated with respect to

ψ+
C (s), the field function that the operator Ψ̂†

C(s) is mapped onto.

(2) If ρ̂ is replaced by Ψ̂†
C(s)ρ̂ then the characteristic function becomes

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(Ψ̂†

C(s)ρ̂ Ω̂[ξC , ξ
+
C , ξNC , ξ

+
NC ])

= Tr(ρ̂ Ω̂[ξC , ξ
+
C , ξNC , ξ

+
NC ]Ψ̂

†
C(s))

= Tr(ρ̂ Ω̂C [ξC , ξ
+
C ] Ψ̂

†
C(s) Ω̂NC)

using the cyclic property of the trace and the feature that condensate oper-
ators commute with non-condensate operators.

Hence from Eq.(D.7)

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂

1

i

(
δΩ̂C [ξC , ξ

+
C ]

δξC(s)
− Ω̂C [ξC , ξ

+
C ]

1

2
ξ+C (s)

)
Ω̂NC)

Hence

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

1

i

(
δ

δξC(s)
− 1

2
ξ+C (s)

)
χ[ξC , ξ

+
C , ξNC , ξ

+
NC ]
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Then using the relationship to the distribution functional we see that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → 1

i

(
δ

δξC(s)
− 1

2
ξ+C (s)

)
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

=

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

×[

(
ψ+
C (s) +

1

2

δ

δψC(s)

)
exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}]

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

where the proof of the second step is similar to that in (1).
To proceed further we use integration by parts result we then find that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

×{
(
ψ+
C (s)−

1

2

δ

δψC(s)

)
P [ψ−→(r), ψ∗

−→(r)]}

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

Hence the change to the characteristic functional if ρ̂ is replaced by Ψ̂†
C(s)ρ̂

is equivalent to then the quasi distribution functional is replaced as follows

P [ψ−→(r), ψ∗

−→(r)] →
(
ψ+
C (s)−

1

2

δ

δψC(s)

)
P [ψ−→(r), ψ∗

−→(r)] (D.19)

Thus P [ψ−→(r), ψ∗

−→(r)] is both multiplied by ψ+
C (r), the field function that the

operator Ψ̂†
C(r) is mapped onto and functionally differentiated with respect to

ψC(r), the field function that the operator Ψ̂C(r) is mapped onto.

(3) If ρ̂ is replaced by ρ̂ Ψ̂C(s) then the characteristic function becomes

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂ Ψ̂C(s) Ω̂[ξC , ξ

+
C , ξNC , ξ

+
NC ])

= Tr(ρ̂ Ψ̂C(s) Ω̂C [ξC , ξ
+
C ] Ω̂NC)

using the feature that condensate operators commute with non-condensate op-
erators.

Hence from Eq.(D.10)

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂

1

i

(
δΩ̂C [ξC , ξ

+
C ]

δξ+C (s)
− 1

2
ξC(s) Ω̂C [ξC , ξ

+
C ]

)
Ω̂NC)
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Hence

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

1

i

(
δ

δξ+C (s)
− 1

2
ξC(s)

)
χ[ξC , ξ

+
C , ξNC , ξ

+
NC ]

Then using the relationship to the distribution functional we see that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → 1

i

(
δ

δξ+C (s)
− 1

2
ξC(s)

)
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

=

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

×[

(
ψC(s) +

1

2

δ

δψ+
C (s)

)
exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}]

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

To proceed further we use the integration by parts result and then find that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

×{
(
ψC(s)−

1

2

δ

δψ+
C (s)

)
P [ψ−→(r), ψ∗

−→(r)]P [ψC(r), ψ
+
C (r), ψNC(r), ψ

+
NC(r)]}

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

Hence the change to the characteristic functional if ρ̂ is replaced by ρ̂ Ψ̂C(s)
is equivalent to then the quasi distribution functional is replaced as follows

P [ψ−→(r), ψ∗

−→(r)] →
(
ψC(s)−

1

2

δ

δψ+
C (s)

)
P [ψ−→(r), ψ∗

−→(r)] (D.20)

Thus P [ψ−→(r), ψ∗

−→(r)] is both multiplied by ψC(s), the field function that the

operator Ψ̂C(s) is mapped onto and functionally differentiated with respect to

ψ+
C (s), the field function that the operator Ψ̂†

C(s) is mapped onto.

(4) If ρ̂ is replaced by ρ̂ Ψ̂†
C(s) then the characteristic function becomes

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂ Ψ̂†

C(s) Ω̂[ξC , ξ
+
C , ξNC , ξ

+
NC ])

= Tr(ρ̂ Ψ̂†
C(s) Ω̂C [ξC , ξ

+
C ] Ω̂NC)
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using the feature that condensate operators commute with non-condensate op-
erators.

Hence from Eq.(D.9)

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂

1

i

(
δΩ̂C [ξC , ξ

+
C ]

δξC(s)
+

1

2
ξ+C (s) Ω̂C [ξC , ξ

+
C ]

)
Ω̂NC)

Hence

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

1

i

(
δ

δξC(s)
+

1

2
ξ+C (s)

)
χ[ξC , ξ

+
C , ξNC , ξ

+
NC ]

Then using the relationship to the distribution functional we see that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → 1

i

(
δ

δξC(s)
+

1

2
ξ+C (s)

)
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

=

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

×[

(
ψ+
C (s)−

1

2

δ

δψC(s)

)
exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}]

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

To proceed further we use the integration by parts result and then find that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

×{
(
ψ+
C (s) +

1

2

δ

δψC(s)

)
P [ψ−→(r), ψ∗

−→(r)]}

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

Hence the change to the characteristic functional if ρ̂ is replaced by ρ̂ Ψ̂†
C(s)

is equivalent to then the quasi distribution functional is replaced as follows

P [ψ−→(r), ψ∗

−→(r)] →
(
ψ+
C (s) +

1

2

δ

δψC(s)

)
P [ψ−→(r), ψ∗

−→(r)] (D.21)

Thus P [ψ−→(r), ψ∗

−→(r)] is both multiplied by ψ+
C (s), the field function that the

operator Ψ̂†
C(s) is mapped onto and functionally differentiated with respect to

ψC(s), the field function that the operator Ψ̂C(s) is mapped onto.
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(5) A summary of these key results is as follows:

ρ̂ → Ψ̂C(s)ρ̂ P [ψ−→(r), ψ∗

−→(r)] →
(
ψC(s) +

1

2

δ

δψ+
C (s)

)
P [ψ−→(r), ψ∗

−→(r)]

ρ̂ → Ψ̂†
C(s)ρ̂ P [ψ−→(r), ψ∗

−→(r)] →
(
ψ+
C (s)−

1

2

δ

δψC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

ρ̂ → ρ̂ Ψ̂C(s) P [ψ−→(r), ψ∗

−→(r)] →
(
ψC(s)−

1

2

δ

δψ+
C (s)

)
P [ψ−→(r), ψ∗

−→(r)]

ρ̂ → ρ̂ Ψ̂†
C(s) P [ψ−→(r), ψ∗

−→(r)] →
(
ψ+
C (s) +

1

2

δ

δψC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

(6) If ρ̂ is replaced by ∂µΨ̂C(s)ρ̂ then the characteristic function becomes

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(∂µΨ̂C(s)ρ̂ Ω̂[ξC , ξ

+
C , ξNC , ξ

+
NC ])

= Tr(ρ̂ Ω̂C [ξC , ξ
+
C ] ∂µΨ̂C(s) Ω̂NC)

using the cyclic property of the trace and the feature that condensate operators
commute with non-condensate operators.

Hence from Eq.(D.12)

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂

1

i

((
∂µ
δΩ̂C [ξC , ξ

+
C ]

δξ+C (r)

)

r=s

+ Ω̂C [ξC , ξ
+
C ]

1

2
∂µξC(s)

)
Ω̂NC)

Hence

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

1

i

((
∂µ
δΩ̂C [ξC , ξ

+
C ]

δξ+C (r)

)

r=s

+ Ω̂C [ξC , ξ
+
C ]

1

2
∂µξC(s)

)
χ[ξC , ξ

+
C , ξNC , ξ

+
NC ]

Appendix D.3. Functional Derivative Rules - Non-Condensate Operators

To proceed further we need to establish some rules for functional derivatives
of operator expressions.Consider

Ω̂NC [ξNC , ξ
+
NC ] = exp F̂ [ξNC ] exp Ĥ [ξ+NC ]

F̂ [ξNC ] =

ˆ

dr i{ξNC(r)Ψ̂†
NC(r)} Ĥ [ξ+NC ] =

ˆ

dr i{Ψ̂NC(r)ξ+NC(r)}

(1) We first establish a result for Ω̂NC [ξNC , ξ
+
NC ] Ψ̂

†
NC(s). Now using the

product rule and noting that Ĥ [ξ+NC ] is not a functional of ξNC

(
δΩ̂NC [ξNC , ξ

+
NC ]

δξNC

)

r=s

= lim
ǫ→0

(
exp F̂ [ξNC(r)+ǫδ(r− s)]− exp F̂ [ξNC(r)]

ǫ

)
exp Ĥ [ξ+NC ]

= lim
ǫ→0

(
exp{F̂ [ξNC(r)] + ǫiΨ̂†

NC(s)} − exp F̂ [ξNC(r)]

ǫ

)
exp Ĥ [ξ+NC ]

126



Now we can use the Baker-Haussdorf theorem which is that exp(Â + B̂) =

exp(Â) exp(B̂) exp{− 1
2 [Â, B̂]}, if the commutator commutes with Â and B̂, so

with Â = F̂ [ξNC(r)] and B̂ = ǫiΨ̂†
NC(s) we have

exp{F̂ [ξNC(r)] + ǫiΨ̂†
NC(s)} = exp F̂ [ξNC(r)] exp ǫiΨ̂

†
NC(s)

+ exp F̂ [ξNC(r)] {1 + ǫ(iΨ̂†
NC(s))}

since using Eqs.(D.32, E.318)

[F̂ [ξNC(r)], ǫiΨ̂
†
NC(s) ] = ǫi

ˆ

dr i[{ξNC(r)Ψ̂†
NC(r)}, Ψ̂

†
NC(s)]

= 0

Hence
(
δΩ̂NC [ξNC , ξ

+
C ]

δξNC

)

r=s

= exp F̂ [ξC ] (iΨ̂
†
NC(s)) exp Ĥ [ξ+NC ]

But although iΨ̂†
NC(s) does not commute with exp Ĥ[ξ+NC ] we can use the iden-

tity Ξ̂ exp Ŝ = exp Ŝ {Ξ̂ − [Ŝ, Ξ̂] + 1
2! [Ŝ, [Ŝ, Ξ̂]] − 1

3! [Ŝ, [Ŝ, [Ŝ, Ξ̂]]] + ..} to place

the exponential on the left. Here we have Ŝ = Ĥ [ξ+NC ] and Ξ̂ = iΨ̂†
NC(s). Using

Eqs.(D.32, E.318) we have on noting that ξ+NC(r) only involves the complex
conjugates of non-condensate modes

[Ĥ [ξ+NC ], iΨ̂
†
NC(s)] = i2

ˆ

dr [Ψ̂NC(r), Ψ̂
†
NC(s)] ξ

+
NC(r)

= −
ˆ

dr δNC(r, s) ξ
+
NC(r)

= −ξ+NC(s)

Thus we see that the series terminates after the second term giving

(
δΩ̂NC [ξNC , ξ

+
NC ]

δξNC

)

r=s

= exp F̂ [ξNC ] exp Ĥ[ξ+NC ] {iΨ̂
†
NC(s)) + ξ+NC(s)}

= Ω̂NC [ξNC , ξ
+
C ] {iΨ̂

†
NC(s)) + ξ+NC(s)}

Ω̂NC [ξNC , ξ
+
NC ] Ψ̂

†
NC(s)) =

1

i

(
δΩ̂NC [ξNC , ξ

+
NC ]

δξNC

)

r=s

− 1

i
Ω̂NC [ξNC , ξ

+
NC ] ξ

+
NC(s)

=
1

i

(
δΩ̂NC [ξNC , ξ

+
NC ]

δξNC

)

r=s

− 1

i
ξ+NC(s) Ω̂NC [ξNC , ξ

+
NC ]

(D.22)

(2) We next establish a result for Ω̂NC [ξNC , ξ
+
NC ] Ψ̂NC(s). Similarly using

the product rule and noting that F̂ [ξNC ] is not a functional of ξ+NC
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(
δΩ̂NC [ξNC , ξ

+
NC ]

δξ+NC

)

r=s

= exp F̂ [ξNC ] lim
ǫ→0

(
exp Ĥ [ξ+NC(r)+ǫδ(r− s)]− exp Ĥ [ξ+NC(r)]

ǫ

)

= exp F̂ [ξNC ] lim
ǫ→0

(
exp{Ĥ[ξ+NC(r)] + ǫiΨ̂NC(s)} − exp Ĥ [ξ+NC(r)]

ǫ

)

Using the Baker-Haussdorf theorem again but now with Â = Ĥ [ξ+NC(r)] and

B̂ = ǫiΨ̂NC(s) we have

exp{Ĥ[ξ+NC(r)] + ǫiΨ̂NC(s)} = exp Ĥ [ξ+NC(r)] exp ǫiΨ̂NC(s)

= exp Ĥ [ξ+NC(r)] {1 + ǫiΨ̂NC(s)}
since from Eqs.(D.32, E.318)

[Ĥ [ξ+NC(r)], ǫiΨ̂NC(s) ] = ǫi

ˆ

dr i[{Ψ̂NC(r)ξ+NC(r)}, Ψ̂NC(s)]

= 0

Hence
(
δΩ̂NC [ξNC , ξ

+
NC ]

δξ+NC

)

r=s

= exp F̂ [ξNC ] exp Ĥ [ξ+NC(r)] (iΨ̂NC(s))

= Ω̂NC [ξNC , ξ
+
NC ] (iΨ̂NC(s))

Ω̂NC [ξNC , ξ
+
NC ] Ψ̂NC(s) =

1

i

(
δΩ̂NC [ξNC , ξ

+
NC ]

δξ+NC

)

r=s

(D.23)

(3) We next establish a result for Ψ̂†
NC(s) Ω̂NC [ξNC , ξ

+
NC ] . From above and

now using the result that iΨ̂†
NC(s) commutes with F̂ [ξC ]

(
δΩ̂NC [ξNC , ξ

+
C ]

δξNC

)

r=s

= exp F̂ [ξC ] (iΨ̂
†
NC(s)) exp Ĥ[ξ+NC ]

= (iΨ̂†
NC(s)) exp F̂ [ξC ] exp Ĥ[ξ+NC ]

= (iΨ̂†
NC(s)) Ω̂NC [ξNC , ξ

+
C ]

Ψ̂†
NC(s) Ω̂NC [ξNC , ξ

+
C ] =

1

i

(
δΩ̂NC [ξNC , ξ

+
C ]

δξNC

)

r=s

(D.24)

(4) We next establish a result for Ψ̂NC(s) Ω̂NC [ξNC , ξ
+
NC ] . From above and

now using the result that iΨ̂NC(s) commutes with Ĥ [ξ+C ]

(
δΩ̂NC [ξNC , ξ

+
NC ]

δξ+NC

)

r=s

= exp F̂ [ξNC ] exp Ĥ[ξ+NC(r)] (iΨ̂NC(s))

= exp F̂ [ξNC ] (iΨ̂NC(s)) exp Ĥ [ξ+NC(r)]
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But although iΨ̂NC(s) does not commute with exp F̂ [ξNC ] we can use the iden-

tity exp Ŝ Ξ̂ = {Ξ̂+[Ŝ, Ξ̂]+ 1
2! [Ŝ, [Ŝ, Ξ̂]]+

1
3! [Ŝ, [Ŝ, [Ŝ, Ξ̂]]]+ ..} exp Ŝ to place the

exponential on the right. Here we have Ŝ = F̂ [ξNC ] and Ξ̂ = iΨ̂NC(s). Using
Eqs.(D.32, E.318) we have on noting that ξNC(r) only involves non-condensate
modes

[F̂ [ξNC ], iΨ̂NC(s)] = i2
ˆ

dr [ξNC(r)Ψ̂
†
NC(r), Ψ̂NC(s)]

=

ˆ

dr ξNC(r)δNC(s, r)

= +ξNC(s)

Thus we see that the series terminates after the second term giving
Hence

(
δΩ̂NC [ξNC , ξ

+
NC ]

δξ+NC

)

r=s

= (iΨ̂NC(s) + ξNC(s)) exp F̂ [ξNC ] exp Ĥ [ξ+NC(r)]

= (iΨ̂NC(s) + ξNC(s)) Ω̂NC [ξNC , ξ
+
NC ]

Ψ̂NC(s) Ω̂NC [ξNC , ξ
+
NC ] =

1

i

(
δΩ̂NC [ξNC , ξ

+
NC ]

δξ+NC

)

r=s

− 1

i
ξNC(s) Ω̂NC [ξNC , ξ

+
NC ]

(D.25)

Appendix D.4. Non-Condensate Operators

(1) If ρ̂ is replaced by Ψ̂NC(s)ρ̂ then the characteristic function becomes

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(Ψ̂NC(s)ρ̂ Ω̂[ξC , ξ

+
C , ξNC , ξ

+
NC ])

= Tr(ρ̂ Ω̂[ξC , ξ
+
C , ξNC , ξ

+
NC ]Ψ̂NC(s))

= Tr(ρ̂ Ω̂C Ω̂NC [ξNC , ξ
+
NC ] Ψ̂NC(s))

using the cyclic property of the trace and the feature that condensate operators
commute with non-condensate operators.

Hence from Eq.(D.23)

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂ Ω̂C

1

i

(
δΩ̂NC [ξNC , ξ

+
NC ]

δξ+NC

)

r=s

)

Hence

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

1

i

(
δ

δξ+NC(s)

)
χ[ξC , ξ

+
C , ξNC , ξ

+
NC ]
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Then using the relationship to the distribution functional we see that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → 1

i

(
δ

δξ+NC(s)

)
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

=

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

×[(ψNC(s)) exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}]

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

To proceed further we only need to place the multiplicative term ψNC(s)
next to the quasi distribution functional itself. We then find that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

×{(ψNC(s))P [ψ−→(r), ψ∗

−→(r)]}

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

Hence the change to the characteristic functional if ρ̂ is replaced by Ψ̂NC(s)ρ̂
is equivalent to then the quasi distribution functional is replaced as follows

P [ψ−→(r), ψ∗

−→(r)] → (ψNC(s))P [ψ−→(r), ψ∗

−→(r)] (D.26)

Thus P [ψ−→(r), ψ∗

−→(r)] is multiplied by ψNC(s), the field function that the oper-

ator Ψ̂NC(s) is mapped onto.

(2) If ρ̂ is replaced by Ψ̂†
NC(s)ρ̂ then the characteristic function becomes

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(Ψ̂†

NC(s)ρ̂ Ω̂[ξC , ξ
+
C , ξNC , ξ

+
NC ])

= Tr(ρ̂ Ω̂[ξC , ξ
+
C , ξNC , ξ

+
NC ]Ψ̂

†
NC(s))

= Tr(ρ̂ Ω̂C Ω̂NC [ξNC , ξ
+
NC ] Ψ̂

†
NC(s) )

using the cyclic property of the trace and the feature that condensate operators
commute with non-condensate operators.

Hence from Eq.(D.22)

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂ Ω̂C

1

i

(
δΩ̂NC [ξNC , ξ

+
NC ]

δξNC

)

r=s

−1

i
ξ+NC(s) Ω̂NC [ξNC , ξ

+
NC ])
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Hence

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

1

i

(
δ

δξNC(s)
− ξ+NC(s)

)
χ[ξC , ξ

+
C , ξNC , ξ

+
NC ]

Then using the relationship to the distribution functional we see that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → 1

i

(
δ

δξNC(s)
− ξ+NC(s)

)
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

=

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

×[

(
ψ+
NC(s) +

δ

δψNC(s)

)
exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

To proceed further we use the integration by parts result we then find that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

×{
(
ψ+
NC(s)−

δ

δψNC(s)

)
P [ψ−→(r), ψ∗

−→(r)]}

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

Hence the change to the characteristic functional if ρ̂ is replaced by Ψ̂†
NC(s)ρ̂

is equivalent to then the quasi distribution functional is replaced as follows

P [ψ−→(r), ψ∗

−→(r)] →
(
ψ+
NC(s)−

δ

δψNC(s)

)
P [ψ−→(r), ψ∗

−→(r)] (D.27)

Thus P [ψ−→(r), ψ∗

−→(r)] is both multiplied by ψ+
NC(s), the field function that the

operator Ψ̂†
NC(s) is mapped onto and functionally differentiated with respect to

ψNC(s), the field function that the operator Ψ̂NC(s) is mapped onto.

(3) If ρ̂ is replaced by ρ̂ Ψ̂NC(s) then the characteristic function becomes

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂ Ψ̂NC(s) Ω̂[ξC , ξ

+
C , ξNC , ξ

+
NC ])

= Tr(ρ̂ Ω̂C Ψ̂NC(s) Ω̂NC [ξNC , ξ
+
NC ])
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using the feature that condensate operators commute with non-condensate op-
erators.

Hence from Eq.(D.25)

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂ Ω̂C

1

i

(
δΩ̂NC [ξNC , ξ

+
NC ]

δξ+NC

)

r=s

−1

i
ξNC(s) Ω̂NC [ξNC , ξ

+
NC ])

Hence

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

1

i

(
δ

δξ+NC(s)
− ξNC(s)

)
χ[ξC , ξ

+
C , ξNC , ξ

+
NC ]

Then using the relationship to the distribution functional we see that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → 1

i

(
δ

δξ+NC(s)
− ξNC(s)

)
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

=

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

×[

(
ψNC(s) +

δ

δψ+
NC(s)

)
exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

To proceed further we use the integration by parts result and then find that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

×{
(
ψNC(s)−

δ

δψ+
NC(s)

)
P [ψ−→(r), ψ∗

−→(r)]}

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

Hence the change to the characteristic functional if ρ̂ is replaced by ρ̂ Ψ̂NC(s)
is equivalent to then the quasi distribution functional is replaced as follows

P [ψ−→(r), ψ∗

−→(r)] →
(
ψNC(s)−

δ

δψ+
NC(s)

)
P [ψ−→(r), ψ∗

−→(r)] (D.28)

Thus P [ψ−→(r), ψ∗

−→(r)] is both multiplied by ψNC(s), the field function that the

operator Ψ̂NC(s) is mapped onto and functionally differentiated with respect to

ψ+
NC(s), the field function that the operator Ψ̂†

NC(s) is mapped onto.
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(4) If ρ̂ is replaced by ρ̂ Ψ̂†
NC(s) then the characteristic function becomes

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂ Ψ̂†

NC(s) Ω̂[ξC , ξ
+
C , ξNC , ξ

+
NC ])

= Tr(ρ̂ Ω̂C Ψ̂†
NC(s) Ω̂NC [ξNC , ξ

+
NC ])

using the feature that condensate operators commute with non-condensate op-
erators.

Hence from Eq.(D.24)

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(ρ̂ Ω̂C

1

i

(
δΩ̂NC [ξNC , ξ

+
C ]

δξNC

)

r=s

)

Hence

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

1

i

(
δ

δξNC(s)

)
χ[ξC , ξ

+
C , ξNC , ξ

+
NC ]

Then using the relationship to the distribution functional we see that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → 1

i

(
δ

δξNC(s)

)
˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

=

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

×[
(
ψ+
NC(s)

)
exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

To proceed further we only need to place the multiplicative term ψ+
NC(s)

next to the quasi distribution functional itself. We then find that

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] →

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

×{
(
ψ+
NC(s)

)
P [ψ−→(r), ψ∗

−→(r)]}

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

Hence the change to the characteristic functional if ρ̂ is replaced by ρ̂ Ψ̂†
NC(s)

is equivalent to then the quasi distribution functional is replaced as follows

P [ψ−→(r), ψ∗

−→(r)] →
(
ψ+
NC(s)

)
P [ψ−→(r), ψ∗

−→(r)] (D.29)
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Thus P [ψ−→(r), ψ∗

−→(r)] is multiplied by ψ+
NC(s), the field function that the oper-

ator Ψ̂†
NC(s) is mapped onto.

(5) A summary of these key results is as follows:

ρ̂ → Ψ̂NC(s)ρ̂ P [ψ−→(r), ψ∗

−→(r)] → (ψNC(s))P [ψ−→(r), ψ∗

−→(r)]

ρ̂ → Ψ̂†
NC(s)ρ̂ P [ψ−→(r), ψ∗

−→(r)] →
(
ψ+
NC(s)−

δ

δψNC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

ρ̂ → ρ̂ Ψ̂NC(s) P [ψ−→(r), ψ∗

−→(r)] →
(
ψNC(s)−

δ

δψ+
NC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

ρ̂ → ρ̂ Ψ̂†
NC(s) P [ψ−→(r), ψ∗

−→(r)] →
(
ψ+
NC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

Appendix D.5. Time Derivative

If ρ̂ is replaced by ∂ρ̂
∂t then

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → Tr(

∂

∂t
ρ̂ Ω̂[ξC , ξ

+
C , ξNC , ξ

+
NC ])

=
∂

∂t
T r(ρ̂ Ω̂[ξC , ξ

+
C , ξNC , ξ

+
NC ])

=
∂

∂t
χ[ξC , ξ

+
C , ξNC , ξ

+
NC ]

Hence

χ[ξC , ξ
+
C , ξNC , ξ

+
NC ] → ∂

∂t

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC P [ψ−→(r), ψ∗

−→(r)]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

=

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

× exp i

ˆ

dr {ξC(r)ψ+
C (r) + ψC(r)ξ

+
C (r)}

× exp i

ˆ

dr {ξNC(r)ψ+
NC(r)} exp i

ˆ

dr {ψNC(r)ξ+NC(r)}

Thus the change to the characteristic functional if ρ̂ is replaced by ∂ρ̂
∂t is equiv-

alent to then the quasi distribution functional is replaced as follows

P [ψ−→(r), ψ∗

−→(r)] → ∂

∂t
P [ψ−→(r), ψ∗

−→(r)] (D.30)

Thus P [ψ−→(r), ψ∗

−→(r)] is replaced by its time derivative.
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Appendix D.6. Supplementary Equations

Commutation Rules and Delta Functions

[Ψ̂C(r), Ψ̂
†
NC(r)] = 0

[Ψ̂C(r), Ψ̂
†
C(r

′)] = φ1(r)φ
∗
1(r

′) + φ2(r)φ
∗
2(r

′)

= δC(r, r
′) (D.31)

[Ψ̂NC(r), Ψ̂
†
NC(r

′)] =
∑

k 6=1,2

φk(r)φ
∗
k(r

′)

= δNC(r, r
′) (D.32)

Field Expansions and Delta Functions

ψC(r) = α1φ1(r) + α2φ2(r) ψ+
C (r) = φ∗1(r)α

+
1 + φ∗2(r)α

+
2 (D.33)

ψNC(r) =
∑

k 6=1,2

αkφk(r) ψ+
NC(r) =

∑

k 6=1,2

φ∗k(r)α
+
k (D.34)

ψC(r) =

ˆ

dr′ δC(r, r
′)ψC(r

′) ψ+
C (r) =

ˆ

dr′ ψ+
C (r

′)δC(r
′, r)

ψNC(r) =

ˆ

dr′ δNC(r, r
′)ψNC(r

′) ψ(r) =

ˆ

dr′ ψ+
C (r

′)δC(r
′, r)(D.35)
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Appendix E. - Functional Fokker-Planck Equation

In this Appendix we derive the Functional Fokker-Planck equation. We will
derive it based on the full Hamiltonian including the Ĥ4 and Ĥ5 terms. This
gives the exact equation. We can then write down the corresponding FFPE
for the case of the Bogoliubov Hamiltonian (E.314) by discarding terms for the
exact FFPE - which would be needed for the stong interaction regime. For this
derivation it will be convenient to write the Hamiltonian in the form

Ĥ = ĤC + ĤNC + V̂ (E.1)

where

ĤC =

ˆ

dr(
~
2

2m
∇Ψ̂C(r)

† · ∇Ψ̂C(r) + Ψ̂C(r)
†V Ψ̂C(r)

+
g

2
Ψ̂C(r)

†Ψ̂C(r)
†Ψ̂C(r)Ψ̂C(r)) (E.2)

ĤNC =

ˆ

dr(
~
2

2m
∇Ψ̂NC(r)

† · ∇Ψ̂NC(r) + Ψ̂NC(r)
†V Ψ̂NC(r)

+
g

2
Ψ̂NC(r)

†Ψ̂NC(r)
†Ψ̂NC(r)Ψ̂NC(r)) (E.3)

are Hamiltonians for the condensate and non-condensate. The interaction be-
tween condensate and non-condensate is written as the sum of three contribu-
tions which are linear, quadratic and cubic in the non-condensate operators

V̂ = V̂1 + V̂2 + V̂3 (E.4)

V̂1 =

ˆ

dr(
~
2

2m
∇Ψ̂NC(r)

† · ∇Ψ̂C(r) +
~
2

2m
∇Ψ̂C(r)

† · ∇Ψ̂NC(r)

+Ψ̂NC(r)
†V Ψ̂C(r) + Ψ̂C(r)

†V Ψ̂NC(r)

+gΨ̂NC(r)
†Ψ̂C(r)

†Ψ̂C(r)Ψ̂C(r) + gΨ̂C(r)
†Ψ̂C(r)

†Ψ̂C(r)Ψ̂NC(r)) (E.5)

V̂2 =

ˆ

dr(
g

2
Ψ̂NC(r)

†Ψ̂NC(r)
†Ψ̂C(r)Ψ̂C(r) +

g

2
Ψ̂C(r)

†Ψ̂C(r)
†Ψ̂NC(r)Ψ̂NC(r)

+2gΨ̂NC(r)
†Ψ̂C(r)

†Ψ̂NC(r)Ψ̂C(r)) (E.6)

V̂3 =

ˆ

dr(gΨ̂NC(r)
†Ψ̂NC(r)

†Ψ̂NC(r)Ψ̂C(r)) + gΨ̂C(r)
†Ψ̂NC(r)

†Ψ̂NC(r)Ψ̂NC(r))

(E.7)

However, using the coupled generalised Gross-Pitaevskii equation we can
make the simplifications

ˆ

dr Ψ̂NC(r)
†

{(
− ~

2

2m
∇2 + V

)
Ψ̂C(r)

}
= −gN

N

ˆ ˆ

dr dsF (r, s)Ψ̂NC(r)
† Ψ̂C(s)

ˆ

dr

{(
− ~

2

2m
∇2 + V

)
Ψ̂†
C(r)

}
Ψ̂NC(r) = −gN

N

ˆ ˆ

dr dsF ∗(s, r)Ψ̂C(r)
†Ψ̂NC(s)

(E.8)
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to write V̂1 in a form

V̂1 =

ˆ

dr Ψ̂†
NC(r)g{Ψ̂

†
C(r) Ψ̂C(r)}Ψ̂C(r)−

ˆ ˆ

dr ds gF (r, s)Ψ̂NC(r)
† Ψ̂C(s)

+

ˆ

dr Ψ̂†
C(r)g{Ψ̂

†
C(r) Ψ̂C(r)}Ψ̂NC(r) −

ˆ ˆ

dr ds gF ∗(s, r)Ψ̂C(r)
†Ψ̂NC(s)

(E.9)

We see that V̂1 is the sum of term V̂14 which is fourth order in the field
operators and a term V̂12 which is second order.

V̂1 = V̂14 + V̂12 (E.10)

V̂14 = g

ˆ

dr (Ψ̂†
NC(r)Ψ̂

†
C(r) Ψ̂C(r)Ψ̂C(r)) + g

ˆ

dr (Ψ̂†
C(r)Ψ̂

†
C(r) Ψ̂C(r)Ψ̂NC(r))

(E.11)

V̂12 = −g
ˆ ˆ

dr dsF (r, s)Ψ̂NC(r)
† Ψ̂C(s)− g

ˆ ˆ

dr dsF ∗(s, r)Ψ̂C(r)
†Ψ̂NC(s)

(E.12)

Thus we see that V̂ is now associated only with boson-boson interaction terms.
From Eqs. (E.1), (E.2), (E.3) and (E.4) we see that there are a total of

seventeen distinct contributions to the Hamiltonian to be considered, ranging
from the kinetic energy contribution to the condensate Hamiltonian to an in-
teraction term between the condensate and non-condensate fields which is third
order in the non-condensate field. For the Bogoliubov Hamiltonian for which we
derive the functional Fokker-Planck equation the terms V̂3 and the boson-boson
interaction in the non-condensate Hamiltonian ĤNC are discarded.

In order to avoid using too many superscripts and subscripts, in considering
each term a simplified notation will be used, which is as follows. For terms
which only involve condensate fields or only non-condensate fields we will use
ψ(s) and ψ+(s) for ψC(s) and ψ+

C (s) or ψNC(s) and ψ+
NC(s). We will write

W [ψ(r), ψ+(r)] or P [ψ(r), ψ+(r)] (and sometimes just W or P in large expres-
sions) instead of the complete expression
P [ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)] ≡ P [ψ−→(r), ψ∗

−→(r)]

in the pure condensate and pure non-condensate cases. For the interaction be-
tween condensate and non-condensate we will writeWP [ψ(r), ψ+(r), φ(r), φ+(r)]
(and sometimes justWP in large expressions) instead of the complete expression
P [ψC(r), ψ

+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)] ≡ P [ψ−→(r), ψ∗

−→(r)],

using ψ(s), ψ+(s) for ψC(s), ψ
+
C (s), and φ(s), φ+(s) for ψNC(s), ψ

+
NC(s) in the

expressions, since both condensate and non-condensate fields will be present
and must be distinguished. In this notation the fact that the distribution func-
tionals also depend on the complex conjugate fields ψ∗(s), ψ+∗(s) and φ∗(s),
φ+∗(s) has been ignored. This is because functional derivatives or functions
involving these complex conjugate fields are not involved in the derivation as a
consequence of their absence from the correspondence rules. As in Appendix D
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the general notation that applies is

ψ−→(r) ≡ {ψC(r), ψ+
C (r), ψNC(r), ψ

+
NC(r)} (E.13)

ψ∗

−→(r) ≡ {ψ∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)} (E.14)

P [ψ−→(r), ψ∗

−→(r)] ≡ P [ψC(r), ψ
+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)]

(E.15)

α−→ ≡ {αk, α+
k } (E.16)

α−→
∗ ≡ {α∗

k, α
+∗
k } (E.17)

Pb(α−→, α−→
∗) ≡ Pb(αk, α

+
k , α

∗
k, α

+∗
k ) ≡ P [ψ−→(r), ψ∗

−→(r)] (E.18)

At the completion of the determination of the contribution to the Fokker-Planck
equation, the original notation
P [ψ−→(r), ψ∗

−→(r)] ≡ P [ψC(r), ψ
+
C (r), ψNC(r), ψ

+
NC(r), ψ

∗
C(r), ψ

+∗
C (r), ψ∗

NC(r), ψ
+∗
NC(r)]

for the distribution functional will be reintroduced.
Also, to avoid too many nested brackets we will adopt the convention that a

functional derivative will operate on everything to the right of it unless otherwise
indicated. Note that spatial derivatives do not operate on functionals, only on
functions.

