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Abstract

The present paper outlines a basic theoretical treatment of decoherence and de-
phasing effects in interferometry based on single component Bose-Einstein con-
densates in double potential wells, where two condensate modes may be involved.
Results for both two mode condensates and the simpler single mode condensate
case are presented. The approach involves a hybrid phase space distribution
functional method where the condensate modes are described via a truncated
Wigner representation, whilst the basically unoccupied non-condensate modes
are described via a positive P representation..The Hamiltonian for the system
is described in terms of quantum field operators for the condensate and non-
condensate modes. The functional Fokker-Planck equation for the double phase
space distribution functional is derived. Equivalent Ito stochastic equations for
the condensate and non-condensate fields that replace the field operators are
obtained, and stochastic averages of products of these fields give the quantum
correlation functions that can be used to interpret interferometry experiments.
The stochastic field equations are the sum of a deterministic term obtained
from the drift vector in the functional Fokker-Planck equation, and a noise field
whose stochastic properties are determined from the diffusion matrix in the
functional Fokker-Planck equation. The stochastic properties of the noise field
terms are similar to those for Gaussian-Markov processes in that the stochastic
averages of odd numbers of noise fields are zero and those for even numbers
of noise field terms are the sums of products of stochastic averages associated
with pairs of noise fields. However each pair is represented by an element of
the diffusion matrix rather than products of the noise fields themselves, as in
the case of Gaussian-Markov processes. The treatment starts from a gener-
alised mean field theory for two condensate modes, where generalised coupled
Gross-Pitaevskii equations are obtained for the modes and matrix mechanics
equations are derived for the amplitudes describing possible fragmentations of
the condensate between the two modes. These self-consistent sets of equations
are derived via the Dirac-Frenkel variational principle. Numerical studies for in-
terferometry experiments would involve using the solutions from the generalised
mean field theory in calculations for the stochastic fields from the Ito stochastic
field equations.



1. Introduction

The creation of Bose-Einstein condensates (BEC) in cold atomic gases has
enabled the realisation of a controllable quantum system on a macroscopic scale.
With all bosons occupying the same single particle state (or mode) the BEC
exhibits coherence somewhat analogous to the coherence for an idealised single
mode laser and interference effects were soon observed [1], [2]. Interferometry
using BECs was a natural outcome, and much research centres around devel-
oping BEC interferometric systems, motivated not only by wishing to study
coherence, interference and entanglement in macroscopic systems but also be-
cause of their potential applications for precision measurement, including the
development of BEC interferometry for measurements at the Heisenberg limit
13], [4], 5], 6], [7]. Experiments demonstrating precision beyond the standard
quantum limit have recently been reported [8], [9]. Reviews covering general
aspects of BEC interferometry include [10], [11], [12].

Interferometry with BECs is a quantum effect. In its simplest form quan-
tum interferometry essentially involves transitions between an initial prepared
state and a final measured state for the interferometer system, where the overall
transition probability amplitude for transitions is split into two partial ampli-
tudes associated with different intermediate states, which are then recombined.
The two amplitudes must remain coherent but depend differently on the feature
being measured. A variety of such features can produce interferometric effects,
ranging from a transition frequency between states of interest to an asymme-
try in a trapping potential due to gravity effects. The partial amplitudes for
the differing intermediate states may result from various types of time evolu-
tion, including free evolution stages and interaction stages, where the system is
subjected to external classical fields. As the feature changes, constructive and
destructive interference between the partial amplitudes results, leading to the
changes in measurement probability for the final state.

In the case of interferometry with single atoms, the review by Cronin et al
[12] outlines how Ramsey interferometry can be described in these terms. Here
the interferometric system is a two level atom with internal states |a), |b), the
first being the initial state and the second is the final state. The feature that
produces the interferometric effect is the transition frequency wy, and the inter-
ferometer is used to obtain a precise measurement of wy, - to use for example in
an atomic clock. The atoms are in a beam with a fixed velocity and pass through
two short interaction regions when a resonant classical field of pulse area 7/2
couples the two internal states, turning each into different orthogonal linear
superpositions of |a), [b) - say |a) — (|a) + [b))/v/2 and |b) — (|a) — |b))/V/2.
Between the interaction regions the atoms undergo free evolution for time T,
with |a) — exp(iw,T) |a) and [b) — exp(iwpT) |b). The states |a), |b) also act
as two possible intermediate states for the process a — b, and there are two
distinct pathways a — b — b — b and a — a — a — b whose partial amplitudes



interfere. In the first pathway the resonant classical field transition a — b oc-
curs in the first step, in the second it is in the last step, and between the first
and last steps free evolution occurs in different states - b for the first pathway
and a for the second. The partial amplitudes are (—1/v/2) exp(iwyT)(+1/v/2)
for the first pathway and (+1/v/2)exp(iw,T)(4+1/v/2) for the second, giving
a total amplitude proportional to sin(wp,T/2) resulting from interference be-
tween the two partial amplitudes. This produces oscillations in the measure-
ment probability, enabling wy, to be determined. Single atom Mach-Zender
interferometry [13], |14] involving a double well is another case where a similar
description applies. The initial state is the lowest symmetric state |S(0)) for
an atom in a single well trap, the final state |AS(T)) is the lowest antisym-
metric state in the same single well. The process [S(0)) — |AS(T)) involves
splitting the single well to a slightly asymmetric double well and then recom-
bining back to the single well during a time 7'. The intermediate state can be
chosen as two localised states [14] for the actual double well, one |L(T/2)) being
localised in the left well the other |R(7T'/2)) in the right well. The two path-
ways whose transition amplitudes interfere are |S(0)) — |L(T/2)) — |AS(T))
and |S(0)) — |R(T/2)) — |AS(T)), the overall process being driven by non-
adiabatic evolution during the splitting and recombination stages. Asymmetry
in the trapping potential produces the interferometric effect. In the case of
single atom Bragg interferometry |15], [L0] an atom in a zero momentum state
is subjected to three Bragg pulses with pulse areas m/2, m, m/2, where each
pulse involves counterpropagating photons of two slightly differing wave num-
bers kx, k, A two-photon off-resonant Raman process removes a photon from
one of the laser beams in the Bragg pulse and adds a photon to the other
beam. The momentum difference changes the atom’s momentum from zero to
2hk = k) + k,. For a given k the wave numbers ky, k, can be adjusted to
satisfy energy as well as momentum conservation. Bragg interferometry can be
described in terms of two momentum states |p = 0) and |p = 2kk) for the atom.
The 7/2 pulses change each state.into linear combinations of these two states
- say |0) = (0) — exp(—i@) |2hk))/ V2 and [2hk) — (exp(+id) [0) + [2hk))/ V2.
The 7 pulse changes each momentum state.into the other state - say |0) —
—exp(—ig) |2hk) and |2hk) — exp(+i¢)|0). Here ¢ is a phase factor for the
Bragg pulse involved. For an overall process say |0) — |0) there are two path-
ways each with its own transition amplitude |0) — |0) — |2hk) — |0) and
|0) — |2hk) — |0) — |0), the successive steps involving the pulses 7/2, m, /2
respectively. If we choose ¢ = 0 in the first two steps and ¢ # 0 in the final 7/2
step, the transition probability is given by (1 + cos ¢)/2, giving interferometric
effects as ¢ is changed.

Ramsey, Mach-Zender and Bragg interferometry [15], |16], |10], [12] can also
be carried out using BECs rather than single atoms, and a generalised version
of the above approach could be used to describe these. Quantum interference in
double well BEC interferometry is discussed qualitatively in [17] in terms of in-
terfering transition amplitudes. However, since BECs involve a large number N
of atoms rather than just one, there are a number of additional complexities that
need to be taken into account, notably associated with the feature that macro-



scopic numbers of atoms may occupy each single particle state. Firstly, large
numbers of partial transition amplitudes may now be involved in the overall
process, and evaluating all the partial transition amplitudes and then recom-
bining them becomes a formidable task. The analysis for the single atom case
establishes the general point that for interferometry to occur there must be at
least two different single particle states (or modes) that an atom can occupy -
otherwise two or more pathways for the overall process to occur would not be
available. This suggests immediately that interferometry using BECs must at
least be based on a two-mode theory. For single component BECs, the two single
particle states would be represented by two orthogonal, normalised spatial mode
functions ¢4 (r), ¢2(r). Time dependences are left implicit. For double well in-
terferometry, these could be either localised in each of the two potential wells
or delocalised symmetrically or antisymmetrically over the two wells. For Bragg
interferometry the two modes could be two different momentum eigenfunctions.
For two component BECs, with internal (hyperfine) states |F'), |G) the two
single particle states would be represented by ¢p(r) |F), ¢c(r)|G), where the
associated normalised spatial mode functions are ¢p(r), ¢ (r). The significance
of two-mode theories for BECs is well recognised [18], [19] and points to the ex-
istence of Josephson effect [20] physics in cold quantum gases. The idea of the
BEC being equivalent to a giant spin system, with direct linkages to angular
momentum theory [21)], spin squeezing [22] etc. stems from two-mode theory, as
will be outlined below. For the quantum description of Ramsey, double well and
Bragg interferometry with BECs however, even if each atom is restricted to one
of two single particle states there are now N + 1 distinct ways of dividing the
atoms between the two single particle states, corresponding to Fock states with
occupancies given by & —k, § +k with (k = —N/2,—N/2+1, .., N/2) in the two
modes. The Fock states can describe BECs that are fragmented, with two modes
having macroscopic occupancy [18], [23]. Consequently, in any overall process
there are a great many pathways involved, so the overall transition amplitude
can contain many contributions. Having more interfering pathways raises both
the possibility of sharper interferometric effects [24] but also the possibility
that effects can be degraded depending on how the phases and magnitudes of
the.partial amplitudes are related. These sorts of effects are also familiar from
multiple slit optical interference. Secondly, the need to consider steps in the
process where the intermediate states already have many atoms occupying each
of the two single particle states raises the possibility of bosonic enhancement of
contributions to the partial transition amplitude from the step involved. These
sorts of effects are familiar from the theory of lasers and in super-radiance. The
effects could occur because two-mode BECs are like a giant spin system rather
than a collection of independent atoms, and implies that the simple analysis
described above for single atoms is no longer valid. However, a closer analysis
(see |25]) suggests that bosonic enhancement and super-radiance effects are not
in fact present. Thirdly, the evolution is not as simple as in the single atom
case, since collisions between the atoms need to be taken into account. Even
with only two single particle states allowed, dephasing between the contributing
amplitudes can occur - which tend to degrade interferometric features but which



may also produce collapse and revival effects [26], [6]. Also, even if the BEC is
close to zero temperature, collisions could remove atoms from the macroscop-
ically occupied pair of single particle states and deposit them into previously
unoccupied higher energy thermal states. The unoccupied thermal states act as
a kind of environment (or reservoir) so the system defined in terms of the two
macroscopically occupied single particle states suffers decoherence. Collective
phonon-like states of the BEC called Bogoliubov excitations |21|, |18], |23] can
be created. These processes again generally result in degradation of interfero-
metric effects. However, some aspects of the interferometric process will still be
similar to the single atom interferometry case. These include the presence of
interaction regions in which the BEC is subjected to external pulsed classical
fields with pulse areas 7/2, m that couple internal states, the effect of Bragg
pulses that change the momentum of each atom, the presence of asymmetries
in trapping potentials that confine the BEC, as well as periods of free evolution
of the BEC - though now of course collisions need to be taken into account.
The difference is though a more elaborate theory is needed to treat quantum
interferometry in BECs allowing for all these effects.