The terms in the Bogoliubov Hamiltonian that we need to consider are

Ĥ1 =

ˆ

dr(
~
2

2m
∇Ψ̂†

C(r) · ∇Ψ̂C(r) + Ψ̂†
C(r)V Ψ̂C(r)

+
gN
2N

Ψ̂†
C(r)Ψ̂

†
C(r)Ψ̂C(r)Ψ̂C(r)) (E.19)

The term Ĥ1 is the sum of the condensate kinetic energy, condensate trap
potential energy and condensate boson-boson interaction.

Ĥ2 =

ˆ

dr(Ψ̂NC(r)
†

{
− ~

2

2m
∇2Ψ̂C(r) + V Ψ̂C(r) +

gN
N

Ψ̂†
C(r)Ψ̂C(r)Ψ̂C(r)

}

+

{
− ~

2

2m
∇2Ψ̂†

C(r) + Ψ̂C(r)
†V +

gN
N

Ψ̂†
C(r)Ψ̂

†
C(r)Ψ̂C(r)

}
Ψ̂NC(r))

(E.20)

The term Ĥ2 is the coupling between the condensate and non-condensate fields
that is linear in the non-condensate field. It can be put into different forms not
involving the spatial derivatives. Thus

Ĥ2 = Ĥ2U4 + Ĥ2U2 (E.21)

Ĥ2U4 =
gN
N

ˆ

dr (Ψ̂†
NC(r)Ψ̂

†
C(r) Ψ̂C(r)Ψ̂C(r)) +

gN
N

ˆ

dr (Ψ̂†
C(r)Ψ̂

†
C(r) Ψ̂C(r)Ψ̂NC(r))

(E.22)

Ĥ2U2 = −gN
N

ˆ ˆ

dr dsF (r, s)Ψ̂NC(r)
† Ψ̂C(s)−

gN
N

ˆ ˆ

dr dsF ∗(s, r)Ψ̂C(r)
†Ψ̂NC(s)

(E.23)
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Ĥ3 =

ˆ

dr

{
~
2

2m
∇Ψ̂†

NC(r) · ∇Ψ̂NC(r) + Ψ̂†
NC(r)V Ψ̂NC(r)

}

+
gN
2N

ˆ

dr
{
Ψ̂†
NC(r)Ψ̂

†
NC(r)Ψ̂C(r)Ψ̂C(r) + Ψ̂†

C(r)Ψ̂
†
C(r)Ψ̂NCΨ̂NC

}

+
gN
2N

ˆ

dr
{
4Ψ̂†

NC(r)Ψ̂
†
C(r)Ψ̂NC(r)Ψ̂C(r)

}
(E.24)

Appendix E.1. Condensate Kinetic Energy Terms

We write the kinetic energy as

T̂ =
~
2

2m

∑

µ

ˆ

ds ∂µΨ̂(s)† ∂µΨ̂(s) (E.25)

Now if

ρ̂→ T̂ ρ̂ =
~
2

2m

∑

µ

ˆ

ds(∂µΨ̂(s)† ∂µΨ̂(s))ρ̂ (E.26)

then

W [ψ(r), ψ+(r)]

→ ~
2

2m

∑

µ

ˆ

ds

{(
∂µψ

+(s)− 1

2
∂µ

δ

δψ(s)

)(
∂µψ(s) +

1

2
∂µ

δ

δψ+(s)

)}
W [ψ, ψ+]

(E.27)

After expanding we find that

W [ψ(r), ψ+(r)]

→ ~
2

2m

∑

µ

ˆ

ds
{(
∂µψ

+(s)
)
(∂µψ(s))

}
W [ψ, ψ+]

+
~
2

2m

∑

µ

ˆ

ds
1

2

{(
∂µψ

+(s)
) (

∂µ
δ

δψ+(s)

)}
W [ψ, ψ+]

− ~
2

2m

∑

µ

ˆ

ds
1

2

{(
∂µ

δ

δψ(s)

)
(∂µψ(s))

}
W [ψ, ψ+]

− ~
2

2m

∑

µ

ˆ

ds
1

4

{(
∂µ

δ

δψ(s)

)(
∂µ

δ

δψ+(s)

)}
W [ψ, ψ+]

(E.28)

Now the standard approach to space integration gives the result

ˆ

ds {∂µC(s) } = 0 (E.29)
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for functions C(s) that become zero on the boundary. This then leads to the
useful result involving product functions C(s) = A(s)B(s) enabling the spatial
derivative to be applied to either A(s) or B(s)

ˆ

ds {∂µA(s) }B(s) = −
ˆ

dsA(s) {∂µB(s) } (E.30)

We can assume that the ψ(s) and ψ+(s) become zero on the boundary, since
they both involve condensate mode functions or their conjugates that are lo-
calised due to the trap potential. Also the functional derivatives produce linear
combinations of either the condensate mode functions or their conjugates (see
(B.87), (B.92)) so the various C(s) that will be involved should become zero on
the boundary.

For the first term, the product of the spatial functions can be written in
opposite order so that

ˆ

ds
{(
∂µψ

+(s)
)
(∂µψ(s))

}
W [ψ, ψ+]

=

ˆ

ds
{
(∂µψ(s))

(
∂µψ

+(s)
)}
W [ψ, ψ+] (E.31)

We can then use (E.30) together with the explicit forms (E.315) for the
functional derivatives and their spatial derivatives to modify the terms in the
new W [ψ, ψ+], which is equivalent to the function w(αk, α

+
k ) if ψ(s) and ψ+(s)

are expanded in terms of modes φk(s) or φ∗k(s), as in (E.316) and (E.317) with
expansion coefficients αk and α∗

k.
In the second term, the spatial derivative of the functional derivative can be

removed and applied to the spatial function

ˆ

ds

{(
∂µψ

+(s)
)(

∂µ
δ

δψ+(s)

)}
W [ψ, ψ+]

=

ˆ

ds
∑

k=1,2

{∂µφ∗k(s)}α+
k

∑

l=1,2

{∂µφl(s)}
∂

∂α+
l

w(αk, α
+
k )

= −
ˆ

ds
∑

k=1,2

{∂2µφ∗k(s)}α+
k

∑

l=1,2

{φl(s)}
∂

∂α+
l

w(αk, α
+
k )

= −
ˆ

ds

{(
∂2µψ

+(s)
)( δ

δψ+(s)

)}
W [ψ, ψ+]

(E.32)

Applying the product rule (E.319) to the product of
(
∂2µψ

+(s)
)

with the distri-
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bution functional gives

(
∂2µψ

+(s)
)( δ

δψ+(s)
W [ψ, ψ+]

)

=

(
δ

δψ+(s)

(
∂2µψ

+(s)
)
W [ψ, ψ+])

)
−
(

δ

δψ+(s)

(
∂2µψ

+(s)
))

W [ψ, ψ+]

=

(
δ

δψ+(s)

(
∂2µψ

+(s)
)
W [ψ, ψ+])

)
− (χ(s))W [ψ, ψ+]

(E.33)

using

(
δ

δψ+(s)

(
∂2µψ

+(s)
))

=
∑

l=1,2

{φl(s)}
∂

∂α+
l

∑

k=1,2

{∂2µφ∗k(s)}α+
k

=
∑

k=1,2

{φk(s)}{∂2µφ∗k(s)}

≡ ωC(s) (E.34)

Note that the function ωC(s) just defined only depends on condensate mode
functions. Thus the second term becomes

ˆ

ds

{(
∂µψ

+(s)
)(

∂µ
δ

δψ+(s)

)}
W [ψ, ψ+]

= −
ˆ

ds

{
δ

δψ+(s)

(
∂2µψ

+(s)
)}

W [ψ, ψ+] +

ˆ

ds {ωC(s)}W [ψ, ψ+]

(E.35)

In the third term
ˆ

ds

{(
∂µ

δ

δψ(s)

)
(∂µψ(s))

}
W [ψ, ψ+]

=

ˆ

ds
∑

k=1,2

{∂µφ∗k(s)}
∂

∂αk

∑

l=1,2

αl{∂µφl(s)}w(αk, α+
k )

= −
ˆ

ds
∑

k=1,2

{φ∗k(s)}
∂

∂αk

∑

l=1,2

αl{∂2µφl(s)}w(αk, α+
k )

= −
ˆ

ds

{(
δ

δψ(s)

)(
∂2µψ(s)

)}
W [ψ, ψ+] (E.36)

For the fourth term, the double functional derivative term can be written in
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the opposite order

ˆ

ds

{(
∂µ

δ

δψ(s)

)(
∂µ

δ

δψ+(s)

)}
W [ψ, ψ+]

=

ˆ

ds
∑

k=1,2

{∂µφ∗k(s)}
∂

∂αk

∑

l=1,2

{∂µφl(s)}
∂

∂α+
l

w(αk, α
+
k )

=

ˆ

ds
∑

l=1,2

{∂µφl(s)}
∂

∂α+
l

∑

k=1,2

{∂µφ∗k(s)}
∂

∂αk
w(αk, α

+
k )

=

ˆ

ds

{(
∂µ

δ

δψ+(s)

)(
∂µ

δ

δψ(s)

)}
W [ψ, ψ+] (E.37)

Using results (E.31), (E.35), (E.36) and (E.37) we find that

W [ψ(r), ψ+(r)]

→ ~
2

2m

∑

µ

ˆ

ds
{
(∂µψ(s))

(
∂µψ

+(s)
)}
W [ψ, ψ+]

− ~
2

2m

∑

µ

ˆ

ds
1

2

{
δ

δψ+(s)

(
∂2µψ

+(s)
)}

W [ψ, ψ+]

+
~
2

2m

∑

µ

ˆ

ds
1

2
{ωC(s)}W [ψ, ψ+]

+
~
2

2m

∑

µ

ˆ

ds
1

2

{(
δ

δψ(s)

)(
∂2µψ(s)

)}
W [ψ, ψ+]

− ~
2

2m

∑

µ

ˆ

ds
1

4

{(
∂µ

δ

δψ+(s)

)(
∂µ

δ

δψ(s)

)}
W [ψ, ψ+] (E.38)

Now if

ρ̂→ ρ̂T̂ =
~
2

2m

∑

µ

ˆ

ds ρ̂(∂µΨ̂(s)† ∂µΨ̂(s)) (E.39)

then

W [ψ(r), ψ+(r)]

→ ~
2

2m

∑

µ

ˆ

ds

{(
∂µψ(s)−

1

2
∂µ

δ

δψ+(s)

)(
∂µψ

+(s) +
1

2
∂µ

δ

δψ(s)

)}
W [ψ, ψ+]

(E.40)
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After expanding we find that

W [ψ(r), ψ+(r)]

→ ~
2

2m

∑

µ

ˆ

ds
{
(∂µψ(s))

(
∂µψ

+(s)
)}
W [ψ, ψ+]

+
~
2

2m

∑

µ

ˆ

ds
1

2

{
(∂µψ(s))

(
∂µ

δ

δψ(s)

)}
W [ψ, ψ+]

− ~
2

2m

∑

µ

ˆ

ds
1

2

{(
∂µ

δ

δψ+(s)

)(
∂µψ

+(s)
)}

W [ψ, ψ+]

− ~
2

2m

∑

µ

ˆ

ds
1

4

{(
∂µ

δ

δψ+(s)

)(
∂µ

δ

δψ(s)

)}
W [ψ, ψ+]

(E.41)

Applying the same approach as above we find that the second term becomes

ˆ

ds

{
(∂µψ(s))

(
∂µ

δ

δψ(s)

)}
W [ψ, ψ+]

= −
ˆ

ds

{
δ

δψ(s)

(
∂2µψ(s)

)}
W [ψ, ψ+] +

ˆ

ds {ωC(s)∗}W [ψ, ψ+]

(E.42)

and the third term is given by

ˆ

ds

{(
∂µ

δ

δψ+(s)

)(
∂µψ

+(s)
)}

W [ψ, ψ+]

= −
ˆ

ds

{(
δ

δψ+(s)

)(
∂2µψ

+(s)
)}

W [ψ, ψ+] (E.43)

Using results (E.42) and (E.43) and using the result obtained from integra-
tion by parts

ˆ

ds {ωC(s)∗} =

ˆ

ds {ωC(s)} (E.44)
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we find that

W [ψ(r), ψ+(r)]

→ ~
2

2m

∑

µ

ˆ

ds
{
(∂µψ(s))

(
∂µψ

+(s)
)}
W [ψ, ψ+]

− ~
2

2m

∑

µ

ˆ

ds
1

2

{
δ

δψ(s)

(
∂2µψ(s)

)}
W [ψ, ψ+]

+
~
2

2m

∑

µ

ˆ

ds
1

2
{ωC(s)}W [ψ, ψ+]

+
~
2

2m

∑

µ

ˆ

ds
1

2

{(
δ

δψ+(s)

)(
∂2µψ

+(s)
)}

W [ψ, ψ+]

− ~
2

2m

∑

µ

ˆ

ds
1

4

{(
∂µ

δ

δψ+(s)

)(
∂µ

δ

δψ(s)

)}
W [ψ, ψ+]

(E.45)

We now combine the contributions so that when

ρ̂→ [T̂ , ρ̂] = [
~
2

2m

∑

µ

ˆ

ds(∂µΨ̂(s)† ∂µΨ̂(s)), ρ̂] (E.46)

then

W [ψ(r), ψ+(r)] →W 1 (E.47)

where

W 1 = −
ˆ

ds

{
δ

δψ+(s)

(
∑

µ

~
2

2m
∂2µψ

+(s)

)
)W [ψ, ψ+]

}

+

ˆ

ds

{
δ

δψ(s)

(
∑

µ

~
2

2m
∂2µψ(s)

)
W [ψ, ψ+])

}

(E.48)

where the (ωC(s)), the (∂µψ(s)) (∂µψ
+(s)) and the

(
∂µ

δ
δψ+(s)

)(
∂µ

δ
δψ(s)

)
terms

cancel and the first order functional derivative terms combine to remove the 1
2

factors. Thus only a first order functional derivative term occurs.
Overall, the contribution to the functional Fokker-Planck equation from the
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kinetic energy term is given by

(
∂

∂t
W [ψ, ψ+]

)

K

=
−i
~

{
−
ˆ

ds

{
δ

δψ+(s)

(
∑

µ

~
2

2m
∂2µψ

+(s)

)
W [ψ, ψ+]

}}

+
−i
~

{
+

ˆ

ds

{
δ

δψ(s)

(
∑

µ

~
2

2m
∂2µψ(s)

)
W [ψ, ψ+])

}}
(E.49)

Reverting to the original notation, the contribution to the functional Fokker-
Planck equation from the kinetic energy term is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

K

=
+i

~

{
ˆ

ds

{
δ

δψ+
C (s)

(
∑

µ

~
2

2m
∂2µψ

+
C (s)

)
P [ψ−→(r), ψ∗

−→(r)]

}}

− i

~

{
ˆ

ds

{
δ

δψC(s)

(
∑

µ

~
2

2m
∂2µψC(s)

)
P [ψ−→(r), ψ∗

−→(r)])

}}

(E.50)

Appendix E.2. Condensate Trap Potential Terms

We write the trap potential as

V̂ =

ˆ

ds(Ψ̂(s)†V Ψ̂(s)) (E.51)

Now if

ρ̂→ V̂ ρ̂ =

ˆ

ds(Ψ̂(s)†V Ψ̂(s))ρ̂ (E.52)

then

W [ψ(r), ψ+(r)]

→
ˆ

ds

{(
ψ+(s)− 1

2

δ

δψ(s)

)
V (s)

(
ψ(s) +

1

2

δ

δψ+(s)

)}
W [ψ, ψ+]

(E.53)
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After expanding we find that

W [ψ(r), ψ+(r)]

→
ˆ

ds
{
ψ+(s)V (s)ψ(s)

}
W [ψ, ψ+]

+

ˆ

ds
1

2

{
ψ+(s)V (s)

δ

δψ+(s)

}
W [ψ, ψ+]

−
ˆ

ds
1

2

{
δ

δψ(s)
V (s)ψ(s)

}
W [ψ, ψ+]

−
ˆ

ds
1

4

{
δ

δψ(s)
V (s)

δ

δψ+(s)

}
W [ψ, ψ+]

(E.54)

We can now use the product rule for functional derivatives (E.319) together
with (E.320) and (E.321) to place all the derivatives on the left of the expression
and obtain

W [ψ(r), ψ+(r)]

→
ˆ

ds
{
ψ+(s)V (s)ψ(s)

}
W [ψ, ψ+] T 1

+

ˆ

ds
1

2

{
δ

δψ+(s)
{ψ+(s)V (s)} − δC(s, s)V (s)

}
W [ψ, ψ+] T 22, T 21

−
ˆ

ds
1

2

{
δ

δψ(s)
V (s)ψ(s)

}
W [ψ, ψ+] T 3

−
ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ+(s)
V (s)

}
W [ψ, ψ+] T 4

(E.55)

Details are
T2

δ

δψ+(s)
{ψ+(s)V (s)W}

= { δ

δψ+(s)
ψ+(s)}V (s)W + ψ+(s)V (s){ δ

δψ+(s)
W}

= δK(0)V (s)W + ψ+(s)V (s){ δ

δψ+(s)
W}

ψ+(s)V (s){ δ

δψ+(s)
W [ψ, ψ+]}

=
δ

δψ+(s)
{ψ+(s)V (s)W [ψ, ψ+]} − δC(s, s)V (s)W [ψ, ψ+]

Now if

ρ̂→ ρ̂V̂ =

ˆ

dsρ̂Ψ̂(s)†V Ψ̂(s) (E.56)
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then

W [ψ(r), ψ+(r)]

→
ˆ

ds

(
ψ(s)− 1

2

δ

δψ+(s)

)
V (s)

(
ψ+(s) +

1

2

δ

δψ(s)

)
W [ψ, ψ+]

(E.57)

After expanding we have

W [ψ(r), ψ+(r)]

→
ˆ

ds{ψ(s)V (s)ψ+(s)}W [ψ, ψ+]

+

ˆ

ds
1

2

{
ψ(s)V (s)

δ

δψ(s)

}
W [ψ, ψ+]

−
ˆ

ds
1

2

{
δ

δψ+(s)
V (s)ψ+(s)

}
W [ψ, ψ+]

−
ˆ

ds
1

4

{
δ

δψ+(s)
V (s)

δ

δψ(s)

}
W [ψ, ψ+]

(E.58)

We can now use the product rule for functional derivatives (E.319) together
with (E.320) and (E.321) to place all the derivatives on the left of the expression.

However the results can more easily be obtained by noticing that the ρ̂V̂ is the
same as the V̂ ρ̂ if we interchange ψ(s) and ψ+(s) everywhere. Hence

W [ψ(r), ψ+(r)]

→
ˆ

ds
{
ψ(s)V (s)ψ+(s)

}
W [ψ, ψ+] T 1

+

ˆ

ds
1

2

{
δ

δψ(s)
{ψ(s)V (s)} − δC(s, s)V (s)

}
W [ψ, ψ+] T 22, T 21

−
ˆ

ds
1

2

{
δ

δψ+(s)
V (s)ψ+(s)

}
W [ψ, ψ+] T 3

−
ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ(s)
V (s)

}
W [ψ, ψ+] T 4

(E.59)

We now combine the contributions so that when

ρ̂→ [V̂ , ρ̂] = [

ˆ

ds Ψ̂(s)†V (s)Ψ̂(s), ρ̂] (E.60)

then

W [ψ(r), ψ+(r)] →W 0 +W 1 +W 2 (E.61)
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where the terms are listed via the order of derivatives that occur

W 0

=

ˆ

ds
{
ψ+(s)V (s)ψ(s)

}
W [ψ, ψ+]−

ˆ

ds
{
ψ(s)V (s)ψ+(s)

}
W [ψ, ψ+]

+

ˆ

ds
1

2
{−δC(s, s)V (s)}W [ψ, ψ+]−

ˆ

ds
1

2
{−δC(s, s)V (s)}W [ψ, ψ+]

= 0

(E.62)

W 1

=

ˆ

ds
1

2

{
δ

δψ+(s)
{ψ+(s)V (s)}

}
W [ψ, ψ+]−

ˆ

ds
1

2

{
δ

δψ(s)
{ψ(s)V (s)}

}
W [ψ, ψ+]

−
ˆ

ds
1

2

{
δ

δψ(s)
V (s)ψ(s)

}
W [ψ, ψ+] +

ˆ

ds
1

2

{
δ

δψ+(s)
V (s)ψ+(s)

}
W [ψ, ψ+]

= −
ˆ

ds

{
δ

δψ(s)
{V (s)ψ(s)}

}
W [ψ, ψ+] +

ˆ

ds

{
δ

δψ+(s)
V (s)ψ+(s)

}
W [ψ, ψ+]

(E.63)

W 2

= −
ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ+(s)
V (s)

}
W [ψ, ψ+] +

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ(s)
V (s)

}
W [ψ, ψ+]

= 0

(E.64)

Overall, the contribution to the functional Fokker-Planck equation from the
trap potential term is given by

(
∂

∂t
W [ψ, ψ+]

)

V

=
−i
~

{
−
ˆ

ds

{
δ

δψ(s)
{V (s)ψ(s)}

}
W [ψ, ψ+] +

ˆ

ds

{
δ

δψ+(s)
V (s)ψ+(s)

}
W [ψ, ψ+]

}

(E.65)

which only involves first order functional derivatives.
Reverting to the original notation, the contribution to the functional Fokker-

Planck equation from the trap potential term is given by
(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V

=
−i
~

{
−
ˆ

ds

{
δ

δψC(s)
{V (s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+

ˆ

ds

{
δ

δψ+
C (s)

V (s)ψ+
C (s)

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.66)
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Appendix E.3. Condensate Boson-Boson Interaction Terms

We write the boson-boson interaction potential as

Û =
g

2

ˆ

dsΨ̂(s)†Ψ̂(s)†Ψ̂(s)Ψ̂(s) (E.67)

Now if

ρ̂→ Û ρ̂ =
g

2

ˆ

dsΨ̂(s)†Ψ̂(s)†Ψ̂(s)Ψ̂(s)ρ̂ (E.68)

W [ψ(r), ψ+(r)]

→ g

2

ˆ

ds

(
ψ+(s)− 1

2

δ

δψ(s)

)(
ψ+(s)− 1

2

δ

δψ(s)

)(
ψ(s) +

1

2

δ

δψ+(s)

)(
ψ(s) +

1

2

δ

δψ+(s)

)
W

(E.69)

After expanding we get

W [ψ(r), ψ+(r)]

→ g

2

ˆ

ds
{
ψ+(s)ψ+(s)ψ(s)ψ(s)

}
W +

g

2

ˆ

ds
1

2

{
ψ+(s)ψ+(s)ψ(s)

δ

δψ+(s)

}
W

+
g

2

ˆ

ds
1

2

{
ψ+(s)ψ+(s)

δ

δψ+(s)
ψ(s)

}
W +

g

2

ˆ

ds
1

4

{
ψ+(s)ψ+(s)

δ

δψ+(s)

δ

δψ+(s)

}
W

−g
2

ˆ

ds
1

2

{
ψ+(s)

δ

δψ(s)
ψ(s)ψ(s)

}
W − g

2

ˆ

ds
1

4

{
ψ+(s)

δ

δψ(s)
ψ(s)

δ

δψ+(s)

}
W

−g
2

ˆ

ds
1

4

{
ψ+(s)

δ

δψ(s)

δ

δψ+(s)
ψ(s)

}
W − g

2

ˆ

ds
1

8

{
ψ+(s)

δ

δψ(s)

δ

δψ+(s)

δ

δψ+(s)

}
W

−g
2

ˆ

ds
1

2

{
δ

δψ(s)
ψ+(s)ψ(s)ψ(s)

}
W − g

2

ˆ

ds
1

4

{
δ

δψ(s)
ψ+(s)ψ(s)

δ

δψ+(s)

}
W

−g
2

ˆ

ds
1

4

{
δ

δψ(s)
ψ+(s)

δ

δψ+(s)
ψ(s)

}
W − g

2

ˆ

ds
1

8

{
δ

δψ(s)
ψ+(s)

δ

δψ+(s)

δ

δψ+(s)

}
W

+
g

2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ(s)
ψ(s)ψ(s)

}
W +

g

2

ˆ

ds
1

8

{
δ

δψ(s)

δ

δψ(s)
ψ(s)

δ

δψ+(s)

}
W

+
g

2

ˆ

ds
1

8

{
δ

δψ(s)

δ

δψ(s)

δ

δψ+(s)
ψ(s)

}
W +

g

2

ˆ

ds
1

16

{
δ

δψ(s)

δ

δψ(s)

δ

δψ+(s)

δ

δψ+(s)

}
W

(E.70)

We can now use the product rule for functional derivatives (E.319) together
with (E.320) and (E.321) to place all the derivatives on the left of the expression
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and obtain

W [ψ(r), ψ+(r)]

→ g

2

ˆ

ds
{
ψ+(s)ψ+(s)ψ(s)ψ(s)

}
W T 1

+
g

2

ˆ

ds
1

2

{
δ

δψ+(s)
ψ+(s)ψ+(s)ψ(s)− 2δC(s, s)ψ

+(s)ψ(s)

}
W T 22, T 21

+
g

2

ˆ

ds
1

2

{
δ

δψ+(s)
ψ+(s)ψ+(s)ψ(s)− 2δC(s, s)ψ

+(s)ψ(s)

}
W T 32, T 31

+
g

2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ+(s)
ψ+(s)ψ+(s)− δ

δψ+(s)
4δC(s, s)ψ

+(s) + 2δK(0)2
}
W T 43, T 42, T 41

−g
2

ˆ

ds
1

2

{
δ

δψ(s)
ψ+(s)ψ(s)ψ(s)

}
W T 5

−g
2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ+(s)
ψ+(s)ψ(s)− δ

δψ(s)
δC(s, s)ψ(s)

}
W T 62, T 61

−g
2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ+(s)
ψ+(s)ψ(s)− δ

δψ(s)
δC(s, s)ψ(s)

}
W T 72, T 71

−g
2

ˆ

ds
1

8

{
δ

δψ(s)

δ

δψ+(s)

δ

δψ+(s)
ψ+(s)− δ

δψ(s)

δ

δψ+(s)
2δC(s, s)

}
W T 82, T 81

−g
2

ˆ

ds
1

2

{
δ

δψ(s)
ψ+(s)ψ(s)ψ(s)

}
W T 9

−g
2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ+(s)
ψ+(s)ψ(s)− δ

δψ(s)
δC(s, s)ψ(s)

}
W T 10.2, T 10.1

−g
2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ+(s)
ψ+(s)ψ(s)− δ

δψ(s)
δC(s, s)ψ(s)

}
W T 11.2, T 11.1

−g
2

ˆ

ds
1

8

{
δ

δψ(s)

δ

δψ+(s)

δ

δψ+(s)
ψ+(s)− δ

δψ(s)

δ

δψ+(s)
2δC(s, s)

}
W T 12.2, T 12.1

+
g

2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ(s)
ψ(s)ψ(s)

}
W T 13

+
g

2

ˆ

ds
1

8

{
δ

δψ(s)

δ

δψ(s)

δ

δψ+(s)
ψ(s)

}
W T 14

+
g

2

ˆ

ds
1

8

{
δ

δψ(s)

δ

δψ(s)

δ

δψ+(s)
ψ(s)

}
W T 15

+
g

2

ˆ

ds
1

16

{
δ

δψ(s)

δ

δψ(s)

δ

δψ+(s)

δ

δψ+(s)

}
W T 16

(E.71)

Details include
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T2

δ

δψ+(s)
{ψ+(s)ψ+(s)ψ(s)W}

= { δ

δψ+(s)
ψ+(s)}ψ+(s)ψ(s)W + ψ+(s){ δ

δψ+(s)
ψ+(s)}ψ(s)W

+ψ+(s)ψ+(s){ δ

δψ+(s)
ψ(s)}W + ψ+(s)ψ+(s)ψ(s){ δ

δψ+(s)
W}

= {δC(s, s)}ψ+(s)ψ(s)W + ψ+(s){δC(s, s)}ψ(s)W

+ψ+(s)ψ+(s)ψ(s){ δ

δψ+(s)
W}

= 2δC(s, s)ψ
+(s)ψ(s)W + ψ+(s)ψ+(s)ψ(s){ δ

δψ+(s)
W}

ψ+(s)ψ+(s)ψ(s){ δ

δψ+(s)
W [ψ, ψ+]}

=
δ

δψ+(s)
{ψ+(s)ψ+(s)ψ(s)W [ψ, ψ+]} − 2δC(s, s)ψ

+(s)ψ(s)W [ψ, ψ+]

T3

δ

δψ+(s)
{ψ+(s)ψ+(s)ψ(s)W}

= { δ

δψ+(s)
ψ+(s)}ψ+(s)ψ(s)W + ψ+(s){ δ

δψ+(s)
ψ+(s)}ψ(s)W}

+ψ+(s)ψ+(s){ δ

δψ+(s)
ψ(s)W}

= δC(s, s)ψ
+(s)ψ(s)W + ψ+(s)δC(s, s)ψ(s)W}+ ψ+(s)ψ+(s){ δ

δψ+(s)
ψ(s)W}

ψ+(s)ψ+(s){ δ

δψ+(s)
ψ(s)W}

=
δ

δψ+(s)
{ψ+(s)ψ+(s)ψ(s)W [ψ, ψ+]} − 2δC(s, s)ψ

+(s)ψ(s)W [ψ, ψ+]
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T4

δ

δψ+(s)

δ

δψ+(s)
{ψ+(s)ψ+(s)W}

=
δ

δψ+(s)

(
{ δ

δψ+(s)
ψ+(s)}ψ+(s)W + ψ+(s){ δ

δψ+(s)
ψ+(s)}W

)

+
δ

δψ+(s)

(
ψ+(s)ψ+(s){ δ

δψ+(s)
W}

)

=
δ

δψ+(s)

(
2δC(s, s)ψ

+(s)W + ψ+(s)ψ+(s){ δ

δψ+(s)
W}

)

=
δ

δψ+(s)
{2δC(s, s)ψ+(s)W} +

+{ δ

δψ+(s)
ψ+(s)}ψ+(s){ δ

δψ+(s)
W}+ ψ+(s){ δ

δψ+(s)
ψ+(s)}{ δ

δψ+(s)
W}

+ψ+(s)ψ+(s){ δ

δψ+(s)

δ

δψ+(s)
W}

=
δ

δψ+(s)
{2δC(s, s)ψ+(s)W} +

+2δC(s, s)ψ
+(s){ δ

δψ+(s)
W}+ ψ+(s)ψ+(s){ δ

δψ+(s)

δ

δψ+(s)
W}

=
δ

δψ+(s)
{2δC(s, s)ψ+(s)W} + ψ+(s)ψ+(s){ δ

δψ+(s)

δ

δψ+(s)
W}

+
δ

δψ+(s)
{2δC(s, s)ψ+(s)W} − 2δC(s, s)

2W

ψ+(s)ψ+(s){ δ

δψ+(s)

δ

δψ+(s)
W [ψ, ψ+]}

=
δ

δψ+(s)

δ

δψ+(s)
{ψ+(s)ψ+(s)W [ψ, ψ+]} − δ

δψ+(s)
{2δC(s, s)ψ+(s)W [ψ, ψ+]}

− δ

δψ+(s)
{2δC(s, s)ψ+(s)W [ψ, ψ+]}+ 2δC(s, s)

2W [ψ, ψ+]

T5
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δ

δψ(s)
{ψ+(s)ψ(s)ψ(s)W}

=
δ

δψ(s)
{ψ+(s)}ψ(s)ψ(s)W + ψ+(s){ δ

δψ(s)
ψ(s)ψ(s)W}

= ψ+(s){ δ

δψ(s)
ψ(s)ψ(s)W}

ψ+(s){ δ

δψ(s)
ψ(s)ψ(s)W [ψ, ψ+]}

=
δ

δψ(s)
{ψ+(s)ψ(s)ψ(s)W [ψ, ψ+]}

T6

δ

δψ(s)

δ

δψ+(s)
{ψ+(s)ψ(s)W}

=
δ

δψ(s)

{
{ δ

δψ+(s)
ψ+(s)}ψ(s)W + ψ+(s){ δ

δψ+(s)
ψ(s)}W

}

+
δ

δψ(s)

{
ψ+(s)ψ(s){ δ

δψ+(s)
W}

}

=
δ

δψ(s)

{
δC(s, s)ψ(s)W + ψ+(s)ψ(s){ δ

δψ+(s)
W}

}

= { δ

δψ(s)
δC(s, s)ψ(s)W}+ { δ

δψ(s)
ψ+(s)}ψ(s){ δ

δψ+(s)
W}

+ψ+(s){ δ

δψ(s)
ψ(s){ δ

δψ+(s)
W}}

= { δ

δψ(s)
δC(s, s)ψ(s)W}+ ψ+(s){ δ

δψ(s)
ψ(s){ δ

δψ+(s)
W}}

ψ+(s){ δ

δψ(s)
ψ(s){ δ

δψ+(s)
W [ψ, ψ+]}}

=
δ

δψ(s)

δ

δψ+(s)
{ψ+(s)ψ(s)W [ψ, ψ+]} − { δ

δψ(s)
δC(s, s)ψ(s)W [ψ, ψ+]}

153



T7

δ

δψ(s)

δ

δψ+(s)
{ψ+(s)ψ(s)W}

=
δ

δψ(s)

{
{ δ

δψ+(s)
ψ+(s)}ψ(s)W + ψ+(s){ δ

δψ+(s)
ψ(s)W}

}

=
δ

δψ(s)

{
δC(s, s)ψ(s)W + ψ+(s){ δ

δψ+(s)
ψ(s)W}

}

= { δ

δψ(s)
δC(s, s)ψ(s)W}+ { δ

δψ(s)
ψ+(s)}{ δ

δψ+(s)
ψ(s)W}

+ψ+(s){ δ

δψ(s)
{ δ

δψ+(s)
ψ(s)W}}

=
δ

δψ(s)
{δC(s, s)ψ(s)W}+ ψ+(s){ δ

δψ(s)
{ δ

δψ+(s)
ψ(s)W}}

ψ+(s){ δ

δψ(s)
{ δ

δψ+(s)
ψ(s)W [ψ, ψ+]}}

=
δ

δψ(s)

δ

δψ+(s)
{ψ+(s)ψ(s)W [ψ, ψ+]} − δ

δψ(s)
{δC(s, s)ψ(s)W [ψ, ψ+]}
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T8

δ

δψ(s)

δ

δψ+(s)

δ

δψ+(s)
{ψ+(s)W}

=
δ

δψ(s)

δ

δψ+(s)

{
{ δ

δψ+(s)
ψ+(s)}W + ψ+(s){ δ

δψ+(s)
W}

}

=
δ

δψ(s)

δ

δψ+(s)

{
δC(s, s)W + ψ+(s){ δ

δψ+(s)
W}

}

=
δ

δψ(s)