Theories of BEC interferometry that take into account the many body na-
ture of the system are of various levels of sophistication [19] depending on the
range of effects taken into account. The Hamiltonian is often expressed in terms
of field operators. For single component BECs the field annihilation operator
U(r) destroys a bosonic atom at position r, whilst for two component BECs
the field annihilation operator W,(r) (¢ = F,G) destroys a bosonic atom with
internal state |a) at position r. Interferometry experiments are generally inter-
preted in terms of quantum correlation functions, which are expectation values
of products of field annihilation operators with the associated field creation
operators, and are related to bosonic many atom position measurements [28].
Actual measurements of quantum correlation functions may be made via scat-
tering a weak probe beams (atoms, light) off the system, |29]. If boson-boson
interactions were absent and the BEC isolated from the environment, idealised
forms of the quantum correlation functions would result, with clearly visible
interferometric effects. Even where external environmental effects are absent,
the internal boson-boson interactions can still result in dephasing (associated
with interactions within the condensate modes) and decoherence effects (asso-
ciated with interactions causing transitions from the condensate modes) that
degrade the interference pattern. Many treatments of BEC interferometry are
based on the simplest assumption, namely that during the interferometric pro-
cess the condensate is unfragmented, with all bosons occupying the same single
particle state | x). This situation is a special case of a two mode theory, with
the occupied single particle state written as a linear superposition of the two
modes. For single component BEC interferometry linear combinations of the
form (r|x) = x(r) =a1¢1(r) + az¢2(r) are involved, for two component BEC
interferometry superpositions (r | x) = xr(r) |F) + xc(r) |G) of the two internal
states occur. Equations for the spatial wave functions associated with these
single particle states can be obtained using variational principles [30], [31]. For



the single component case the well-known Gross-Pitaevskii equation |32], [33]
applies for the so-called condensate wave function x(r), for the two compo-
nent case coupled Gross-Pitaevskii equations [34], |35] apply for the condensate
wave functions xr(r), x¢(r) associated with the two internal states. The Gross-
Pitaevskii equations are non-linear, with collision effects occuring via mean field
terms. Treatments of BEC interferometry based on assuming the condensate is
unfragmented include |36], [37] for the single component case and [38|, [39] for
the two component case.

However, there are two distinct single particle states each boson could oc-
cupy, and for N bosons the N + 1 dimensional state space for two mode theories
allows for more general quantum states that are fragmented, with macroscopic
occupancy of two single particle states. The basis states can be chosen as Fock
states ’ L. k) (k=—N/2,..,N/2) in which § — k bosons occupy one of the two
single particle states (¢1(r) for the single component case, ¢ (r) |F') for the two
component case) and % + k bosons occupy the other two single particle states
(¢2(r) for the single component case, ¢ (r) |G) for the two component case).
Each Fock state is a fragmented state, with definite numbers % F k of bosons
respectively in the two modes. In two mode theory the general quantum state
of the IV boson system is written as a superposition of the Fock states with
general amplitudes b;. The unfragmented states are just special cases called
binomial states since the amplitudes by are determined from binomial coeffi-
cients. The Dirac-Frenkel variational principle [30], |31] can be used to obtain
matriz mechanics equations for the N 4+ 1 general amplitudes by and general-
ized Gross-Pitaevskii equations.for the two mode functions (¢1(r), ¢2(r) for the
single component case, ¢r(r), ¢g(r) for the two component case). The N + 1
amplitude equations describe the system evolution amongst the possible Fock
states, and involve Fock state Hamiltonian and rotation matrix elements which
depend on the two mode functions. The two coupled Gross-Pitaevskii equations
are again non-linear in the mode functions due to collision terms - which occur
via generalised mean fields - and involve the trap potential, with an additional
intercomponent coupling term in the two component case. They contain as
coeflicients one and two body correlation functions that depend quadratically
on the amplitudes, and which reflect the relative importance of the different
Fock states during the interference process. The combined amplitude and mode
equations are self-consistent, and are more general than the equations for the
unfragmented BEC case. It should be noted however that other authors [40],
[41)], [42] define the condensate mode functions via a diferent approch, namely in
terms of the eigenfunctions of the first order quantum correlation function that
have macroscopic eigenvalues. This approach is discussed below in Section [Bl
Two mode theories similar to the present treatment have previously been devel-
oped for single component BECs with two orthogonal spatial modes (such as in
double-well interferometry) [43], [44], [L17], [45], [46], [47], [48] and fragmentation
effects shown in [46], [47], [48]. Two mode theories for the two component case
have been presented in [49], [50] and elsewhere (author?) |25]. Two mode the-
ories incorporate dephasing effects associated with transfers of bosons between
the two modes, but decoherence effects and Bogoliubov excitations are outside



the scope of the theory. Both the general two-mode theory and the single mode
theory are referred to as mean field theories, since collisional effects occur via
mean fields.

To allow for decoherence and Bogoliubov excitations the theory must include
large numbers of non-condensate modes, which are modes with very small occu-
pancy. Bogoliubov theory is perturbation theory in the interaction between con-
densate and non-condensate modes, and treatments of Bogoliubov excitations
for BEC interferometry have been made [41] by adapting general BEC Bogoli-
ubov theory [51], [40], [52], [42]to treat two-component BECs. Another approach
that could be applied to BEC interferometry is a master equation method [53],
[54], in which a condensate density operator is defined and a master equation is
derived allowing for interactions with non-condensate modes, which constitute
a reservoir. The quantum state is now non-pure so a density operator is needed
to describe the system. The difficulty with this method is that it is hard to
evaluate the non-condensate contributions to quantum correlation functions. A
further approach could be based on the Heisenberg equation method that have
been applied in numerous many-body theory problems. Heisenberg equations
for field operators and products of field operators are derived, and taking the
expectation values with the initial density operator results in a heirarchy of cou-
pled equations for quantum correlation functions. An ansatz (such as assuming
that a suitable high order correlation function factorises) produces a truncated
set of coupled equations from which correlation functions of the required order
can be calculated. The problem with this method is that it is hard to confirm the
validity of the ansatz. In view of there being very large numbers of modes, phase
space theories have also been developed with the density operator represented
by a quasi-distribution functional in a phase space [55]. Quantum correlation
functions are then expressed as functional integrals in the phase space, involv-
ing products of the distribution functional with the several field functions that
replace the field operators. The Liouville-von Neumann equation for the den-
sity operator is replaced by a functional Fokker-Planck equation (FFPE) for
the distribution functional. Finally, the FFPE are finally replaced by coupled
Ito stochastic equations (c-number Langevin equations) for the field functions,
where the Ito equations contain deterministic and random noise terms - identi-
fiable from the FFPE. Stochastic averages of the field functions then give the
quantum correlation functions. Phase space distribution functional treatments
were originally developed to treat problems in quantum optical physics [56], [57],
[58], [59], [60], but have since been adapted for BECs. There are several different
phase space theories that have or could be used to treat BEC interferometry,
depending on the nature of the distribution functional chosen to represent the
density operator. The positive P representation has been used by [61] to treat
spin squeezing in two component BECs. However, because most atoms will be
in one or two highly occupied modes and these bosons can be treated approxi-
mately in terms of mean field theories, a more natural representation to use is
the truncated Wigner representation. Such theories have been developed [55]
and applied to BEC interferometry |62, [63]. In the truncated Wigner FFPE
there are no second order functional derivatives, so there are no random noise



terms in the Ito equations. Quantum noise is embodied in the initial state, and
Bogoliubov equations are used to describe this state. Based on the truncated
Wigner representation, stochastic modifications of the Gross-Pitaevskii equa-
tion to allow for the effects due to non-condensate modes have been derived for
the case where the condensate modes have macroscopic occupancy, and these
methods could be applied to BEC interferometry. These approaches include
the Projected Gross-Pitaevskii equation method [64], [65] and the Stochastic
Gross-Pitaevskii equation theory [66], |67]. A review of these methods is given
in [68]. In developing a quantum kinetic theory of BECs, Gardiner and Zoller
[53], [54] divided the field operator for the bosonic system as a sum of condensate
and non-condensate mode contributions. An alternative treatment also based
on distinguishing condensate and non-condensate modes is the hybrid represen-
tation, with the highly occupied condensate modes described via a truncated
Wigner representation (since the bosons in condensate modes behave like a
classical mean field), whilst the basically unoccupied non-condensate modes are
described via a positive P representation (these bosons should exhibit quantum
effects). Such an approach has been developed by [|69], [70], |[71] and in the
present paper. Finally, a more elaborate phase space treatment of BECs called
the Gaussian quantum operator representation has been formulated [72] and
could be applied to BEC interferometry. Pairs of bosonic annihilation, creation
operators as well as single operators are represented by c-numbers in the phase
space distribution function. The approach is based on representing the density
operator via Gaussian rather than just coherent state projectors, as applies for
the simpler phase space theories.

As well as being suitable for studying macroscopic decoherence and dephas-
ing effects, interferometry with Bose-Einsten condensates is closely linked to
another fundamental feature of the quantum physics in macroscopic systems -
entanglement. Entanglement is linked to several important issues such as the
EPR paradox, Bell inequalities and Schrodinger cats. A number of papers have
discussed entanglement for two mode macroscopic systems, including [73], [74],
[75], [76], |77, |78], [7] and |79]. Reviews include |80], |[81]. Measures of entan-
glement are more straightforward for bi-partite systems such as bosonic systems
based on two modes, where the two modes constitute the two subsystems. The
entropy of mode entanglement is a useful measure, being the difference in en-
tropy between that for the original state and that associated with the reduced
density operator describing a sub-system, and thus related to the change of
quantum information. The connection to interferometry can be seen with a
simple example [74]. If @, b are the annihilation operators for the modes a,
b then the pure quantum state for the N boson system given in terms of the
corresponding creation operators and the vacuum state |0) as
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is an entangled state, being a quantum superposition of separable states [n), [N —n),
in which there are n bosons in mode a and N — n in mode b. This state is a



binomial state, since its form is determined by binomial coefficients CV. The
reduced density operator for the mode a subsystem is easily found to be

o = (§>Nicﬁ ) (o, )

which is clearly a mixed state and the entropy of entanglement is non-zero.
Another pure state for the N boson system is
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which is a non-entangled state, being a separable product of the states |N)  and
|0),. The reduced density operator for the mode a subsystem is easily found to
be

pa = IN), (NI, (4)

which is clearly a pure state and the entropy of entanglement is zero. If we now
consider an interferometry experiment applied to each of these two states, we
will see that the entangled and non-entangled states leads to differing interfero-
metric effects. The experiment involves applying a 50:50 beam—splitter process
to each state and then measuring the number of bosons in modes a, b. The
beam splitter process is associated with an evolution operator which transforms
the mode annihilation operators as @ — (a +b)/v/2, b — (a —b)/+/2. For single
component BEC in a double well with modes localised in each well, such a pro-
cess is associated with quantum tunneling through the potential barrier during
a period short enough that collisions can be ignored. For two component BEC
in a single well, the process is associated with applying a two-photon classical
field during a similar short period. For the two initial states of interest the
states change as
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Measurements of the mean boson numbers in each mode give (afa) = N,

<3T3> = 0 for the initially entangled state and (a'a) = N/2, <3T3> = N/2
for the initially non-entangled state. Hence there is a difference in the inter-
ferometric results for the two cases. More generally, for an arbitrary mized
non-entangled state for N bosons the density operator is of the form

N
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and the reduced density operator for mode a is

N
P = paln), (nl, (7)
n=0

As there is no entropy change between the original state and the state for
mode a, the entropy of entanglement is zero. In |74] it is shown that applying
the beam-splitter process to this state gives a new state where again <6T6> =

N/2, <ET/I;> = N/2. Hence all non-entangled states for for N bosons give

no difference between the output measurements of boson numbers in the two
modes. This contrasts the situation for entangled states, as our example has
shown. Thus interferometry with BEC would be a possible measurement system
for demonstrating entanglement effects.