δ

δψ+(s)
{δC(s, s)W}+ δ

δψ(s)

{
δ

δψ+(s)
{ψ+(s){ δ

δψ+(s)
W}}

}

=
δ

δψ(s)

δ

δψ+(s)
{δC(s, s)W}

+
δ

δψ(s)

{
{ δ

δψ+(s)
ψ+(s)}{ δ

δψ+(s)
W}+ ψ+(s){ δ

δψ+(s)
{ δ

δψ+(s)
W}}

}

=
δ

δψ(s)

δ

δψ+(s)
{δC(s, s)W}

+
δ

δψ(s)

{
δC(s, s){

δ

δψ+(s)
W}+ ψ+(s){ δ

δψ+(s)
{ δ

δψ+(s)
W}}

}

=
δ

δψ(s)

δ

δψ+(s)
{δC(s, s)W}+ δ

δψ(s)
δC(s, s){

δ

δψ+(s)
W}

+{ δ

δψ(s)
ψ+(s)}{ δ

δψ+(s)
{ δ

δψ+(s)
W}}

+ψ+(s){ δ

δψ(s)
{ δ

δψ+(s)
{ δ

δψ+(s)
W}}}

=
δ

δψ(s)

δ

δψ+(s)
{δC(s, s)W}+ δ

δψ(s)
{ δ

δψ+(s)
δC(s, s)W}

+ψ+(s){ δ

δψ(s)
{ δ

δψ+(s)
{ δ

δψ+(s)
W}}}

ψ+(s){ δ

δψ(s)
{ δ

δψ+(s)
{ δ

δψ+(s)
W [ψ, ψ+]}}}

=
δ

δψ(s)

δ

δψ+(s)

δ

δψ+(s)
{ψ+(s)W [ψ, ψ+]} − δ

δψ(s)

δ

δψ+(s)
{δC(s, s)W [ψ, ψ+]}

− δ

δψ(s)
{ δ

δψ+(s)
δC(s, s)W [ψ, ψ+]}
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T10

δ

δψ(s)

δ

δψ+(s)
{ψ+(s)ψ(s)W}

=
δ

δψ(s)

{
{ δ

δψ+(s)
ψ+(s)}ψ(s)W + ψ+(s)ψ(s)

δ

δψ+(s)
W

}

=
δ

δψ(s)

{
δC(s, s)ψ(s)W + ψ+(s)ψ(s)

δ

δψ+(s)
W

}

=
δ

δψ(s)
{δC(s, s)ψ(s)W}+ δ

δψ(s)
{ψ+(s)ψ(s)

δ

δψ+(s)
W}

δ

δψ(s)
{ψ+(s)ψ(s)

δ

δψ+(s)
W [ψ, ψ+]}

=
δ

δψ(s)

δ

δψ+(s)
{ψ+(s)ψ(s)W [ψ, ψ+]} − δ

δψ(s)
{δC(s, s)ψ(s)W [ψ, ψ+]}

T11

δ

δψ(s)

δ

δψ+(s)
{ψ+(s)ψ(s)W}

=
δ

δψ(s)

{
{ δ

δψ+(s)
ψ+(s)}ψ(s)W + ψ+(s)

δ

δψ+(s)
{ψ(s)W}

}

=
δ

δψ(s)

{
δC(s, s)ψ(s)W + ψ+(s)

δ

δψ+(s)
{ψ(s)W}

}

=
δ

δψ(s)
{δC(s, s)ψ(s)W}+ δ

δψ(s)
{ψ+(s)

δ

δψ+(s)
{ψ(s)W}}

δ

δψ(s)
{ψ+(s)

δ

δψ+(s)
{ψ(s)W [ψ, ψ+]}}

=
δ

δψ(s)

δ

δψ+(s)
{ψ+(s)ψ(s)W [ψ, ψ+]} − δ

δψ(s)
{δC(s, s)ψ(s)W [ψ, ψ+]}
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T12

δ

δψ(s)

δ

δψ+(s)

δ

δψ+(s)
{ψ+(s)W}

=
δ

δψ(s)

δ

δψ+(s)

{
{ δ

δψ+(s)
ψ+(s)}W}+ ψ+(s){ δ

δψ+(s)
W}

}

=
δ

δψ(s)

δ

δψ+(s)

{
δC(s, s)W}+ ψ+(s){ δ

δψ+(s)
W}

}

=
δ

δψ(s)

δ

δψ+(s)
δC(s, s)W}

+
δ

δψ(s)

{
{ δ

δψ+(s)
ψ+(s)}{ δ

δψ+(s)
W}+ ψ+(s){ δ

δψ+(s)
{ δ

δψ+(s)
W}}

}

=
δ

δψ(s)

δ

δψ+(s)
δC(s, s)W}

+
δ

δψ(s)

{
δC(s, s){

δ

δψ+(s)
W}+ ψ+(s){ δ

δψ+(s)
{ δ

δψ+(s)
W}}

}

=
δ

δψ(s)

δ

δψ+(s)
2δC(s, s)W}+ δ

δψ(s)
{ψ+(s){ δ

δψ+(s)
{ δ

δψ+(s)
W}}}

δ

δψ(s)
{ψ+(s){ δ

δψ+(s)
{ δ

δψ+(s)
W [ψ, ψ+]}}}

=
δ

δψ(s)

δ

δψ+(s)

δ

δψ+(s)
{ψ+(s)W [ψ, ψ+]} − δ

δψ(s)

δ

δψ+(s)
2δC(s, s)W [ψ, ψ+]}

T14

δ

δψ(s)

δ

δψ(s)

δ

δψ+(s)
{ψ(s)W}

=
δ

δψ(s)

δ

δψ(s)

{
δ

δψ+(s)
{ψ(s)W

}

=
δ

δψ(s)

δ

δψ(s)

{
ψ(s)

δ

δψ+(s)
W

}

δ

δψ(s)

δ

δψ(s)
{ψ(s) δ

δψ+(s)
W [ψ, ψ+]}

=
δ

δψ(s)

δ

δψ(s)

δ

δψ+(s)
{ψ(s)W [ψ, ψ+]}

Now if

ρ̂→ ρ̂Û =
g

2

ˆ

dsρ̂Ψ̂(s)†Ψ̂(s)†Ψ̂(s)Ψ̂(s) (E.72)

then

W [ψ(r), ψ+(r)]

→ g

2

ˆ

ds

(
ψ(s)− 1

2

δ

δψ+(s)

)(
ψ(s)− 1

2

δ

δψ+(s)

)(
ψ+(s) +

1

2

δ

δψ(s)

)(
ψ+(s) +

1

2

δ

δψ(s)

)
W

(E.73)
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After expanding we obtain

W [ψ(r), ψ+(r)]

→ g

2

ˆ

ds
{
ψ(s)ψ(s)ψ+(s)ψ+(s)

}
W [ψ, ψ+] +

g

2

ˆ

ds
1

2

{
ψ(s)ψ(s)ψ+(s)

δ

δψ(s)

}
W

+
g

2

ˆ

ds
1

2

{
ψ(s)ψ(s)

δ

δψ(s)
ψ+(s)

}
W +

g

2

ˆ

ds
1

4

{
ψ(s)ψ(s)

δ

δψ(s)

δ

δψ(s)

}
W

−g
2

ˆ

ds
1

2

{
ψ(s)

δ

δψ+(s)
ψ+(s)ψ+(s)

}
W − g

2

ˆ

ds
1

4

{
ψ(s)

δ

δψ+(s)
ψ+(s)

δ

δψ(s)

}
W

−g
2

ˆ

ds
1

4

{
ψ(s)

δ

δψ+(s)

δ

δψ(s)
ψ+(s)

}
W − g

2

ˆ

ds
1

8

{
ψ(s)

δ

δψ+(s)

δ

δψ(s)

δ

δψ(s)

}
W

−g
2

ˆ

ds
1

2

{
δ

δψ+(s)
ψ(s)ψ+(s)ψ+(s)

}
W − g

2

ˆ

ds
1

4

{
δ

δψ+(s)
ψ(s)ψ+(s)

δ

δψ(s)

}
W

−g
2

ˆ

ds
1

4

{
δ

δψ+(s)
ψ(s)

δ

δψ(s)
ψ+(s1)

}
W − g

2

ˆ

ds
1

8

{
δ

δψ+(s)
ψ(s)

δ

δψ(s)

δ

δψ(s)

}
W

+
g

2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ+(s)
ψ+(s)ψ+(s)

}
W +

g

2

ˆ

ds
1

8

{
δ

δψ+(s)

δ

δψ+(s)
ψ+(s)

δ

δψ(s)

}
W

+
g

2

ˆ

ds
1

8

{
δ

δψ+(s)

δ

δψ+(s)

δ

δψ(s)
ψ+(s)

}
W +

g

2

ˆ

ds
1

16

{
δ

δψ+(s)

δ

δψ+(s)

δ

δψ(s)

δ

δψ(s)

}
W

(E.74)

We can now use the product rule for functional derivatives (E.319) together
with (E.320) and (E.321) to place all the derivatives on the left of the expression.

However the results can more easily be obtained by noticing that the ρ̂Û is the
same as the Û ρ̂ if we interchange ψ(s) and ψ+(s) everywhere. Hence
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W [ψ(r), ψ+(r)]

→ g

2

ˆ

ds
{
ψ(s)ψ(s)ψ+(s)ψ+(s)

}
W T 1

+
g

2

ˆ

ds
1

2

{
δ

δψ(s)
ψ(s)ψ(s)ψ+(s)− 2δC(s, s)ψ(s)ψ

+(s)

}
W T 22, T 21

+
g

2

ˆ

ds
1

2

{
δ

δψ(s)
ψ(s)ψ(s)ψ+(s)− 2δC(s, s)ψ(s)ψ

+(s)

}
W T 32, T 31

+
g

2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ(s)
ψ(s)ψ(s) − δ

δψ(s)
4δC(s, s)ψ(s) + 2δC(s, s)

2

}
W T 43, T 42, T 41

−g
2

ˆ

ds
1

2

{
δ

δψ+(s)
ψ(s)ψ+(s)ψ+(s)

}
W T 5

−g
2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ(s)
ψ(s)ψ+(s)− δ

δψ+(s)
δC(s, s)ψ

+(s)

}
W T 62, T 61

−g
2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ(s)
ψ(s)ψ+(s)− δ

δψ+(s)
δC(s, s)ψ

+(s)

}
W T 72

−g
2

ˆ

ds
1

8

{
δ

δψ+(s)

δ

δψ(s)

δ

δψ(s)
ψ(s)− δ

δψ+(s)

δ

δψ(s)
2δC(s, s)

}
W T 82, T 81

−g
2

ˆ

ds
1

2

{
δ

δψ+(s)
ψ(s)ψ+(s)ψ+(s)

}
W T 9

−g
2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ(s)
ψ(s)ψ+(s)− δ

δψ+(s)
δC(s, s)ψ

+(s)

}
W T 10.2, T 10.1

−g
2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ(s)
ψ(s)ψ+(s)− δ

δψ+(s)
δC(s, s)ψ

+(s)

}
W T 11.2, T 11.1

−g
2

ˆ

ds
1

8

{
δ

δψ+(s)

δ

δψ(s)

δ

δψ(s)
ψ(s)− δ

δψ+(s)

δ

δψ(s)
2δC(s, s)

}
W T 12.2, T 12.1

+
g

2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ+(s)
ψ+(s)ψ+(s)

}
W T 13

+
g

2

ˆ

ds
1

8

{
δ

δψ+(s)

δ

δψ+(s)

δ

δψ(s)
ψ+(s)

}
W T 14

+
g

2

ˆ

ds
1

8

{
δ

δψ+(s)

δ

δψ+(s)

δ

δψ(s)
ψ+(s)

}
W T 15

+
g

2

ˆ

ds
1

16

{
δ

δψ+(s)

δ

δψ+(s)

δ

δψ(s)

δ

δψ(s)

}
W T 16

(E.75)

We now combine the contributions so that when

ρ̂→ [Û , ρ̂] = [
g

2

ˆ

ds Ψ̂(s)†Ψ̂(s)†Ψ̂(s)Ψ̂(s), ρ̂] (E.76)

then
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W [ψ(r), ψ+(r)] → W 0 +W 1 +W 2 +W 3 +W 4

(E.77)

where the terms are listed via the order of derivatives that occur

W 0

=
g

2

ˆ

ds
{
ψ+(s)ψ+(s)ψ(s)ψ(s)

}
W − g

2

ˆ

ds
{
ψ(s)ψ(s)ψ+(s)ψ+(s)

}
W

+
g

2

ˆ

ds
1

2

{
−2δC(s, s)ψ

+(s)ψ(s)
}
W − g

2

ˆ

ds
1

2

{
−2δC(s, s)ψ(s)ψ

+(s)
}
W

+
g

2

ˆ

ds
1

2

{
−2δC(s, s)ψ

+(s)ψ(s)
}
W − g

2

ˆ

ds
1

2

{
−2δC(s, s)ψ(s)ψ

+(s)
}
W

+
g

2

ˆ

ds
1

4

{
+2δC(s, s)

2
}
W − g

2

ˆ

ds
1

4

{
+2δC(s, s)

2
}
W

= 0

(E.78)

W 1

= +
g

2

ˆ

ds
1

2

{
δ

δψ+(s)
ψ+(s)ψ+(s)ψ(s)

}
W − g

2

ˆ

ds
1

2

{
δ

δψ(s)
ψ(s)ψ(s)ψ+(s)

}
W

+
g

2

ˆ

ds
1

2

{
δ

δψ+(s)
ψ+(s)ψ+(s)ψ(s)

}
W − g

2

ˆ

ds
1

2

{
δ

δψ(s)
ψ(s)ψ(s)ψ+(s)

}
W

+
g

2

ˆ

ds
1

4

{
− δ

δψ+(s)
4δC(s, s)ψ

+(s)

}
W − g

2

ˆ

ds
1

4

{
− δ

δψ(s)
4δC(s, s)ψ(s)

}
W

−g
2

ˆ

ds
1

2

{
δ

δψ(s)
ψ+(s)ψ(s)ψ(s)

}
W +

g

2

ˆ

ds
1

2

{
δ

δψ+(s)
ψ(s)ψ+(s)ψ+(s)

}
W

−g
2

ˆ

ds
1

4

{
− δ

δψ(s)
δC(s, s)ψ(s)

}
W +

g

2

ˆ

ds
1

4

{
− δ

δψ+(s)
δC(s, s)ψ

+(s)

}
W

−g
2

ˆ

ds
1

4

{
− δ

δψ(s)
δC(s, s)ψ(s)

}
W +

g

2

ˆ

ds
1

4

{
− δ

δψ+(s)
δC(s, s)ψ

+(s)

}
W

−g
2

ˆ

ds
1

2

{
δ

δψ(s)
ψ+(s)ψ(s)ψ(s)

}
W +

g

2

ˆ

ds
1

2

{
δ

δψ+(s)
ψ(s)ψ+(s)ψ+(s)

}
W

−g
2

ˆ

ds
1

4

{
− δ

δψ(s)
δC(s, s)ψ(s)

}
W +

g

2

ˆ

ds
1

4

{
− δ

δψ+(s)
δC(s, s)ψ

+(s)

}
W

−g
2

ˆ

ds
1

4

{
− δ

δψ(s)
δC(s, s)ψ(s)

}
W +

g

2

ˆ

ds
1

4

{
− δ

δψ+(s)
δC(s, s)ψ

+(s)

}
W

= −g
ˆ

ds
δ

δψ(s)

{
(ψ+(s)ψ(s)− δC(s, s))ψ(s)

}
W [ψ, ψ+]

+g

ˆ

ds
δ

δψ+(s)

{
(ψ+(s)ψ(s)− δC(s, s))ψ

+(s)
}
W [ψ, ψ+]

(E.79)
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W 2

=
g

2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ+(s)
ψ+(s)ψ+(s)

}
W − g

2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ(s)
ψ(s)ψ(s)

}
W

−g
2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ+(s)
ψ+(s)ψ(s)

}
W +

g

2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ(s)
ψ(s)ψ+(s)

}
W

−g
2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ+(s)
ψ+(s)ψ(s)

}
W +

g

2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ(s)
ψ(s)ψ+(s)

}
W

−g
2

ˆ

ds
1

8

{
− δ

δψ(s)

δ

δψ+(s)
2δC(s, s)

}
W +

g

2

ˆ

ds
1

8

{
− δ

δψ+(s)

δ

δψ(s)
2δC(s, s)

}
W

−g
2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ+(s)
ψ+(s)ψ(s)

}
W +

g

2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ(s)
ψ(s)ψ+(s)

}
W

−g
2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ+(s)
ψ+(s)ψ(s)

}
W +

g

2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ(s)
ψ(s)ψ+(s)

}
W

−g
2

ˆ

ds
1

8

{
− δ

δψ(s)

δ

δψ+(s)
2δC(s, s)

}
W +

g

2

ˆ

ds
1

8

{
− δ

δψ+(s)

δ

δψ(s)
2δC(s, s)

}
W

+
g

2

ˆ

ds
1

4

{
δ

δψ(s)

δ

δψ(s)
ψ(s)ψ(s)

}
W − g

2

ˆ

ds
1

4

{
δ

δψ+(s)

δ

δψ+(s)
ψ+(s)ψ+(s)

}
W

= 0

(E.80)

W 3

= −g
2

ˆ

ds
1

8

{
δ

δψ(s)

δ

δψ+(s)

δ

δψ+(s)
ψ+(s)

}
W +

g

2

ˆ

ds
1

8

{
δ

δψ+(s)

δ

δψ(s)

δ

δψ(s)
ψ(s)

}
W

−g
2

ˆ

ds
1

8

{
δ

δψ(s)

δ

δψ+(s)

δ

δψ+(s)
ψ+(s)

}
W +

g

2

ˆ

ds
1

8

{
δ

δψ+(s)

δ

δψ(s)

δ

δψ(s)
ψ(s)

}
W

+
g

2

ˆ

ds
1

8

{
δ

δψ(s)

δ

δψ(s)

δ

δψ+(s)
ψ(s)

}
W − g

2

ˆ

ds
1

8

{
δ

δψ+(s)

δ

δψ+(s)

δ

δψ(s)
ψ+(s)

}
W

+
g

2

ˆ

ds
1

8

{
δ

δψ(s)

δ

δψ(s)

δ

δψ+(s)
ψ(s)

}
W − g

2

ˆ

ds
1

8

{
δ

δψ+(s)

δ

δψ+(s)

δ

δψ(s)
ψ+(s)

}
W

= g

ˆ

ds
δ

δψ(s)

δ

δψ(s)

δ

δψ+(s)
{1
4
ψ(s)}W [ψ, ψ+]

−g
ˆ

ds
δ

δψ+(s)

δ

δψ+(s)

δ

δψ(s)
{1
4
ψ+(s)}W [ψ, ψ+]

(E.81)
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W 4

= +
g

2

ˆ

ds
1

16

{
δ

δψ(s)

δ

δψ(s)

δ

δψ+(s)

δ

δψ+(s)

}
W

−g
2

ˆ

ds
1

16

{
δ

δψ+(s)

δ

δψ+(s)

δ

δψ(s)

δ

δψ(s)

}
W

= 0

(E.82)

Overall, the contribution to the functional Fokker-Planck equation from the
boson-boson interaction is given by

(
∂

∂t
W [ψ, ψ+]

)

U

=
−i
~

{
−g
ˆ

ds
δ

δψ(s)

{
(ψ+(s)ψ(s)− δC(s, s))ψ(s)

}
W [ψ, ψ+]

}

−i
~

{
+g

ˆ

ds
δ

δψ+(s)

{
(ψ+(s)ψ(s)− −δC(s, s))ψ+(s)

}
W [ψ, ψ+]

}

−i
~

{
g

ˆ

ds
1

4

δ

δψ(s)

δ

δψ(s)

δ

δψ+(s)
{ψ(s)}W [ψ, ψ+]

}

−i
~

{
−g
ˆ

ds
1

4

δ

δψ+(s)

δ

δψ+(s)

δ

δψ(s)
{ψ+(s)}W [ψ, ψ+]

}

(E.83)

which involves first order and third order functional derivatives. We have re-
placed δK(0) by its full form δK(s, s).

Reverting to the original notation we have
(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

U

=
−i
~

{
−g
ˆ

ds
δ

δψC(s)

{
(ψ+
C (s)ψC(s)− δC(s, s))ψC(s)

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+g

ˆ

ds
δ

δψ+
C (s)

{
(ψ+
C (s)ψC(s)− δC(s, s))ψ

+
C (s)

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
g

ˆ

ds
δ

δψC(s)

δ

δψC(s)

δ

δψ+
C (s)

{1
4
ψC(s)}P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−g
ˆ

ds
δ

δψ+
C (s)

δ

δψ+
C (s)

δ

δψC(s)
{1
4
ψ+
C (s)}P [ψ−→(r), ψ∗

−→(r)]

}

(E.84)

Appendix E.4. Non-Condensate Kinetic Energy Terms

We write the kinetic energy as

T̂ =
~
2

2m

∑

µ

ˆ

ds ∂µΨ̂(s)† ∂µΨ̂(s) (E.85)
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Now if

ρ̂→ T̂ ρ̂ =
~
2

2m

∑

µ

ˆ

ds(∂µΨ̂(s)† ∂µΨ̂(s))ρ̂ (E.86)

then

P [ψ(r), ψ+(r)]

→ ~
2

2m

∑

µ

ˆ

ds

{(
∂µψ

+(s)− ∂µ
δ

δψ(s)

)
(∂µψ(s))

}
P [ψ, ψ+]

(E.87)

After expanding we find that

P [ψ(r), ψ+(r)]

→ ~
2

2m

∑

µ

ˆ

ds
{(
∂µψ

+(s)
)
(∂µψ(s))

}
P [ψ, ψ+]

− ~
2

2m

∑

µ

ˆ

ds

{(
∂µ

δ

δψ(s)

)
(∂µψ(s))

}
P [ψ, ψ+]

(E.88)

For the first term, the product of the spatial functions can be written in
opposite order so that

ˆ

ds
{(
∂µψ

+(s)
)
(∂µψ(s))

}
P [ψ, ψ+]

=

ˆ

ds
{
(∂µψ(s))

(
∂µψ

+(s)
)}
P [ψ, ψ+] (E.89)

We can use (E.30) together with the explicit forms (E.315) and for the func-
tional derivatives to modify the terms in the new P [ψ, ψ+], which is equivalent
to the function p(αk, α

+
k ) if ψ(s) and ψ+(s) are expanded in terms of modes

φk(s) or φ∗k(s), as in (E.316) and (E.317) with expansion coefficients αk and α∗
k.

In the second term we use (E.30) to apply the spatial derivative to the ψ(s)
factor

ˆ

ds

{(
∂µ

δ

δψ(s)

)
(∂µψ(s))

}
P [ψ, ψ+]

=

ˆ

ds
K∑

k 6=1,2

{∂µφ∗k(s)}
∂

∂αk

K∑

l 6=1,2

αl{∂µφl(s)}p(αk, α+
k )

= −
ˆ

ds

K∑

k 6=1,2

{φ∗k(s)}
∂

∂αk

K∑

l 6=1,2

αl{∂2µφl(s)}p(αk, α+
k )

= −
ˆ

ds

{(
δ

δψ(s)

)(
∂2µψ(s)

)}
P [ψ, ψ+] (E.90)
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Using results (E.89) and (E.90) we find that

P [ψ(r), ψ+(r)]

→ ~
2

2m

∑

µ

ˆ

ds
{
(∂µψ(s))

(
∂µψ

+(s)
)}
P [ψ, ψ+]

+
~
2

2m

∑

µ

ˆ

ds

{(
δ

δψ(s)

)(
∂2µψ(s)

)}
P [ψ, ψ+] (E.91)

Now if

ρ̂→ ρ̂T̂ =
~
2

2m

∑

µ

ˆ

ds ρ̂(∂µΨ̂(s)† ∂µΨ̂(s)) (E.92)

then

P [ψ(r), ψ+(r)]

→ ~
2

2m

∑

µ

ˆ

ds

{(
∂µψ(s)− ∂µ

δ

δψ+(s)

)(
∂µψ

+(s)
)}

P [ψ, ψ+]

(E.93)

After expanding we find that

P [ψ(r), ψ+(r)]

→ ~
2

2m

∑

µ

ˆ

ds
{
(∂µψ(s))

(
∂µψ

+(s)
)}
P [ψ, ψ+]

− ~
2

2m

∑

µ

ˆ

ds

{(
∂µ

δ

δψ+(s)

)(
∂µψ

+(s)
)}

P [ψ, ψ+]

(E.94)

Applying the same approach as before the second term is given by

ˆ

ds

{(
∂µ

δ

δψ+(s)

)(
∂µψ

+(s)
)}

P [ψ, ψ+]

= −
ˆ

ds

{(
δ

δψ+(s)

)(
∂2µψ

+(s)
)}

P [ψ, ψ+] (E.95)

Using the result (E.95) we find that

P [ψ(r), ψ+(r)]

→ ~
2

2m

∑

µ

ˆ

ds
{
(∂µψ(s))

(
∂µψ

+(s)
)}
P [ψ, ψ+]

+
~
2

2m

∑

µ

ˆ

ds

{(
δ

δψ+(s)

)(
∂2µψ

+(s)
)}

P [ψ, ψ+] (E.96)
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We now combine the contributions so that when

ρ̂→ [T̂ , ρ̂] = [
~
2

2m

∑

µ

ˆ

ds(∂µΨ̂(s)† ∂µΨ̂(s)), ρ̂] (E.97)

then

P [ψ(r), ψ+(r)] → P 1 (E.98)

where

P 1 = −
ˆ

ds

{
δ

δψ+(s)

(
∑

µ

~
2

2m
∂2µψ

+(s)

)
)P [ψ, ψ+]

}

+

ˆ

ds

{
δ

δψ(s)

(
∑

µ

~
2

2m
∂2µψ(s)

)
P [ψ, ψ+])

}

(E.99)

where the (∂µψ(s)) (∂µψ
+(s)) terms cancel. Thus only a first order functional

derivative term occurs.
Overall, the contribution to the functional Fokker-Planck equation from the

kinetic energy term is given by

(
∂

∂t
P [ψ, ψ+]

)

K

=
−i
~

{
−
ˆ

ds

{
δ

δψ+(s)

(
∑

µ

~
2

2m
∂2µψ

+(s)

)
P [ψ, ψ+]

}}

+
−i
~

{
+

ˆ

ds

{
δ

δψ(s)

(
∑

µ

~
2

2m
∂2µψ(s)

)
P [ψ, ψ+]

}}

(E.100)

Reverting to the original notation, the contribution to the functional Fokker-
Planck equation from the non-condensate kinetic energy term is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

K

=
−i
~

{
−
ˆ

ds

{
δ

δψ+
NC(s)

(
∑

µ

~
2

2m
∂2µψ

+
NC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

}}

+
−i
~

{
+

ˆ

ds

{
δ

δψNC(s)

(
∑

µ

~
2

2m
∂2µψNC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

}}

(E.101)
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Appendix E.5. Non-Condensate Trap Potential Terms

We write the trap potential as

V̂ =

ˆ

ds(Ψ̂(s)†V Ψ̂(s)) (E.102)

Now if

ρ̂→ V̂ ρ̂ =

ˆ

ds(Ψ̂(s)†V Ψ̂(s))ρ̂ (E.103)

then

P [ψ(r), ψ+(r)]

→
ˆ

ds

{(
ψ+(s)− δ

δψ(s)

)
V (s) (ψ(s))

}
P [ψ, ψ+]

(E.104)

After expanding we find that

P [ψ(r), ψ+(r)]

→
ˆ

ds
{
ψ(s)V (s)ψ+(s)

}
P [ψ, ψ+]−

ˆ

ds

{
δ

δψ(s)
V (s)ψ(s)

}
P [ψ, ψ+]

(E.105)

where we have re-ordered the ψ+(s)V (s)ψ(s) factor in the first term.
Now if

ρ̂→ ρ̂V̂ =

ˆ

dsρ̂Ψ̂(s)†V Ψ̂(s) (E.106)

then

P [ψ(r), ψ+(r)]

→
ˆ

ds

(
ψ(s)− δ

δψ+(s)

)
V (s)

(
ψ+(s)

)
P [ψ, ψ+]

(E.107)

After expanding we have

P [ψ(r), ψ+(r)]

→
ˆ

ds{ψ(s)V (s)ψ+(s)}P [ψ, ψ+]−
ˆ

ds

{
δ

δψ+(s)
V (s)ψ+(s)

}
P [ψ, ψ+]

(E.108)

We now combine the contributions so that when

ρ̂→ [V̂ , ρ̂] = [

ˆ

ds Ψ̂(s)†V (s)Ψ̂(s), ρ̂] (E.109)

then
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P [ψ(r), ψ+(r)] → P 1 (E.110)

which only involves a first order derivative since the zero order terms cancel.

P 1

= −
ˆ

ds

{
δ

δψ(s)
{V (s)ψ(s)}

}
P [ψ, ψ+] +

ˆ

ds

{
δ

δψ+(s)
V (s)ψ+(s)

}
P [ψ, ψ+]

(E.111)

Overall, the contribution to the functional Fokker-Planck equation from the
trap potential term is given by

(
∂

∂t
P [ψ, ψ+]

)

V

=
−i
~

{
−
ˆ

ds

{
δ

δψ(s)
{V (s)ψ(s)}

}
P [ψ, ψ+] +

ˆ

ds

{
δ

δψ+(s)
V (s)ψ+(s)

}
P [ψ, ψ+]

}

(E.112)

which only involves first order functional derivatives.
Reverting to the original notation, the contribution to the functional Fokker-

Planck equation from the non-condensate trap potential term is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V

=
−i
~

{
−
ˆ

ds

{
δ

δψNC(s)
{V (s)ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+

ˆ

ds

{
δ

δψ+
NC(s)

V (s)ψ+
NC(s)

}
P [ψ−→(r), ψ∗

−→(r)]

}
(E.113)

Appendix E.6. Non-Condensate Boson-Boson Interaction Terms

For the Bogoliubov Hamiltonian for which we derive the functional Fokker-
Planck equation this boson-boson interaction in the non-condensate Hamilto-
nian ĤNC is discarded, but for completeness we treat it here. We write the
boson-boson interaction potential as

Û =
g

2

ˆ

dsΨ̂(s)†Ψ̂(s)†Ψ̂(s)Ψ̂(s)

(E.114)

Now if

ρ̂→ Û ρ̂ =
g

2

ˆ

dsΨ̂(s)†Ψ̂(s)†Ψ̂(s)Ψ̂(s)ρ̂

(E.115)
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P [ψ(r), ψ+(r)]

→ g

2

ˆ

ds

(
ψ+(s)− δ

δψ(s)

)(
ψ+(s)− δ

δψ(s)

)
(ψ(s)) (ψ(s))P [ψ, ψ+]

=
g

2

ˆ

ds
{
ψ+(s)ψ+(s)ψ(s)ψ(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
−ψ+(s)

δ

δψ(s)
ψ(s)ψ(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
− δ

δψ(s)
ψ+(s)ψ(s)ψ(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
δ

δψ(s)

δ

δψ(s)
ψ(s)ψ(s)

}
P [ψ, ψ+]

(E.116)

After expanding we get

P [ψ(r), ψ+(r)] → g

2

ˆ

ds
{
ψ+(s)ψ+(s)ψ(s)ψ(s)

}
P [ψ, ψ+]

−g
2

ˆ

ds

{
ψ+(s)

δ

δψ(s)
ψ(s)ψ(s)

}
P [ψ, ψ+]

−g
2

ˆ

ds

{
δ

δψ(s)
ψ+(s)ψ(s)ψ(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
δ

δψ(s)

δ

δψ(s)
ψ(s)ψ(s)

}
P [ψ, ψ+]

(E.117)

We can now use the product rule for functional derivatives (E.319) together
with (E.320) and (E.321) to place all the derivatives on the left of the expression
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and obtain

P [ψ(r), ψ+(r)]

→ g

2

ˆ

ds
{
ψ(s)ψ(s)ψ+(s)ψ+(s)

}
P [ψ, ψ+]

−g
2

ˆ

ds

{
δ

δψ(s)
ψ+(s)ψ(s)ψ(s)

}
P [ψ, ψ+] T 2

−g
2

ˆ

ds

{
δ

δψ(s)
ψ+(s)ψ(s)ψ(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
δ

δψ(s)

δ

δψ(s)
ψ(s)ψ(s)

}
W [ψ, ψ+]

=
g

2

ˆ

ds
{
ψ(s)ψ(s)ψ+(s)ψ+(s)

}
P [ψ, ψ+]

−g
ˆ

ds

{
δ

δψ(s)
ψ+(s)ψ(s)ψ(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
δ

δψ(s)

δ

δψ(s)
ψ(s)ψ(s)

}
W [ψ, ψ+]

(E.118)

where we have also rearranged the order of the factors in ψ+(s)ψ+(s)ψ(s)ψ(s).
Details include
T2

δ

δψ(s)
{ψ+(s)ψ(s)ψ(s)P}

=
δ

δψ(s)
{ψ+(s)}ψ(s)ψ(s)P + ψ+(s){ δ

δψ(s)
ψ(s)ψ(s)P}

= ψ+(s){ δ

δψ(s)
ψ(s)ψ(s)P}

ψ+(s){ δ

δψ(s)
ψ(s)ψ(s)P [ψ, ψ+]}

=
δ

δψ(s)
{ψ+(s)ψ(s)ψ(s)P [ψ, ψ+]}

Now if

ρ̂→ ρ̂Û =
g

2

ˆ

dsρ̂Ψ̂(s)†Ψ̂(s)†Ψ̂(s)Ψ̂(s)

(E.119)
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then

P [ψ(r), ψ+(r)]

→ g

2

ˆ

ds

(
ψ(s)− δ

δψ+(s)

)(
ψ(s)− δ

δψ+(s)

)(
ψ+(s)

) (
ψ+(s)

)
P [ψ, ψ+]

=
g

2

ˆ

ds
{
ψ(s)ψ(s)ψ+(s)ψ+(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
−ψ(s) δ

δψ+(s)
ψ+(s)ψ+(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
− δ

δψ+(s)
ψ(s)ψ+(s)ψ+(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
δ

δψ+(s)

δ

δψ+(s)
ψ+(s)ψ+(s)

}
P [ψ, ψ+]

(E.120)

After expanding we obtain

P [ψ(r), ψ+(r)] → g

2

ˆ

ds
{
ψ(s)ψ(s)ψ+(s)ψ+(s)

}
P [ψ, ψ+]

−g
2

ˆ

ds

{
ψ(s)

δ

δψ+(s)
ψ+(s)ψ+(s)

}
P [ψ, ψ+]

−g
2

ˆ

ds

{
δ

δψ+(s)
ψ(s)ψ+(s)ψ+(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
δ

δψ+(s)

δ

δψ+(s)
ψ+(s)ψ+(s)

}
P [ψ, ψ+]

(E.121)

We can now use the product rule for functional derivatives (E.319) together
with (E.320) and (E.321) to place all the derivatives on the left of the expression.

However the results can more easily be obtained by noticing that the ρ̂Û is the
same as the Û ρ̂ if we interchange ψ(s) and ψ+(s) everywhere. Hence
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P [ψ(r), ψ+(r)]

→ g

2

ˆ

ds
{
ψ(s)ψ(s)ψ+(s)ψ+(s)

}
P [ψ, ψ+]

−g
2

ˆ

ds

{
δ

δψ+(s)
ψ(s)ψ+(s)ψ+(s)

}
P [ψ, ψ+]

−g
2

ˆ

ds

{
δ

δψ+(s)
ψ(s)ψ+(s)ψ+(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
δ

δψ+(s)

δ

δψ+(s)
ψ+(s)ψ+(s)

}
P [ψ, ψ+]

=
g

2

ˆ

ds
{
ψ(s)ψ(s)ψ+(s)ψ+(s)

}
P [ψ, ψ+]

−g
ˆ

ds

{
δ

δψ+(s)
ψ(s)ψ+(s)ψ+(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
δ

δψ+(s)

δ

δψ+(s)
ψ+(s)ψ+(s)

}
P [ψ, ψ+]

(E.122)

We now combine the contributions so that when

ρ̂→ [Û , ρ̂] = [
g

2

ˆ

ds Ψ̂(s)†Ψ̂(s)†Ψ̂(s)Ψ̂(s), ρ̂]

(E.123)

then

P [ψ(r), ψ+(r)] → P 1 + P 2

(E.124)

where the terms are listed via the order of derivatives that occur

P 1

= +g

ˆ

ds

{
δ

δψ+(s)
ψ+(s)ψ+(s)ψ(s)

}
P [ψ, ψ+]

−g
ˆ

ds

{
δ

δψ(s)
ψ(s)ψ(s)ψ+(s)

}
P [ψ, ψ+]

(E.125)

P 2

= −g
2

ˆ

ds

{
δ

δψ+(s)

δ

δψ+(s)
ψ+(s)ψ+(s)

}
P [ψ, ψ+]

+
g

2

ˆ

ds

{
δ

δψ(s)

δ

δψ(s)
ψ(s)ψ(s)

}
P [ψ, ψ+]

(E.126)
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Overall, the contribution to the functional Fokker-Planck equation from the
boson-boson interaction is given by

(
∂

∂t
P [ψ, ψ+]

)

U

=
−i
~

{
−g
ˆ

ds
δ

δψ(s)

{
(ψ+(s)ψ(s)}ψ(s)

}
P [ψ, ψ+]

}

+
−i
~

{
+g

ˆ

ds
δ

δψ+(s)

{
(ψ+(s)ψ(s))ψ+(s)

}
P [ψ, ψ+]

}

+
−i
~

{
g

2

ˆ

ds
δ

δψ(s)

δ

δψ(s)
{ψ(s)ψ(s)}P [ψ, ψ+]

}

+
−i
~

{
−g
2

ˆ

ds
δ

δψ+(s)

δ

δψ+(s)
{ψ+(s)ψ+(s)}P [ψ, ψ+]

}

(E.127)

which involves first order and second order functional derivatives.
Reverting to the original notation the contribution to the functional Fokker-

Planck equation from the non-condensate boson-boson interaction term is given
by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

U

=
−i
~

{
−g
ˆ

ds
δ

δψNC(s)

{
(ψ+
NC(s)ψNC(s))ψNC(s)

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds
δ

δψ+
NC(s)

{
(ψ+
NC(s)ψNC(s))ψ

+
NC(s)

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
g

ˆ

ds
δ

δψNC(s)

δ

δψNC(s)
{1
2
ψNC(s)ψNC(s)}P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds
δ

δψ+
NC(s)

δ

δψ+
NC(s)

{1
2
ψ+
NC(s)ψ

+
NC(s)}P [ψ−→(r), ψ∗

−→(r)]

}

(E.128)

Note that this term is not included in the final functional Fokker-Planck equation
for the Bogoliubov Hamiltonian.

Similar expressions for the functional Fokker-Planck equation in the case of
a pure P representation (but not involving a doubled phase space) are given in
the paper by Steel et al [[55]] (see Eq. (17)). Comparisons can be made by
substituting ψ+

NC(s) with ψ∗
NC(s). As in the present result, no restricted delta

function δC(s, s) term in the interaction contribution appears in a P represen-
tation approach.
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Appendix E.7. Condensate - Non-Condensate Interaction - First Order in Non-
Condensate

The first order term in the interaction between the condensate and the non-
condensate is

V̂1 = g

ˆ

dr Ψ̂†
NC(r){Ψ̂

†
C(r) Ψ̂C(r)}Ψ̂C(r)− g

ˆ ˆ

dr dsF (r, s)Ψ̂NC(r)
† Ψ̂C(s)

+g

ˆ

dr Ψ̂†
C(r){Ψ̂

†
C(r) Ψ̂C(r)}Ψ̂NC(r) − g

ˆ ˆ

dr dsF ∗(s, r)Ψ̂C(r)
†Ψ̂NC(s)

(E.129)

This is the sum of two terms, one fourth order in the field operators, the
other second order.

V̂14 = g

ˆ

dr Ψ̂†
NC(r)Ψ̂

†
C(r) Ψ̂C(r)Ψ̂C(r) + g

ˆ

dr Ψ̂†
C(r)Ψ̂

†
C(r) Ψ̂C(r)Ψ̂NC(r)

(E.130)

V̂12 = −g
ˆ ˆ

dr dsF (r, s)Ψ̂NC(r)
† Ψ̂C(s)− g

ˆ ˆ

dr dsF ∗(s, r)Ψ̂C(r)
†Ψ̂NC(s)

(E.131)

Appendix E.7.1. Fourth Order Term

Now if

ρ̂→ V̂14 ρ̂ = g

ˆ

ds (Ψ̂†
NC(s)Ψ̂

†
C(s) Ψ̂C(s)Ψ̂C(s)) + Ψ̂†

C(s)Ψ̂
†
C(s) Ψ̂C(s)Ψ̂NC(s))ρ̂

(E.132)

then

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ g

ˆ

ds

(
φ+(s)− δ

δφ(s)

)(
ψ+(s)− 1

2

δ

δψ(s)

)(
ψ(s) +

1

2

δ

δψ+(s)

)

×
(
ψ(s) +

1

2

δ

δψ+(s)

)
WP

+g

ˆ

ds

(
ψ+(s)− 1

2

δ

δψ(s)

)(
ψ+(s)− 1

2

δ

δψ(s)

)(
ψ(s) +

1

2

δ

δψ+(s)

)

× (φ(s))WP [ψ, ψ+, φ, φ+]

(E.133)

Expanding out the terms gives

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ WP [ψ(r), ψ+(r), φ(r), φ+(r)]1−16 +WP [ψ(r), ψ+(r), φ(r), φ+(r)]17−24

(E.134)
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where

WP [ψ(r), ψ+(r), φ(r), φ+(r)]1−16

= g

ˆ

ds
{(
φ+(s)

) (
ψ+(s)

)
(ψ(s)) (ψ(s))

}
WP

+g

ˆ

ds

{(
φ+(s)

) (
ψ+(s)

)
(ψ(s))

(
1

2

δ

δψ+(s)

)}
WP

+g

ˆ

ds

{(
φ+(s)

) (
ψ+(s)

)(1

2

δ

δψ+(s)

)
(ψ(s))

}
WP

+g

ˆ

ds

{(
φ+(s)

) (
ψ+(s)

)(1

2

δ

δψ+(s)

)(
1

2

δ

δψ+(s)

)}
WP

+g

ˆ

ds

{(
φ+(s)

)(
−1

2

δ

δψ(s)

)
(ψ(s)) (ψ(s))

}
WP

+g

ˆ

ds

{(
φ+(s)

)(
−1

2

δ

δψ(s)

)
(ψ(s))

(
1

2

δ

δψ+(s)

)}
WP

+g

ˆ

ds

{(
φ+(s)

)(
−1

2

δ

δψ(s)

)(
1

2

δ

δψ+(s)

)
(ψ(s))

}
WP

+g

ˆ

ds

{(
φ+(s)

)(
−1

2

δ

δψ(s)

)(
1

2

δ

δψ+(s)

)(
1

2

δ

δψ+(s)

)}
WP

+g

ˆ

ds

{(
− δ

δφ(s)

)(
ψ+(s)

)
(ψ(s)) (ψ(s))

}
WP

+g

ˆ

ds

{(
− δ

δφ(s)

)(
ψ+(s)

)
(ψ(s))

(
1

2

δ

δψ+(s)

)}
WP

+g

ˆ

ds

{(
− δ

δφ(s)

)(
ψ+(s)

)(1

2

δ

δψ+(s)

)
(ψ(s))

}
WP

+g

ˆ

ds

{(
− δ

δφ(s)

)(
ψ+(s)

)(1

2

δ

δψ+(s)

)(
1

2

δ

δψ+(s)

)}
WP

+g

ˆ

ds

{(
− δ

δφ(s)

)(
−1

2

δ

δψ(s)

)
(ψ(s)) (ψ(s))

}
WP

+g

ˆ

ds

{(
− δ

δφ(s)

)(
−1

2

δ

δψ(s)

)
(ψ(s))

(
1

2

δ

δψ+(s)

)}
WP

+g

ˆ

ds

{(
− δ

δφ(s)

)(
−1

2

δ

δψ(s)

)(
1

2

δ

δψ+(s)

)
(ψ(s))

}
WP

+g

ˆ

ds

{(
− δ

δφ(s)

)(
−1

2

δ

δψ(s)

)(
1

2

δ

δψ+(s)

)(
1

2

δ

δψ+(s)

)}
WP
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and

WP [ψ(r), ψ+(r), φ(r), φ+(r)]17−24

= +g

ˆ

ds
{(
ψ+(s)

) (
ψ+(s)

)
(ψ(s)) (φ(s))

}
WP

+g

ˆ

ds

{(
ψ+(s)

) (
ψ+(s)

)(1

2

δ

δψ+(s)

)
(φ(s))

}
WP

+g

ˆ

ds

{(
ψ+(s)

)(
−1

2

δ

δψ(s)

)
(ψ(s)) (φ(s))

}
WP

+g

ˆ

ds

{(
ψ+(s)

)(
−1

2

δ

δψ(s)

)(
1

2

δ

δψ+(s)

)
(φ(s))

}
WP

+g

ˆ

ds

{(
−1

2

δ

δψ(s)

)(
ψ+(s)

)
(ψ(s)) (φ(s))

}
WP

+g

ˆ

ds

{(
−1

2

δ

δψ(s)

)(
ψ+(s)

)(1

2

δ

δψ+(s)

)
(φ(s))

}
WP

+g

ˆ

ds

{(
−1

2

δ

δψ(s)

)(
−1

2

δ

δψ(s)

)
(ψ(s)) (φ(s))

}
WP

+g

ˆ

ds

{(
−1

2

δ

δψ(s)

)(
−1

2

δ

δψ(s)

)(
1

2

δ

δψ+(s)

)
(φ(s))

}
WP

or on further simplification

175



WP [ψ(r), ψ+(r), φ(r), φ+(r)]1−16

= g

ˆ

ds
{(
φ+(s)

) (
ψ+(s)

)
(ψ(s)) (ψ(s))

}
WP T1

+g

ˆ

ds
1

2

{(
φ+(s)

) (
ψ+(s)

)
(ψ(s))

(
δ

δψ+(s)

)}
WP T2

+g

ˆ

ds
1

2

{(
φ+(s)

) (
ψ+(s)

)( δ

δψ+(s)

)
(ψ(s))

}
WP T3

+g

ˆ

ds
1

4

{(
φ+(s)

) (
ψ+(s)

)( δ

δψ+(s)

)(
δ

δψ+(s)

)}
WP T4

−g
ˆ

ds
1

2

{(
φ+(s)

) ( δ

δψ(s)

)
(ψ(s)) (ψ(s))

}
WP T5

−g
ˆ

ds
1

4

{(
φ+(s)

) ( δ

δψ(s)

)
(ψ(s))

(
δ

δψ+(s)

)}
WP T6

−g
ˆ

ds
1

4

{(
φ+(s)

) ( δ

δψ(s)

)(
δ

δψ+(s)

)
(ψ(s))

}
WP T7

−g
ˆ

ds
1

8

{(
φ+(s)

) ( δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)}
WP T8

−g
ˆ

ds

{(
δ

δφ(s)

)(
ψ+(s)

)
(ψ(s)) (ψ(s))

}
WP T9

−g
ˆ

ds
1

2

{(
δ

δφ(s)

)(
ψ+(s)

)
(ψ(s))

(
δ

δψ+(s)

)}
WP T10

−g
ˆ

ds
1

2

{(
δ

δφ(s)

)(
ψ+(s)

)( δ

δψ+(s)

)
(ψ(s))

}
WP T11

−g
ˆ

ds
1

4

{(
δ

δφ(s)

)(
ψ+(s)

)( δ

δψ+(s)

)(
δ

δψ+(s)

)}
WP T12

+g

ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ(s)

)
(ψ(s)) (ψ(s))

}
WP T13

+g

ˆ

ds
1

4

{(
δ

δφ(s)

)(
δ

δψ(s)

)
(ψ(s))

(
δ

δψ+(s)

)}
WP T14

+g

ˆ

ds
1

4

{(
δ

δφ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
(ψ(s))

}
WP T15

+g

ˆ

ds
1

8

{(
δ

δφ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)}
WP T16

(E.135)
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and

WP [ψ(r), ψ+(r), φ(r), φ+(r)]17−24

= +g

ˆ

ds
{(
ψ+(s)

) (
ψ+(s)

)
(ψ(s)) (φ(s))

}
WP T17

+g

ˆ

ds
1

2

{(
ψ+(s)

) (
ψ+(s)

)( δ

δψ+(s)

)
(φ(s))

}
WP T18

−g
ˆ

ds
1

2

{(
ψ+(s)

)( δ

δψ(s)

)
(ψ(s)) (φ(s))

}
WP T19

−g
ˆ

ds
1

4

{(
ψ+(s)

)( δ

δψ(s)

)(
δ

δψ+(s)

)
(φ(s))

}
WP T20

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)(
ψ+(s)

)
(ψ(s)) (φ(s))

}
WP T21

−g
ˆ

ds
1

4

{(
δ

δψ(s)

)(
ψ+(s)

)( δ

δψ+(s)

)
(φ(s))

}
WP T22

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
(ψ(s)) (φ(s))

}
WP T23

+g

ˆ

ds
1

8

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
(φ(s))

}
WP T24

(E.136)

These terms can be simplified in terms of placing all the functional deriva-
tives on the left by using the product rule (E.319) together with (E.320) and
(E.321) for functional differentiation and noting that many functional deriva-
tives are zero.

For the T2 term
ˆ

ds
1

2

{(
φ+(s)

) (
ψ+(s)

)
(ψ(s))

(
δ

δψ+(s)

)}
WP

=

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)ψ(s)} − {δC(s, s)φ+(s)ψ(s)}

}
WP

=

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)ψ(s)}

}
WP

−
ˆ

ds
1

2
{δC(s, s)φ+(s)ψ(s)}WP

177



For the T3 term
ˆ

ds
1

2

{(
φ+(s)

) (
ψ+(s)

)( δ

δψ+(s)

)
(ψ(s))

}
WP

=

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)ψ(s)} − {δC(s, s)φ+(s)ψ(s)}

}
WP

=

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)ψ(s)}

}
WP

−
ˆ

ds
1

2
{δC(s, s)φ+(s)ψ(s)}WP

For the T4 term
ˆ

ds
1

4

{(
φ+(s)

) (
ψ+(s)

)( δ

δψ+(s)

)(
δ

δψ+(s)

)}
WP

=

ˆ

ds
1

4

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)} − {φ+(s)δC(s, s)}

}(
δ

δψ+(s)

)
WP

=

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ+(s)}

}
WP

−
ˆ

ds
1

4

{(
δ

δψ+(s)

)
{φ+(s)δC(s, s)}

}
WP

−
ˆ

ds
1

4

(
δ

δψ+(s)
{φ+(s)δC(s, s)}

)
WP

=

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ+(s)}

}
WP

−
ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ+(s)δC(s, s)}

}
WP

For the T5 term
ˆ

ds
1

2

{(
φ+(s)

)( δ

δψ(s)

)
(ψ(s)) (ψ(s))

}
WP

=

ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ+(s)ψ(s)ψ(s)}

}
WP

For the T6 term
ˆ

ds
1

4

{(
φ+(s)

)( δ

δψ(s)

)
(ψ(s))

(
δ

δψ+(s)

)}
WP

=

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ(s)}

}
WP

For the T7 term
ˆ

ds
1

4

{(
φ+(s)

)( δ

δψ(s)

)(
δ

δψ+(s)

)
(ψ(s))

}
WP

=

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ(s)}

}
WP
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For the T8 term
ˆ

ds
1

8

{(
φ+(s)

)( δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)}
WP

=

ˆ

ds
1

8

{(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{φ+(s)}

}
WP

For the T9 term
ˆ

ds

{(
δ

δφ(s)

)(
ψ+(s)

)
(ψ(s)) (ψ(s))

}
WP

=

ˆ

ds

{(
δ

δφ(s)

)
{ψ+(s)ψ(s)ψ(s)}

}
WP

For the T10 term
ˆ

ds
1

2

{(
δ

δφ(s)

)(
ψ+(s)

)
(ψ(s))

(
δ

δψ+(s)

)}
WP

=

ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{ψ+(s)ψ(s)}

}
WP

−
ˆ

ds
1

2

{(
δ

δφ(s)

)
{δC(s, s)ψ(s)}

}
WP

For the T11 term
ˆ

ds
1

2

{(
δ

δφ(s)

)(
ψ+(s)

)( δ

δψ+(s)

)
(ψ(s))

}
WP

=

ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{ψ+(s)ψ(s)}

}
WP

−
ˆ

ds
1

2

{(
δ

δφ(s)

)
{δC(s, s)ψ(s)}

}
WP
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For the T12 term
ˆ

ds
1

4

{(
δ

δφ(s)

)(
ψ+(s)

)( δ

δψ+(s)

)(
δ

δψ+(s)

)}
WP

=

ˆ

ds
1

4

(
δ

δφ(s)

){(
δ

δψ+(s)

)(
ψ+(s)

)( δ

δψ+(s)

)}
WP

−
ˆ

ds
1

4

(
δ

δφ(s)

){
δC(s, s)

(
δ

δψ+(s)

)}
WP

=

ˆ

ds
1

4

(
δ

δφ(s)

){(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{ψ+(s)}

}
WP

−
ˆ

ds
1

4

(
δ

δφ(s)

){(
δ

δψ+(s)

)
{δC(s, s)}

}
WP

−
ˆ

ds
1

4

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{δC(s, s)}

}
WP

=

ˆ

ds
1

4

{(
δ

δφ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{ψ+(s)}

}
WP

−
ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{δC(s, s)}

}
WP

For the T13 term
ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ(s)

)
(ψ(s)) (ψ(s))

}
WP

=

ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ(s)

)
{ψ(s)ψ(s)}

}
WP

For the T14 term
ˆ

ds
1

4

{(
δ

δφ(s)

)(
δ

δψ(s)

)
(ψ(s))

(
δ

δψ+(s)

)}
WP

=

ˆ

ds
1

4

{(
δ

δφ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ(s)}

}
WP

For the T15 term
ˆ

ds
1

4

{(
δ

δφ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
(ψ(s))

}
WP

=

ˆ

ds
1

4

{(
δ

δφ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ(s)}

}
WP

For the T18 term
ˆ

ds
1

2

{(
ψ+(s)

) (
ψ+(s)

)( δ

δψ+(s)

)
(φ(s))

}
WP

=

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{ψ+(s)ψ+(s)φ(s)}

}
WP

−
ˆ

ds
1

2

{
2δC(s, s)ψ

+(s)φ(s)
}
WP
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For the T19 term
ˆ

ds
1

2

{(
ψ+(s)

)( δ

δψ(s)

)
(ψ(s)) (φ(s))

}
WP

=

ˆ

ds
1

2

{(
δ

δψ(s)

)
{ψ+(s)ψ(s)φ(s)}

}
WP

For the T20 term
ˆ

ds
1

4

{(
ψ+(s)

)( δ

δψ(s)

)(
δ

δψ+(s)

)
(φ(s))

}
WP

=

ˆ

ds
1

4

{(
δ

δψ(s)

)(
ψ+(s)

)( δ

δψ+(s)

)
(φ(s))

}
WP

=

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ(s)}

}
WP

−
ˆ

ds
1

4

{(
δ

δψ(s)

)
{δC(s, s)φ(s)}

}
WP

For the T21 term
ˆ

ds
1

2

{(
δ

δψ(s)

)(
ψ+(s)

)
(ψ(s)) (φ(s))

}
WP

=

ˆ

ds
1

2

{(
δ

δψ(s)

)
{ψ+(s)ψ(s)φ(s)}

}
WP

For the T22 term
ˆ

ds
1

4

{(
δ

δψ(s)

)(
ψ+(s)

)( δ

δψ+(s)

)
(φ(s))

}
WP

=

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ(s)}

}
WP

−
ˆ

ds
1

4

{(
δ

δψ(s)

)
{δC(s, s)φ(s)}

}
WP

For the T23 term
ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
(ψ(s)) (φ(s))

}
WP

For the T24 term
ˆ

ds
1

8

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
(φ(s))

}
WP

=

ˆ

ds
1

8

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ(s)}

}
WP

Hence substituting these results we have
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WP [ψ(r), ψ+(r), φ(r), φ+(r)]1−16

= g

ˆ

ds
{
φ+(s)ψ+(s)ψ(s)ψ(s)

}
WP F1

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)ψ(s)}

}
WP F2.1

−g
ˆ

ds
1

2
{δC(s, s)φ+(s)ψ(s)}WP F2.2

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)ψ(s)}

}
WP F3.1

−g
ˆ

ds
1

2
{δC(s, s)φ+(s)ψ(s)}WP F3.2

+g

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ+(s)}

}
WP F4.1

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ+(s)δC(s, s)}

}
WP F4.2

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ+(s)ψ(s)ψ(s)}

}
WP F5

−g
ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ(s)}

}
WP F6

−g
ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ(s)}

}
WP F7

−g
ˆ

ds
1

8

{(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{φ+(s)}

}
WP F8

−g
ˆ

ds

{(
δ

δφ(s)

)
{ψ+(s)ψ(s)ψ(s)}

}
WP F9

−g
ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{ψ+(s)ψ(s)}

}
WP F10.1

+g

ˆ

ds
1

2

{(
δ

δφ(s)

)
{δC(s, s)ψ(s)}

}
WP F10.2

−g
ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{ψ+(s)ψ(s)}

}
WP F11.1

+g

ˆ

ds
1

2

{(
δ

δφ(s)

)
{δC(s, s)ψ(s)}

}
WP F11.2

−g
ˆ

ds
1

4

{(
δ

δφ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{ψ+(s)}

}
WP F12.1

+g

ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{δC(s, s)}

}
WP F12.2

+g

ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ(s)

)
{ψ(s)ψ(s)}

}
WP F13

+g

ˆ

ds
1

4

{(
δ

δφ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ(s)}

}
WP F14

+g

ˆ

ds
1

4

{(
δ

δφ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ(s)}

}
WP F15

+g

ˆ

ds
1

8

{(
δ

δφ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)}
WP F16

(E.137)
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and

WP [ψ(r), ψ+(r), φ(r), φ+(r)]17−24

= +g

ˆ

ds
{
ψ+(s)ψ+(s)ψ(s)φ(s)

}
WP F17

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{ψ+(s)ψ+(s)φ(s)}

}
WP F18.1

−g
ˆ

ds
1

2

{
2δC(s, s)ψ

+(s)φ(s)
}
WP F18.2

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)
{ψ+(s)ψ(s)φ(s)}

}
WP F19

−g
ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ(s)}

}
WP F20.1

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)
{δC(s, s)φ(s)}

}
WP F20.2

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)
{ψ+(s)ψ(s)φ(s)}

}
WP F21

−g
ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ(s)}

}
WP F22.1

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)
{δC(s, s)φ(s)}

}
WP F22.2

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
(ψ(s)) (φ(s))

}
WP F23

+g

ˆ

ds
1

8

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ(s)}

}
WP F24

(E.138)

Collecting terms with the same order of functional derivatives we have

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ WP 0 +WP 1 +WP 2 +WP 3 +WP 4

(E.139)
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where we have used upper subscripts for the V̂14ρ̂ contributions and

WP 0

= g

ˆ

ds
{
φ+(s)ψ+(s)ψ(s)ψ(s)

}
WP F1

+g

ˆ

ds
1

2

{
−{δC(s, s)φ+(s)ψ(s)}

}
WP F2.2

+g

ˆ

ds
1

2

{
−{δC(s, s)φ+(s)ψ(s)}

}
WP F3.2

+g

ˆ

ds
{
ψ+(s)ψ+(s)ψ(s)φ(s)

}
WP F17

−g
ˆ

ds
1

2

{
2δC(s, s)ψ

+(s)φ(s)
}
WP F18

= g

ˆ

ds
{
φ+(s)ψ+(s)ψ(s)ψ(s)

}
WP [ψ, ψ+, φ, φ+]

+g

ˆ

ds
{
ψ+(s)ψ+(s)ψ(s)φ(s)

}
WP [ψ, ψ+, φ, φ+]

−g
ˆ

ds {δC(s, s)φ+(s)ψ(s)}WP [ψ, ψ+, φ, φ+]

−g
ˆ

ds {δC(s, s)ψ+(s)φ(s)}WP [ψ, ψ+, φ, φ+]

(E.140)
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WP 1

= +g

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)ψ(s)}

}
WP F2.1

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)ψ(s)}

}
WP F3.1

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ+(s)δC(s, s)}

}
WP F4.2

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ+(s)ψ(s)ψ(s)}

}
WP F5

−g
ˆ

ds

{(
δ

δφ(s)

)
{ψ+(s)ψ(s)ψ(s)}

}
WP F9

+g

ˆ

ds
1

2

{(
δ

δφ(s)

)
{δC(s, s)ψ(s)}

}
WP F10.2

+g

ˆ

ds
1

2

{(
δ

δφ(s)

)
{δC(s, s)ψ(s)}

}
WP F11.2

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{ψ+(s)ψ+(s)φ(s)}

}
WP F18.1

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)
{ψ+(s)ψ(s)φ(s)}

}
WP F19

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)
{δC(s, s)φ(s)}

}
WP F20.2

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)
{ψ+(s)ψ(s)φ(s)}

}
WP F21

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)
{δC(s, s)φ(s)}

}
WP F22.2

= +g

ˆ

ds

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{ψ+(s)ψ+(s)φ(s)}

}
WP [ψ, ψ+, φ, φ+]

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ+(s)δC(s, s)}

}
WP [ψ, ψ+, φ, φ+]

−g
ˆ

ds

{(
δ

δψ(s)

)
{ψ+(s)ψ(s)φ(s)}

}
WP [ψ, ψ+, φ, φ+]

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ+(s)ψ(s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)
{δC(s, s)φ(s)}

}
WP [ψ, ψ+, φ, φ+]

−g
ˆ

ds

{(
δ

δφ(s)

)
{ψ+(s)ψ(s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

+g

ˆ

ds

{(
δ

δφ(s)

)
{δC(s, s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+] (E.141)
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WP 2

= +g

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ+(s)}

}
WP F4.1

−g
ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ(s)}

}
WP F6

−g
ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ(s)}

}
WP F7

−g
ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{ψ+(s)ψ(s)}

}
WP F10.1

−g
ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{ψ+(s)ψ(s)}

}
WP F11.1

+g

ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{δC(s, s)}

}
WP F12.2

+g

ˆ

ds
1

2

{(
δ

δφ(s)

)(
δ

δψ(s)

)
{ψ(s)ψ(s)}

}
WP F13

−g
ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ(s)}

}
WP F20.1

−g
ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ(s)}

}
WP F22.1

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
(ψ(s)) (φ(s))

}
WP F23

= +g

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ+(s)}

}
WP [ψ, ψ+, φ, φ+]

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ+(s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

−g
ˆ

ds

{(
δ

δψ+(s)

)(
δ

δφ(s)

)
{ψ+(s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δφ(s)

)
{δC(s, s)}

}
WP [ψ, ψ+, φ, φ+]

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δφ(s)

)
{ψ(s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ+(s)φ(s)}

}
WP [ψ, ψ+, φ, φ+]

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
{ψ(s)φ(s)}

}
WP [ψ, ψ+, φ, φ+]

(E.142)
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WP 3

= −g
ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ+(s)}

}
WP F8

−g
ˆ

ds
1

4

{(
δ

δφ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{ψ+(s)}

}
WP F12.1

+g

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δφ(s)

)
{ψ(s)}

}
WP F14

+g

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δφ(s)

)
{ψ(s)}

}
WP F15

+g

ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)}

}
WP F24

= −g
ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ+(s)}

}
WP [ψ, ψ+, φ, φ+]

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δφ(s)

)
{ψ+(s)}

}
WP [ψ, ψ+, φ, φ+]

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δφ(s)

)
{ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

+g

ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)}

}
WP [ψ, ψ+, φ, φ+]

(E.143)

WP 4

= +g

ˆ

ds
1

8

{(
δ

δφ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)}
WP F16

= +g

ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δφ(s)

)}
WP [ψ, ψ+, φ, φ+]

(E.144)

Now if

ρ̂→ ρ̂ V̂14 = g

ˆ

ds ρ̂ (Ψ̂†
NC(s)Ψ̂

†
C(s) Ψ̂C(s)Ψ̂C(s))

+ g

ˆ

ds ρ̂ (Ψ̂†
C(s)Ψ̂

†
C(s) Ψ̂C(s)Ψ̂NC(s))

(E.145)
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then

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ g

ˆ

ds

(
ψ(s)− 1

2

δ

δψ+(s)

)(
ψ(s)− 1

2

δ

δψ+(s)

)(
ψ+(s) +

1

2

δ

δψ(s)

)

×
(
φ+(s)

)
WP

+g

ˆ

ds

(
φ(s)− δ

δφ+(s)

)(
ψ(s)− 1

2

δ

δψ+(s)

)(
ψ+(s) +

1

2

δ

δψ(s)

)

×
(
ψ+(s) +

1

2

δ

δψ(s)

)
WP

(E.146)

Expanding this expression gives

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ WP [ψ(r), ψ+(r), φ(r), φ+(r)]1−8 +WP [ψ(r), ψ+(r), φ(r), φ+(r)]9−24

(E.147)

where

WP [ψ(r), ψ+(r), φ(r), φ+(r)]1−8

= g

ˆ

ds
{
(ψ(s)) (ψ(s))

(
ψ+(s)

) (
φ+(s)

)}
WP

+g

ˆ

ds

{
(ψ(s)) (ψ(s))

(
1

2

δ

δψ(s)

)(
φ+(s)

)}
WP

+g

ˆ

ds

{
(ψ(s))

(
−1

2

δ

δψ+(s)

)(
ψ+(s)

) (
φ+(s)

)}
WP

+g

ˆ

ds

{
(ψ(s))

(
−1

2

δ

δψ+(s)

)(
1

2

δ

δψ(s)

)(
φ+(s)

)}
WP

+g

ˆ

ds

{(
−1

2

δ

δψ+(s)

)
(ψ(s))

(
ψ+(s)

) (
φ+(s)

)}
WP

+g

ˆ

ds

{(
−1

2

δ

δψ+(s)

)
(ψ(s))

(
1

2

δ

δψ(s)

)(
φ+(s)

)}
WP

+g

ˆ

ds

{(
−1

2

δ

δψ+(s)

)(
−1

2

δ

δψ+(s)

)(
ψ+(s)

) (
φ+(s)

)}
WP

+g

ˆ

ds

{(
−1

2

δ

δψ+(s)

)(
−1

2

δ

δψ+(s)

)(
1

2

δ

δψ(s)

)(
φ+(s)

)}
WP
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and

WP [ψ(r), ψ+(r), φ(r), φ+(r)]9−24

= +g

ˆ

ds (φ(s)) (ψ(s))
(
ψ+(s)

) (
ψ+(s)

)
WP

+g

ˆ

ds (φ(s)) (ψ(s))
(
ψ+(s)

) (1

2

δ

δψ(s)

)
WP

+g

ˆ

ds (φ(s)) (ψ(s))

(
1

2

δ

δψ(s)

)(
ψ+(s)

)
WP

+g

ˆ

ds (φ(s)) (ψ(s))

(
1

2

δ

δψ(s)

)(
1

2

δ

δψ(s)

)
WP

+g

ˆ

ds (φ(s))

(
−1

2

δ

δψ+(s)

)(
ψ+(s)

) (
ψ+(s)

)
WP

+g

ˆ

ds (φ(s))

(
−1

2

δ

δψ+(s)

)(
ψ+(s)

)(1

2

δ

δψ(s)

)
WP

+g

ˆ

ds (φ(s))

(
−1

2

δ

δψ+(s)

)(
1

2

δ

δψ(s)

)(
ψ+(s)

)
WP

+g

ˆ

ds (φ(s))

(
−1

2

δ

δψ+(s)

)(
1

2

δ

δψ(s)

)(
1

2

δ

δψ(s)

)
WP

+g

ˆ

ds

(
− δ

δφ+(s)

)
(ψ(s))

(
ψ+(s)

) (
ψ+(s)

)
WP

+g

ˆ

ds

(
− δ

δφ+(s)

)
(ψ(s))

(
ψ+(s)

)(1

2

δ

δψ(s)

)
WP

+g

ˆ

ds

(
− δ

δφ+(s)

)
(ψ(s))

(
1

2

δ

δψ(s)

)(
ψ+(s)

)
WP

+g

ˆ

ds

(
− δ

δφ+(s)

)
(ψ(s))

(
1

2

δ

δψ(s)

)(
1

2

δ

δψ(s)

)
WP

+g

ˆ

ds

(
− δ

δφ+(s)

)(
−1

2

δ

δψ+(s)

)(
ψ+(s)

) (
ψ+(s)

)
WP

+g

ˆ

ds

(
− δ

δφ+(s)

)(
−1

2

δ

δψ+(s)

)(
ψ+(s)

) (1

2

δ

δψ(s)

)
WP

+g

ˆ

ds

(
− δ

δφ+(s)

)(
−1

2

δ

δψ+(s)

)(
1

2

δ

δψ(s)

)(
ψ+(s)

)
WP

+g

ˆ

ds

(
− δ

δφ+(s)

)(
−1

2

δ

δψ+(s)

)(
1

2

δ

δψ(s)

)(
1

2

δ

δψ(s)

)
WP
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Collecting terms gives

WP [ψ(r), ψ+(r), φ(r), φ+(r)]1−8

= g

ˆ

ds
{
(ψ(s)) (ψ(s))

(
ψ+(s)

) (
φ+(s)

)}
WP S1

+g

ˆ

ds
1

2

{
(ψ(s)) (ψ(s))

(
δ

δψ(s)

)(
φ+(s)

)}
WP S2

−g
ˆ

ds
1

2

{
(ψ(s))

(
δ

δψ+(s)

)(
ψ+(s)

) (
φ+(s)

)}
WP S3

−g
ˆ

ds
1

4

{
(ψ(s))

(
δ

δψ+(s)

)(
δ

δψ(s)

)(
φ+(s)

)}
WP S4

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)
(ψ(s))