In the present paper it will be assumed that the interferometry regime is
such that at most two condensate modes have a macroscopic occupancy. The
mean field theory treatment for this case is a time-dependent version of the
approach in an earlier two-mode theory paper [17]. This approach leads to a set
of self consistent equations for the two mode functions and for the probability
amplitudes for finding the system in states with specific occupancies of the two
modes. The mode equations are generalised time-dependent Gross-Pitaevskii
equations involving non-linear mean field terms, and these equations include
coeflicients that depend on the amplitudes. The amplitude equations are matrix
mechanics equations involving Hamiltonian and rotation matrix elements, that
depend on the mode functions and their spatial and temporal derivatives. These
self-consistent sets of equations are derived via the Dirac-Frenkel variational
principle. This generalised mean field theory does allow for certain dephasing
effects and for transitions between the two condensate modes. Thermal and
decoherence effects are not included. For the purposes of the present paper it
will be assumed that the solutions to the generalised mean field two mode theory
have been obtained, and are available albeit in numerical form for applications
of the present theory. Numerical solutions of equivalent equations have been
published by Streltsov et al [46], [45], [47].

The present paper outlines a basic theoretical treatment of decoherence and
dephasing effects in interferometry based on single component BECs in dou-
ble potential wells, where we assume that only two condensate modes could
have macroscopic occupancy. Results for both two mode condensates and the
simpler single mode condensate case are presented. The approach involves a
hybrid phase space distribution functional method where the condensate modes
are described via a truncated Wigner representation, whilst the basically un-
occupied non-condensate modes are described via a positive P representation
[69], [70]..The Hamiltonian for the system is described in terms of quantum field
operators for the condensate and non-condensate modes. The functional Fokker-
Planck equation for the double phase space distribution functional is derived.
Equivalent Ito stochastic equations for the condensate and non-condensate fields
that replace the field operators are obtained and stochastic averages of products
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of these fields give the quantum correlation functions that can be used to in-
terpret interferometry experiments. The treatment starts from the generalised
mean field theory for two condensate modes. Numerical studies for interferom-
etry experiments would involve using the solutions from the generalised mean
field theory in calculations for the stochastic fields from the Ito stochastic field
equations.

Previous papers [56], |57], [58], [60], [55] using distribution functional and
stochastic field approaches only contain brief explanations of the method, so the
present paper is aimed at a more complete exposition. In Section[2 the Hamilto-
nian for the single component bosonic system is described in terms of field oper-
ators. The field operators are the sum of condensate and non-condensate mode
contributions. The Hamiltonian is decomposed into contributions scaling with
decreasing powers of /N, and within the weak interaction regime some terms
are discarded, leaving a Hamiltonian which allows for Bogoliubov excitations.
Certain linear coupling terms involving both condensate and non-condensate
field operators are written in a new form based aroud the condensate mode func-
tions as obtained from time-dependent Gross-Pitaevskii equations. In Section
[ phase space distribution functionals of a hybrid type are introduced (Wigner
for condensate fields, P+ for non-condensate fields) starting with the charac-
teristic functional, and quantum correlation functions (symmetric ordering for
condensate fields, normal ordering for non-condensate fields) are expressed in
terms of phase space functional integrals, with field functions replacing the field
operators and the distribution functional replacing the density operator. The
justification for these phase space functional integral results is carefully outlined.
Correspondence rules and functional Fokker-Planck equations are obtained in
Section [4] the key steps in the derivation of the correspondence rules and func-
tional Fokker-Planck equations being explicitly covered. The derivation of the
equivalent Ito stochastic field equations is fully set out in Section Bl Results for
both two mode and single mode condensates are presented. The single mode
condensate results are compared with equations recently presented in [71]. The
paper is summarised in Section [6}

Online supplementary material and a website version of this paper [82] con-
tains details for the derivations of results in this paper which are too lengthy
to present in the journal version. Quantities involved in the two-mode theory
equations are listed in In Appendix B the key ideas of functional
calculus involving c-number functions are outlined. Results for quantum correla-
tion functions are derived in Appendix C. The derivation of the correspondence
rules and their application to deriving the functional Fokker-Planck equation is
given in Appendix D and Appendix E respectively. The Ito stochastic equations
details are in Appendix F.
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2. Hamiltonian and field operators

In this section we describe the bosonic system in terms of field operators.
The field operators are written as the sum of two contributions, one associated
with the condensate modes, the other with the non-condensate modes. The
Hamiltonian is introduced for the single component bosonic system within the
zero range approximation for the boson-boson interactions. The situation is
restricted in this paper to the weak interaction regime, and the Hamiltonian
decomposed into contributions that scale with decreasing powers of v/ N, where
N is the number of bosons. After discarding the two smallest contibutions that
scale as (V/N)~! and (vV/N)~2, we are left with the Bogoliubov Hamiltonian
[51], [40], [52], |42]. The condensate in this work dealing with applications
in double well interferometry is assumed to involve at most two modes, and
the Dirac-Frenkel principle [30], |31] is used to obtain two coupled generalised
Gross-Pitaevskii equations for the two time-dependent mode functions. For the
single condensate mode situation the same approach gives the standard Gross-
Pitaevskii equation for the mode function. Our previous two mode theory [17]
yielded adiabatic mode functions, rather than the time-dependent modes used
here. Results from the Gross-Pitaevskki equations are then used to simplify
one of the terms in the Bogoliubov Hamiltonian, thereby enabling functional
Fokker-Planck equations to be derived.

2.1. Field Operators for Condensate, Non-Condensate Modes

For the application to double-well BEC interferometry most of the bosons
occupy one or maybe two modes, and that all the other modes are essentially
unoccupied. The two modes with macroscopic occupancy will be referred to as
the condensate modes, the remaining modes are non-condensate modes. These
physically based distinctions between the two types of modes will be embodied
in the theoretical treatment, and it will be convenient to use two different phase
space methods for the condensate and non-condensate bosons. In the present
paper it is assumed that the interferometry regime is such that at most two
condensate modes have a macroscopic occupation.

The field operators can be expanded in mode functions

U(r) = ;am (r) (8)

¥ = 3ot )
where the mode functions are orthonormal

[ o165 = o (10)

Throughout this paper both the mode functions and their accompanying anni-
hilation, creation operators are time dependent in general, but for simplicity of
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notation the time dependence is usually left implicit. Note however that the
field operators W(r) and ¥'(r) are always time independent.

In the mode expansion we will assume that there is a cut-off at some large
mode number K (momentum cut-off). This is to be consistent with using the
zero range approximation in the Hamiltonian. Accordingly the completeness
expression for the mode functions does not give the ordinary delta function but
a restricted delta function dx (r,r’) which is no longer singular when r = r'.

Y n(r)ei(x') = bk (r,x)) (11)
k

Accordingly although the annihilation, creation operators satisfy the stan-
dard bosonic commutation rules, the field operators satisfy modified rules for
which the non-zero results are

[@r. 3] = Ou
[B(r), ¥F()] = ox(r,x') (12)

In obtaining these rules those for the annihilation, creation operators are treated
as fundamental and those for the field operators then derived. If the cut-off is
made very large then the restricted delta function approaches the ordinary delta
function.

To exploit the distinction between condensate modes with a macroscopic
occupancy and non-condensate mode the field operator is written as the sum of
a condensate term and a non-condensate term. In the two-mode approximation
it is assumed that there are two condensate modes that may have macroscopic
occupancy, in the standard single mode approrimation only one.

For the two mode case

U(r) = Ue(r)+ Une(r) (13)
‘?C(r) = 101(r) + a202(r) (14)
Th(r) = ¢i()al +¢3(r)al (15)
K
Une(r) = Y dxge(r) (16)
k#1,2
R K
Tier) = > sn(a) (17)
k#£1,2

where the condensate is described via the two modes ¢1(r), ¢2(r) and the non-
condensate via the remaining modes ¢ (r), which are cut off for momenta greater
than K ~ h/a where a is the distance scale of the.short range boson-boson
interaction. In view of the orthogonality of the condensate and non-condensate
modes, the contributions to the field operator commute. For the condensate
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and non-condensate field operator components we have the following non-zero
results

[We(r), Ule(r)] 0
[Te(r), BL()] = ¢1(r)6;(r) + dolr)ds(r))

= do(r, 1) (18)
Wno@), The@)] = Y r(r)si(r)
k#£1,2
= dnco(r, 1) (19)

The quantities dc(r,r’) and dyc(r,r’) act as restricted Dirac delta functions
rather than ordinary delta functions, in that for functions ¥¢(r) and ¥ nc(r)
only involving condensate or non-consensate modes respectively (and z/Jg (r) and
¥ (r) only involving their complex conjugates), we have

Yo(r) = a1¢1(r) + azpa(r) P& (r) = o1 (r)af + ¢5(r)ag (20)
Yne(r) = Z apdr(r)  Ple(r) = Z or(r)as (21)

k#1,2 k#1,2

velw) = [d' oot ye) b = [ df v
Une(r) = /dr'5Nc(rar/)¢Nc(I‘/) w(r)=/dr’wé(r’)6c(r’,r) (22)

Clearly
Sk (r,r’) =dc(r,r’) + dne(r, 1) (23)

These features involving restricted delta functions will be useful in deriving the
functional Fokker-Planck equation.

In the single mode case the condensate, non-condensate field operators and
restricted delta functions are now given by

To(r) = api(r)  Thir) = ¢f(r)al (24)
R K R K

Une(r) = > arde(r)  Tho(r) =D ¢i(r)a] (25)
k#1 k#1

So(r,r’) = ¢i(r)ei)  dne(rr) =) ér(r)er(r) (26)
k#1

with the time dependences of the mode functions and annihilation, creation
operators left understood as usual. With obvious modifications, (I8) - (23) also
apply in the single mode case.
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2.2. Bogoliubov Hamiltonian

The full Hamiltonian in terms of field operators is given by

H = /dr(%V\Tl(r)T VU(r) + U(r) V() + g@(r)@(r)@(r)@(r))
(27)
= K+V+U (28)

the sum of a kinetic energy, trap potential energy and boson-boson interac-
tion energy terms. As usual the zero range approximation is made with g =
4rh?as/m, where ag is the s-wave scattering length.

The condensate mode occupation is of order the total boson number N. For
bosons in a trap of frequency w, with harmonic oscillator length scale ay =
\/(h/2mw), the density is of order p = N/(ag)?. In the weak interaction regime
[40] we have p(ag)® < 1, or

NEEP <1 (29)
ao
For Rb% in a trap with w = 27.58 s™! we have ap = 1 pum and ag = 5 nm,
so that the weak interaction regime applies for reasonably large boson numbers
N < 107. Also, as has been shown [40], it is possible to consider a situation for
the weak interaction regime where Nag/ag and kg7 /hw are kept constant but
with N becoming very large whilst ag remains finite so that

gN = gn (30)

where g is constant. This can be achieved by decreasing the trap frequency.