(
ψ+(s)

) (
φ+(s)

)}
WP S5

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)
(ψ(s))

(
δ

δψ(s)

)(
φ+(s)

)}
WP S6

+g

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
ψ+(s)

) (
φ+(s)

)}
WP S7

+g

ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)(
φ+(s)

)}
WP S8

(E.148)
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and

WP [ψ(r), ψ+(r), φ(r), φ+(r)]9−24

= +g

ˆ

ds
{
(φ(s)) (ψ(s))

(
ψ+(s)

) (
ψ+(s)

)}
WP S9

+g

ˆ

ds
1

2

{
(φ(s)) (ψ(s))

(
ψ+(s)

)( δ

δψ(s)

)}
WP S10

+g

ˆ

ds
1

2

{
(φ(s)) (ψ(s))

(
δ

δψ(s)

)(
ψ+(s)

)}
WP S11

+g

ˆ

ds
1

4

{
(φ(s)) (ψ(s))

(
δ

δψ(s)

)(
δ

δψ(s)

)}
WP S12

−g
ˆ

ds
1

2

{
(φ(s))

(
δ

δψ+(s)

)(
ψ+(s)

) (
ψ+(s)

)}
WP S13

−g
ˆ

ds
1

4

{
(φ(s))

(
δ

δψ+(s)

)(
ψ+(s)

)( δ

δψ(s)

)}
WP S14

−g
ˆ

ds
1

4

{
(φ(s))

(
δ

δψ+(s)

)(
δ

δψ(s)

)(
ψ+(s)

)}
WP S15

−g
ˆ

ds
1

8

{
(φ(s))

(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)}
WP S16

−g
ˆ

ds

{(
δ

δφ+(s)

)
(ψ(s))

(
ψ+(s)

) (
ψ+(s)

)}
WP S17

−g
ˆ

ds
1

2

{(
δ

δφ+(s)

)
(ψ(s))

(
ψ+(s)

)( δ

δψ(s)

)}
WP S18

−g
ˆ

ds
1

2

{(
δ

δφ+(s)

)
(ψ(s))

(
δ

δψ(s)

)(
ψ+(s)

)}
WP S19

−g
ˆ

ds
1

4

{(
δ

δφ+(s)

)
(ψ(s))

(
δ

δψ(s)

)(
δ

δψ(s)

)}
WP S20

+g

ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
ψ+(s)

) (
ψ+(s)

)}
WP S21

+g

ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
ψ+(s)

)( δ

δψ(s)

)}
WP S22

+g

ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)(
ψ+(s)

)}
WP S23

+g

ˆ

ds
1

8

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)}
WP S24

(E.149)

Again we use the product rule (E.319) together with (E.320) and (E.321) to
place all the functional derivatives on the left.
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For the S2T18 term
ˆ

ds
1

2

{
(ψ(s)) (ψ(s))

(
δ

δψ(s)

)(
φ+(s)

)}
WP

=

ˆ

ds
1

2

{(
δ

δψ(s)

)
{ψ(s)ψ(s)φ+(s)}

}
WP

−
ˆ

ds
1

2

{
2δC(s, s)ψ(s)φ

+(s)
}
WP

For the S3T19 term
ˆ

ds
1

2

{
(ψ(s))

(
δ

δψ+(s)

)(
ψ+(s)

) (
φ+(s)

)}
WP

=

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{ψ(s)ψ+(s)φ+(s)φ}

}
WP

For the S4T20 term

ˆ

ds
1

4

{
(ψ(s))

(
δ

δψ+(s)

)(
δ

δψ(s)

)(
φ+(s)

)}
WP

=

ˆ

ds
1

4

{(
δ

δψ+(s)

)
(ψ(s))

(
δ

δψ(s)

)(
φ+(s)

)}
WP

=

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ(s)φ+(s)}

}
WP

−
ˆ

ds
1

4

{(
δ

δψ+(s)

)
{δC(s, s)φ+(s)}

}
WP

For the S5T21 term
ˆ

ds
1

2

{(
δ

δψ+(s)

)
(ψ(s))

(
ψ+(s)

) (
φ+(s)

)}
WP

=

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{ψ(s)ψ+(s)φ+(s)}

}
WP

For the S6T22 term
ˆ

ds
1

4

{(
δ

δψ+(s)

)
(ψ(s))

(
δ

δψ(s)

)(
φ+(s)

)}
WP

=

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ(s)φ+(s)}

}
WP

−
ˆ

ds
1

4

{(
δ

δψ+(s)

)
{δC(s, s)φ+(s)}

}
WP

For the S7T23 term
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
ψ+(s)

) (
φ+(s)

)}
WP
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For the S8T24 term
ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)(
φ+(s)

)}
WP

=

ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ+(s)}

}
WP

For the S10T2 term
ˆ

ds
1

2

{
(φ(s)) (ψ(s))

(
ψ+(s)

) ( δ

δψ(s)

)}
WP

=

ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ(s)ψ(s)ψ+(s)} − {δC(s, s)φ(s)ψ+(s)}

}
WP

=

ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ(s)ψ(s)ψ+(s)}

}
WP

−
ˆ

ds
1

2
{δC(s, s)φ(s)ψ+(s)}WP

For the S11T3 term
ˆ

ds
1

2

{
(φ(s)) (ψ(s))

(
δ

δψ(s)

)(
ψ+(s)

)}
WP

=

ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ(s)ψ(s)ψ+(s)} − {δC(s, s)φ(s)ψ+(s)}

}
WP

=

ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ(s)ψ(s)ψ+(s)}

}
WP

−
ˆ

ds
1

2
{δC(s, s)φ(s)ψ+(s)}WP

For the S12T4 term
ˆ

ds
1

4

{
(φ(s)) (ψ(s))

(
δ

δψ(s)

)(
δ

δψ(s)

)}
WP

=

ˆ

ds
1

4

{(
δ

δψ(s)

)
{φ(s)ψ(s)} − {φ(s)δC(s, s)}

}(
δ

δψ(s)

)
WP

=

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)ψ(s)}

}
WP

−
ˆ

ds
1

4

{(
δ

δψ(s)

)
{φ(s)δC(s, s)}

}
WP

−
ˆ

ds
1

4

(
δ

δψ(s)
{φ(s)δC(s, s)}

)
WP

=

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)ψ(s)}

}
WP

−
ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ(s)δC(s, s)}

}
WP
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For the S13T5 term
ˆ

ds
1

2

{
(φ(s))

(
δ

δψ+(s)

)(
ψ+(s)

) (
ψ+(s)

)}
WP

=

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ(s)ψ+(s)ψ+(s)}

}
WP

For the S14T6 term
ˆ

ds
1

4

{
(φ(s))

(
δ

δψ+(s)

)(
ψ+(s)

)( δ

δψ(s)

)}
WP

=

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ(s)ψ+(s)}

}
WP

For the S15T7 term
ˆ

ds
1

4

{
(φ(s))

(
δ

δψ+(s)

)(
δ

δψ(s)

)(
ψ+(s)

)}
WP

=

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ(s)ψ+(s)}

}
WP

For the S16T8 term
ˆ

ds
1

8

{
(φ(s))

(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)}
WP

=

ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)}

}
WP

For the S17T9 term
ˆ

ds

{(
δ

δφ+(s)

)
(ψ(s))

(
ψ+(s)

) (
ψ+(s)

)}
WP

=

ˆ

ds

{(
δ

δφ+(s)

)
{ψ(s)ψ+(s)ψ+(s)}

}
WP

For the S18T10 term
ˆ

ds
1

2

{(
δ

δφ+(s)

)
(ψ(s))

(
ψ+(s)

)( δ

δψ(s)

)}
WP

=

ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ(s)

)
{ψ(s)ψ+(s)}

}
WP

−
ˆ

ds
1

2

{(
δ

δφ+(s)

)
{δC(s, s)ψ+(s)}

}
WP

For the S19T11 term
ˆ

ds
1

2

{(
δ

δφ+(s)

)
(ψ(s))

(
δ

δψ(s)

)(
ψ+(s)

)}
WP

=

ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ(s)

)
{ψ(s)ψ+(s)}

}
WP

−
ˆ

ds
1

2

{(
δ

δφ+(s)

)
{δC(s, s)ψ+(s)}

}
WP
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For the S20T12 term
ˆ

ds
1

4

{(
δ

δφ+(s)

)
(ψ(s))

(
δ

δψ(s)

)(
δ

δψ(s)

)}
WP

=

ˆ

ds
1

4

(
δ

δφ+(s)

){(
δ

δψ(s)

)
(ψ(s))

(
δ

δψ(s)

)}
WP

−
ˆ

ds
1

4

(
δ

δφ+(s)

){
δC(s, s)

(
δ

δψ(s)

)}
WP

=

ˆ

ds
1

4

(
δ

δφ+(s)

){(
δ

δψ(s)

)(
δ

δψ(s)

)
{ψ(s)}

}
WP

−
ˆ

ds
1

4

(
δ

δφ+(s)

){(
δ

δψ(s)

)
{δC(s, s)}

}
WP

−
ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ(s)

)
{δC(s, s)}

}
WP

=

ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{ψ(s)}

}
WP

−
ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ(s)

)
{δC(s, s)}

}
WP

For the S21T13 term
ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
ψ+(s)

) (
ψ+(s)

)}
WP

=

ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)
{ψ+(s)ψ+(s)}

}
WP

For the S22T14 term
ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
ψ+(s)

)( δ

δψ(s)

)}
WP

=

ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ+(s)}

}
WP

For the S23T15 term
ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)(
ψ+(s)

)}
WP

=

ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ+(s)}

}
WP
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Substituting these results gives

WP [ψ(r), ψ+(r), φ(r), φ+(r)]1−8

= g

ˆ

ds
{
ψ(s)ψ(s)ψ+(s)φ+(s)

}
WP G1

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)
{ψ(s)ψ(s)φ+(s)}

}
WP G2.1

−g
ˆ

ds
1

2

{
2δC(s, s)ψ(s)φ

+(s)
}
WP G2.2

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)
{ψ(s)ψ+(s)φ+(s)}

}
WP G3

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ(s)φ+(s)}

}
WP G4.1

+g

ˆ

ds
1

4

{(
δ

δψ+(s)

)
{δC(s, s)φ+(s)}

}
WP G4.2

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)
{ψ(s)ψ+(s)φ+(s)}

}
WP G5

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ(s)φ+(s)}

}
WP G6.1

+g

ˆ

ds
1

4

{(
δ

δψ+(s)

)
{δC(s, s)φ+(s)}

}
WP G6.2

+g

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ+(s)}

}
WP G7

+g

ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ+(s)}

}
WP G8

(E.150)

and
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WP [ψ(r), ψ+(r), φ(r), φ+(r)]9−24

= +g

ˆ

ds
{
φ(s)ψ(s)ψ+(s)ψ+(s)

}
WP [ψ, ψ+, φ, φ+] G9

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ(s)ψ(s)ψ+(s)}

}
WP G10.1

−g
ˆ

ds
1

2
{δC(s, s)φ(s)ψ+(s)}WP G10.2

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ(s)ψ(s)ψ+(s)}

}
WP G11.1

−g
ˆ

ds
1

2
{δC(s, s)φ(s)ψ+(s)}WP G11.2

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)ψ(s)}

}
WP G12.1

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ(s)δC(s, s)}

}
WP G12.2

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ(s)ψ+(s)ψ+(s)}

}
WP G13

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ(s)ψ+(s)}

}
WP G14

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ(s)ψ+(s)}

}
WP G15

−g
ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)}

}
WP G16

−g
ˆ

ds

{(
δ

δφ+(s)

)
{ψ(s)ψ+(s)ψ+(s)}

}
WP G17

−g
ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ(s)

)
{ψ(s)ψ+(s)}

}
WP G18.1

+g

ˆ

ds
1

2

{(
δ

δφ+(s)

)
{δC(s, s)ψ+(s)}

}
WP G18.2

−g
ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ(s)

)
{ψ(s)ψ+(s)}

}
WP G19.1

+g

ˆ

ds
1

2

{(
δ

δφ+(s)

)
{δC(s, s)ψ+(s)}

}
WP G19.2

−g
ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{ψ(s)}

}
WP G20.1

+g

ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ(s)

)
{δC(s, s)}

}
WP G20.2

+g

ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)
{ψ+(s)ψ+(s)}

}
WP G21

+g

ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ+(s)}

}
WP G22

+g

ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ+(s)}

}
WP G23

+g

ˆ

ds
1

8

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)}
WP G24

(E.151)
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Collecting terms with the same order of functional derivatives we have

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ WP0 +WP1 +WP2 +WP3 +WP4 (E.152)

where we have used lower subscripts for the ρ̂ V̂14 contributions and

WP0

= g

ˆ

ds
{
ψ(s)ψ(s)ψ+(s)φ+(s)

}
WP G1

−g
ˆ

ds
1

2

{
2δC(s, s)ψ(s)φ

+(s)
}
WP G2.2

+g

ˆ

ds
{
φ(s)ψ(s)ψ+(s)ψ+(s)

}
WP G9

−g
ˆ

ds
1

2
{δC(s, s)φ(s)ψ+(s)}WP G10.2

−g
ˆ

ds
1

2
{δC(s, s)φ(s)ψ+(s)}WP G11.2

= g

ˆ

ds
{
ψ(s)ψ(s)ψ+(s)φ+(s)

}
WP [ψ, ψ+, φ, φ+]

+g

ˆ

ds
{
φ(s)ψ(s)ψ+(s)ψ+(s)

}
WP [ψ, ψ+, φ, φ+]

−g
ˆ

ds
{
δC(s, s)ψ(s)φ

+(s)
}
WP [ψ, ψ+, φ, φ+]

−g
ˆ

ds {δC(s, s)φ(s)ψ+(s)}WP [ψ, ψ+, φ, φ+] (E.153)
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WP1

= +g

ˆ

ds
1

2

{(
δ

δψ(s)

)
{ψ(s)ψ(s)φ+(s)}

}
WP G2.1

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)
{ψ(s)ψ+(s)φ+(s)}

}
WP G3

+g

ˆ

ds
1

4

{(
δ

δψ+(s)

)
{δC(s, s)φ+(s)}

}
WP G4.2

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)
{ψ(s)ψ+(s)φ+(s)}

}
WP G5

+g

ˆ

ds
1

4

{(
δ

δψ+(s)

)
{δC(s, s)φ+(s)}

}
WP G6.2

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ(s)ψ(s)ψ+(s)}

}
WP G10.1

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ(s)ψ(s)ψ+(s)}

}
WP G11.1

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ(s)δC(s, s)}

}
WP G12.2

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ(s)ψ+(s)ψ+(s)}

}
WP G13

−g
ˆ

ds

{(
δ

δφ+(s)

)
{ψ(s)ψ+(s)ψ+(s)}

}
WP G17

+g

ˆ

ds
1

2

{(
δ

δφ+(s)

)
{δC(s, s)ψ+(s)}

}
WP G18.2

+g

ˆ

ds
1

2

{(
δ

δφ+(s)

)
{δC(s, s)ψ+(s)}

}
WP G19.2

= +g

ˆ

ds

{(
δ

δψ(s)

)
{φ(s)ψ(s)ψ+(s)}

}
WP [ψ, ψ+, φ, φ+] G10.1,G11.1

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)
{ψ(s)ψ(s)φ+(s)}

}
WP [ψ, ψ+, φ, φ+] G2.1

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)
{φ(s)δC(s, s)}

}
WP [ψ, ψ+, φ, φ+] G12.2

−g
ˆ

ds

{(
δ

δψ+(s)

)
{ψ(s)ψ+(s)φ+(s)}

}
WP [ψ, ψ+, φ, φ+] G3,G5

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)
{φ(s)ψ+(s)ψ+(s)}

}
WP [ψ, ψ+, φ, φ+] G13

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)
{δC(s, s)φ+(s)}

}
WP [ψ, ψ+, φ, φ+] G4.2,G6.2

−g
ˆ

ds

{(
δ

δφ+(s)

)
{ψ(s)ψ+(s)ψ+(s)}

}
WP [ψ, ψ+, φ, φ+] G17

+g

ˆ

ds

{(
δ

δφ+(s)

)
{δC(s, s)ψ+(s)}

}
WP [ψ, ψ+, φ, φ+] G18.2,G19.2

(E.154)
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WP2

= −g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ(s)φ+(s)}

}
WP G4.1

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ(s)φ+(s)}

}
WP G6.1

+g

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ+(s)}

}
WP G7

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)ψ(s)}

}
WP G12.1

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ(s)ψ+(s)}

}
WP G14

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ(s)ψ+(s)}

}
WP G15

−g
ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ(s)

)
{ψ(s)ψ+(s)}

}
WP G18.1

−g
ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ(s)

)
{ψ(s)ψ+(s)}

}
WP G19.1

+g

ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ(s)

)
{δC(s, s)}

}
WP G20.2

+g

ˆ

ds
1

2

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)
{ψ+(s)ψ+(s)}

}
WP G21

= +g

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+] G12.1

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ(s)ψ+(s)}

}
WP [ψ, ψ+, φ, φ+] G14,G15

−g
ˆ

ds

{(
δ

δψ(s)

)(
δ

δφ+(s)

)
{ψ(s)ψ+(s)}

}
WP [ψ, ψ+, φ, φ+] G18.1,19.1

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δφ+(s)

)
{δC(s, s)}

}
WP [ψ, ψ+, φ, φ+] G20.2

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{ψ+(s)ψ+(s)}

}
WP [ψ, ψ+, φ, φ+] G21

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ(s)φ+(s)}

}
WP [ψ, ψ+, φ, φ+] G4.1,6.1

+g

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ+(s)}

}
WP [ψ, ψ+, φ, φ+] G7

(E.155)
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WP3

= +g

ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ+(s)}

}
WP G8

−g
ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)}

}
WP G16

−g
ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{ψ(s)}

}
WP G20.1

+g

ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ+(s)}

}
WP G22

+g

ˆ

ds
1

4

{(
δ

δφ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ+(s)}

}
WP G23

= −g
ˆ

ds
1

8

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ(s)}

}
WP [ψ, ψ+, φ, φ+] G16

−g
ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δφ+(s)

)
{ψ(s)}

}
WP [ψ, ψ+, φ, φ+] G20.1

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{ψ+(s)}

}
WP [ψ, ψ+, φ, φ+] G22,G23

+g

ˆ

ds
1

8

{(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{φ+(s)}

}
WP [ψ, ψ+, φ, φ+] G8

(E.156)

WP4

= +g

ˆ

ds
1

8

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δφ+(s)

)}
WP [ψ, ψ+, φ, φ+]

(E.157)

Now if

ρ̂→ [V̂14 , ρ̂]

=[g

ˆ

ds (Ψ̂†
NC(s)Ψ̂

†
C(s) Ψ̂C(s)Ψ̂C(s)) + Ψ̂†

C(s)Ψ̂
†
C(s) Ψ̂C(s)Ψ̂NC(s)) , ρ̂]

(E.158)

then

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ WP 0
T +WP 1

T +WP 2
T +WP 3

T +WP 4
T (E.159)

where the WPnT are obtained by subtracting the results for ρ̂ V̂ 14 from those for

V̂14 ρ̂
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Collecting terms gives

WP 0
T

= g

ˆ

ds
{
φ+(s)ψ+(s)ψ(s)ψ(s)

}
WP + g

ˆ

ds
{
ψ+(s)ψ+(s)ψ(s)φ(s)

}
WP

−g
ˆ

ds {δC(s, s)φ+(s)ψ(s)}WP − g

ˆ

ds {δC(s, s)ψ+(s)φ(s)}WP

−g
ˆ

ds
{
ψ(s)ψ(s)ψ+(s)φ+(s)

}
WP − g

ˆ

ds
{
φ(s)ψ(s)ψ+(s)ψ+(s)

}
WP

+g

ˆ

ds
{
δC(s, s)ψ(s)φ

+(s)
}
WP + g

ˆ

ds {δC(s, s)φ(s)ψ+(s)}WP

= 0 (E.160)

WP 1
T

= +g

ˆ

ds

{(
δ

δψ+(s)

)
{2φ+(s)ψ+(s)ψ(s)}

}
WP

+g

ˆ

ds

{(
δ

δψ+(s)

)
{ψ+(s)ψ+(s)φ(s)}

}
WP

−g
ˆ

ds

{(
δ

δψ+(s)

)
{φ+(s)δC(s, s)}

}
WP

−g
ˆ

ds

{(
δ

δψ(s)

)
{2ψ+(s)ψ(s)φ(s)}

}
WP

−g
ˆ

ds

{(
δ

δψ(s)

)
{φ+(s)ψ(s)ψ(s)}

}
WP

+g

ˆ

ds

{(
δ

δψ(s)

)
{δC(s, s)φ(s)}

}
WP

−g
ˆ

ds

{(
δ

δφ(s)

)
{ψ+(s)ψ(s)ψ(s)}

}
WP

+g

ˆ

ds

{(
δ

δφ(s)

)
{δC(s, s)ψ(s)}

}
WP

+g

ˆ

ds

{(
δ

δφ+(s)

)
{ψ(s)ψ+(s)ψ+(s)}

}
WP

−g
ˆ

ds

{(
δ

δφ+(s)

)
{δC(s, s)ψ+(s)}

}
WP

(E.161)
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WP 2
T

= +g

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ+(s)}

}
WP

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ+(s)ψ(s)}

}
WP

−g
ˆ

ds

{(
δ

δψ+(s)

)(
δ

δφ(s)

)
{ψ+(s)ψ(s)}

}
WP

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δφ(s)

)
{δC(s, s)}

}
WP

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δφ(s)

)
{ψ(s)ψ(s)}

}
WP

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ+(s)φ(s)}

}
WP

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
{ψ(s)φ(s)}

}
WP

−g
ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)ψ(s)}

}
WP

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ(s)ψ+(s)}

}
WP

+g

ˆ

ds

{(
δ

δψ(s)

)(
δ

δφ+(s)

)
{ψ(s)ψ+(s)}

}
WP

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δφ+(s)

)
{δC(s, s)}

}
WP

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{ψ+(s)ψ+(s)}

}
WP

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ(s)φ+(s)}

}
WP

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ+(s)}

}
WP
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Collecting all the terms gives

WP 2
T

= +g

ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{φ+(s)ψ+(s)}

}
WP Cancel

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ+(s)}

}
WP Cancel

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ+(s)ψ(s)}

}
WP Cancel

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{ψ(s)φ+(s)}

}
WP Cancel

−g
ˆ

ds

{(
δ

δψ+(s)

)(
δ

δφ(s)

)
{ψ+(s)ψ(s)}

}
WP

+g

ˆ

ds

{(
δ

δψ(s)

)(
δ

δφ+(s)

)
{ψ(s)ψ+(s)}

}
WP

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δφ(s)

)
{δC(s, s)}

}
WP

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δφ+(s)

)
{δC(s, s)}

}
WP

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δφ(s)

)
{ψ(s)ψ(s)}

}
WP

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{ψ+(s)ψ+(s)}

}
WP

−g
ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δψ(s)

)
{ψ+(s)φ(s)}

}
WP Cancel

+g

ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ(s)ψ+(s)}

}
WP Cancel

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
{ψ(s)φ(s)}

}
WP Cancel

−g
ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)ψ(s)}

}
WP Cancel

= −g
ˆ

ds

{(
δ

δψ+(s)

)(
δ

δφ(s)

)
{ψ+(s)ψ(s)}

}
WP

+g

ˆ

ds

{(
δ

δψ(s)

)(
δ

δφ+(s)

)
{ψ(s)ψ+(s)}

}
WP

+g

ˆ

ds

{(
δ

δψ+(s)

)(
δ

δφ(s)

){
1

2
δC(s, s)

}}
WP

−g
ˆ

ds

{(
δ

δψ(s)

)(
δ

δφ+(s)

){
1

2
δC(s, s)

}}
WP

+g

ˆ

ds

{(
δ

δψ(s)

)(
δ

δφ(s)

)
{1
2
ψ(s)ψ(s)}

}
WP

−g
ˆ

ds

{(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{1
2
ψ+(s)ψ+(s)}

}
WP
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WP 3
T

= −g
ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ+(s)}

}
WP

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δφ(s)

)
{ψ+(s)}

}
WP

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δφ(s)

)
{ψ(s)}

}
WP

+g

ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{φ(s)}

}
WP

+g

ˆ

ds
1

8

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ(s)}

}
WP

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δφ+(s)

)
{ψ(s)}

}
WP

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{ψ+(s)}

}
WP

−g
ˆ

ds
1

8

{(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{φ+(s)}

}
WP

Collecting the terms gives

WP 3
T

= −g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{φ+(s)}

}
WP

−g
ˆ

ds
1

4

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δφ(s)

)
{ψ+(s)}

}
WP

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δφ+(s)

)
{ψ(s)}

}
WP

+g

ˆ

ds
1

2

{(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δφ(s)

)
{ψ(s)}

}
WP

−g
ˆ

ds
1

2

{(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{ψ+(s)}

}
WP

+g

ˆ

ds
1

4

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
{φ(s)}

}
WP
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WP 4
T

= +g

ˆ

ds
1

8

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δφ(s)

)}
WP

−g
ˆ

ds
1

8

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δφ+(s)

)}
WP

(E.164)

Thus we see that the V̂ 14 term produces functional derivatives of orders
one, two, three and four. We may write the contributions to the functional
Fokker-Planck equation in the form

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)

V 14

=

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)1

V 14

+

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)2

V 14

+

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)3

V 14

+

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)4

V 14

(E.165)
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where

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)1

V 14

=
−i
~

{
+g

ˆ

ds

{(
δ

δψ+(s)

)
{2φ+(s)ψ+(s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+(s)

)
{ψ+(s)ψ+(s)φ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+(s)

)
{φ+(s)δC(s, s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ(s)

)
{2ψ+(s)ψ(s)φ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ(s)

)
{φ+(s)ψ(s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ(s)

)
{δC(s, s)φ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
−g
ˆ

ds

{(
δ

δφ(s)

)
{ψ+(s)ψ(s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
+g

ˆ

ds

{(
δ

δφ(s)

)
{δC(s, s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
+g

ˆ

ds

{(
δ

δφ+(s)

)
{ψ(s)ψ+(s)ψ+(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
−g
ˆ

ds

{(
δ

δφ+(s)

)
{δC(s, s)ψ+(s)}

}
WP [ψ, ψ+, φ, φ+]

}

(E.166)
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(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)2

V 14

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+(s)

)(
δ

δφ(s)

)
{ψ+(s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ(s)

)(
δ

δφ+(s)

)
{ψ(s)ψ+(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+(s)

)(
δ

δφ(s)

){
1

2
δC(s, s)

}}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ(s)

)(
δ

δφ+(s)

){
1

2
δC(s, s)

}}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ(s)

)(
δ

δφ(s)

)
{1
2
ψ(s)ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{1
2
ψ+(s)ψ+(s)}

}
WP [ψ, ψ+, φ, φ+]

}

(E.167)

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)3

V 14

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)
{1
4
φ+(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
{1
4
φ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δφ(s)

)
{1
4
ψ+(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δφ+(s)

)
{1
4
ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δφ(s)

)
{1
2
ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{1
2
ψ+(s)}

}
WP [ψ, ψ+, φ, φ+]

}

(E.168)

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)4

V 14

=
−i
~

{
g

ˆ

ds

{(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δψ(s)

)(
δ

δφ(s)

)
{1
8
}
}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{1
8
}
}
WP [ψ, ψ+, φ, φ+]

}
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Reverting to the original notation we have

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 14

=
−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)
{[2ψ+

C(s)ψC(s)− δC(s, s)]ψ
+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C
(s)

)
{[ψ+

C (s)ψ
+
C (s)]ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)
{[2ψC(s)ψ

+
C (s)− δC(s, s)]ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)
{[ψC(s)ψC(s)]ψ+

NC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψNC(s)

)
{[ψ+

C (s)ψC(s)− δC(s, s)]ψC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
NC(s)

)
{[ψC(s)ψ+

C (s)− δC(s, s)]ψ
+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.170)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 14

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{ψ+

C(s)ψC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{ψC(s)ψ+

C (s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

){
1

2
δC(s, s)

}}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

){
1

2
δC(s, s)

}}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψNC(s)

)
{1
2
ψC(s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
C (s)ψ

+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

V 14

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψC(s)

)
{1
4
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
C (s)

)
{1
4
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{1
4
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{1
4
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψC(s)

)(
δ

δψNC(s)

)
{1
2
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)4

V 14

=
−i
~

{
g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψC(s)

)(
δ

δψNC(s)

)
{1
8
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{1
8
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.173)

Appendix E.7.2. Second Order Term

V̂12 = −g
ˆ ˆ

dr dsF (r, s)Ψ̂NC(r)
† Ψ̂C(s)−g

ˆ ˆ

dr dsF ∗(s, r)Ψ̂C(r)
†Ψ̂NC(s)

(E.174)
Now if

ρ̂→ V̂12 ρ̂ =

ˆ ˆ

ds du (Ψ̂NC(s)
†△V (s,u)Ψ̂C(u) + Ψ̂C(s)

†△V (u, s)∗Ψ̂NC(u)) ρ̂

(E.175)
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where we write △V (s,u) = −gF (s,u) for short, then

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→
ˆ ˆ

ds du

{(
φ+(s)− δ

δφ(s)

)
△V (s,u)

(
ψ(u) +

1

2

δ

δψ+(u)

)}
WP [ψ, ψ+, φ, φ+]

+

ˆ ˆ

ds du

{(
ψ+(s)− 1

2

δ

δψ(s)

)
△V (u, s)∗ (φ(u))

}
WP [ψ, ψ+, φ, φ+]

(E.176)

Expanding we get

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→
ˆ ˆ

ds du
{(
φ+(s)

)
△V (s,u) (ψ(u))

}
WP [ψ, ψ+, φ, φ+]

+

ˆ ˆ

ds du
1

2

{(
φ+(s)

)
△V (s,u)

(
δ

δψ+(u)

)}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du

{(
δ

δφ(s)

)
△V (s,u) (ψ(u))

}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du
1

2

{(
δ

δφ(s)

)
△V (s,u)

(
δ

δψ+(u)

)}
WP [ψ, ψ+, φ, φ+]

+

ˆ ˆ

ds du
{(
ψ+(s)

)
△V (u, s)∗ (φ(u))

}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du
1

2

{(
δ

δψ(s)

)
△V (u, s)∗ (φ(u))

}
WP [ψ, ψ+, φ, φ+]

(E.177)

The first term is
ˆ ˆ

ds du
{(
φ+(s)

)
△V (s,u) (ψ(u))

}
WP [ψ, ψ+, φ, φ+]

=

ˆ ˆ

ds du
{
(ψ(u))△V (s,u)

(
φ+(s)

)}
WP [ψ, ψ+, φ, φ+]

(E.178)

Using the product rule and the second term becomes

ˆ ˆ

ds du
1

2

{(
φ+(s)

)
△V (s,u)

(
δ

δψ+(u)

)}
WP [ψ, ψ+, φ, φ+]

=

ˆ ˆ

ds du
1

2

{(
δ

δψ+(u)

)(
△V (s,u)φ+(s)

)}
WP [ψ, ψ+, φ, φ+]

(E.179)
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The third term is
ˆ ˆ

ds du

{(
δ

δφ(s)

)
△V (s,u) (ψ(u))

}
WP (ψ, ψ+, φ, φ+]

=

ˆ ˆ

ds du

{(
δ

δφ(s)

)
(△V (s,u)ψ(u))

}
WP (ψ, ψ+, φ, φ+]

(E.180)

Using the result that the functional derivatives can be performed in either
order the fourth term is

ˆ ˆ

ds du
1

2

{(
δ

δφ(s)

)
△V (s,u)

(
δ

δψ+(u)

)}
WP [ψ, ψ+, φ, φ+]

=

ˆ ˆ

ds du
1

2

{(
δ

δφ(s)

)(
δ

δψ+(u)

)
△V (s,u)

}
WP [ψ, ψ+, φ, φ+]

(E.181)

Combining these results we find that

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→
ˆ ˆ

ds du
{
φ+(s)△V (s,u)ψ(u)

}
WP [ψ, ψ+, φ, φ+]

+

ˆ ˆ

ds du
1

2

{(
δ

δψ+(u)

)
{△V (s,u)φ+(s)}

}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du

{(
δ

δφ(s)

)
{△V (s,u)ψ(u)}

}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du
1

2

{(
δ

δφ(s)

)(
δ

δψ+(u)

)
{△V (s,u)}

}
WP [ψ, ψ+, φ, φ+]

+

ˆ ˆ

ds du
{
ψ+(s)△V (u, s)∗ φ(u)

}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du
1

2

{(
δ

δψ(s)

)
{△V (u, s)∗ φ(u)}

}
WP [ψ, ψ+, φ, φ+]

(E.182)

Now if

ρ̂→ ρ̂ V̂12

=

ˆ ˆ

ds du ρ̂(Ψ̂NC(s)
†△V(s,u)Ψ̂C(u) + Ψ̂C(s)

†△V(u, s)∗Ψ̂NC(u))

(E.183)
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then

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→
ˆ

ds

{(
ψ(u)− 1

2

δ

δψ+(u)

)
△V(s,u)

(
φ+(s)

)}
WP [ψ, ψ+, φ, φ+]

+

ˆ

ds

{(
φ(u) − δ

δφ+(u)

)
△V(u, s)∗

(
ψ+(s) +

1

2

δ

δψ(s)

)}
WP [ψ, ψ+, φ, φ+]

(E.184)

Expanding out gives

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→
ˆ ˆ

ds du
{
(ψ(u))△V(s,u)

(
φ+(s)

)}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du
1

2

{(
δ

δψ+(u)

)
△V(s,u)

(
φ+(s)

)}
WP [ψ, ψ+, φ, φ+]

+

ˆ ˆ

ds du
{
(φ(u))△V(u, s)∗

(
ψ+(s)

)}
WP [ψ, ψ+, φ, φ+]

+

ˆ ˆ

ds du
1

2

{
(φ(u))△V(u, s)∗

(
δ

δψ(s)

)}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du

{(
δ

δφ+(u)

)
△V(u, s)∗

(
ψ+(s)

)}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du
1

2

{(
δ

δφ+(u)

)
△V(u, s)∗

(
δ

δψ(s)

)}
WP [ψ, ψ+, φ, φ+]

Using a similar approach to that above we find that

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→
ˆ ˆ

ds du
{
ψ(u)△V(s,u)φ+(s)

}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du
1

2

{(
δ

δψ+(u)

)
{△V(s,u)φ+(s)}

}
WP [ψ, ψ+, φ, φ+]

+

ˆ ˆ

ds du
{
φ(u)△V(u, s)∗ ψ+(s)

}
WP [ψ, ψ+, φ, φ+]

+

ˆ ˆ

ds du
1

2

{(
δ

δψ(s)

)
{φ(u)△V(u, s)∗}

}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du

{(
δ

δφ+(u)

)
{△V(u, s)∗ ψ+(s)}

}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du
1

2

{(
δ

δφ+(u)

)(
δ

δψ(s)

)
{△V(u, s)∗}

}
WP [ψ, ψ+, φ, φ+]

(E.185)
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Now if

ρ̂→ [V̂12 , ρ̂]

=[

ˆ ˆ

ds du (Ψ̂NC(s)
†△V(s,u)Ψ̂C(u) + Ψ̂C(s)