In the weak interaction regime and with g = g /N it is convenient to write
the Hamiltonian as the sum of five terms in decreasing powers of v/ N, based on
using Eq.(I3) and assuming the condensate operators scale like v/N. We can
then express the Hamiltonian in the form

H = H, + Hy+ Hs + Hy + Hs (31)
where
~ h2 - ~ - ~
H, = dr(%vlllc(r) -VV¥a(r) + Vi (r)V¥ce(r)
IN G4 \GE NG T
+on Y OPEE) o) To(r) (32)
H, = /dr(@Nc(r)T {——V2\Ifc(r) +VUe(r) + g—N\TITC(r)\TJC(r)\/I\Ic(r)}
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A, - / dr(h VO () - VEne() + OV Ty (r)

—i—% {\I/jvc(r)\flzvc(r)\ffc(r)\f!c(r) + \T/TC(r)\TJTC(r)\f/NC(r)@NC(r)}
+2g—11\vf {490 Tnom)Te) ) (34)

~

= [ e 2 (0T 0o Tem) + TLwT o 0 Ere ) Trcm))

s = / e 2 L0 ()T o ()T e () Fre ()} (36)

The term Hj is of order N = (v/N)? and is the Hamiltonian for the con-
densate. The term Hj is of order VN = (v/N)! and describes part of the
interaction between the condensate and the non-condensate that is linear in
the non-condensate field. To obtain this term spatial integration by parts was
used to have V only operate on Wc(r) or Wo(r)T. This term needs further
development to avoid Fokker-Planck equations containing functional deriva-
tives with respect to spatial derivatives of field functions, and this is accom-
plished in the next section. The term Hj is of order 1 = (v/N)° and describes
part of the interaction between the condensate and the non-condensate that is
quadratic in the non-condensate field.plus the kinetic and trap potential terms
for the non-condensate. If the condensate fields are replaced by c-numbers,
this term describes Bogoliubov excitations [40], |51]. The term Hy is of order
1/v/N = (v/N)~! and describes part of the interaction between the condensate
and the non-condensate that is cubic in the non-condensate field. The term
Hj is of order 1/N = (v/N)~2 and describes part of the interaction within the
non-condensate, which is quartic in the non-condensate field.

We now make an approximation and neglect the terms H4 and H 5. This
leads to the so-called Bogoliubov Hamiltonian, albeit still in a number conserving
form. This Hamiltonian would be adequate to describe Bogoliubov excitations,
so we will use in to treat BEC interferometry in the weak interaction regime.
The Bogoliubov Hamiltonian is

ﬁB:ﬁ1+ﬁ2+ﬁ3 (37)

The neglected terms would be needed in a theory for BEC interferometry in the
strong interaction regime.

2.8. Two-Mode Theory and Generalised Gross-Pitaevski Equations

The development of a suitable form for the ﬁg term in the case where two
condensate modes are involved is based on a general two mode theory for one
component BECs similar to that in [17], though here we apply the Dirac-Frenkel
principle to the dynamic action and obtain Gross-Pitaevski equations for time-
dependent mode functions, rather than the time independent Gross-Pitaevskii
equations for adiabatic mode functions obtained in [17] by applying a variational
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principle to the adiabatic action and involving Lagrange multipliers. In two-
mode theories we write the quantum state |®(t)) of the N boson system as

a superposition of the N + 1 basis states ’ %, k>, where there are % — k and

& + k bosons (respectively) occupying the two modes with (time dependent)
mode functions ¢1(r,t) and ¢o(r,t). The amplitude for this basis state is by (¢).

vz

EUEDSRACIENSS (39)

—%
and the basis states are Fock states given by

PR AT E T

10) (k= —N/2,—~N/2+1,..,+N/2)

(39)
These basis states are fragmented or number squeezed states, allowing for both
modes to have macroscopic occupancy when |k| < N/2.
The notation %, k for the basis states reflects the feature that the two mode
Bose condensate behaves like a giant spin system. Spin angular momentum
operators can be defined by

= (@a +alay),/2
= (akar —aja)/2i

= (ala, —ala1)/2 (40)

W) W @

which satisfy the standard angular momentum commutation rules. The square
of the angular momentum ( §>)2 is related to the total two mode boson number

operator N = (aba, + ala;)

(& +1) (41)

| =)
| =)

(§) =Y (S)*=

a

and the Fock state | %, k> is a simultaneous eigenstate of (_§>)2, S,

~o | N N N N
S |= k) = —(=+1)|=,k
(2 [34) = 3G [58)
~ |N N
S, |—,k) = k|=—,k 42
r) = ) @
Hence the total angular momentum quantum number j = % is macroscopic,
and k = —%, —%—l—l, ..,%—1,4—% specifies the magnetic quantum number as

well as 2k determining the difference in mode occupancy.

In |17] equations for the amplitudes and adiabatic mode functions have been
determined by applying Principles of Least Action , involving minimising the
dynamic and adiabatic actions respectively for the state vector given by (B8],
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subject to the normalisation constraints for the amplitude and orthonormality
constraints for the mode functions

S = 1

— N
k=—%

/dr¢;(r,t)¢j(r,t) — sy =12 (43)

vZ

In the present treatment, the Dirac-Frenkel principle |30], [31] is applied to the
dynamic action to obtain equations for the amplitudes by (t).and time-dependent
mode functions ¢;(r,t) (i = 1,2). In applying the Dirac-Frenkel principle no
Lagrange multipliers associated with the equations of constraint (@3] are in-
troduced, however mode orthonormality is used in the treatment and the final
amplitude and mode equations can be shown to be consistent with both these
constraints. Such variational principles are well-known in quantum physics,
the Dirac-Frenkel principle applied to the dynamic action for an arbitrary un-
normalised state vector gives the time-dependent Schrodinger equation. The
Hartree-Fock equations for electrons in atoms and molecules and the Gross-
Pitaevskii equations for a single mode condensate are two examples of their
application based on state vectors with restricted forms. In the latter case the
state vector assumed is a special case of (B8] such as with just the single term
%, —%> or a special superposition (binomial state) corresponding to all bosons
being in the same single particle state [17], itself a linear combination of the two
original modes.
In the present case of two condensate modes, the mode functions satisfy the
coupled generalised Gross-Pitaevskii equations

0 K2
mZXiqusj = ZXij(—%VerV)qu
J J
+ 3709 Yimjn 65 60) 65 (i=1,2). (44)
7 mn

These mode functions allow for boson-boson interactions and are time-dependent.
They follow the changes in the time dependent potential V' (r,¢). The quantities
X;j and Yy, jn are one-body and two-body correlation functions

Xi; = (®|dla;|®) (45)
Yimjn = (®|alal,a;a, |®) (46)

Detailed expressions given in the in Eqs. (AT2) and (AT3), show-

ing that X;; and Y, j, are quadratic forms of the amplitudes b;. These are
of order N and N? respectively. The one body correlation functions can be
expressed in terms of matrix elements between the Fock states of the spin op-
erators, and the two body correlation functions as matrix elements products of
two spin operators. The coupled Gross-Pitaevskii equations are non-linear in
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the mode functions. The non-linear terms (g Y Yim jn @5, ¢n) that are present

due to the boson-boson interactions scale like %’ffé boson particle density and be-
have as generalised mean fields. Hence the approach that produces generalised
Gross-Pitaevskii equations is a form of mean field theory, though not of course
as simple as in the case of a single mode theory. The kinetic energy and trap
potential terms and the mean field terms may also be written as

h2
> Xij(_%v2 + V) ¢;(r,t)
5

2
S {-pvieveolal gen @
D (> Yimjn G $n) 65 (x, 1)

J

> @lal {gBo®) Tom) fa; 19) 65(r0) (48)

J

showing the formal relationship of the terms to the state vector |®).
For the present two mode condensate case the amplitudes satisfy matriz
mechanics equations, as in [17]

Oby,

b
o

= (Hu—hUu)b;  (k=-N/2,.,N/2). (49)
l

These N + 1 equations ([@9]) describe the system dynamics as it evolves amongst
the possible fragmented states. The equations are similar to the standard ampli-
tude equations obtained from matrix mechanics. In these equations the matrix
elements Hy;, Uy depend on the mode functions ¢;(r,t). Detailed expressions
for Hy, Uy, are given in in Egs.(A10) and (A7). The matrix
elements Hy; are in fact the matrix elements of the Hamiltonian Hin equation
B2)) between the fragmented states | %,k>, | %,l>. The matrix elements Uy,
are elements of the so-called rotation matriz, and allow for the time dependence
of the mode functions.

N | &|N
Hy = <57/€’H'3J> (50)

o= (- (G

The specific forms of the X;;, Yip, jn, Hri, U are not important in what follows,
all that is required is that they have been determined. Equations for the mode
functions and amplitudes similar to (@) and [@J) have been obtained by Alon
et al [47] for single component BECs.
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From the amplitude and mode equations it can be shown that
N
2

0
= > P = 0 (52)
—3

Y Xy [drownomn = 0 (53)
j

The first result shows that the amplitudes would remain normalised to unity
and the second result is consistent with the modes remaining orthogonal and
normalised, assuming they were so chosen at ¢t = 0. The second result involves
the trace of the product of a positive definite invertible matrix X with a matrix
which is the time derivative of the mode orthogonality matrix.

Adiabatic solutions to the time dependent coupled Gross-Pitaevskii equa-
tions can be obtained for slowly varying trap potentials via the transformation
to new adiabatic modes & (r,t) (k =1,2) in the form

Gi(r,t) = o exp(—ipxt) & (r,t) (54)
k

where it is assumed that the coefficients ay; and the new modes & (r,t) are so
slowly varying with time that their time derivatives can be ignored. All the
time dependence is assumed to be carried in the oscillating exponential factors.
The new modes are required to be orthonormal, and the frequency factors ug
are required to be real, so that the transformation does not diverge for large |¢|.
The orthonormality condition shows that the ay; form a unitary matrix.

Z Oé;:l- Ay = 5ij Z 04;:1- o = 6kl (55)
k i

The condensate field operator can also be expressed in terms of the adiabatic
mode functions and their associated annihilation, creation operators as

Uo(r) = bi&i(r) + baba(r)  UL(r) = & (r)b] + & (r)b) (56)
where R N
b= on exp(—ipt) @ b= ap; exp(+iput)a] (57)

and the standard commutation rules apply [3;“3;] = .

Substituting for ¢;(r,t) in the coupled Gross-Pitaevskii equations ([@4]), mul-
tiplying by «; exp(+ipt) and summing over ¢ gives a pair of time independent
coupled Gross-Pitaevskii equations for the adiabatic mode functions

h2
> Prhu & = ZPH@(_%V2 +V) &k
k

k
+3 (0 Qura & &) & (1=1,2). (58)
k mn
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where now the one and two body correlation functions are

Pp = (®|b]by|®) (59)
Qs = (®|b]bibybs |®) (60)

Equations (@7) and (@8) were also used in the derivation. These equations are
only meaningful if the trap potential and the adiabatic mode functions are in
fact slowly varying with time. The frequencies p1, po play the role of generalised
chemical potentials. Noting that the N dependence in the mode equations is
carried in the one and two body correlation functions - these being of O(N) and
O(N?) respectively, it is then possible to show that the chemical potential is
given by

o <I>|bTbk|<I>)
n=o5 (D H |®) = Zh (61)

As the quantity (<I>|3£3k |®) /N is the fractional number of bosons occupying
the adiabatic mode & it follows that Auy is the chemical potential associated
with that mode.

2.4. Single-Mode Theory and Standard Gross-Pitaevski Equation
For the case where there is just a single condensate mode the state vector

becomes
N

_ (@@®")
| @(t)) = NGSIER |0) (62)

The general Gross-Pitaevskii equations ([@4)) then reduce to the single Gross-
Pitaevskii equation.

92V 4 g(N = 1) 61 ) 61 = in 2 63
(=5 ¥V 49V = D on*) 1 = i (63)

Note that in the regime of interest with N becoming very large, the factor
9Yim jn/N = gnYim jn/N? becomes approximately equal to gy tiimes a factor
of order unity. In deriving the single Gross-Pitaevskii equation from (@4), the
matrices with elements X;; and Yj, j, reduce to 1ol matrices with non-zero
elements

X1 =N Y1111 = N(V - 1) (64)
since in this case by = d, _n/2. As there is now only one mode, there is now a
single Fock state so amplitude equations, spin operators no longer apply.