†△V(u, s)∗Ψ̂NC(u)) , ρ̂]

(E.186)

then

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→
ˆ ˆ

ds du
{
φ+(s)△V (s,u)ψ(u)

}
WP

−
ˆ ˆ

ds du
{
ψ(u)△V(s,u)φ+(s)

}
WP

+

ˆ ˆ

ds du
1

2

{(
δ

δψ+(u)

)
{△V (s,u)φ+(s)}

}
WP

+

ˆ ˆ

ds du
1

2

{(
δ

δψ+(u)

)
{△V(s,u)φ+(s)}

}
WP

−
ˆ ˆ

ds du

{(
δ

δφ(s)

)
{△V (s,u)ψ(u)}

}
WP

+

ˆ ˆ

ds du

{(
δ

δφ+(u)

)
{△V(u, s)∗ ψ+(s)}

}
WP

−
ˆ ˆ

ds du
1

2

{(
δ

δφ(s)

)(
δ

δψ+(u)

)
{△V (s,u)}

}
WP

+

ˆ ˆ

ds du
1

2

{(
δ

δφ+(u)

)(
δ

δψ(s)

)
{△V(u, s)∗}

}
WP

+

ˆ ˆ

ds du
{
ψ+(s)△V (u, s)∗ φ(u)

}
WP

−
ˆ ˆ

ds du
{
φ(u)△V(u, s)∗ ψ+(s)

}
WP

−
ˆ ˆ

ds du
1

2

{(
δ

δψ(s)

)
{△V (u, s)∗ φ(u)}

}
WP

−
ˆ ˆ

ds du
1

2

{(
δ

δψ(s)

)
{φ(u)△V(u, s)∗}

}
WP

(E.187)
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WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→
ˆ ˆ

ds du

{(
δ

δψ+(u)

)
{△V (s,u)φ+(s)}

}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du

{(
δ

δψ(s)

)
{△V (u, s)∗ φ(u)}

}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du

{(
δ

δφ(s)

)
{△V (s,u)ψ(u)}

}
WP [ψ, ψ+, φ, φ+]

+

ˆ ˆ

ds du

{(
δ

δφ+(u)

)
{△V(u, s)∗ ψ+(s)}

}
WP [ψ, ψ+, φ, φ+]

−
ˆ ˆ

ds du

{(
δ

δφ(s)

)(
δ

δψ+(u)

)
{1
2
△V (s,u)}

}
WP [ψ, ψ+, φ, φ+]

+

ˆ ˆ

ds du

{(
δ

δφ+(u)

)(
δ

δψ(s)

)
{1
2
△V(u, s)∗}

}
WP [ψ, ψ+, φ, φ+]

(E.188)

Thus we see that the V̂ 12 term produces functional derivatives of orders
one and two. We may write the contributions to the functional Fokker-Planck
equation in the form

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)

V 12

=

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)1

V 12

+

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)2

V 12

(E.189)

where

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)1

V 12

=
−i
~

{
ˆ ˆ

ds du

{(
δ

δψ+(u)

)
{△V (s,u)φ+(s)}

}
WP [ψ, ψ+, φ, φ+]

}

+
−i
~

{
−
ˆ ˆ

ds du

{(
δ

δψ(s)

)
{△V (u, s)∗ φ(u)}

}
WP [ψ, ψ+, φ, φ+]

}

+
−i
~

{
ˆ ˆ

ds du

{(
δ

δφ+(u)

)
{△V(u, s)∗ ψ+(s)}

}
WP [ψ, ψ+, φ, φ+]

}

+
−i
~

{
−
ˆ ˆ

ds du

{(
δ

δφ(s)

)
{△V (s,u)ψ(u)}

}
WP [ψ, ψ+, φ, φ+]

}

(E.190)
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(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)2

V 12

=
−i
~

{
−
ˆ ˆ

ds du

{(
δ

δψ+(u)

)(
δ

δφ(s)

)
{1
2
△V (s,u)}

}
WP [ψ, ψ+, φ, φ+]

}

+
−i
~

{
ˆ ˆ

ds du

{(
δ

δψ(s)

)(
δ

δφ+(u)

)
{1
2
△V(u, s)∗}

}
WP [ψ, ψ+, φ, φ+]

}

(E.191)

For the single condensate mode case the result is simpler and can be obtained

via the substitution △V (s,u) = △V (s)δ(u−s) with △V (s) = −g
〈
Ψ̂C(s)

†Ψ̂C(s)
〉

and is given by

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)1

V 12

=
−i
~

{
+

ˆ

ds

{(
δ

δψ+(s)

)
{△V φ+(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
−
ˆ

ds

{(
δ

δψ(s)

)
{△V φ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
+

ˆ

ds

{(
δ

δφ+(s)

)
{△V ψ+(s)}

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
−
ˆ

ds

{(
δ

δφ(s)

)
{△V ψ(s)}

}
WP [ψ, ψ+, φ, φ+]

}

(E.192)

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)2

V 12

=
−i
~

{
−
ˆ

ds

{(
δ

δψ+(s)

)(
δ

δφ(s)

)
{1
2
△V }

}
WP [ψ, ψ+, φ, φ+]

}

−i
~

{
+

ˆ

ds

{(
δ

δψ(s)

)(
δ

δφ+(s)

)
{1
2
△V }

}
WP [ψ, ψ+, φ, φ+]

}

(E.193)

Reverting to the original notation and replacing △V (s,u) = −gF (s,u) we
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have for the two mode condensate case

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 12

=
−i
~

{
−g
ˆ ˆ

ds du

{(
δ

δψ+
C (u)

)
{F (s,u)ψ+

NC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+g

ˆ ˆ

ds du

{(
δ

δψC(s)

)
{F (u, s)∗ ψNC(u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−g
ˆ ˆ

ds du

{(
δ

δψ+
NC(u)

)
{F (u, s)∗ ψ+

C (s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+g

ˆ ˆ

ds du

{(
δ

δψNC(s)

)
{F (s,u)ψC(u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.194)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 12

=
−i
~

{
+g

ˆ ˆ

ds du

{(
δ

δψ+
C (u)

)(
δ

δψNC(s)

)
{1
2
F (s,u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−g
ˆ ˆ

ds du

{(
δ

δψC(s)

)(
δ

δψ+
NC(u)

)
{1
2
F(u, s)∗}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.195)

For the case of the single mode condensate with △V (s) = −g
〈
Ψ̂C(s)

†Ψ̂C(s)
〉

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 12

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
NC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψNC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.196)
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 12

=
−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{1
2

〈
Ψ̂C(s)

†Ψ̂C(s)
〉
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{1
2

〈
Ψ̂C(s)

†Ψ̂C(s)
〉
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.197)

We can show using the special form of F (r, s) for a single mode condensate,

that the Fokker-Planck equation terms for V̂12 can be obtained from the two
mode case. We have

F (r, s) = (N − 1)φ∗1(r)φ1(r)φ1(r)φ
∗
1(s ) (E.198)

we can use the forms (E.315) for the functional derivatives involving the expan-
sion coefficients

δ

δψC(s)
≡ φ∗1(s )

∂

∂α1

δ

δψ+
C (s)

≡ φ1(s )
∂

∂α+
1

δ

δψNC(s)
≡

∑

k 6=1

φ∗k(s )
∂

∂αk

δ

δψ+
NC(s)

≡
∑

k 6=1

φk(s )
∂

∂α+
k

P [ψ−→(r), ψ∗

−→(r)] ≡ Pb(α−→, α∗

−→) (E.199)

to show that this is the case.

218



Considering the first order functional derivative terms we see that

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 12

=
−i
~

{
−g
ˆ ˆ

ds du

{(
δ

δψ+
C (u)

)
{F (s,u)ψ+

NC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+g

ˆ ˆ

ds du

{(
δ

δψC(s)

)
{F (u, s)∗ ψNC(u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−g
ˆ ˆ

ds du

{(
δ

δψ+
NC(u)

)
{F (u, s)∗ ψ+

C (s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+g

ˆ ˆ

ds du

{(
δ

δψNC(s)

)
{F (s,u)ψC(u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

=
−i
~

{
−g
ˆ ˆ

ds du

{(
φ1(u)

∂

∂α+
1

)
{(N − 1)φ∗1(s)φ1(s)φ1(s)φ

∗
1(u)ψ

+
NC(s)}

}
Pb(α−→, α∗

−→)

}

+
−i
~

{
+g

ˆ ˆ

ds du

{(
φ∗1(s)

∂

∂α1

)
{(N − 1)φ1(u)φ

∗
1(u)φ

∗
1(u)φ1(s)ψNC(u)}

}
Pb(α−→, α∗

−→)

}

+
−i
~



−g

ˆ ˆ

ds du






∑

k 6=1

φk(u)
∂

∂α+
k


 {(N − 1)φ1(u)φ

∗
1(u)φ

∗
1(u)φ1(s)ψ

+
C (s)}



 Pb(α−→, α∗

−→)





+
−i
~



+g

ˆ ˆ

ds du






∑

k 6=1

φ∗k(s)
∂

∂αk


 {(N − 1)φ∗1(s)φ1(s)φ1(s)φ

∗
1(u)ψC(u)}



Pb(α−→, α∗

−→)





=
−i
~

{
−g
ˆ

ds

{(
φ1(s)

∂

∂α+
1

)
{(N − 1)φ∗1(s)φ1(s)ψ

+
NC(s)}

}
Pb(α−→, α∗

−→)

}

+
−i
~

{
+g

ˆ

du

{(
φ∗1(u)

∂

∂α1

)
{(N − 1)φ1(u)φ

∗
1(u)ψNC(u)}

}
Pb(α−→, α∗

−→)

}

+
−i
~



−g

ˆ

du






∑

k 6=1

φk(u )
∂

∂α+
k


 {(N − 1)φ1(u)φ

∗
1(u)α

+
1 φ

∗
1(u)}



 Pb(α−→, α∗

−→)





+
−i
~



+g

ˆ

ds






∑

k 6=1

φ∗k(s )
∂

∂αk


 {(N − 1)φ∗1(s)φ1(s)α1φ1(s)}



 Pb(α−→, α∗

−→)





=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
NC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+g

ˆ

ds

{(
δ

δψNC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}
(E.200)
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which is the same as the single mode condensate result. We have used the
results

ˆ

duφ1(u )φ∗1(u ) =

ˆ

dsφ1(s )φ
∗
1(s ) =1

in the first and second terms and
ˆ

dsφ1(s )ψ
+
C (s) = α+

1

ˆ

du φ∗1(u )ψC(u) = α1

in the third and fourth terms, changed dummies of integration and recalled the

notation
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
= (N − 1) |φ1(s)|2.

For the second order functional derivative terms

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 12

=
−i
~

{
+g

ˆ ˆ

ds du
1

2

{(
δ

δψ+
C (u)

)(
δ

δψNC(s)

)
{F (s,u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−g
ˆ ˆ

ds du
1

2

{(
δ

δψC(s)

)(
δ

δψ+
NC(u)

)
{F(u, s)∗}

}
P [ψ−→(r), ψ∗

−→(r)]

}

=
−i
~



+g

ˆ ˆ

ds du
1

2





(
φ1(u)

∂

∂α+
1

)
∑

k 6=1

φ∗k(s)
∂

∂αk


 {(N − 1)φ∗1(s)φ1(s)φ1(s)φ

∗
1(u)}



Pb(α−→, α∗

−→)





−i
~



−g

ˆ ˆ

ds du
1

2





(
φ∗1(s)

∂

∂α1

)
∑

k 6=1

φk(u)
∂

∂α+
k


 {(N − 1)φ1(u)φ

∗
1(u)φ

∗
1(u)φ1(s)}



Pb(α−→, α∗

−→)





=
−i
~



+g

ˆ

ds
1

2





(
φ1(s)

∂

∂α+
1

)
∑

k 6=1

φ∗k(s )
∂

∂αk


 {(N − 1)φ∗1(s)φ1(s)}



Pb(α−→, α∗

−→)





+
−i
~



−g

ˆ

du
1

2





(
φ∗1(u)

∂

∂α1

)
∑

k 6=1

φk(u )
∂

∂α+
k


 {(N − 1)φ1(u)φ

∗
1(u)}



Pb(α−→, α∗

−→)





=
−i
~

{
+g

ˆ

ds
1

2

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−g
ˆ

ds
1

2

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
}
}
P [ψ−→(r), ψ∗

−→(r)]

}
(E.201)

which is the same as the single condensate result. Again the results
´

duφ1(u )φ∗1(u ) =
´

dsφ1(s )φ
∗
1(s ) =1

are used.
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Appendix E.8. Condensate - Non-Condensate Interaction - Second Order in
Non-Condensate

The second order term in the interaction between the condensate and the
non-condensate is

V̂2 =
g

2

ˆ

ds{Ψ̂NC(s)†Ψ̂NC(s)†Ψ̂C(s)Ψ̂C(s) + Ψ̂C(s)
†Ψ̂C(s)

†Ψ̂NC(s)Ψ̂NC(s)

+4Ψ̂NC(s)
†Ψ̂C(s)

†Ψ̂NC(s)Ψ̂C(s)}
(E.202)

This term is due to the boson-boson interaction.
Now if

ρ̂ → V̂2 ρ̂

=
g

2

ˆ

ds(Ψ̂NC(s)
†Ψ̂NC(s)

†Ψ̂C(s)Ψ̂C(s) + Ψ̂C(s)
†Ψ̂C(s)

†Ψ̂NC(s)Ψ̂NC(s))ρ̂

+
g

2

ˆ

ds(4Ψ̂NC(s)
†Ψ̂C(s)

†Ψ̂NC(s)Ψ̂C(s))ρ̂

(E.203)

then

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ g

2

ˆ

ds

(
φ+(s)− δ

δφ(s)

)(
φ+(s)− δ

δφ(s)

)(
ψ(s) +

1

2

δ

δψ+(s)

)

×
(
ψ(s) +

1

2

δ

δψ+(s)

)
WP [ψ, ψ+, φ, φ+]

+
g

2

ˆ

ds

(
ψ+(s)− 1

2

δ

δψ(s)

)(
ψ+(s)− 1

2

δ

δψ(s)

)
(φ(s))

× (φ(s))WP [ψ, ψ+, φ, φ+]

+2g

ˆ

ds

(
φ+(s)− δ

δφ(s)

)(
ψ+(s)− 1

2

δ

δψ(s)

)
(φ(s))

×
(
ψ(s) +

1

2

δ

δψ+(s)

)
WP [ψ, ψ+, φ, φ+]

(E.204)

Expanding gives

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

= WP [ψ, ψ+, φ, φ+]1−16 +WP [ψ, ψ+, φ, φ+]17−20 +WP [ψ, ψ+, φ, φ+]21−28

(E.205)
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WP [ψ(r), ψ+(r), φ(r), φ+(r)]1−16

=
g

2

ˆ

ds
(
φ+(s)

) (
φ+(s)

)
(ψ(s)) (ψ(s))WP

+
g

2

ˆ

ds
(
φ+(s)

) (
φ+(s)

)
(ψ(s))

(
1

2

δ

δψ+(s)

)
WP

+
g

2

ˆ

ds
(
φ+(s)

) (
φ+(s)

)(1

2

δ

δψ+(s)

)
(ψ(s))WP

+
g

2

ˆ

ds
(
φ+(s)

) (
φ+(s)

)(1

2

δ

δψ+(s)

)(
1

2

δ

δψ+(s)

)
WP

+
g

2

ˆ

ds
(
φ+(s)

) (
− δ

δφ(s)

)
(ψ(s)) (ψ(s))WP

+
g

2

ˆ

ds
(
φ+(s)

) (
− δ

δφ(s)

)
(ψ(s))

(
1

2

δ

δψ+(s)

)
WP

+
g

2

ˆ

ds
(
φ+(s)

) (
− δ

δφ(s)

)(
1

2

δ

δψ+(s)

)
(ψ(s))WP

+
g

2

ˆ

ds
(
φ+(s)

) (
− δ

δφ(s)

)(
1

2

δ

δψ+(s)

)(
1

2

δ

δψ+(s)

)
WP

+
g

2

ˆ

ds

(
− δ

δφ(s)

)(
φ+(s)

)
(ψ(s)) (ψ(s))WP

+
g

2

ˆ

ds

(
− δ

δφ(s)

)(
φ+(s)

)
(ψ(s))

(
1

2

δ

δψ+(s)

)
WP

+
g

2

ˆ

ds

(
− δ

δφ(s)

)(
φ+(s)

)(1

2

δ

δψ+(s)

)
(ψ(s))WP

+
g

2

ˆ

ds

(
− δ

δφ(s)

)(
φ+(s)

)(1

2

δ

δψ+(s)

)(
1

2

δ

δψ+(s)

)
WP

+
g

2

ˆ

ds

(
− δ

δφ(s)

)(
− δ

δφ(s)

)
(ψ(s)) (ψ(s))WP

+
g

2

ˆ

ds

(
− δ

δφ(s)

)(
− δ

δφ(s)

)
(ψ(s))

(
1

2

δ

δψ+(s)

)
WP

+
g

2

ˆ

ds

(
− δ

δφ(s)

)(
− δ

δφ(s)

)(
1

2

δ

δψ+(s)

)
(ψ(s))WP

+
g

2

ˆ

ds

(
− δ

δφ(s)

)(
− δ

δφ(s)

)(
1

2

δ

δψ+(s)

)(
1

2

δ

δψ+(s)

)
WP

(E.206)

222



WP [ψ(r), ψ+(r), φ(r), φ+(r)]17−20

= +
g

2

ˆ

ds
(
ψ+(s)

) (
ψ+(s)

)
(φ(s)) (φ(s))WP

+
g

2

ˆ

ds
(
ψ+(s)

)(
−1

2

δ

δψ(s)

)
(φ(s)) (φ(s))WP

+
g

2

ˆ

ds

(
−1

2

δ

δψ(s)

)(
ψ+(s)

)
(φ(s)) (φ(s))WP

+
g

2

ˆ

ds

(
−1

2

δ

δψ(s)

)(
−1

2

δ

δψ(s)

)
(φ(s)) (φ(s))WP

(E.207)

WP [ψ(r), ψ+(r), φ(r), φ+(r)]21−28

= +2g

ˆ

ds
(
φ+(s)

) (
ψ+(s)

)
(φ(s)) (ψ(s))WP

+2g

ˆ

ds
(
φ+(s)

) (
ψ+(s)

)
(φ(s))

(
1

2

δ

δψ+(s)

)
WP

+2g

ˆ

ds
(
φ+(s)

)(
−1

2

δ

δψ(s)

)
(φ(s)) (ψ(s))WP

+2g

ˆ

ds
(
φ+(s)

)(
−1

2

δ

δψ(s)

)
(φ(s))

(
1

2

δ

δψ+(s)

)
WP

+2g

ˆ

ds

(
− δ

δφ(s)

)(
ψ+(s)

)
(φ(s)) (ψ(s))WP

+2g

ˆ

ds

(
− δ

δφ(s)

)(
ψ+(s)

)
(φ(s))

(
1

2

δ

δψ+(s)

)
WP

+2g

ˆ

ds

(
− δ

δφ(s)

)(
−1

2

δ

δψ(s)

)
(φ(s)) (ψ(s))WP

+2g

ˆ

ds

(
− δ

δφ(s)

)(
−1

2

δ

δψ(s)

)
(φ(s))

(
1

2

δ

δψ+(s)

)
WP

(E.208)

The functional derivatives are now placed on the left using results in which the
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functional derivatives of differing fields are zero (see (E.320) and (E.321)) giving

WP [ψ(r), ψ+(r), φ(r), φ+(r)]1−16

= g

ˆ

ds{1
2
φ+(s)φ+(s)ψ(s)ψ(s)}WP T1

+g

ˆ

ds

(
δ

δψ+(s)

)
{1
4
φ+(s)φ+(s)ψ(s)}WP T2

+g

ˆ

ds

(
δ

δψ+(s)

)
{1
4
φ+(s)φ+(s)ψ(s)}WP T3

+g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
φ+(s)φ+(s)}WP T4

−g
ˆ

ds

(
δ

δφ(s)

)
{1
2
φ+(s)ψ(s)ψ(s)}WP T5

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
4
φ+(s)ψ(s)}WP T6

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
4
φ+(s)ψ(s)}WP T7

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
φ+(s)}WP T8

−g
ˆ

ds

(
δ

δφ(s)

)
{1
2
φ+(s)ψ(s)ψ(s)}WP T9

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
4
φ+(s)ψ(s)}WP T10

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
4
φ+(s)ψ(s)}WP T11

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
φ+(s)}WP T12

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)
{1
2
ψ(s)ψ(s)}WP T13

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
4
ψ(s)}WP T14

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
4
ψ(s)}WP T15

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
}WP T16

(E.209)
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WP [ψ(r), ψ+(r), φ(r), φ+(r)]17−20

= +g

ˆ

ds{1
2
ψ+(s)ψ+(s)φ(s)φ(s)}WP T17

−g
ˆ

ds

(
δ

δψ(s)

)
{1
4
ψ+(s)φ(s)φ(s)}WP T18

−g
ˆ

ds

(
δ

δψ(s)

)
{1
4
ψ+(s)φ(s)φ(s)}WP T19

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
φ(s)φ(s)}WP T20

(E.210)

WP [ψ(r), ψ+(r), φ(r), φ+(r)]21−28

= +g

ˆ

ds{2φ+(s)ψ+(s)φ(s)ψ(s)}WP T21

+g

ˆ

ds

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)φ(s)}

}
WP T22 .1

−g
ˆ

ds
{
φ+(s)δC(s, s)φ(s)

}
WP T22.2

−g
ˆ

ds

(
δ

δψ(s)

)
{φ+(s)φ(s)ψ(s)}WP T23

−g
ˆ

ds

(
δ

δψ(s)

)(
δ

δψ+(s)

)
{1
2
φ+(s)φ(s)}WP T24

−g
ˆ

ds

(
δ

δφ(s)

)
{2ψ+(s)φ(s)ψ(s)}WP T25

−g
ˆ

ds

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ(s)}

}
WP T26.1

+g

ˆ

ds

{(
δ

δφ(s)

)
{δC(s, s)φ(s)}

}
WP T26.2

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δψ(s)

)
{φ(s)ψ(s)}WP T27

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
{1

2
φ(s)}WP T28

(E.211)
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The two terms that needed extra treatment are

2g

ˆ

ds
(
φ+(s)

) (
ψ+(s)

)
(φ(s))

(
1

2

δ

δψ+(s)

)
WP T22

= g

ˆ

ds

{(
φ+(s)

) [( δ

δψ+(s)

)(
ψ+(s)

)
(φ(s)) − (δC(s, s)φ(s))

]}
WP

= g

ˆ

ds

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)φ(s)}

}
WP

−g
ˆ

ds
{
φ+(s)δC(s, s)φ(s)

}
WP

and

−2g

ˆ

ds

(
δ

δφ(s)

)(
ψ+(s)

)
(φ(s))

(
1

2

δ

δψ+(s)

)
WP T26

= −g
ˆ

ds

{(
δ

δφ(s)

)[(
δ

δψ+(s)

)(
ψ+(s)

)
(φ(s)) − δC(s, s)φ(s)

]}
WP

= −g
ˆ

ds

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ(s)}

}
WP

+g

ˆ

ds

{(
δ

δφ(s)

)
{δC(s, s)φ(s)}

}
WP

Collecting terms with the same order of functional derivatives we have

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ WP 0 +WP 1 +WP 2 +WP 3 +WP 4 (E.212)

where we have used upper subscripts for the V̂2ρ̂ contributions and

WP 0

= g

ˆ

ds{1
2
φ+(s)φ+(s)ψ(s)ψ(s)}WP T1

+g

ˆ

ds{1
2
ψ+(s)ψ+(s)φ(s)φ(s)}WP T17

+g

ˆ

ds{2φ+(s)ψ+(s)φ(s)ψ(s)}WP T21

−g
ˆ

ds
{
φ+(s)δC(s, s)φ(s)

}
WP T22.2

(E.213)
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WP 1

= +g

ˆ

ds

(
δ

δψ+(s)

)
{1
4
φ+(s)φ+(s)ψ(s)}WP T2

+g

ˆ

ds

(
δ

δψ+(s)

)
{1
4
φ+(s)φ+(s)ψ(s)}WP T3

−g
ˆ

ds

(
δ

δφ(s)

)
{1
2
φ+(s)ψ(s)ψ(s)}WP T5

−g
ˆ

ds

(
δ

δφ(s)

)
{1
2
φ+(s)ψ(s)ψ(s)}WP T9

−g
ˆ

ds

(
δ

δψ(s)

)
{1
4
ψ+(s)φ(s)φ(s)}WP T18

−g
ˆ

ds

(
δ

δψ(s)

)
{1
4
ψ+(s)φ(s)φ(s)}WP T19

+g

ˆ

ds

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)φ(s)}

}
WP T22.1

−g
ˆ

ds

(
δ

δψ(s)

)
{φ+(s)φ(s)ψ(s)}WP T23

−g
ˆ

ds

(
δ

δφ(s)

)
{2ψ+(s)φ(s)ψ(s)}WP T25

+g

ˆ

ds

{(
δ

δφ(s)

)
{δC(s, s)φ(s)}

}
WP T26.2

= +g

ˆ

ds

(
δ

δψ+(s)

)
{1
2
φ+(s)φ+(s)ψ(s)}WP T2,T3

+g

ˆ

ds

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)φ(s)}

}
WP T22.1

−g
ˆ

ds

(
δ

δψ(s)

)
{1
2
ψ+(s)φ(s)φ(s)}WP T18,T19

−g
ˆ

ds

(
δ

δψ(s)

)
{φ+(s)φ(s)ψ(s)}WP T23

−g
ˆ

ds

(
δ

δφ(s)

)
{2ψ+(s)φ(s)ψ(s)}WP T25

−g
ˆ

ds

(
δ

δφ(s)

)
{φ+(s)ψ(s)ψ(s)}WP T5,T9

+g

ˆ

ds

{(
δ

δφ(s)

)
{δC(s, s)φ(s)}

}
WP T26 .2

(E.214)
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WP 2

= +g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
φ+(s)φ+(s)}WP T4

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
4
φ+(s)ψ(s)}WP T6

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
4
φ+(s)ψ(s)}WP T7

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
4
φ+(s)ψ(s)}WP T10

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
4
φ+(s)ψ(s)}WP T11

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)
{1
2
ψ(s)ψ(s)}WP T13

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
φ(s)φ(s)}WP T20

−g
ˆ

ds

(
δ

δψ(s)

)(
δ

δψ+(s)

)
{1
2
φ+(s)φ(s)}WP T24

−g
ˆ

ds

{(
δ

δφ(s)

)(
δ

δψ+(s)

)
{ψ+(s)φ(s)}

}
WP T26.1

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δψ(s)

)
{φ(s)ψ(s)}WP T27

= +g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
φ+(s)φ+(s)}WP T4 A

−g
ˆ

ds

(
δ

δψ(s)

)(
δ

δψ+(s)

)
{1
2
φ+(s)φ(s)}WP T24 H

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
φ(s)φ(s)}WP T20 G

−g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ(s)

)
{φ+(s)ψ(s) + ψ+(s)φ(s)}WP

T6,T7,T10,T11,T26.1 BCDEI

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δφ(s)

)
{φ(s)ψ(s)}WP T27 J

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)
{1
2
ψ(s)ψ(s)}WP T13 F

(E.215)
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WP 3

= −g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
φ+(s)}WP T8

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
φ+(s)}WP T12

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
4
ψ(s)}WP T14

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
4
ψ(s)}WP T15

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δψ(s)

)(
δ

δψ+(s)

)
{1
2
φ(s)}WP T28

= −g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δφ(s)

)
{1
4
φ+(s)}WP T8,T12

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δφ(s)

)
{1
2
φ(s)}WP T28

+g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ(s)

)(
δ

δφ(s)

)
{1
2
ψ(s)}WP T14 ,T15

(E.216)

WP 4

= +g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δφ(s)

)(
δ

δφ(s)

)
{1
8
}WP T16

(E.217)

Now if

ρ̂ → ρ̂ V̂2

=
g

2

ˆ

dsρ̂ (Ψ̂NC(s)
†Ψ̂NC(s)

†Ψ̂C(s)Ψ̂C(s) + Ψ̂C(s)
†Ψ̂C(s)

†Ψ̂NC(s)Ψ̂NC(s))

+
g

2

ˆ

dsρ̂ (4Ψ̂NC(s)
†Ψ̂C(s)

†Ψ̂NC(s)Ψ̂C(s)) (E.218)
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then

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ g

2

ˆ

ds

(
ψ(s)− 1

2

δ

δψ+(s)

)(
ψ(s)− 1

2

δ

δψ+(s)

)(
φ+(s)

)

×
(
φ+(s)

)
WP

+
g

2

ˆ

ds

(
φ(s)− δ

δφ+(s)

)(
φ(s)− δ

δφ+(s)

)(
ψ+(s) +

1

2

δ

δψ(s)

)

×
(
ψ+(s) +

1

2

δ

δψ(s)

)
WP

+2g

ˆ

ds

(
ψ(s)− 1

2

δ

δψ+(s)

)(
φ(s)− δ

δφ+(s)

)(
ψ+(s) +

1

2

δ

δψ(s)

)

×
(
φ+(s)

)
WP [ψ, ψ+, φ, φ+] (E.219)

Expanding this result gives

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

= WP [ψ, ψ+, φ, φ+]1−4 +WP [ψ, ψ+, φ, φ+]5−20 +WP [ψ, ψ+, φ, φ+]21−28

(E.220)

where

WP [ψ, ψ+, φ, φ+]1−4

=
g

2

ˆ

ds (ψ(s)) (ψ(s))
(
φ+(s)

) (
φ+(s)

)
WP

+
g

2

ˆ

ds (ψ(s))

(
−1

2

δ

δψ+(s)

)(
φ+(s)

) (
φ+(s)

)
WP

+
g

2

ˆ

ds

(
−1

2

δ

δψ+(s)

)
(ψ(s))

(
φ+(s)

) (
φ+(s)

)
WP

+
g

2

ˆ

ds

(
−1

2

δ

δψ+(s)

)(
−1

2

δ

δψ+(s)

)(
φ+(s)

) (
φ+(s)

)
WP

(E.221)
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WP [ψ, ψ+, φ, φ+]5−20

= +
g

2

ˆ

ds (φ(s)) (φ(s))
(
ψ+(s)

) (
ψ+(s)

)
WP

+
g

2

ˆ

ds (φ(s)) (φ(s))
(
ψ+(s)

)(1

2

δ

δψ(s)

)
WP

+
g

2

ˆ

ds (φ(s)) (φ(s))

(
1

2

δ

δψ(s)

)(
ψ+(s)

)
WP

+
g

2

ˆ

ds (φ(s)) (φ(s))

(
1

2

δ

δψ(s)

)(
1

2

δ

δψ(s)

)
WP

+
g

2

ˆ

ds (φ(s))

(
− δ

δφ+(s)

)(
ψ+(s)

) (
ψ+(s)

)
WP

+
g

2

ˆ

ds (φ(s))

(
− δ

δφ+(s)

)(
ψ+(s)

)(1

2

δ

δψ(s)

)
WP

+
g

2

ˆ

ds (φ(s))

(
− δ

δφ+(s)

)(
1

2

δ

δψ(s)

)(
ψ+(s)

)
WP

+
g

2

ˆ

ds (φ(s))

(
− δ

δφ+(s)

)(
1

2

δ

δψ(s)

)(
1

2

δ

δψ(s)

)
WP

+
g

2

ˆ

ds

(
− δ

δφ+(s)

)
(φ(s))

(
ψ+(s)

) (
ψ+(s)

)
WP

+
g

2

ˆ

ds

(
− δ

δφ+(s)

)
(φ(s))

(
ψ+(s)

)(1

2

δ

δψ(s)

)
WP

+
g

2

ˆ

ds

(
− δ

δφ+(s)

)
(φ(s))

(
1

2

δ

δψ(s)

)(
ψ+(s)

)
WP

+
g

2

ˆ

ds

(
− δ

δφ+(s)

)
(φ(s))

(
1

2

δ

δψ(s)

)(
1

2

δ

δψ(s)

)
WP

+
g

2

ˆ

ds

(
− δ

δφ+(s)

)(
− δ

δφ+(s)

)(
ψ+(s)

) (
ψ+(s)

)
WP

+
g

2

ˆ

ds

(
− δ

δφ+(s)

)(
− δ

δφ+(s)

)(
ψ+(s)

)(1

2

δ

δψ(s)

)
WP

+
g

2

ˆ

ds

(
− δ

δφ+(s)

)(
− δ

δφ+(s)

)(
1

2

δ

δψ(s)

)(
ψ+(s)

)
WP

+
g

2

ˆ

ds

(
− δ

δφ+(s)

)(
− δ

δφ+(s)

)(
1

2

δ

δψ(s)

)(
1

2

δ

δψ(s)

)
WP

(E.222)

231



WP [ψ, ψ+, φ, φ+]21−28

= +2g

ˆ

ds (ψ(s)) (φ(s))
(
ψ+(s)

) (
φ+(s)

)
WP

+2g

ˆ

ds (ψ(s)) (φ(s))

(
1

2

δ

δψ(s)

)(
φ+(s)

)
WP

+2g

ˆ

ds (ψ(s))

(
− δ

δφ+(s)

)(
ψ+(s)

) (
φ+(s)

)
WP

+2g

ˆ

ds (ψ(s))

(
− δ

δφ+(s)

)(
1

2

δ

δψ(s)

)(
φ+(s)

)
WP

+2g

ˆ

ds

(
−1

2

δ

δψ+(s)

)
(φ(s))

(
ψ+(s)

) (
φ+(s)

)
WP

+2g

ˆ

ds

(
−1

2

δ

δψ+(s)

)
(φ(s))

(
1

2

δ

δψ(s)

)(
φ+(s)

)
WP

+2g

ˆ

ds

(
−1

2

δ

δψ+(s)

)(
− δ

δφ+(s)

)(
ψ+(s)

) (
φ+(s)

)
WP

+2g

ˆ

ds

(
−1

2

δ

δψ+(s)

)(
− δ

δφ+(s)

)(
1

2

δ

δψ(s)

)(
φ+(s)

)
WP

(E.223)

The functional derivatives are now placed on the left using results in which the
functional derivatives of differing fields are zero (see (E.320) and (E.321)) giving

WP [ψ, ψ+, φ, φ+]1−4

= g

ˆ

ds{1
2
ψ(s)ψ(s)φ+(s)φ+(s)}WP U1

−g
ˆ

ds

(
δ

δψ+(s)

)
{1
4
ψ(s)φ+(s)φ+(s)}WP U2

−g
ˆ

ds

(
δ

δψ+(s)

)
{1
4
ψ(s)φ+(s)φ+(s)}WP U3

+g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
φ+(s)φ+(s)}WP U4

(E.224)
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WP [ψ, ψ+, φ, φ+]5−20

= +g

ˆ

ds{1
2
φ(s)φ(s)ψ+(s)ψ+(s)}WP U5

+g

ˆ

ds

(
δ

δψ(s)

)
{1
4
φ(s)φ(s)ψ+(s)}WP U6

+g

ˆ

ds

(
δ

δψ(s)