For the single mode case an adiabatic solution can be obtained via the trans-
formation

b1 (I‘, t) = eXp(_i:ult) 51 (I‘, t) (65)
applied to (63), where it is assumed that the new mode & (r,t) is so slowly

varying with time that its time derivative can be ignored. The time independent
Gross-Pitaevskii equation for the adiabatic mode function becomes

2
P €1 = (-5 V2 + V)& + gV = 1) fal & (66)

22



and 1 is the chemical potential u; = iN (®| H | ).

2.5. Modified Form for ﬁg Term

The previous form (B3] of the ﬁg term contains spatial derivatives and these
would produce Fokker-Planck equations with functional derivatives with respect
to spatial derivatives of field functions, which cannot be treated in the standard
approach. However, the Hs term can be put in a form in which spatial deriva-
tives are absent.

2.5.1. Two-Mode Case

It is straightforward to show that the eigenvalues of the 2 x 2 matrix of the
Xi; are both real, positive and their sum equals IN. Apart from special cases
where one of the eigenvalues is zero we see that the matrix of Xj; is invertible
and hence we can write

Z O2+V) ¢ =ih 8t¢l thlzqu] (67)

M yay,e
where the generalised mean field that occurs in the mode equations is defined
by

Zij =9 Yim jn O bn (68)

and is quadratic in the mode functions. Thus we find that the condensate field
annihilation operator satisfies the equation

thal &= X Zijosa

ijl
—inY e
p ot

-9 Z X7 Yo jn O bnd; (69)

ijmnl

h? ~
(—%W + V) Uo(r)

using %\/ﬁc(r) = 0.
However from (I4)

@ [dscis)els)  1-12) (70)
so that the condensate field operator satisfies the integro-differential equation
I3
(—2—v2+v> = —mz(m /ds—@( YU e(s)

—g Z X3 Wi jn 8 (x) 6 ()5 (r)

ijmnl

x /ds ¢ (s) Ue(s) (71)
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Hence operating from the left with T ~veo(r)t and integrating over r we find that
~ h2 ~
/dr Une(r)f (—%V2 + V) Ue(r)
- —ihzl:/dr Une(r)f gbl(r)/ds (%@ (s)) Te(s)
0 3 X Wi [ 0 Be ()6, @000 (w5(x) [ ds i (s) Tl

ijmnl

0 30 X s [ dr o) 67, @00 ()65 (1)

ijmnl

« / ds 67 (s )T (s) (72)

since the first term on the right hand side is zero because the condensate mode
functions ¢;(r) are orthogonal to the non-condensate mode functions ¢j (r)

that are present in the expansion of the non-condensate field operator 7 ve(r)f.
Thus we can write

/dr@Nc(r)T{<—%V2+V>‘Ifc == [ [ards PPttt

(73)
where the kernel F(r,s) is an ordinary spatial function of two positions and is
defined by

F(r,s)= Y X Yim judr (£)dn(r)d; (r) 67 (s) (74)
ijmnl
Note that this kernel is not symmetric in r,s.
Taking the adjoint of the last equation gives

/dr {(—%W +V) @Tc(r)} T ye(r //drdsF s,1)¥c(r) Une(s)

(75)
so the term ﬁg can now be written as
—//drds QWNF(I‘,S)\/I\/Nc(I‘)T Te(s)
+/dr Tye(r) {+%@c(r)@c(r)@0(r)}
+/dr {—l—gWN\T/c(r)T\/I\fc(r)T\Tlc(r)} \/I\ch(r))
- / / dr ds 23 F* (s, 1) T (1) B nc(s) (76)

This eliminates the awkward terms involving integrals of T ~nco with the spatial
derivative of W (and the adjoint expressions). These would lead to Fokker-
Planck equations with functional derivatives with respect to spatial derivatives
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of field functions, which cannot be treated in the standard approach. However,
the term Hs now involves double spatial integrals of field operators, and these
require special treatment.

We can write Hy as the sum of two terms, one involving field operators to
the second order, the other involving field operators to the fourth order. Thus

Hy = Hoys+ Hovs (77)
s = 2 [ ar (e )T ) Bew)To)

+9WN dr (W (r) UL (r) Uo ()W ne(r)) (78)
Hopo = —g—N//drdsF(r,s)@Nc(r)T\TJc(s)

//drdsF* s, 1) e (r) Wne(s) (79)

Note that both terms are proportional to the factor gn/N. Thus we see that

ﬁg is now associated only with terms analogous to those for boson-boson inter-
actions, both Hopy and Hape being proportional to gy /N.

2.5.2. Single Mode Case
If only a single condensate mode was involved the development of Hs is
simpler. From (G3)) and (24)) similar procedure to the two mode case gives

h? -~ ) a . ~ ~
<—%V2 + V) \IJC(I') = —zh(bl(r)/ds <§¢1 (S )) \I/C(S)—Q(N — 1) |¢1(r)|2 \Ilc(r)
(80)
so that using the orthogonality of the condensate mode to all the non-condensate

modes
/ dr U, (r) (_%W + v> To(r)
— in [ @@ [ds (Foi6)) et
— [V = D 6n ) Betw)
= = [ )l ot (81)

This result may also be recognised as a special case of ([73). Using the special
forms in (64) for the XﬁlYimjn we have

Flrs) = NIV =161 @) ()0 (r) 6 (s)
= (V- 161 )1 ()de(r.s) (52)
[ [avds Pl Tae@) Bos) = - [ e oV - Do) Toe)
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as before, where a result from (22) has been used to evaluate the s integral..
We can use (81l) and the related adjoint equation involving \Ifg(r)g(N — 1) |1 (r)]* Une(r)
to simplify Hs into a form

~ ~

By = [ dr (@B Telr) - (TL0) Tolr)) o)
+ [ @0 2T () Totr) - (TL0) Bo)) Tno(r) (53)
where we use the notation <\/I\!c(r)T\/I\fc(r)> = (N — 1) |¢1(r)|>. We see that for

the single mode condensate case ﬁg is also thg sum of a term ﬁ2U4 which is
fourth order in the field operators and a term Hsys which is second order.

Hy = Hoyy+ Horr (84)
s = % [ dr (@he@)Th(r) B @)Tor)
o / dr (TL(0) T (r) Do () Do (r)) (85)
s = =% [ @ tH(TL0) To))Tew)
SN[ e (B0 (B () T () ) Ere(r)) (86)

Thus we see that ﬁg is now associated only with boson-boson interaction terms.
However, unlike the two mode condensate case there is no double spatial integral
involved. The general form of the development for Hs is a simpler version of
the result (T7) for the two mode case.
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3. Phase space distribution functional

In this section the phase space distribution functional is introduced starting
with the characteristic functional. The distribution functional is of a mixed
type, with the condensate fields involving a generalised Wigner form, whilst the
non-condensate fields involving a positive P form. This is to reflect the fea-
ture that many bosons occupy the condensate modes, so a Wigner distribution
is better suited since it descibes fields whose behaviour is close to a classical
mean field situation. On the other hand, there will be few bosons occupying the
non-condensate modes, hence a positive P distribution is better, since the non-
condensate fields may display quantum behaviour. In this section we emphasise
how the phase space distribution functionals determine the quantum correla-
tion functions which are used to describe the probabilities for bosonic position
measurements. The theory in this section is set out for the two-mode situation,
but can be easily modified for the single mode condensate by just restricting
the sums over condensate modes to a single term.

3.1. Characteristic Functional

From the density operator p and by introducing four distinct functions
&5 (r),€o(r), €4 (r) and Enc(r) associated with the field operators

\Tlc(r),\I/TC(r),\lec(r) and \levc(r) respectively, we define the characteristic
Junctional XKC (I‘), gér (I‘), Enc (I‘), g]J\rIC (I‘)] as

Xléer €8 Enes Eel = Tr(pQlée, € énes Ee) (87)

with
Q = QcOne (88)
G = o [ drilé®)Thr) + Tewe m) (59)

Qne = exp/dri{ch(r)@VC(r)} eXp/dri{‘T’Nc(r)ﬁf\?c(r)} (90)

Thus this mixed characteristic functional is of the Wigner type for the conden-
sate modes and of the Positive P (PT) type for the non-condensate modes. The
basic idea of a functional is explained in Appendix B (|82]) but essentially a
functional F[¢)(x)] of a field function 1 (x) just defines a process that results in
a c-number which depends on all the values of the field function, that is over
the entire range of positions x.
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If the mode expansions are used with

Eo(r) = &ioi(r) + Eaga(r) (91)
&) = o1& +bs5(r)és (92)
K
Eve(r) = ) & ow(r) (93)
k#1,2
K
folr) = D i (94)
k#£1,2
then we have
Qc = expi{&al +a1&f + &ab + a268 ) (95)
One = expi Z gkaL expt Z R (96)
k#1,2 k#1,2

This shows that the characteristic functional x[¢c, §g, é¢ne, 52\70] is also a char-
acteristic function xp (€1, €1, &2, &5, ., &k, 5:, ..) of the c-number expansion coef-
ficients, a result that is important in deriving expressions based on functionals.

3.2. Quasi-Distribution Functional

For double phase space distributions as in the present case the quasi-distribution

Junctional Plipc(r), v (x), Yne (r )ﬂ/ch( 1), Y& (), v (x), Yo (r), Y e (r)] in-
volves four field functions 1/)0( ), ¥ (r), 1/1Nc( ), 1/)NC( r) corresponding to the
field operators W (r), U} o(r), U ye(r) and \If}fvc( ) respectively, plus their com-

plex conjugate fields wc( r), vi (1), Yo (r), v (r). It is chosen to give the

characteristic functional x[¢c(r), &5 (r), Enc(r), &5 o (r)] via a functional inte-
gration process over the four complex field functions, the integration also incor-
porating an exponential factor, which may be written as

flffi Jdr{&c(r)vé(x)+de(r)el (r)} expi [ dr{Enc(r)dye(r)} expi [ dr {¥no(r)éfe(r)}

xléc(r), &5 (x), Ene(r), 5 (r)]

JJ]] P?ve 2o D2owe D0

X Pl (r), ¥ (x), one(r), e (), v& (1), vd™ (), Yo (r), Yye ()]
xexpi [ dr {6ceut) + veet @)

X exp i / dr{¢{ne (r)@b}'{,c (r)}expi / dr {ch(r)fj‘\",C (r)}. (97)

The justification of this important result is set out below. Note that the quasi-
distribution functional is not necessarily unique, it is only required that the
above functional integral gives the characteristic functional, (which is unique).
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In the present case we will use a weight function of the form based on Eq.(B.60),
but adapted to there being eight real fields, rather than four as in Appendix
B.8.

(U)l,d}l,.,’l/}“ 7 a'vwnv 1/}15 7'51/}171/)+*5 7¢:7¢:*):H(Arz)4

(98)
The power law (Ar;)* arises because each field contributes (Ar;)'/2.
Functional integration is fully explained in Appendix B (|82]), but a brief
summary is as follows. If there are n modes then the range for each function
¥ (z) is divided up into n small intervals Az; = x;41 —z; (the ith interval, where
€ > |Ax;|), then we may specify the value ¢; of the function ¥ (z) in the ith
interval via the average

1
vi= 5 [ douia) (%9)
ALE»;

and then any functional F[¢(z)] may be regarded as a function F (11,2, .., ¥i, .., 1)
of all the ;, and ordinary integration over the 1; is used to define the func-
tional integral. If each function ¢ () = ¥, (x) + ithy(x).is written in terms of its
real and imaginary parts, then the functional integration becomes an ordinary
integration over the values 1;,, ¥, of these components in each interval 7 of the
function F(¢1, s, .., 4, .., 1¥,) multiplied by a suitably chosen weight function

¢171/127- 7¢17' 7¢n) Thus

[prori@) = it [ PP, w b i)
XF(?/)1,1/}2,..,’1/}Z',..71/)") (100)

where the number of modes is increased to infinity along with the space interval
decreasing to zero. The symbol D24 stands for d?v; d?wo..d*;..d* Y, w(th1, .., Vi, s P,
where the quantity d?1; means di);,di);,. The present case involves a generali-
sation to treat four complex fields ¥ (r), & (r), ¥ne(r), ¥ o ().

To justify the characteristic functional result ([@7) mode expansions for the
field functions are used with c-number expansion coefficients oy, a;

Yo(r) = a1 ¢1(r) + az da(r) (101)
&) = di(r)af +¢5(r)ay (102)
K
dne(r) = D apdi(r) (103)
k#£1,2
K
Vhe(r) = Z or(r)ay (104)
kAL2

The P quasi-distribution functional

Plipe(r), v (r), ¥ne(r), vo(r), Y& (), v &7 (1), Yo (r), ¥ (r)] would then be
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equivalent to a distribution function Py(ay,af, .., oy, a:, ok ol o Oy a:*, )
of the c-number expansion coefficients and their complex conjugates For dou-
ble phase space representations of bosonic systems the connection between the
characteristic function x4 (&1,£;, €2, &5 ., &k, &, ..) and the distribution function
via a phase space integral has been established by Drummond and Gardiner

[83], |84]. The characteristic function is given by

Xb 51751 752752 7§k7§k 7")
/ /d2a1d2 TdPasday . dapd*a)f . d*and®a)

be(al,al s Oy g o o g, o L)
n
x expz'Z{sk afyexpi Y {argl} (105)
k=1 k=1

where ai = iz + foyy, a: = azz + iazy and d?ay, = dagy dagy, dzaz =
dazz dazy. If the phase space integration is replaced by functional integration
we can show that Eq.(I05) leads to the result (7)), which thus demonstrates
that the distribution functional exists. The change from phase space integration
to functional integration is outlined in Appendix B.8 (see Appendix B, [82]).
In deriving the functional integration result for the characteristic function the
expressions

expiZ{{kozz} = expi Z {&; ozj} expi Z {& o}
k=1

j=1,2 k#1,2

— expi [ dr {6cwi) expi [ dr (gvo)ute(n)
expiZ{ozk &Y = expi Z {aj {;L} expi Z {an &5}

k=1 j=1,2 k£L2
— i / dr (o (r)eh (r)} expi / dr (¥no()E ()}

are used.

Note that as each field can be expressed in terms of its real and imagi-
nary components, the distribution functional involving the four fields and their
conjugates may also be considered as a functional of the eight real, imaginary
components.

Plpo(r), v (), ¥ne (), Ve (1), v& (), & (), ¥ne (r), v e (r)]
= Flyex(r),vix (), ¥nox (), ¥yox (v), Yoy (r), ¥by (v), vney (r), ¥R oy (r)

This form of the distribution functional is analogous the corresponding form
for the distribution function, which has been used as the basis for deriving Ito
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stochastic equations for the real, imaginary parts of the phase variables [83],
[84].

+ + * —+x * +*
Py(ar,0f . ap, o), .,af,af ", o, 00", L)
_ + + + +
= Fy(aix, 0y, X, Oy, o A1y, 0y ooy Oy, Oy, ) (106)

8.8. Interferometric Measurements

Coherence effects in BECs are described via Quantum Correlation Functions

~ ~

GN(r1,Ty, .., TN SN, -y Sg,8) = <\If (r)" W (rn) U (sy) .. U (sl)>
= Tr(pt) ¥ (r)T .0 (ep)T U (sy) .. U (s1)) (107)

Various BEC spatial interference effects can be described via quantum correla-
tion functions, which thereby specify the spatial coherence effects.

If we interchange coordinates of a pair of bosons, say (ri,s;) <> (rj,s;) we
see that because the commutation properties of the bosonic field operators, the
quantum correlation function is unchanged. The symmetrization principle for
bosonic systems is consistent with measured quantities remaining unchanged
due to interchange of identical particles.

The quantum correlation function with r; = s; (i = 1,..., N) measures the
simultaneous probability of detecting one boson at ri, a second at ro, .., the
Nth at ry, (J28]. Actual measurements of quantum correlation functions may
be made via scattering a weak probe beam (atoms, light) off the system, (|29].
If the field operators are written as the sum of condensate and non-condensate
terms, then the quantum correlation functions will contain purely condensate
terms, purely non-condensate terms and mixed terms involving both condensate
and non-condensate operators.

The quantum averages of symmetrically ordered products of the condensate
field operators {\IJTC(rl)\I/TC(rg)....Wg(rp)qlc(sq)..\llc(sl)} and normally ordered
products of the non-condensate field operators
\If}ch(ul)\If}ch(ug)....\If}ch(ur)\I!Nc (vs)..¥ ne(vy) may then be expressed as func-
tional integrals of the quasi-distribution functional
PWC (I‘), 1/13 (I‘), 1/)NC (I‘), 1/}]-50 (I‘), 1/18 (I‘), 1/13* (I‘), 1/)}'(\[0 (I‘), 1/)?\_[*0 (I‘)] with prOdUCtS
of the field functions. Thus, with <§> = Tr(p=)

(WL ) L () (50)- Te(s0)} Tl (). T (1) Tne(v) Fne(vi))

~

= Tr (ﬁ{@g(rl)....@g(rp)@c(sq).@c(sl)}@jvc(ul)....@jvc(ur)xch(vs).@Nc(vl))

- /// Do D*¢é D*Yne D*¥c

XP[¢C(T)7 wé‘r(r)v ’@[JNC(r)a ij\r[C(r)v 1%(1‘)7 é‘r* (I‘), W\rc(r)a ’@[J]J\rfz,‘(r)]
XP&(01) P& (ra) & (rp) Yo (sq) - Yo(s2). e (s1)

xYho() Vo) ke () vne(vs) Wne(ve) Yne(vi)
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and where
(U)Wl (ry).... 0T (r,) U (s,).. U (s1)}

_ (piq),Z%(@T(rl)@f(m)...@f(rp)@(sq).@(sl)). (109)
"R

In Eq.(I09) the sum over R is over all (p + ¢)! orderings R of the factors
Ut (r) Ul (ry).... 0T (rp)\/I\f(sq)..\Tl(sl). T hus, the condensate field operator \fch(rl)
is replaced by ¢/ (r;) and \Tlc(sj) is replaced by ¥ (s;), with analogous replace-
ments for the non-condensate field operators. The proof is given in Appendix
C (|82]) and involves functional differentiation, which is explained in Appendix
B ([82)).

These results together with the equal time commutation rules give the quan-
tum correlation functions. For example, the first order quantum correlation
function (which is used to exhibit macroscopic spatial coherence in a BEC) is
given by

4 /// D*pe D*¢ D* e D

x Plc(r), vé (), vne (), ¥e (r), ¥a (), v 8 (r), dhe (1), e ()]

(Y (1) + Ue(r1)) (e (s1) + Pno(s)) (110)
and includes pure condensate terms, pure non-condensate terms and mixed
terms. Note the delta function term which arises because of the difference
between normal and symmetric ordering that applies for the condensate terms.

It is worth noting that some authors [40], |41], [42] determine the mode
functions as the eigenfunctions of the first order quantum correlation function

< U(ry)f \ff(sl)> Thus the mode functions ¢; (r) satisfy the eigenvalue equations

/dsl <@(r1)T@(sl)> vi(s1) = Nis (r1) (111)

The mode functions can be shown to be orthonormal and the eigenvalues real
and positive. The eigenvalues give the occupancy of the modes. For two mode
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condensates in a general fragmented state, two such eigenvalues will have macro-
scopic values "NV and the other modes will have small eigenvalues. This approach
to determining the mode functions has certain formal advantages, such as lead-
ing to the Hs term in the Hamiltonian being zero. However, the method would
require knowing the first order correlation function, and it is not clear how this
could be done prior to knowing the mode functions. In the present approach
the formalism is designed as a way to determine all the quantum correlation
functions.
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4. Functional Fokker-Planck equation

In this section we show how the Liouville-von Neumann equation for the
quantum density operator describing the state of the bosonic system is equiv-
alent to a functional Fokker-Planck equation for the phase space distribution
functional. This is accomplished via the use of correspondence rules, wherein
the product of the quantum density operator with the various condensate and
non-condensate field operators (for both product orders) is equivalent to the
operation of functional derivatives or field functions on the distribution func-
tion. The actual results for the functional Fokker-Planck equation in the case
of the present two mode BEC condensate system are set out at the end of the
section. For completeness the corresponding simpler results for a single mode
condensate are also obtained.

4.1. Dynamics

The state of the bosonic system is described by the density operator p which
satisfies the Liouville-von Neumann equation

L0 . 5
ihep=[H,7 (112)

where the Bogoliubov Hamiltonian 7 will be used.

The approach used will be to turn the Liouville-von Neumann equation for
the density operator p into a functional Fokker-Planck equation for a quasi distri-
bution functional P["/JC (I‘), ¢g (I‘), Yne (I‘), "/J]-’\_ZC (I‘), wé‘ (I‘), g* (I‘), w?\/c (I‘), JJ’\_/*C (I‘)]
and then replace this by stochastic equations for stochastic field functions
1/)0(1',15),wér(r,t),ch(r,t),1/)]J{,C(r,t). The latter are c-number Langevin equa-
tions of the Ito type, and in general will contain random noise terms as well as
deterministic terms coupling the field functions.

4.2. Correspondence Rules

We now wish to replace the Liouville-von Neumann equation for the den-
sity operator by a Functional Fokker-Planck Equation for the quasi distribution
functional. To do this we make use of so-called correspondence rules, in which
the effect of a field operator on the density operator corresponds to the effects
of functional differentiation and/or function multiplication on the distribution
functional.

Functional differentiation is fully explained in Appendix B ([82]), but a sum-
mary is as follows. For a functional F[(x)] of a field 1 (x) the functional deriva-

tive M;[;/zg)] is defined by

Flua) + 60()] = Flo() + [ desvie) (5L

where d¢)(z) is small. In this equation the left side is a functional of ¢ (x)+ ¢ (x)
and the first term on the right side is a functional of ¢(z). The second term on
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the right side is a functional of §¢(x) and thus the functional derivative must
be a function of z, hence the subscript x. In most situations this subscript will
be left understood. If we write dip(x) = ed(z — y) for small € then an equivalent
result for the functional derivative at z =y is

(51;5/2(3;)]) . (F[w(x) +ed(z —y)] — FW(x)]) . (114)

e—0

Note that for functionals involving both (x), *(z) we treat these complex
fields as independent, and functional derivatives with respect to both (x),
*(x) exist. Thus

Fly(x) + 0y (x), ¢ (x) + 69" (x)]

s Pl v o+ [ v (D)

forurin ()

For the equivalent functional G[x (z), ¥y (z)] = Fl¥(x),¢*(x)] involving the
real, imaginary components ¥ x (x), ¥y (z) the functional derivatives are defined
by

GlYx () + 6Yx (z), ¢Y( ) + 0y (2)]

= Glx(z), by (2)] + CMW ( e 51/1)( )m
+ / dz 51y () <5GW§2Y)< ) = > e

The present case involves a generalisation to treat four complex fields

"/’C(r)v @/Jé(r),ch(r), ’@[JZJ\FIC(I‘)

4.2.1. Notation
As the notation is now getting rather cumbersome we will designate

ﬂ(r) = {ve(r), v&(r), vne(r), vie(r)}
Pr(r) = {Y(r), v (r), Yive(r), e ()}

Ply(r),¥{(r)] = Plpo(r), dd (x), vne (), e (r), 05 (r), 5" (x), ¥xo (), ¢e (r)

{&o(r), &8 (x), Ene(r), 5o ()}
X[gcu gé’_? §N07 5]-’\_70]

=

dm 1
ONG
1/l
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for the fields and the distribution, characteristic functionals. For the expansion
coefficients and the distribution function we introduce the notation

a = {onaf) (122)

o’ = {af.of") (123)
Pla,a") = Plaraf,ab,af) (124)
Py, vt = Pla,a”) (125)

where the original functional

Plo(r), 65 (1), Yve (0), o (), 88 (1), 98" (1), 9o (1), 9 ()] of the fields

$o(r), 95 (1), e (r), 9o (1) and their complex conjugates Y. (1), 3™ (1), ¥ o (1), Yi(r)
is equivalent to the function Py(aw, ), af, af™) of the expansion amplitudes

ag, az and their complex conjugates aj, az*.