)
{1
4
φ(s)φ(s)ψ+(s)}WP U7

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
φ(s)φ(s)}WP U8

−g
ˆ

ds

(
δ

δφ+(s)

)
{1
2
φ(s)ψ+(s)ψ+(s)}WP U9

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
4
φ(s)ψ+(s)}WP U10

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
4
φ(s)ψ+(s)}WP U11

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
φ(s)}WP U12

−g
ˆ

ds

(
δ

δφ+(s)

)
{1
2
φ(s)ψ+(s)ψ+(s)}WP U13

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
4
φ(s)ψ+(s)}WP U14

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
4
φ(s)ψ+(s)}WP U15

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
φ(s)}WP U16

+g

ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{1
2
ψ+(s)ψ+(s)}WP U17

+g

ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
4
ψ+(s)}WP U18

+g

ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
4
ψ+(s)}WP U19

+g

ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
}WP U20

(E.225)
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WP [ψ, ψ+, φ, φ+]21−28

= +g

ˆ

ds{2ψ(s)φ(s)ψ+(s)φ+(s)}WP U21

+g

ˆ

ds

(
δ

δψ(s)

)
{ψ(s)φ(s)φ+(s)}WP U22 .1

−g
ˆ

ds{δC(s, s)φ(s)φ+(s)}WP U22.2

−g
ˆ

ds

(
δ

δφ+(s)

)
{2ψ(s)ψ+(s)φ+(s)}WP U23

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{ψ(s)φ+(s)}WP U24 .1

+g

ˆ

ds

(
δ

δφ+(s)

)
{δC(s, s)φ+(s)}WP U24.2

−g
ˆ

ds

(
δ

δψ+(s)

)
{φ(s)ψ+(s)φ+(s)}WP U25

−g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ(s)

)
{1
2
φ(s)φ+(s)}WP U26

+g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{ψ+(s)φ+(s)}WP U27

+g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
2
φ+(s)}WP U28

(E.226)

The two terms that needed extra treatment are

2g

ˆ

ds (ψ(s)) (φ(s))

(
1

2

δ

δψ(s)

)(
φ+(s)

)
WP U22

= g

ˆ

ds

{(
δ

δψ(s)

)[
ψ(s)φ(s)φ+(s)

]
− δC(s, s)

[
φ(s)φ+(s)

]}
WP

= g

ˆ

ds

(
δ

δψ(s)

)
{ψ(s)φ(s)φ+(s)}WP − g

ˆ

ds{δC(s, s)φ(s)φ+(s)}WP

and

2g

ˆ

ds (ψ(s))

(
− δ

δφ+(s)

)(
1

2

δ

δψ(s)

)(
φ+(s)

)
WP U24

= −g
ˆ

ds

(
δ

δφ+(s)

){(
δ

δψ(s)

)
[ψ(s)φ+(s)]− δC(s, s)[φ

+(s)]

}
WP

= −g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{ψ(s)φ+(s)}WP + g

ˆ

ds

(
δ

δφ+(s)

)
{δC(s, s)φ+(s)}WP

Collecting terms with the same order of functional derivatives we have

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ WP0 +WP1 +WP2 +WP3 +WP4 (E.227)
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where we have used lower subscripts for the ρ̂ V̂2contributions and

WP0

= g

ˆ

ds{1
2
ψ(s)ψ(s)φ+(s)φ+(s)}WP U1

+g

ˆ

ds{1
2
φ(s)φ(s)ψ+(s)ψ+(s)}WP U5

+g

ˆ

ds{2ψ(s)φ(s)ψ+(s)φ+(s)}WP U21

−g
ˆ

ds{δC(s, s)φ(s)φ+(s)}WP U22.2

(E.228)
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WP1

= −g
ˆ

ds

(
δ

δψ+(s)

)
{1
4
ψ(s)φ+(s)φ+(s)}WP U2

−g
ˆ

ds

(
δ

δψ+(s)

)
{1
4
ψ(s)φ+(s)φ+(s)}WP U3

+g

ˆ

ds

(
δ

δψ(s)

)
{1
4
φ(s)φ(s)ψ+(s)}WP U6

+g

ˆ

ds

(
δ

δψ(s)

)
{1
4
φ(s)φ(s)ψ+(s)}WP U7

−g
ˆ

ds

(
δ

δφ+(s)

)
{1
2
φ(s)ψ+(s)ψ+(s)}WP U9

−g
ˆ

ds

(
δ

δφ+(s)

)
{1
2
φ(s)ψ+(s)ψ+(s)}WP U13

+g

ˆ

ds

(
δ

δψ(s)

)
{ψ(s)φ(s)φ+(s)}WP U22.1

−g
ˆ

ds

(
δ

δφ+(s)

)
{2ψ(s)ψ+(s)φ+(s)}WP U23

+g

ˆ

ds

(
δ

δφ+(s)

)
{δC(s, s)φ+(s)}WP U24.2

−g
ˆ

ds

(
δ

δψ+(s)

)
{φ(s)ψ+(s)φ+(s)}WP U25

= −g
ˆ

ds

(
δ

δψ+(s)

)
{1
2
ψ(s)φ+(s)φ+(s)}WP U2,U3

−g
ˆ

ds

(
δ

δψ+(s)

)
{φ(s)ψ+(s)φ+(s)}WP U25

+g

ˆ

ds

(
δ

δψ(s)

)
{1
2
φ(s)φ(s)ψ+(s)}WP U6,U7

+g

ˆ

ds

(
δ

δψ(s)

)
{ψ(s)φ(s)φ+(s)}WP U22.1

−g
ˆ

ds

(
δ

δφ+(s)

)
{2ψ(s)ψ+(s)φ+(s)}WP U23

−g
ˆ

ds

(
δ

δφ+(s)

)
{φ(s)ψ+(s)ψ+(s)}WP U9,U13

+g

ˆ

ds

(
δ

δφ+(s)

)
{δC(s, s)φ+(s)}WP U24.2

(E.229)
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WP2

= +g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
φ+(s)φ+(s)}WP U4

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
φ(s)φ(s)}WP U8

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
4
φ(s)ψ+(s)}WP U10

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
4
φ(s)ψ+(s)}WP U11

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
4
φ(s)ψ+(s)}WP U14

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
4
φ(s)ψ+(s)}WP U15

+g

ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{1
2
ψ+(s)ψ+(s)}WP U17

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{ψ(s)φ+(s)}WP U24.1

−g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ(s)

)
{1
2
φ(s)φ+(s)}WP U26

+g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{ψ+(s)φ+(s)}WP U27

= +g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
φ+(s)φ+(s)}WP U4

−g
ˆ

ds

(
δ

δψ(s)

)(
δ

δψ+(s)

)
{1
2
φ(s)φ+(s)}WP U26

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
φ(s)φ(s)}WP U8

−g
ˆ

ds

(
δ

δψ(s)

)(
δ

δφ+(s)

)
{φ(s)ψ+(s) + ψ(s)φ+(s)}WP

U10,U11,U14,U15,U24.1

+g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{ψ+(s)φ+(s)}WP U27

+g

ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{1
2
ψ+(s)ψ+(s)}WP U17

(E.230)
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WP3

= −g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
φ(s)}WP U12

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
φ(s)}WP U16

+g

ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
4
ψ+(s)}WP U18

+g

ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
4
ψ+(s)}WP U19

+g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
2
φ+(s)}WP U28

= −g
ˆ

ds

(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δφ+(s)

)
{1
4
φ(s)}WP U12,U16

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{1
2
φ+(s)}WP U28

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{1
2
ψ+(s)}WP U18,U19

(E.231)

WP4

= +g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{1
8
}WP U20

(E.232)

Now if

ρ̂ → [V̂2, ρ̂]

= [
g

2

ˆ

ds(Ψ̂NC(s)
†Ψ̂NC(s)

†Ψ̂C(s)Ψ̂C(s) + Ψ̂C(s)
†Ψ̂C(s)

†Ψ̂NC(s)Ψ̂NC(s)), ρ̂]

+[
g

2

ˆ

ds(4Ψ̂NC(s)
†Ψ̂C(s)

†Ψ̂NC(s)Ψ̂C(s)), ρ̂]

(E.233)

then

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ WP 0
T +WP 1

T +WP 2
T +WP 3

T +WP 4
T (E.234)

where the WPnT are obtained by subtracting the results for ρ̂ V̂ 2 from those for
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V̂2 ρ̂. We find that

WP 0
T

= g

ˆ

ds{1
2
φ+(s)φ+(s)ψ(s)ψ(s)}WP T1

−g
ˆ

ds{1
2
ψ(s)ψ(s)φ+(s)φ+(s)}WP U1

+g

ˆ

ds{1
2
ψ+(s)ψ+(s)φ(s)φ(s)}WP T17

−g
ˆ

ds{1
2
φ(s)φ(s)ψ+(s)ψ+(s)}WP U5

+g

ˆ

ds{2φ+(s)ψ+(s)φ(s)ψ(s)}WP T21

−g
ˆ

ds{2ψ(s)φ(s)ψ+(s)φ+(s)}WP U21

−g
ˆ

ds
{
φ+(s)δC(s, s)φ(s)

}
WP T22.2

+g

ˆ

ds{δC(s, s)φ(s)φ+(s)}WP U22.2

= 0 (E.235)
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WP 1
T

= +g

ˆ

ds

(
δ

δψ+(s)

)
{1
2
φ+(s)φ+(s)ψ(s)}WP T2,T3

+g

ˆ

ds

(
δ

δψ+(s)

)
{1
2
ψ(s)φ+(s)φ+(s)}WP U2,U3

+g

ˆ

ds

{(
δ

δψ+(s)

)
{φ+(s)ψ+(s)φ(s)}

}
WP T22.1

+g

ˆ

ds

(
δ

δψ+(s)

)
{φ(s)ψ+(s)φ+(s)}WP U25

−g
ˆ

ds

(
δ

δψ(s)

)
{1
2
ψ+(s)φ(s)φ(s)}WP T18,T19

−g
ˆ

ds

(
δ

δψ(s)

)
{1
2
φ(s)φ(s)ψ+(s)}WP U6,U7

−g
ˆ

ds

(
δ

δψ(s)

)
{φ+(s)φ(s)ψ(s)}WP T23

−g
ˆ

ds

(
δ

δψ(s)

)
{ψ(s)φ(s)φ+(s)}WP U22.1

−g
ˆ

ds

(
δ

δφ(s)

)
{2ψ+(s)φ(s)ψ(s)}WP T25

+g

ˆ

ds

(
δ

δφ+(s)

)
{2ψ(s)ψ+(s)φ+(s)}WP U23

−g
ˆ

ds

(
δ

δφ(s)

)
{φ+(s)ψ(s)ψ(s)}WP T5,T9

+g

ˆ

ds

(
δ

δφ+(s)

)
{φ(s)ψ+(s)ψ+(s)}WP U9,U13

+g

ˆ

ds

{(
δ

δφ(s)

)
{δC(s, s)φ(s)}

}
WP T26.2

−g
ˆ

ds

(
δ

δφ+(s)

)
{δC(s, s)φ+(s)}WP U24.2
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After collecting together similar terms we get

WP 1
T

= +g

ˆ

ds

(
δ

δψ+(s)

)
{φ+(s)φ+(s)ψ(s)}WP T2,T3,U2,U3

+g

ˆ

ds

(
δ

δψ+(s)

)
{2φ+(s)ψ+(s)φ(s)}WP T22.1,U25

−g
ˆ

ds

(
δ

δψ(s)

)
{ψ+(s)φ(s)φ(s)}WP T18,T19,U6,U7

−g
ˆ

ds

(
δ

δψ(s)

)
{2φ+(s)φ(s)ψ(s)}WP T23,U22.1

+g

ˆ

ds

(
δ

δφ+(s)

)
{2ψ(s)ψ+(s)φ+(s)}WP U23

+g

ˆ

ds

(
δ

δφ+(s)

)
{φ(s)ψ+(s)ψ+(s)}WP U9,U13

−g
ˆ

ds

(
δ

δφ+(s)

)
{δC(s, s)φ+(s)}WP U24.2

−g
ˆ

ds

(
δ

δφ(s)

)
{2ψ+(s)φ(s)ψ(s)}WP T25

−g
ˆ

ds

(
δ

δφ(s)

)
{φ+(s)ψ(s)ψ(s)}WP T5,T9

+g

ˆ

ds

(
δ

δφ(s)

)
{δC(s, s)φ(s)}WP T26.2

= +g

ˆ

ds

(
δ

δψ+(s)

)
{[φ+(s)ψ(s) + 2ψ+(s)φ(s)]φ+(s)}WP

−g
ˆ

ds

(
δ

δψ(s)

)
{[φ(s)ψ+(s) + 2ψ(s)φ+(s)]φ(s)}WP

+g

ˆ

ds

(
δ

δφ+(s)

)
{[2ψ(s)ψ+(s)− δC(s, s)]φ

+(s) + [ψ+(s)ψ+(s)]φ(s)}WP

−g
ˆ

ds

(
δ

δφ(s)

)
{[2ψ+(s)ψ(s)− δC(s, s)]φ(s) + [ψ(s)ψ(s)]φ+(s)}WP

(E.236)
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WP 2
T

= +g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
φ+(s)φ+(s)}WP T4Can1

−g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ+(s)

)
{1
8
φ+(s)φ+(s)}WP U4Can1

−g
ˆ

ds

(
δ

δψ(s)

)(
δ

δψ+(s)

)
{1
2
φ+(s)φ(s)}WP T24Can2

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ+(s)

)
{1
2
φ(s)φ+(s)}WP U26Can2

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
φ(s)φ(s)}WP T20Can3

−g
ˆ

ds

(
δ

δψ(s)

)(
δ

δψ(s)

)
{1
8
φ(s)φ(s)}WP U8Can3

−g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ(s)

)
{φ+(s)ψ(s) + ψ+(s)φ(s)}WP

T6,T7,T10,T11,T26.1

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δφ+(s)

)
{φ(s)ψ+(s) + ψ(s)φ+(s)}WP

U10,U11,U14,U15,U24.1

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δφ(s)

)
{φ(s)ψ(s)}WP T27

−g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{ψ+(s)φ+(s)}WP U27

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)
{1
2
ψ(s)ψ(s)}WP T13

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{1
2
ψ+(s)ψ+(s)}WP U17

= −g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ(s)

)
{φ+(s)ψ(s) + ψ+(s)φ(s)}WP

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δφ+(s)

)
{φ(s)ψ+(s) + ψ(s)φ+(s)}WP

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δφ(s)

)
{φ(s)ψ(s)}WP

−g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{φ+(s)ψ+(s)}WP

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)
{1
2
ψ(s)ψ(s)}WP

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{1
2
ψ+(s)ψ+(s)}WP

(E.237)
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WP 3
T

= −g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δφ(s)

)
{1
4
φ+(s)}WP T8,T12

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δφ+(s)

)
{1
4
φ(s)}WP U12,U16

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δφ(s)

)
{1
2
φ(s)}WP T28

−g
ˆ

ds

(
δ

δψ(s)

)(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{1
2
φ+(s)}WP U28

+g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ(s)

)(
δ

δφ(s)

)
{1
2
ψ(s)}WP T14,T15

−g
ˆ

ds

(
δ

δψ(s)

)(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{1
2
ψ+(s)}WP U18,U19

(E.238)

WP 4
T

= +g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δψ+(s)

)(
δ

δφ(s)

)(
δ

δφ(s)

)
{1
8
}WP T16

−g
ˆ

ds

(
δ

δψ(s)

)(
δ

δψ(s)

)(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{1
8
}WP U20

(E.239)

Thus we see that the V̂ 2 term produces functional derivatives of orders one,
two, three and four. We may write the contributions to the functional Fokker-
Planck equation in the form

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)

V 2

=

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)1

V 2

+

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)2

V 2

+

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)3

V 2

+

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)4

V 2

(E.240)
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where on reverting to the original notation

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 2

=
−i
~

{
+g

ˆ

ds

(
δ

δψ+
C (s)

)
{[ψ+

NC(s)ψC(s) + 2ψ+
C(s)ψNC(s)]ψ

+
NC(s)}P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

(
δ

δψC(s)

)
{[ψNC(s)ψ+

C (s) + 2ψC(s)ψ
+
NC(s)]ψNC(s)}P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
NC(s)

)
{ψNC(s)ψ+

C (s)ψ
+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
NC(s)

)
{[2ψC(s)ψ+

C (s)− δC(s, s)]ψ
+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψNC(s)

)
{ψ+

NC(s)ψC(s)ψC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψNC(s)

)
{[2ψ+

C (s)ψC(s)− δC(s, s)]ψNC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.241)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 2

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{ψ+

NC(s)ψC(s) + ψ+
C (s)ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{ψNC(s)ψ+

C (s) + ψC(s)ψ
+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψNC(s)

)
{ψNC(s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{ψ+

C (s)ψ
+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{1
2
ψC(s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
C (s)ψ

+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.242)
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

V 2

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{1
4
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{1
4
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{1
2
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{1
2
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.243)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)4

V 2

=
−i
~

{
g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{1
8
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{1
8
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.244)

Appendix E.9. Condensate - Non-Condensate Interaction - Third Order in Non-
Condendate

For the Bogoliubov Hamiltonian for which we derive the functional Fokker-
Planck equation the term V̂3 is discarded, but for completeness we treat it here.
The third order term in the interaction between the condensate and the non-
condensate is

V̂3 = g

ˆ

ds(Ψ̂NC(s)
†Ψ̂NC(s)

†Ψ̂NC(s)Ψ̂C(s)) + Ψ̂C(s)
†Ψ̂NC(s)

†Ψ̂NC(s)Ψ̂NC(s))

(E.245)

This term is due to the boson-boson interaction.
Now if

ρ̂ → V̂3 ρ̂

= g

ˆ

ds(Ψ̂NC(s)
†Ψ̂NC(s)

†Ψ̂NC(s)Ψ̂C(s) + Ψ̂C(s)
†Ψ̂NC(s)

†Ψ̂NC(s)Ψ̂NC(s))ρ̂

(E.246)
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then

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ g

ˆ

ds

(
φ+(s)− δ

δφ(s)

)(
φ+(s)− δ

δφ(s)

)
(φ(s))

×
(
ψ(s) +

1

2

δ

δψ+(s)

)
WP [ψ, ψ+, φ, φ+]

+g

ˆ

ds

(
ψ+(s)− 1

2

δ

δψ(s)

)(
φ+(s)− δ

δφ(s)

)
(φ(s))

× (φ(s))WP [ψ, ψ+, φ, φ+]

(E.247)

Expanding gives

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

= WP [ψ, ψ+, φ, φ+]1−8 +WP [ψ, ψ+, φ, φ+]9−12 (E.248)

where

WP [ψ(r), ψ+(r), φ(r), φ+(r)]1−8

= g

ˆ

ds
(
φ+(s)

) (
φ+(s)

)
(φ(s)) (ψ(s))WP

+g

ˆ

ds
(
φ+(s)

) (
φ+(s)

)
(φ(s))

(
1

2

δ

δψ+(s)

)
WP

+g

ˆ

ds
(
φ+(s)

) (
− δ

δφ(s)

)
(φ(s)) (ψ(s))WP

+g

ˆ

ds
(
φ+(s)

) (
− δ

δφ(s)

)
(φ(s))

(
1

2

δ

δψ+(s)

)
WP

+g

ˆ

ds

(
− δ

δφ(s)

)(
φ+(s)

)
(φ(s)) (ψ(s))WP

+g

ˆ

ds

(
− δ

δφ(s)

)(
φ+(s)

)
(φ(s))

(
1

2

δ

δψ+(s)

)
WP

+g

ˆ

ds

(
− δ

δφ(s)

)(
− δ

δφ(s)

)
(φ(s)) (ψ(s))WP

+g

ˆ

ds

(
− δ

δφ(s)

)(
− δ

δφ(s)

)
(φ(s))

(
1

2

δ

δψ+(s)

)
WP

(E.249)
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WP [ψ(r), ψ+(r), φ(r), φ+(r)]9−12

= +g

ˆ

ds
(
ψ+(s)

) (
φ+(s)

)
(φ(s)) (φ(s))WP

+g

ˆ

ds
(
ψ+(s)

)(
− δ

δφ(s)

)
(φ(s)) (φ(s))WP

+g

ˆ

ds

(
−1

2

δ

δψ(s)

)(
φ+(s)

)
(φ(s)) (φ(s))WP

+g

ˆ

ds

(
−1

2

δ

δψ(s)

)(
− δ

δφ(s)

)
(φ(s)) (φ(s))WP

(E.250)

The functional derivatives are now placed on the left using results in which the
functional derivatives of differing fields are zero (see (E.320) and (E.321)) giving

WP [ψ(r), ψ+(r), φ(r), φ+(r)]1−8

= g

ˆ

ds{φ+(s)φ+(s)φ(s)ψ(s)}WP V1

+g

ˆ

ds

(
δ

δψ+(s)

)
{1
2
φ+(s)φ+(s)φ(s)}WP V2

−g
ˆ

ds

(
δ

δφ(s)

)
{φ+(s)φ(s)ψ(s)}WP V3

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
2
φ+(s)φ(s)}WP V4

−g
ˆ

ds

(
δ

δφ(s)

)
{φ+(s)φ(s)ψ(s)}WP V5

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
2
φ+(s)φ(s)}WP V6

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)
{φ(s)ψ(s)}WP V7

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
2
φ(s)}WP V8

(E.251)
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WP [ψ(r), ψ+(r), φ(r), φ+(r)]9−12

= +g

ˆ

ds{ψ+(s)φ+(s)φ(s)φ(s)}WP V9

−g
ˆ

ds

(
δ

δφ(s)

)
{ψ+(s)φ(s)φ(s)}WP V10

−g
ˆ

ds

(
δ

δψ(s)

)
{1
2
φ+(s)φ(s)φ(s)}WP V11

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δφ(s)

)
{1
2
φ(s)φ(s)}WP V12

(E.252)

Collecting terms with the same order of functional derivatives we have

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ WP 0 +WP 1 +WP 2 +WP 3 (E.253)

where we have used upper subscripts for the V̂3ρ̂ contributions and

WP 0

= g

ˆ

ds{φ+(s)φ+(s)φ(s)ψ(s)}WP V1

+g

ˆ

ds{ψ+(s)φ+(s)φ(s)φ(s)}WP V9

(E.254)

WP 1

= +g

ˆ

ds

(
δ

δψ+(s)

)
{1
2
φ+(s)φ+(s)φ(s)}WP V2

−g
ˆ

ds

(
δ

δφ(s)

)
{φ+(s)φ(s)ψ(s)}WP V3

−g
ˆ

ds

(
δ

δφ(s)

)
{φ+(s)φ(s)ψ(s)}WP V5

−g
ˆ

ds

(
δ

δφ(s)

)
{ψ+(s)φ(s)φ(s)}WP V10

−g
ˆ

ds

(
δ

δψ(s)

)
{1
2
φ+(s)φ(s)φ(s)}WP V11

= +g

ˆ

ds

(
δ

δψ+(s)

)
{1
2
φ+(s)φ+(s)φ(s)}WP V2

−g
ˆ

ds

(
δ

δψ(s)

)
{1
2
φ+(s)φ(s)φ(s)}WP V11

−g
ˆ

ds

(
δ

δφ(s)

)
{[2φ+(s)ψ(s) + ψ+(s)φ(s)]φ(s)}WP V3,V5,V10

(E.255)
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WP 2

= −g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
2
φ+(s)φ(s)}WP V4

−g
ˆ

ds

(
δ

δφ(s)

)(
δ

δψ+(s)

)
{1
2
φ+(s)φ(s)}WP V6

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)
{φ(s)ψ(s)}WP V7

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δφ(s)

)
{1
2
φ(s)φ(s)}WP V12

= −g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ(s)

)
{φ+(s)φ(s)}WP V4,V6

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δφ(s)

)
{1
2
φ(s)φ(s)}WP V12

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)
{φ(s)ψ(s)}WP V7

(E.256)

WP 3

= +g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ(s)

)(
δ

δφ(s)

)
{1
2
φ(s)}WP V 8

(E.257)

Now if

ρ̂ → ρ̂ V̂3

= g

ˆ

ds ρ̂ (Ψ̂NC(s)
†Ψ̂NC(s)

†Ψ̂NC(s)Ψ̂C(s) + Ψ̂C(s)
†Ψ̂NC(s)

†Ψ̂NC(s)Ψ̂NC(s))

(E.258)

then

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ g

ˆ

ds

(
ψ(s)− 1

2

δ

δψ+(s)

)(
φ(s) − δ

δφ+(s)

)(
φ+(s)

)

×
(
φ+(s)

)
WP [ψ, ψ+, φ, φ+]

+g

ˆ

ds

(
φ(s) − δ

δφ+(s)

)(
φ(s) − δ

δφ+(s)

)(
φ+(s)

)

×
(
ψ+(s) +

1

2

δ

δψ(s)

)
WP [ψ, ψ+, φ, φ+]

(E.259)

Expanding gives

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

= WP [ψ, ψ+, φ, φ+]1−4 +WP [ψ, ψ+, φ, φ+]5−12 (E.260)
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where

WP [ψ, ψ+, φ, φ+]1−4

= g

ˆ

ds (ψ(s)) (φ(s))
(
φ+(s)

) (
φ+(s)

)
WP

+g

ˆ

ds (ψ(s))

(
− δ

δφ+(s)

)(
φ+(s)

) (
φ+(s)

)
WP

+g

ˆ

ds

(
−1

2

δ

δψ+(s)

)
(φ(s))

(
φ+(s)

) (
φ+(s)

)
WP

+g

ˆ

ds

(
−1

2

δ

δψ+(s)

)(
− δ

δφ+(s)

)(
φ+(s)

) (
φ+(s)

)
WP

(E.261)

WP [ψ, ψ+, φ, φ+]5−12

= +g

ˆ

ds (φ(s)) (φ(s))
(
φ+(s)

) (
ψ+(s)

)
WP

+g

ˆ

ds (φ(s)) (φ(s))
(
φ+(s)

)(1

2

δ

δψ(s)

)
WP

+g

ˆ

ds (φ(s))

(
− δ

δφ+(s)

)(
φ+(s)

) (
ψ+(s)

)
WP

+g

ˆ

ds (φ(s))

(
− δ

δφ+(s)

)(
φ+(s)

)(1

2

δ

δψ(s)

)
WP

+g

ˆ

ds

(
− δ

δφ+(s)

)
(φ(s))

(
φ+(s)

) (
ψ+(s)

)
WP

+g

ˆ

ds

(
− δ

δφ+(s)

)
(φ(s))

(
φ+(s)

)(1

2

δ

δψ(s)

)
WP

+g

ˆ

ds

(
− δ

δφ+(s)

)(
− δ

δφ+(s)

)(
φ+(s)

) (
ψ+(s)

)
WP

+g

ˆ

ds

(
− δ

δφ+(s)

)(
− δ

δφ+(s)

)(
φ+(s)

)(1

2

δ

δψ(s)

)
WP

(E.262)

The functional derivatives are now placed on the left using results in which the
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functional derivatives of differing fields are zero (see (E.320) and (E.321)) giving

WP [ψ, ψ+, φ, φ+]1−4

= g

ˆ

ds{ψ(s)φ(s)φ+(s)φ+(s)}WP W1

−g
ˆ

ds

(
δ

δφ+(s)

)
{ψ(s)φ+(s)φ+(s)}WP W2

−g
ˆ

ds

(
δ

δψ+(s)

)
{1
2
φ(s)φ+(s)φ+(s)}WP W3

+g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{1
2
φ+(s)φ+(s)}WP W4

(E.263)

and

WP [ψ, ψ+, φ, φ+]5−12

= +g

ˆ

ds{φ(s)φ(s)φ+(s)ψ+(s)}WP W5

+g

ˆ

ds

(
δ

δψ(s)

)
{1
2
φ(s)φ(s)φ+(s)}WP W6

−g
ˆ

ds

(
δ

δφ+(s)

)
{φ(s)φ+(s)ψ+(s)}WP W7

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
2
φ(s)φ+(s)}WP W8

−g
ˆ

ds

(
δ

δφ+(s)

)
{φ(s)φ+(s)ψ+(s)}WP W9

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
2
φ(s)φ+(s)}WP W10

+g

ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{φ+(s)ψ+(s)}WP W11

+g

ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
2
φ+(s)}WP W12

(E.264)

Collecting terms with the same order of functional derivatives we have

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ WP0 +WP1 +WP2 +WP3 (E.265)
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where we have used lower subscripts for the ρ̂ V̂3 contributions and

WP0

= g

ˆ

ds{ψ(s)φ(s)φ+(s)φ+(s)}WP W1

+g

ˆ

ds{φ(s)φ(s)φ+(s)ψ+(s)}WP W5

(E.266)

WP1

= −g
ˆ

ds

(
δ

δφ+(s)

)
{ψ(s)φ+(s)φ+(s)}WP W2

−g
ˆ

ds

(
δ

δψ+(s)

)
{1
2
φ(s)φ+(s)φ+(s)}WP W3

+g

ˆ

ds

(
δ

δψ(s)

)
{1
2
φ(s)φ(s)φ+(s)}WP W6

−g
ˆ

ds

(
δ

δφ+(s)

)
{φ(s)φ+(s)ψ+(s)}WP W7

−g
ˆ

ds

(
δ

δφ+(s)

)
{φ(s)φ+(s)ψ+(s)}WP W9

= −g
ˆ

ds

(
δ

δψ+(s)

)
{1
2
φ(s)φ+(s)φ+(s)}WP W3

+g

ˆ

ds

(
δ

δψ(s)

)
{1
2
φ(s)φ(s)φ+(s)}WP W6

−g
ˆ

ds

(
δ

δφ+(s)

)
{[2φ(s)ψ+(s) + ψ(s)φ+(s)]φ+(s)}WP W7,W9,W2

(E.267)
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WP2

= +g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{1
2
φ+(s)φ+(s)}WP W4

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
2
φ(s)φ+(s)}WP W8

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δψ(s)

)
{1
2
φ(s)φ+(s)}WP W10

+g

ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{φ+(s)ψ+(s)}WP W11

= +g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{1
2
φ+(s)φ+(s)}WP W4

−g
ˆ

ds

(
δ

δψ(s)

)(
δ

δφ+(s)

)
{φ(s)φ+(s)}WP W8,W10

+g

ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{φ+(s)ψ+(s)}WP W11

(E.268)

WP3

= +g

ˆ

ds

(
δ

δψ(s)

)(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{1
2
φ+(s)}WP W12

(E.269)

Now if

ρ̂ → [V̂3, ρ̂]

= [g

ˆ

ds(Ψ̂NC(s)
†Ψ̂NC(s)

†Ψ̂NC(s)Ψ̂C(s) + Ψ̂C(s)
†Ψ̂NC(s)

†Ψ̂NC(s)Ψ̂NC(s)), ρ̂]

(E.270)

then

WP [ψ(r), ψ+(r), φ(r), φ+(r)]

→ WP 0
T +WP 1

T +WP 2
T +WP 3

T (E.271)

where the WPnT are obtained by subtracting the results for ρ̂ V̂ 3 from those for
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V̂3 ρ̂. We find that

WP 0
T

= g

ˆ

ds{φ+(s)φ+(s)φ(s)ψ(s)}WP V1

−g
ˆ

ds{ψ(s)φ(s)φ+(s)φ+(s)}WP W1

+g

ˆ

ds{ψ+(s)φ+(s)φ(s)φ(s)}WP V9

−g
ˆ

ds{φ(s)φ(s)φ+(s)ψ+(s)}WP W5

= 0 (E.272)

WP 1
T

= +g

ˆ

ds

(
δ

δψ+(s)

)
{1
2
φ+(s)φ+(s)φ(s)}WP V2

+g

ˆ

ds

(
δ

δψ+(s)

)
{1
2
φ(s)φ+(s)φ+(s)}WP W3

−g
ˆ

ds

(
δ

δψ(s)

)
{1
2
φ+(s)φ(s)φ(s)}WP V11

−g
ˆ

ds

(
δ

δψ(s)

)
{1
2
φ(s)φ(s)φ+(s)}WP W6

−g
ˆ

ds

(
δ

δφ(s)

)
{[2φ+(s)ψ(s) + ψ+(s)φ(s)]φ(s)}WP V3,V5,V10

+g

ˆ

ds

(
δ

δφ+(s)

)
{[2φ(s)ψ+(s) + ψ(s)φ+(s)]φ+(s)}WP W7,W9,W2

= +g

ˆ

ds

(
δ

δψ+(s)

)
{φ+(s)φ+(s)φ(s)}WP V2,W3

−g
ˆ

ds

(
δ

δψ(s)

)
{φ(s)φ(s)φ+(s)}WP V11,W6

+g

ˆ

ds

(
δ

δφ+(s)

)
{[2φ(s)ψ+(s) + ψ(s)φ+(s)]φ+(s)}WP W7,W9,W2

−g
ˆ

ds

(
δ

δφ(s)

)
{[2φ+(s)ψ(s) + ψ+(s)φ(s)]φ(s)}WP V3,V5,V10

(E.273)
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WP 2
T

= −g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ+(s)

)
{1
2
φ+(s)φ+(s)}WP W4

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δφ(s)

)
{1
2
φ(s)φ(s)}WP V12

−g
ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ(s)

)
{φ+(s)φ(s)}WP V4,V6

+g

ˆ

ds

(
δ

δψ(s)

)(
δ

δφ+(s)

)
{φ(s)φ+(s)}WP W8,W10

−g
ˆ

ds

(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{φ+(s)ψ+(s)}WP W11

+g

ˆ

ds

(
δ

δφ(s)

)(
δ

δφ(s)

)
{φ(s)ψ(s)}WP V7

(E.274)

WP 3
T

= +g

ˆ

ds

(
δ

δψ+(s)

)(
δ

δφ(s)

)(
δ

δφ(s)

)
{1
2
φ(s)}WP V8

−g
ˆ

ds

(
δ

δψ(s)

)(
δ

δφ+(s)

)(
δ

δφ+(s)

)
{1
2
φ+(s)}WP W12

(E.275)

Thus we see that the V̂ 3 term produces functional derivatives of orders one,
two and three. We may write the contributions to the functional Fokker-Planck
equation in the form

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)

V 3

=

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)1

V 3

+

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)2

V 3

+

(
∂

∂t
WP [ψ, ψ+, φ, φ+]

)3

V 3

(E.276)
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where on reverting to the original notation

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 3

=
−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)
{ψ+

NC(s)ψ
+
NC(s)ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)
{ψ+

NC(s)ψNC(s)ψNC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
NC(s)

)
{[2ψNC(s)ψ+

C (s)+ψC(s)ψ
+
NC(s)]ψ

+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψNC(s)

)
{[2ψ+

NC(s)ψC(s) + ψ+
C (s)ψNC(s)]ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.277)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 3

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)(
1

2
ψ+
NC(s)

)(
ψ+
NC(s)

)}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψNC(s)

)
{1
2
ψNC(s)ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{ψ+

NC(s)ψNC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{ψNC(s)ψ+

NC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{ψ+

NC(s)ψ
+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{ψNC(s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.278)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

V 3

=
−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{1
2
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.279)

Note that these third order terms are not included in the functional Fokker-
Planck equation for the Bogoliubov Hamiltonian.
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Appendix E.10. Summary of Results

The functional Fokker-Planck equation may be written in the form

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

C

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

NC

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V

(E.280)

of the sum of terms from the condensate, non-condensate and interaction terms
in the Hamiltonian.

Appendix E.10.1. Condensate Hamiltonian Terms

The contributions to the functional Fokker-Planck equation from the con-
densate Hamiltonian may be written in the form

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

C

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

K

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

U

(E.281)

of the sum of terms from the kinetic energy, the trap potential and the boson-
boson interaction. Derivations of the form for each term are given in Appendix E.
Here and elsewhere ∂µ is short for ∂

∂sµ
.

The contribution to the functional Fokker-Planck equation from the kinetic
energy is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

K

=
−i
~

{
−
ˆ

ds

{
δ

δψ+
C (s)

(
∑

µ

~
2

2m
∂2µψ

+
C (s)

)
P [ψ−→(r), ψ∗

−→(r)]

}}

+
−i
~

{
+

ˆ

ds

{
δ

δψC(s)

(
∑

µ

~
2

2m
∂2µψC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

}}

(E.282)

The contribution to the functional Fokker-Planck equation from the trap
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potential is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V

=
−i
~

{
−
ˆ

ds

{
δ

δψC(s)
{V (s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+

ˆ

ds

{
δ

δψ+
C (s)

{V (s)ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.283)

The contribution to the functional Fokker-Planck equation from the boson-
boson interaction is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

U

=
−i
~

{
−g
ˆ

ds
δ

δψC(s)

{
[ψ+
C (s)ψC(s)− δC(s, s)]ψC(s)

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds
δ

δψ+
C (s)

{
[ψ+
C (s)ψC(s)− δC(s, s)]ψ

+
C (s)

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
g

ˆ

ds
δ

δψC(s)

δ

δψC(s)

δ

δψ+
C (s)

{1
4
ψC(s)}P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds
δ

δψ+
C (s)

δ

δψ+
C (s)

δ

δψC(s)
{1
4
ψ+
C (s)}P [ψ−→(r), ψ∗

−→(r)]

}

(E.284)

which involves first order and third order functional derivatives. The quantity
δC(s, s) is a diagonal element of the restricted delta function for condensate
modes. We note that

ˆ

ds δC(s, s) = 1 (E.285)

corresponding to there being a single occupied condensate mode in this treat-
ment. The total condensate number given by

NC =

˘

D2ψC D
2ψ+

C D
2ψNC D

2ψ+
NC

ˆ

ds(ψ+
C (s)ψC(s))P [ψ−→(r), ψ∗

−→(r)]

(E.286)

is depleted by one.

Appendix E.10.2. Non-Condensate Hamiltonian Terms

The contributions to the functional Fokker-Planck equation from the non-
condensate Hamiltonian may be written in the form

258



(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

NC

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

K

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

U

(E.287)

of the sum of terms from the kinetic energy, the trap potential and the boson-
boson interaction. Derivations of the form for each term are given in Appendix E.

The contribution to the functional Fokker-Planck equation from the kinetic
energy is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

K

=
−i
~

{
−
ˆ

ds

{
δ

δψ+
NC(s)

(
∑

µ

~
2

2m
∂2µψ

+
NC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

}}

+
−i
~

{
+

ˆ

ds

{
δ

δψNC(s)

(
∑

µ

~
2

2m
∂2µψNC(s)

)
P [ψ−→(r), ψ∗

−→(r)]

}}

(E.288)

The contribution to the functional Fokker-Planck equation from the trap
potential is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V

=
−i
~

{
−
ˆ

ds

{
δ

δψNC(s)
{V (s)ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+

ˆ

ds

{
δ

δψ+
NC(s)

V (s)ψ+
NC(s)

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.289)

The contribution to the functional Fokker-Planck equation from the boson-
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boson interaction is given by

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

U

=
−i
~

{
−g
ˆ

ds
δ

δψNC(s)

{
[ψ+
NC(s)ψNC(s)]ψNC(s)

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds
δ

δψ+
NC(s)

{
[ψ+
NC(s)ψNC(s)]ψ

+
NC(s)

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds
δ

δψNC(s)

δ

δψNC(s)
{1
2
ψNC(s)ψNC(s)}P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds
δ

δψ+
NC(s)

δ

δψ+
NC(s)

{1
2
ψ+
NC(s)ψ

+
NC(s)}P [ψ−→(r), ψ∗

−→(r)]

}

(E.290)

This term is part of the interaction term Ĥ5 and its contribution to the func-
tional Fokker-Planck equation will be ignored.

Appendix E.10.3. Interaction between Condensate and Non-Condensate Terms

The contributions to the functional Fokker-Planck equation from the inter-
action Hamiltonian between the condensate and non-condensate may be written
in the form

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V 1

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V 2

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V 3

(E.291)

of the sum of first, second and third order terms in the non-condensate field
operators. Derivations of the form for each term are given in Appendix E.

First Order Terms The contribution to the functional Fokker-Planck
equation from the first order term in the interaction Hamiltonian between the
condensate and non-condensate may be written in the form

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V 1

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V 14

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V 12

(E.292)

These two contributions may be written as the sum of terms which are linear,
quadratic, cubic and quartic in the number of functional derivatives. For the
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V̂14 term

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V 14

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 14

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 14

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

V 14

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)4

V 14

(E.293)

where

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 14

=
−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)
{[2ψ+

C(s)ψC(s)− δC(s, s)]ψ
+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C
(s)

)
{[ψ+

C (s)ψ
+
C (s)]ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)
{[2ψC(s)ψ

+
C (s)− δC(s, s)]ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)
{[ψC(s)ψC(s)]ψ+

NC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψNC(s)

)
{[ψ+

C (s)ψC(s)− δC(s, s)]ψC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
NC(s)

)
{[ψC(s)ψ+

C (s)− δC(s, s)]ψ
+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.294)
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 14

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{ψ+

C(s)ψC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{ψC(s)ψ+

C (s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

){
1

2
δC(s, s)

}}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

){
1

2
δC(s, s)

}}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψNC(s)

)
{1
2
ψC(s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
C (s)ψ

+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.295)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

V 14

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψC(s)

)
{1
4
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
C (s)

)
{1
4
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{1
4
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{1
4
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψC(s)

)(
δ

δψNC(s)

)
{1
2
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.296)
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)4

V 14

=
−i
~

{
g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψC(s)

)(
δ

δψNC(s)

)
{1
8
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{1
8
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.297)

For the V̂12 term

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V 12

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 12

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 12

(E.298)

where for the two mode condensate case

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 12

=
−i
~

{
−g
ˆ ˆ

ds du

{(
δ

δψ+
C (u)

)
{F (s,u)ψ+

NC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+g

ˆ ˆ

ds du

{(
δ

δψC(s)

)
{F (u, s)∗ ψNC(u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−g
ˆ ˆ

ds du

{(
δ

δψ+
NC(u)

)
{F (u, s)∗ ψ+

C (s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+g

ˆ ˆ

ds du

{(
δ

δψNC(s)

)
{F (s,u)ψC(u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.299)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 12

=
−i
~

{
+g

ˆ ˆ

ds du

{(
δ

δψ+
C (u)

)(
δ

δψNC(s)

)
{1
2
F (s,u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−g
ˆ ˆ

ds du

{(
δ

δψC(s)

)(
δ

δψ+
NC(u)

)
{1
2
F(u, s)∗}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.300)
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These results may also be written as

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 12

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)
{
ˆ

duF (u, s)ψ+
NC(u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)
{
ˆ

duF (u, s)∗ ψNC(u)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
NC(s)

)
{
ˆ

duF (s,u)∗ ψ+
C (u)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
+g

ˆ

ds

{(
δ

δψNC(s)

)
{
ˆ

duF (s,u)ψC(u)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.301)

so the quantity inside the inner brackets is just another functional. The quadratic
term is left unchanged except for interchanging positions to make the expression
more symmetrical

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 12

=
−i
~

{
+g

ˆ ˆ

ds du

{(
δ

δψ+
C (s)

)(
δ

δψNC(u)

)
{1
2
F (u, s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

+
−i
~

{
−g
ˆ ˆ

ds du

{(
δ

δψC(s)

)(
δ

δψ+
NC(u)

)
{1
2
F(u, s)∗}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.302)

For the single mode condensate case

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 12

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
NC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψNC(s)

)
{
〈
Ψ̂C(s)

†Ψ̂C(s)
〉
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.303)
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 12

=
−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{1
2

〈
Ψ̂C(r)

†Ψ̂C(r)
〉
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{1
2

〈
Ψ̂C(r)

†Ψ̂C(r)
〉
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.304)

Second Order Terms The contribution to the functional Fokker-Planck
equation from the second order term in the interaction Hamiltonian between
the condensate and non-condensate may be written as the sum of terms which
are linear, quadratic, cubic and quartic in the number of functional derivatives

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V 2

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 2

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 2

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

V 2

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)4

V 2

(E.305)

where

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 2

=
−i
~

{
+g

ˆ

ds

(
δ

δψ+
C (s)

)
{[ψ+

NC(s)ψC(s) + 2ψ+
C(s)ψNC(s)]ψ

+
NC(s)}P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

(
δ

δψC(s)

)
{[ψNC(s)ψ+

C (s) + 2ψC(s)ψ
+
NC(s)]ψNC(s)}P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
NC(s)

)
{ψNC(s)ψ+

C (s)ψ
+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
NC(s)

)
{[2ψC(s)ψ+

C (s)− δC(s, s)]ψ
+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψNC(s)

)
{ψ+

NC(s)ψC(s)ψC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψNC(s)

)
{[2ψ+

C (s)ψC(s)− δC(s, s)]ψNC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.306)
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 2

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{ψ+

NC(s)ψC(s) + ψ+
C (s)ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{ψNC(s)ψ+

C (s) + ψC(s)ψ
+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψNC(s)

)
{ψNC(s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{ψ+

C (s)ψ
+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{1
2
ψC(s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
C (s)ψ

+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.307)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

V 2

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{1
4
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ
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{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{1
4
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{1
2
ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{1
2
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.308)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)4

V 2

=
−i
~

{
g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{1
8
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{1
8
}
}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.309)
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Third Order Terms The contribution to the functional Fokker-Planck
equation from the third order term in the interaction Hamiltonian between the
condensate and non-condensate may be written as the sum of terms which are
linear, quadratic and cubic in the number of functional derivatives

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)

V 3

=

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 3

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 3

+

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

V 3

(E.310)

where
(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)1

V 3

=
−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)
{ψ+

NC(s)ψ
+
NC(s)ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)
{ψ+

NC(s)ψNC(s)ψNC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψ+
NC(s)

)
{[2ψNC(s)ψ+

C (s)+ψC(s)ψ
+
NC(s)]ψ

+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψNC(s)

)
{[2ψ+

NC(s)ψC(s) + ψ+
C (s)ψNC(s)]ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.311)

(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)2

V 3

=
−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
NC(s)ψ

+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψNC(s)

)
{1
2
ψNC(s)ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)
{ψ+

NC(s)ψNC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)
{ψNC(s)ψ+

NC(s)}
}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{ψ+

NC(s)ψ
+
C (s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
+g

ˆ

ds

{(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{ψNC(s)ψC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.312)
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(
∂

∂t
P [ψ−→(r), ψ∗

−→(r)]

)3

V 3

=
−i
~

{
+g

ˆ

ds

{(
δ

δψ+
C (s)

)(
δ

δψNC(s)

)(
δ

δψNC(s)

)
{1
2
ψNC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

−i
~

{
−g
ˆ

ds

{(
δ

δψC(s)

)(
δ

δψ+
NC(s)

)(
δ

δψ+
NC(s)

)
{1
2
ψ+
NC(s)}

}
P [ψ−→(r), ψ∗

−→(r)]

}

(E.313)

This term is part of the interaction term Ĥ4 and its contribution to the func-
tional Fokker-Planck equation will be ignored.

Appendix E.11. Supplementary Equations

Bogoliubov Hamiltonian

ĤB = Ĥ1 + Ĥ2 + Ĥ3 (E.314)

Operator identities for various functional derivatives

(
δ

δψC(s)

)

s

≡
∑

k=1,2

φ∗k(s)
∂

∂αk

(
δ

δψNC(s)

)

s

≡
K∑

k 6=1,2

φ∗k(s)
∂

∂αk

(
δ

δψ+
C (s)

)

s

≡
∑

k=1,2

φk(s)
∂

∂α+
k

(
δ

δψ+
NC(s)

)

s

≡
K∑

k 6=1,2

φk(s)
∂

∂α+
k

(E.315)

Field Functions

ψC(r) = α1φ1(r) + α2φ2(r) ψ+
C (r) = φ∗1(r)α

+
1 + φ∗2(r)α

+
2 (E.316)

ψNC(r) =
∑

k 6=1,2

αkφk(r) ψ+
NC(r) =

∑

k 6=1,2

φ∗k(r)α
+
k (E.317)

ψC(r) =

ˆ

dr′ δC(r, r
′)ψC(r

′) ψ+
C (r) =

ˆ

dr′ ψ+
C (r

′)δC(r
′, r)

ψNC(r) =

ˆ

dr′ δNC(r, r
′)ψNC(r

′) ψ(r) =

ˆ

dr′ ψ+
C (r

′)δC(r
′, r)(E.318)
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Product rule for functional derivatives

δ

δψ(s)
(F [ψ(r), ψ+(r)]G[ψ(r), ψ+(r)])

= (
δ

δψ(s)
F [ψ(r), ψ+(r)])G[ψ(r), ψ+(r)] + F [ψ(r), ψ+(r)](

δ

δψ(s)
G[ψ(r), ψ+(r)])

δ

δψ+(s)
(F [ψ(r), ψ+(r)]G[ψ(r), ψ+(r)])

= (
δ

δψ+(s)
F [ψ(r), ψ+(r)])G[ψ(r), ψ+(r)] + F [ψ(r), ψ+(r)](

δ

δψ+(s)
G[ψ(r), ψ+(r)])

(E.319)

Functional Derivative Results

δ

δψC(s)
ψC(r) = δC(r, s)

δ

δψ+
C (s)

ψ+
C (r) = δC+(r, s) = δC(s, r)

δ

δψC(s)
ψ+
C (r) = 0

δ

δψ+
C (s)

ψC(r) = 0 (E.320)

δ

δψC(s)
ψNC(r) = 0

δ

δψ+
C (s)

ψ+
NC(r) = 0

δ

δψC(s)
ψ+
NC(r) = 0

δ

δψ+
C (s)

ψNC(r) = 0 (E.321)
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Appendix F. - Ito Stochastic Equations

The Ito stochastic equations are obtained after neglecting third, fourth order
functional derivatives in the functional Fokker-Planck equation. The drift and
diffusion terms are then identified from the remaining first and second order
functional derivative terms that are left and the Ito stochastic equations for the
stochastic fields can then be written down.

Appendix F.1. Symmetric Forms of Functional Fokker-Planck Equation

For the two mode case the diffusion term in (F.27) becomes

TDiff =
∑

A≤B

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψB(y)
HAB(ψ−→(x), x, ψ−→(y), y)P

=
1

2

∑

A<B

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψB(y)
HAB(ψ−→(x), x, ψ−→(y), y)P

+
1

2

∑

A<B

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψB(y)
HAB(ψ−→(x), x, ψ−→(y), y)P

+
1

2

∑

A

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψA(y)
HAA(ψ−→(x), x, ψ−→(y), y)P

+
1

2

∑

A

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψA(y)
HAA(ψ−→(x), x, ψ−→(y), y)P

(F.1)

If we interchange A,B and x, y in the second term and just x, y in the fourth
term, we find on using the result that double functional differentiation can be
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carried out in either order that

TDiff =
1

2

∑

A<B

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψB(y)
HAB(ψ−→(x), x, ψ−→(y), y)P

+
1

2

∑

B<A

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψB(y)
HBA(ψ−→(y), y, ψ−→(x), x)P

+
1

2

∑

A

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψA(y)
HAA(ψ−→(x), x, ψ−→(y), y)P

+
1

2

∑

A

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψA(y)
HAA(ψ−→(y), y, ψ−→(x), x)P

=
1

2

∑

A<B

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψB(y)
HAB(ψ−→(x), x, ψ−→(y), y)P

+
1

2

∑

A>B

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψB(y)
HBA(ψ−→(y), y, ψ−→(x), x)P

+
1

2

∑

A

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψA(y)
(HAA(ψ−→(x), x, ψ−→(y), y) +HAA(ψ−→(y), y, ψ−→(x), x))P

(F.2)

If we now define a new diffusion matrix such that

DAB(ψ−→(x), x, ψ−→(y), y) = HAB(ψ−→(x), x, ψ−→(y), y) A < B

DAB(ψ−→(x), x, ψ−→(y), y) = HBA(ψ−→(y), y, ψ−→(x), x) A > B

DAA(ψ−→(x), x, ψ−→(y), y) = HAA(ψ−→(x), x, ψ−→(y), y) +HAA(ψ−→(y), y, ψ−→(x), x) A = B

(F.3)

we see that the functional Fokker-Planck equation for the two mode case be-
comes

∂P

∂t
=

∑

A

ˆ

dx
δ

δψA(x)
AA(ψ−→(x), x)P

+
1

2

∑

A,B

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψB(y)
DAB(ψ−→(x), x, ψ−→(y), y)P

(F.4)

The expressions have been defined so that DAB is symmetric. For the two mode
condensate case

DAB(ψ−→(x), x, ψ−→(y), y) = DBA(ψ−→(y), y, ψ−→(x), x) (F.5)

Appendix F.2. Complex Symmetric Matrices

We present a proof that any n × n complex symmetric matrix F can also
be written in the form F = B BT , where B is also complex and has dimension
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n× 2n. The proof is adapted from material in [[83]] and [[84]] (see Sect. 6.4.7).
This result is less useful than the Takagi factorisation, where B has dimension
n× n, the same as F .

The matrix F is n× n and we have Fpq = Fqp.
We first write

F = F x + iF y (F.6)

where F x and F y are real symmetric matrices, both n× n in size.
We then construct a 2n× 2n matrix D using F x and F y as sub-matrices

D =

[
1
2F

x 1
2F

y

1
2F

y − 1
2F

x

]
=

[
Dxx Dxy

Dyx Dyy

]
(F.7)

Clearly D is both symmetric and real. We use Dxx, .., Dyy as an alternative
notation for the n× n submatrices of D.

Hence we can find a real 2n× 2n matrix B such that

D = BBT (F.8)

Such a matrix can be obtained by construction using the real eigenvalues λ and
real, orthogonal eigenvectors Xλ of D. Thus with

DXλ = λXλ XT
λ Xµ = δλµ

D =
∑

λ

λXλX
T
λ (F.9)

we can choose
B =

∑

λ

√
λXλX

T
λ (F.10)

from which it is easy to show that D = BBT . Note that B is complex unless
D is positive semi-definite.

We now divide B into two n× 2n submatrices as

B =

[
Bx

By

]
(F.11)

Clearly as

BBT = D

=

[
BxBxT = Dxx BxByT = Dxy

By BxT = Dyx By ByT = Dyy

]
(F.12)

we can express the submatrices of D in terms of Bx and By.
Now define the n× 2n complex matrix B as

B =Bx + iBy (F.13)
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Then

B BT = (Bx + iBy)(BxT + iByT )

= BxBxT + iBxByT + iBy BxT −By ByT

= Dxx −Dyy + i(Dxy +Dyx)

=
1

2
F x − (−1

2
F x) + i(

1

2
F y +

1

2
F y)

= F x + iF y

= F (F.14)

showing that a n× 2n complex matrix B can be found such that B BT = F , as
required.

Appendix F.3. Properties of Noise Fields - Two Mode Case

We can use the results in (F.28) relating the ηA;D
k ( ψ̃−→(x, t)) to the non-local

diffusion termsDAB( ψ̃−→(x1, t1), x1, ψ̃−→(x2, t2), x2) and the fundamental noise prop-

erties of the Gaussian-Markov noise variables ΓDk in (F.30), together with (F.31)
to determine the stochastic properties of the noise fields. For a single noise field

{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)
}

=
∑

Dk

ηA;D
k ( ψ̃−→(x1, t1)) ΓDk (t1) = 0 (F.15)

and for two noise fields.

{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)
}

=
∑

Dk

ηA;D
k ( ψ̃−→(x1, t1))ΓDk (t1+)

∑

El

ηB;E
l ( ψ̃−→(x2, t2))ΓEl (t2+)

=
∑

Dk

∑

El

ηA;D
k ( ψ̃−→(x1, t1))ΓDk (t1+)η

B;E
l ( ψ̃−→(x2, t2))ΓEl (t2+)

=
∑

Dk

∑

El

ηA;D
k ( ψ̃−→(x1, t1))η

B;E
l ( ψ̃−→(x2, t2)) ΓDk (t1+)Γ

E
l (t2+)

=
∑

Dk

∑

El

ηA;D
k ( ψ̃−→(x1, t1))η

B;E
l ( ψ̃−→(x2, t2)) δklδDEδ(t1 − t2)

=
∑

Dk

ηA;D
k ( ψ̃−→(x1, t1,2))η

B;D
k ( ψ̃−→(x2, t1,2)) δ(t1 − t2)

= DAB( ψ̃−→(x1, t1,2), x1, ψ̃−→(x2, t1,2), x2) δ(t1 − t2) (F.16)

Thus the stochastic average of the linear noise term is zero, and the stochastic
average of the product of two linear noise terms is delta function correlated in
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time, but is not delta function correlated in space. Instead the spatial correlation
is given by the non-local diffusion term in the original functional Fokker-Planck
equation!

The noise terms do however satisfy the Gaussian-Markoff conditions that
averages of products of odd numbers of noise terms are zero, however averages
of products of even numbers of noise terms can be written as sums of stochastic
averages of products of pairs of non-local diffusion terms, rather than pairs of
noise terms. Thus

{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)(
∂

∂t
G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)
}

=
∑

Dk

∑

El

∑

Fm

ηA;D
k ( ψ̃−→(x1, t1))η

B;E
l ( ψ̃−→(x2, t2))η

C;F
m ( ψ̃−→(x3, t3)) ΓDk (t1+)Γ

E
l (t2+)Γ

F
m(t3+)

= 0 (F.17)

and

{
(
∂
∂t G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂
∂t G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)

×
(
∂
∂t G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)(
∂
∂t G̃D( ψ̃−→(x4, t4), Γ−→(t4+))

)
}

=
∑

Hk

∑

El

∑

Fm

∑

Gn

ηA;H
k ( ψ̃−→(x1, t1))η

B;E
l ( ψ̃−→(x2, t2))η

C;F
m ( ψ̃−→(x3, t3))η

D;G
n ( ψ̃−→(x4, t4))

×ΓHk (t1+)ΓEl (t2+)Γ
F
m(t3+)ΓGn (t4+)

=
∑

Hk

∑

El

∑

Fm

∑

Gn

ηA;H
k ( ψ̃−→(x1, t1))η

B;E
l ( ψ̃−→(x2, t2))η

C;F
m ( ψ̃−→(x3, t3))η

D;G
n ( ψ̃−→(x4, t4))

×
{

(δklδHEδ(t1 − t2))(δmnδFGδ(t3 − t4)) + (δkmδHF δ(t1 − t3))(δnlδEGδ(t2 − t4))
+(δknδHGδ(t1 − t4))(δmlδEF δ(t2 − t3))

}

=

[∑
Hk η

A;H
k ( ψ̃−→(x1, t1))

∑
El η

B;E
l ( ψ̃−→(x2, t2))δklδHEδ(t1 − t2)

]

×
[∑

Fm η
C;F
m ( ψ̃−→(x3, t3))

∑
Gn η

D;G
n ( ψ̃−→(x4, t4))δmnδFGδ(t3 − t4)

]

+

[∑
Hk η

A;H
k ( ψ̃−→(x1, t1))

∑
Fm η

C;F
m ( ψ̃−→(x3, t3))δkmδHF δ(t1 − t3)

]

×
[∑

El η
B;E
l ( ψ̃−→(x2, t2))

∑
Gn η

D;G
n ( ψ̃−→(x4, t4))δnlδEGδ(t2 − t4)

]

+

[∑
Hk η

A;H
k ( ψ̃−→(x1, t1))

∑
Gn η

D;G
n ( ψ̃−→(x4, t4))δknδHGδ(t1 − t4)

]

×
[∑

El η
B;E
l ( ψ̃−→(x2, t2))

∑
Fm η

C;F
m ( ψ̃−→(x3, t3))δlmδEF δ(t2 − t3)

]

=
[
DAB( ψ̃−→(x1, t1,2), x1, ψ̃−→(x2, t1,2), x2)

] [
DCD( ψ̃−→(x3, t3,4), x3, ψ̃−→(x4, t3,4), x4)

]
δ(t1 − t2)δ(t3 − t4)

+
[
DAC( ψ̃−→(x1, t1,3), x1, ψ̃−→(x3, t1,3), x3)

] [
DBD( ψ̃−→(x2, t2,4), x2, ψ̃−→(x4, t2,4), x4)

]
δ(t1 − t3)δ(t2 − t4)

+
[
DAD( ψ̃−→(x1, t1,4), x1, ψ̃−→(x4, t1,4), x2)

] [
DBC( ψ̃−→(x2, t2,3), x2, ψ̃−→(x3, t2,3), x3)

]
δ(t1 − t4)δ(t2 − t3)

(F.18)
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using the results (F.28). This is not quite the same as

{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)
}

×{
(
∂

∂t
G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)(
∂

∂t
G̃D( ψ̃−→(x4, t4), Γ−→(t4+))

)
}

+{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)
}

×{
(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)(
∂

∂t
G̃D( ψ̃−→(x4, t4), Γ−→(t4+))

)
}

+{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃D( ψ̃−→(x4, t4), Γ−→(t4+))

)
}

×{
(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)(
∂

∂t
G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)
}

(F.19)

because in general

[
DAB( ψ̃−→(x1, t1,2), x1, ψ̃−→(x2, t1,2), x2)

] [
DCD( ψ̃−→(x3,4, t3), x3, ψ̃−→(x4, t3,4), x4)

]

6= DAB( ψ̃−→(x1, t1,2), x1, ψ̃−→(x2, t1,2), x2)×DCD( ψ̃−→(x3, t3,4), x3, ψ̃−→(x4, t3,4), x4)

(F.20)

etc., so the noise terms are not themselves Gaussian-Markov processes, though
there is some similarity.

Appendix F.4. Properties of Noise Fields - Single Mode Case

We can use the results in (F.29) relating the ηA;D
k ( ψ̃−→(x, t)) to the local

diffusion terms DAB( ψ̃−→(x, t), x) and the fundamental noise properties of the

Gaussian-Markov noise variables ΓDk in (F.30), together with (F.31) to determine
the stochastic properties of the noise fields. For a single noise field

{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)
}

=
∑

Dk

ηA;D
k ( ψ̃−→(x1, t1)) ΓDk (t1) = 0 (F.21)
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and for two noise fields

{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)
}

=
∑

Dk

ηA;D
k ( ψ̃−→(x1, t1))ΓDk (t1+)

∑

El

ηB;E
l ( ψ̃−→(x2, t2))ΓEl (t2+)

=
∑

Dk

∑

El

ηA;D
k ( ψ̃−→(x1, t1))ΓDk (t1+)η

B;E
l ( ψ̃−→(x2, t2))ΓEl (t2+)

=
∑

Dk

∑

El

ηA;D
k ( ψ̃−→(x1, t1))η

B;E
l ( ψ̃−→(x2, t2)) ΓDk (t1+)Γ

E
l (t2+)

=
∑

Dk

∑

El

ηA;D
k ( ψ̃−→(x1, t1))η

B;E
l ( ψ̃−→(x2, t2)) δklδDEδ(t1 − t2)

=
∑

Dk

ηA;D
k ( ψ̃−→(x1, t1,2))η

B;D
k ( ψ̃−→(x2, t1,2)) δ(t1 − t2)

= DAB( ψ̃−→(x1,2, t1,2), x1,2) δ(x1 − x2)δ(t1 − t2) (F.22)

Thus the stochastic average of the linear noise term is zero, and the stochastic
average of the product of two linear noise terms is delta function correlated in
time, and is also delta function correlated in space. The spatial correlation
is given by the local diffusion term in the original functional Fokker-Planck
equation!

The noise terms do however satisfy the Gaussian-Markoff conditions that
averages of products of odd numbers of noise terms are zero, but averages of
products of even numbers of noise terms can be written as sums of stochastic
averages of products of pairs of non-local diffusion terms, rather than pairs of
noise terms. Thus

{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)(
∂

∂t
G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)
}

=
∑

Dk

∑

El

∑

Fm

ηA;D
k ( ψ̃−→(x1, t1))η

B;E
l ( ψ̃−→(x2, t2))η

C;F
m ( ψ̃−→(x3, t3)) ΓDk (t1+)Γ

E
l (t2+)Γ

F
m(t3+)

= 0 (F.23)
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and

{
(
∂
∂t G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂
∂t G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)

×
(
∂
∂t G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)(
∂
∂t G̃D( ψ̃−→(x4, t4), Γ−→(t4+))

)
}

=
∑

Hk

∑

El

∑

Fm

∑

Gn

ηA;H
k ( ψ̃−→(x1, t1))η

B;E
l ( ψ̃−→(x2, t2))η

C;F
m ( ψ̃−→(x3, t3))η

D;G
n ( ψ̃−→(x4, t4))

×ΓHk (t1+)ΓEl (t2+)Γ
F
m(t3+)ΓGn (t4+)

=
∑

Hk

∑

El

∑

Fm

∑

Gn

ηA;H
k ( ψ̃−→(x1, t1))η

B;E
l ( ψ̃−→(x2, t2))η

C;F
m ( ψ̃−→(x3, t3))η

D;G
n ( ψ̃−→(x4, t4))

×
{

(δklδHEδ(t1 − t2))(δmnδFGδ(t3 − t4)) + (δkmδHF δ(t1 − t3))(δnlδEGδ(t2 − t4))
+(δknδHGδ(t1 − t4))(δmlδEF δ(t2 − t3))

}

=

[∑
Hk η

A;H
k ( ψ̃−→(x1, t1))

∑
El η

B;E
l ( ψ̃−→(x2, t2))δklδHEδ(t1 − t2)

]

×
[∑

Fm η
C;F
m ( ψ̃−→(x3, t3))

∑
Gn η

D;G
n ( ψ̃−→(x4, t4))δmnδFGδ(t3 − t4)

]

+

[∑
Hk η

A;H
k ( ψ̃−→(x1, t1))

∑
Fm η

C;F
m ( ψ̃−→(x3, t3))δkmδHF δ(t1 − t3)

]

×
[∑

El η
B;E
l ( ψ̃−→(x2, t2))

∑
Gn η

D;G
n ( ψ̃−→(x4, t4))δnlδEGδ(t2 − t4)

]

+

[∑
Hk η

A;H
k ( ψ̃−→(x1, t1))

∑
Gn η

D;G
n ( ψ̃−→(x4, t4))δknδHGδ(t1 − t4)

]

×
[∑

El η
B;E
l ( ψ̃−→(x2, t2))

∑
Fm η

C;F
m ( ψ̃−→(x3, t3))δlmδEF δ(t2 − t3)

]

=
[
DAB( ψ̃−→(x1,2, t1,2), x1,2)

] [
DCD( ψ̃−→(x3,4, t3,4), x3,4)

]

×δ(x1 − x2)δ(x3 − x4)δ(t1 − t2)δ(t3 − t4)

+
[
DAC( ψ̃−→(x1,3, t1,3), x1,3)

] [
DBD( ψ̃−→(x2,4, t2,4), x2,4)

]

×δ(x1 − x3)δ(x2 − x4)δ(t1 − t3)δ(t2 − t4)

+
[
DAD( ψ̃−→(x1,4, t1,4), x1,4)

] [
DBC( ψ̃−→(x2,3, t2,3), x2,3)

]

×δ(x1 − x4)δ(x2 − x3)δ(t1 − t4)δ(t2 − t3)

(F.24)
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using the results in (F.29). This is not quite the same as

{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)
}

×{
(
∂

∂t
G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)(
∂

∂t
G̃D( ψ̃−→(x4, t4), Γ−→(t4+))

)
}

+{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)
}

×{
(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)(
∂

∂t
G̃D( ψ̃−→(x4, t4), Γ−→(t4+))

)
}

+{
(
∂

∂t
G̃A( ψ̃−→(x1, t1), Γ−→(t1+))

)(
∂

∂t
G̃D( ψ̃−→(x4, t4), Γ−→(t4+))

)
}

×{
(
∂

∂t
G̃B( ψ̃−→(x2, t2), Γ−→(t2+))

)(
∂

∂t
G̃C( ψ̃−→(x3, t3), Γ−→(t3+))

)
}

(F.25)

because in general
[
DAB( ψ̃−→(x1,2, t1,2), x1,2)

] [
DCD( ψ̃−→(x3,4, t3,4), x3,4)

]

6= DAB( ψ̃−→(x1,2, t1,2), x1,2)×DCD( ψ̃−→(x3,4, t3,4), x3,4)

(F.26)

etc., so the noise terms are not themselves Gaussian-Markov processes, though
there is some similarity.

Appendix F.5. Supplementary Equations

Functional Fokker-Planck equation for two mode case

∂P

∂t
=

∑

A

ˆ

dx
δ

δψA(x)
AA(ψ−→(x), x)P

+
∑

A≤B

ˆ ˆ

dx dy
δ

δψA(x)

δ

δψB(y)
HAB(ψ−→(x), x, ψ−→(y), y)P(F.27)

Summation results

∑

Dk

ηA;D
k ( ψ̃−→(x1, t))η

B;D
k ( ψ̃−→(x2, t))

= DAB( ψ̃−→(x1, t), x1, ψ̃−→(x2, t), x2) Two Mode

(F.28)

= DAB( ψ̃−→(x1,2, t), x1,2) δ(x1 − x2) One Mode

(F.29)
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Gaussian-Markoff rules

ΓDk (t1) = 0

{ΓDk (t1)ΓEl (t2)} = δDEδklδ(t1 − t2)

{ΓDk (t1)ΓEl (t2)ΓFm(t3)} = 0

{ΓDk (t1)ΓEl (t2)ΓFm(t3)ΓGn (t4)} = {ΓDk (t1)ΓEl (t2)} {ΓFm(t3)ΓGn (t4)}
+{ΓEk (t1)ΓFm(t3)} {ΓEl (t2)ΓGn (t4)}
+{ΓDk (t1)ΓGn (t4)} {ΓEl (t2)ΓFm(t3)}
... (F.30)

Decorrelation Rule

F ( α̃−→(t1)){ΓDk (t2)ΓEl (t3)ΓFm(t4)...ΓXa (tl)}

= F ( α̃−→(t1)) {ΓDk (t2)ΓEl (t3)ΓFm(t4)...ΓXa (tl)} t1 < t2, t3, .., tl (F.31)
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