4.2.2. Correspondence Rules for Condensate and Non-Condensate Fields
For the condensate operators we have

Bow o (ve) + 35 ) Py

Pels) o (vels) - 552 ) Py

WL o (666 g5 ) PLLm o)

Phs) o (06 5 ) PLEO L (20)
and for the non-condensate operators

Tnc®F & (ve(s) Pl ). )

Pinets) o (nels) = 5 ) PLE . 0;0)

He®p o (Ve -5t ) PE.u )

() o (URe(s) PL ), ¢ ()] (127)
whilst for the density operator

o, L0500 .

4.2.8. Deriving the Correspondence Rules

The proof of these correspondence rules is dealt with in Appendix D (|82]).
Key steps in the derivation include first establishing the following changes to
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the characteristic functional. For the condensate modes we have

—_

~

Boop @ (s pee®) Al
e o 1 (5 - 3e®) (g
WLEr o 1 (5 - 2566) W0
6 1 (5 +360)) M0 (129)

and for the non-condensate modes

Uye(s)p © %(ﬁ) X[ € (r)]
NC
Pincs) 1 (g —ove®) Al )
NC
e o 5 (5 — o) A0
. VAR
e o 1 (Gemg) M50 (130)

As can be seen from eqs. (I0I] 02 [M03] [04) the distribution function
Plbc(0), 65 (1), e (1), 6 (1), 05 (1), U8 (1), 0 (1), 0 (1)] is a functional
of restricted functions (see Appendix B, [82]). It can also be considered as a
function Py (cv, 04;:, af, ak *) of all the expansion coefficients «y, a: in eqs. (10T}
02, (03, [04) and their complex conjugates o, *. Hence in applying the
correspondence rules the following operator identities for the various functional
derivatives can be used

(ﬁ@)s = ) ¢ils) 3% (51/1NC >s k;;bk

k=1,2

) _ 4 _
(51/% (s) > s - k212 Pals 3%5 <57/}]TZC (s) > s - k;ﬁzl2 e aak
(131)

where it is understood that the left side operates on the distribution func-

tional. Plyc(r), 154 (1), Ui (). e (1), U (). 08" (1), Wive (1) U 0) of the
restricted functions v (1), (1), v (1), Vi (1), U6 (1), V& (). Vv (1), i (1)
and the right side operates on the equivalent function P;(ay, az, oy, ak ). The
related identities for the functional differentiation with respect to the complex
conjugate fields also exist, but are not needed because the correspondence rules
only involve functional derivation with respect to o (r), ¥ (r), ¥ne (r), Yo (),
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and any functions arising from the multiplications are only functions of these
fields and not their complex conjugates.

In deriving the correspondence rules that result in functional differentiation
a key step involves a functional integration by parts of the form

2 2 2 2 5G[£(r)]
///D Ve D*)f D*Yne Dk < 59(r) ) [ﬂ( r)
2 2 2 2 [ﬂ
_/// D*¢e D*pt D*pne D*Yi G[g(r)] T

Glym) = expi [ dr{gcvhm) + o m)
xexpi/dr {€c(r)vd(n)} expi/dr {€nc(r)ko(r)}(133)

is a functional of the four fields 1o (r), 95 (r), ¥ne (r), Yo (r) and 3 (r) refers to

any one of these. This step relies on the distribution function Py (a, az, oy, az*)

going to zero on the boundaries of phase space, an assumption common to
all correspondence rule derivations. Note that the functional differentiation of

P[djc (I‘), 1/13 (I‘), 1Z)NC (I‘), 1/}]-’\_70 (I‘), 1/}8 (I‘), 1/13* (I‘), 1/)7\/0 (I‘), ]-i\}*c (I‘)] is Wen_deﬁneda
since P| i (r), 1/1_’; (r)] is a functional of both the fields and their complex conju-

gates.

4.2.4. Real and Imaginary Field Components
Note that because G[g(r)] does not depend on the conjugate fields, its

functional derivative with respect to any 1*(r) is zero. Thus we also have

(G *
O:/// D*pe D>y D*pne D> (W) P[g(r),ﬂ(r)]

, , , , [ (r), *(r)]
_/// D*pe D*f D*ne D* o G[g(r)] (W)“M)

Adding an arbitrary multiple A of the last equation to each side of (I32)) gives

/// Do D D Db [ oo™ Pl o), o)
C C NC NC 51/)(1') 7_>

=~ [[[] PPee *ui Dune DUt Gl )
SPL (), 9] SPIY (), ¢ (o)
x( IR T2 )

(135)
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Noting that we can write the field in terms of its real, imaginary components and
replace the distribution functional P| i (r), ﬂ (r)] with an equivalent functional

F[%(r), %(r)] of the components

Y(r) = Px(r) +iy(r) 1/) (r) = ¢¥x(r) — ity (r)
Yx(r) = (@) +9¢*(r)/2  Py(r) = (P(r) —¢*(r))/2i
Ux(e) = {tox(®), i @), énex(e) viox )
%(r) = {Yoy(r), vy (r), Ynoy (), v 3oy (r)} (136)
P[g(r),ﬂ(r)] = F[‘/’_}g(r)ﬂ/f_);(r)] (137)

then a straightford application of functional differentiation rules shows that by
choosing A =1 or A = —1 we have

2 2 2 2 6G[£(r)]
/// D*ye D*Yf D* e D) (W) P[i(r), *(r)]

SF[thx (r), y (r)]
—///D21/)C D*y} D*yne D*¢k e G[g(ﬂ]( =

OF[1x(r)
_ /// D*pc D*f, D*¢ne D*Yi e G ¥ ()] ( —

This shows that functional differentiation of the distribution functional with re-
spect to ¥(r) is equivalent to functional differentiation of the related distribution
functional F[1/)_X>(r), 1/J_y>(r)] with respect to either x (r) or i3y (r). This feature

is useful if we wish to replace the fields by their real, imaginary components.

4.2.5. Applying the Correspondence Rules

In dealing with terms in the Liouville-von Neumann equation the density
operator is often operated on by more than one field operator. To determine
the overall effect on the quasi distribution functional it is necessary to carry
out the above replacements in succession. A couple of examples illustrate the
proceedure.

Ul (s1)pTc(s2)
= (vketen - sty ) (el = 52 ) P60
UL (s1)pPc(s2)
1 15 .
= (vet - g3 ) (et — s ) P .23



Using the rules for functional differentiation we see that the differentiations can
be carried out in either order.

In applying these rules to the BEC problem, the following functional deriva-
tive results can be obtained (see Appendix B, [82]) The general functions ) (r)
and 1T (r) each were used to cover the results for condensate and non-condensate
modes. For the case where ¢(r) = 9 (r) the restricted set K refers to the
modes ¢1(r) and ¢2(r), and for the non-condensate case where ¥(r) = Ync(r)
the restricted set refers to the remaining modes ¢i(r). For the case where
YT (r) = ¢/ (r) the restricted set K refers to the conjugate modes ¢j(r) and
¢3(r), and for the non-condensate case where ¥ (r) = ¥ (r) the restricted
set K *refers to the remaining conjugate modes ¢j (r). Because the coefficients
are unrelated we are dealing with functionals such as the distribution functional
P[i(r), ﬂ(r)] in which the functions ¥c(r), ¥ (r), ¥ne(r), Yo (r) are mutu-

ally independent.

)
Sic(s) VO = ool
4]
51#3 (S) 7/% (I‘) = 5C+ (I‘, S) = 50(5,1‘)
6 + r — 75 r) —=

with four other results obtained by replacing C by NC. Note the reverse order
of r,s in the second result. Similarly the functional derivatives of condensate
fields with respect to non-condensate fields are zero, and vice-versa. Thus

0 I R
T MW = 0 g e =0

5. B R
Fiole) o) = 0 sEune(®) =0 (141)

with four other results obtained by interchanging C' and NC.
The product rule for functional derivatives

&f( 5 PV, 97 @I ), o™ @)

_ (%(S)Fw(r),w+<r>1>aw<r>,w+<r>1+FW(r),w+<r>]<%(;w<ﬂvw*<rﬂ>
&/}%@W(r),¢+<r>]Gw<r>,¢+<r>]>

_ (M%(S)Fw,(r), SN, U (1] + P, 0t 0] 5 e )

is also needed. Here 1)(r) refers to either ¢ (r) or ¥nc(r) and ¥T(r) refers to
either ¢/ (r) or ¢ (r).

40

(142)



In addition the standard approach to space integration gives the result

/ ds {9,C(s)} = 0 (143)

for functions C(s) that become zero on the boundary. This then leads to the
useful result involving product functions C(s) = A(s)B(s) enabling the spatial
derivative to be applied to either A(s) or B(s)

/ ds {9, A(s) } B(s) = — / ds A(s) {9, B(s) } (144)

We can assume that the t(s) and 9™ (s) become zero on the boundary, since
they both involve condensate mode functions or their conjugates that are lo-
calised due to the trap potential. Also the functional derivatives produce linear
combinations of either the condensate mode functions or their conjugates (see
(@31)) so the various C(s) that will be involved should become zero on the
boundary.

The results in this section also apply to the single mode case with obvious
modifications, the sums over condensate modes now restricted to k = 1.

4.3. Condensate Functional Fokker-Planck Equation
The functional Fokker-Planck equation may be written in the form

(5718 @)
- (Frmeuo) +(Frye.se)
= (Frge.ve) (145)

This is the sum from the terms in the Bogoliubov Hamiltonian of order N, VN
and 1/v/N respectively. The derivation of the results for the Fokker-Planck
equation is carried out in Appendix E (|82]).

4.3.1. The fll Terms
The contributions to the functional Fokker-Planck equation from the H;
term, which is equal to the condensate Hamiltonian, may be written in the form

+(Frgevm) (146)



of the sum of terms from the kinetic energy, the trap potential and the boson-
boson interaction. Derivations of the form for each term are given in Appendix

E (|82]). Here and elsewhere 0, is short for %.

HI1K Terms - Single and Two-Mode Condensates. The contribution to the func-
tional Fokker-Planck equation from the condensate kinetic energy is given by

CLECHCII

- h {_/ds{(swg(s) (Z o a8 )> P[g(r),g(r)]}}
+%i {+/ds{5¢%(s) (Z#: %321/10(5)) P[i(r),ﬁ(r)]}}(l;l?)

H1V Terms - Single and Two-Mode Condensates. The contribution to the func-
tional Fokker-Planck equation from the condensate trap potential is given by

(%P[g(r),ﬂ(r)l)mv
- FH ol e} pw o)
e f ds{@{vwz@}}P[g@),ﬂ(r)}} (145)

H1U Terms - Single and Two-Mode Condensates . The contribution to the

functional Fokker-Planck equation from the condensate boson-boson interaction
is given by

(Frse.vw)

- ‘—"{—Q—N/dswi{wg(swc(>—sc<ss Dic(s)} Pl ). o]}

T {+9N/ 51/)+ (S)¢c(s)—6c(s,s))1/)g(s)}P[g(r),ﬂ(r)]}
g b} )
+f{ v /d Svc(s) ove (s )5¢C( ){ 1/10( )}P[g(r),ﬂ(r)]}
— 5 b 51
T {—%N / S5 305(s) Sio@ (Ve EIPLY (r),g@]} (149)

which involves first order and third order functional derivatives. The quantity
dc(s,s) is a diagonal element of the restricted delta function for condensate
modes.
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For the one mode case we note that

/dséc(s,s) =1 (150)
Sc(ss) = |o(s))” (151)

corresponding to there being a single occupied condensate mode.
For the two mode case we have instead

/ds5c(s,s) = 2 (152)
Sc(s.8) = |ou(s) + |g2(s) (153)

corresponding to there being two occupied condensate modes.
The total condensate number given by

ﬁ

] Pve D20t DPone Do [ st @ves)Ply @ @) 05

which is of order N. The result of order IV for the last expression indicates that
the important contributions to the functional integral are where the condensate
fields are of order v/N. Similar considerations for the much smaller total non-
condensate number indicate that the most important contributions are where
the non-condensate fields are much smaller than v/N.

Similar expressions for the functional Fokker-Planck equation in the case of
a pure Wigner representation (but not involving a doubled phase space) are
given in the paper by Steel et al [55] (see Eq. (23)). Comparisons can be made
after substituting ¥ (s) with ¢%(s). In their result however, the restricted delta
function d¢ (s, s) term in the condensate interaction contribution is replaced by
1. For the single condensate mode case unity is of course the integral of the
restricted delta function, but it is not equal to it.

4.3.2. The Hy Term

The contributions to the functional Fokker-Planck equation from the ﬁz
term, which is equal to terms in the interaction between the condensate and
non-condensate Hamiltonian that are linear in the non-condensate fields, may
be written in the form

8 *
(Pl
0 . 9 .
= (&P[i(r)aﬂ(r)]) . + <§P[£(r),1ﬁ)(r)]>H2U2 (155)

These two contributions may be written as the sum of terms which are linear,
quadratic, cubic and quartic in the number of functional derivatives. Derivations
of the form for each term are given in Appendix E (|82]).
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H2U4 Terms - Single and Two-Mode Condensates. The contribution to the
functional Fokker-Planck equation from the Hopq term is given by

(Frwovm)

= 7 {+9WN ds {<5w§(s)) {120 (s)ve(s) = de(s s)]ch(s)}}P[g(r) 1&(1‘)]}
13 {5 [ { (5o ) (et @mmen | Py e.ve >]}
s {2 [ (525 tveloete) — sols olbnco} | Py v o
s [ (555) tere@lviemt} Py, ﬂ(r)]}
s [ { (55 ) (EEeE) - dols.slve]} | Pl @0
v {+5 [o{ (rtg ) (wewits) - setsslige | Py, v
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H2U4

at =
= %{%/“{Qﬁ%0<wé@>@£@)Q%i@>%}
+%Z {—%/ds{<5¢j(s)) (61&?(8)) (M;(S)) <5¢;O(S))

The contribution to the functional Fokker-Planck equation from the ﬁgyg
term is

(8[gmygﬂ>mw
P

- (%P[ﬂ( r), ¥ (r )]>H22 <§t [g@),g(r)])m (161)

H2U2 Terms - Two-Mode Condensate. For the two mode condensate case
1

(Frevw)

_ { [ [ asand (5 ) 1P Wi} ) Pl
P

(52 ) (P sy oty | Py .1}

and

H2U2

. h{ //dm{(wc ) (i) Grean | Plw.v ]
A% e {(wiw) (mrm) aree 1} eo. o)

These terms now involve double spatial integrals, and in the case of the quadratic
term there are second order functional derivatives with respect to field func-
tions at different spatial positions. This is different to the standard functional
Fokker-Planck equation and requires special considerations for conversion to Ito
stochastic equations for the field functions. The linear term is not so difficult to
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treat, though it still leads to an integro-differential equation. By changing the
that the linear term is

spatial variables we see
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(5. <>])H2U2
U5 () (o)
-5 o (w) ()

Derivations of the form for each term are given in Appendix E (|82]). We can
show using the particular form of F(r,s) for a single mode condensate, that the
results for the single mode condensate can be obtained from those for the two
mode condensate (see Appendix E, [82]).

(Fe(s)1Fe®)}} Py
1
2

*E‘)

4.3.3. The Hs Term

The contributions to the functional Fokker-Planck equation from the ﬁg
term, which is equal to the sum of the kinetic energy and trap potential terms
in the non-condensate Hamiltonian plus the terms in the interaction between
the condensate and non-condensate that are quadratic in the non-condensate
fields, may be written in the form

. :
(FrPLe-el)

- (Frumee) s+ (Fruee)
+(Frgevm) (166)

Derivations of the form for each term are given in Appendix E (|82]).

HS3K Terms - Single and Two-Mode Condensates. The contribution to the func-
tional Fokker-Planck equation from the non-condensate kinetic energy term is

(Frme.weE)

="

- e (i) nyasol)

ol
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H3V Terms - Single and Two-Mode Condensates. The contribution to the func-
tional Fokker-Planck equation from the non-condensate trap potential term is

(Frse.vw)

= P ol s e} ) Pl w. v}
o3+ [ {5y etew | rum el oo

H3U Terms - Single and Two-Mode Condensates. The contribution to the func-
tional Fokker-Planck equation from the Hsy term is

+(arwmee) (2 -
where

(2Pl

- 3 {+9WN ds{<5w§<s>) {Whoe)de(s) + 20 (s)vnel >]w?cc<s>}}P[g<r> wrn}
S [ (52 ) (owe@ute) + 20c@vte®lve(s) | Py, v m))
3 {+5 [ oo { (57t ) (weteme@lomen } Py . v
s 2 [as{ (55 ) (ebmwe®ute®) | Pl m. v}
c {5 o (G ) (veterwe) = sets slvketo | Py . v 0]}
s - o] (-l ) M2 evets) — et slewct@) | Plu @]

49



—N
—— =
=—= X
~ %
PO |
5T =
NN
P>}\|\_|_I”H
—~— =z T & =
= & = oy BT %7
/mxcwﬁwﬁ\n\)
cWN\h\rh@(
s 5o 22
> ¢ 2 s

ke ~ = )
l_l —~ —~ o (S\ ~—
— X R z O +0
2 +0 0 ) = =
0 > = 4= D 0
= 0 w = ¢ e
= 2 K ~ 0 +0
R O O »n = =
S = Z 40—l =
+= = =S = — —
= - — -~ /N
-~ TN 7 N N o —
L ]| Oe| 0 | © zZ +=
0 +2 2, +Z = =
<z > = L S
o o O e

6((())

—~ @ L el 0 ] ©

5 & oD =D =D = z

R w40 = = = = =

~ & Dy oS B B B B

p— B O N D N

— S~ Y~ Y~ =
~

b= T

E To ozl g s ozl
&= TR T T R T
YN e A A
Slx LTI Tl Tl T= Tle
— Tl T+ o+ o+ o+ 4

(171)

— = N2 N2 N =

*
*
T2 X X XX
== Na¥ Na) Na) Na¥ Na¥
@% LI B N N
o W T T
Ay — A A
P N S T e T e T e T
” —~ —~ \nlb/ —~ —~
2 O 0 +0 0 0
0 2 = = 2 +Z
+= > — N~ =
= — | <f - — — N o~ N
— | <t -~ /N —
-~ I/ - ~ 7 N 7 N
\S/ — o [P ~— ~—
L o] 0 Z THZ 0|0 | O
w| O THE D B A
Z, = o w = =
= D e ~— o o
Q())((
/ @ DTN TN
KORSINS Z. +z o 4o | D
w [+0 = = = = =
= 5SS B 2 B S

S N N N N S
N~ — — —

S R IR OB IR 1O

S N |l oo |D ©| D W H+D

R |+0 = = = = =

- H = o o o o o
o S N N N N
— N Y—— Y — —— —— ——
- N—— n n n n n

— M = = = = =

T gl g e i
= &= TV T T T T
N S S
8 7 Tl Tle Tle Tl= Tl=
— Tl= o+ 4

~—

50



Derivations of the form for each term are given in Appendix E ([82]).
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5. Ito stochastic equations

In this section we show how the functional Fokker-Planck equations for the
phase space distribution functional are equivalent to Ito stochastic equations
for stochastic fields. This first involves truncating the Fokker-Planck equations
to only include terms with at most second order functional derivatives. The
stochastic fields are defined via the expansion of the phase space field func-
tions in terms of mode functions and then treating the expansion coefficients as
stochastic variables. The derivation of the Ito equations for the stochastic fields
is based on well-known Ito equations for stochastic expansion coefficients. The
Ito stochastic field equations are the sum of a deterministic term associated
with the first order functional derivatives in the FFPE (the drift terms) and
a quantum noise term associated with the second order functional derivatives
in the FFPE (the diffusion terms). The two mode condendsate case results in
non-local drift and diffusion terms, so a special treatment is required to derive
the Ito equations. Results for the Ito equations for the stochastic condensate
and non-condensate fields are obtained for the two mode condensate case. Also,
the corresponding simpler Ito equations for the single mode condensate case
are presented. In this section we emphasise how the phase space distribution
functionals which determine the quantum correlation functions can then be re-
placed by stochastic averages involving products of the stochastic condensate
and non-condensate fields.

5.1. General Results

The derivation of Ito stochastic equations the the condensate and non-
condensate fields is based on approximating the functional Fokker-Planck equa-
tion by neglecting all terms involving third and fourth order functional deriva-
tives. The justification for this is as follows. The condensate fields are of order
VN in the regions of phase space important to the determination of the corre-
lation functions via the functional integrals (I08]), whereas the non-condensate
fields are much smaller. Hence terms like the third order functional deriva-
tives in (I49) scale like 1/N? whereas the second order functional derivatives in
([58) scale like 1/v/N. This enables all such third and fourth order terms from
the functional Fokker-Planck equation based on the Bogoliubov Hamiltonian
to be discarded. The resulting functional Fokker-Planck equation is then in a
standard form involving just first and second order functional derivatives, from
which Ito stochastic equations can be obtained.

The remaining first and second order functional derivative terms that are
left are referred to as the drift and diffusion terms respectively, and the Ito
stochastic equations for the stochastic fields can expressed in terms of the drift
and diffusion terms. The stochastic fields will be indicated with a tilde, ¥c(s,t),
..,J;{,C(s,t). The Ito stochastic field equations are the sum of two terms. The
first is obtained from the drift term in the functional Fokker-Planck equation and
is the so-called deterministic term, the second is obtained from the diffusion term
and is the stochastic noise term. The stochastic fields are expanded in terms of
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a convenient set of real,orthonormal mode functions, with the expansion coeffi-
cients regarded as stochastic quantities. The original stochastic noise terms in
the Ito stochastic field equations depends on two types of stochastic quantities.
One type are stochastic space dependent fields that involve the mode functions
and quantities depending on the stochastic expansion coefficients that are ob-
tained from the diffusion terms. The other type are time dependent stochastic
Gaussian-Markov noise terms that would be the noise terms in Ito equations for
the expansion coefficients. The derivation of the Ito equations for the stochastic
fields is based on well-known Ito equations for stochastic expansion coefficients.
Details of the derivation of the Ito stochastic equations are given in Appendix
F (|82]). Here we will summarise the key features and results.

5.1.1. Symmetric Form of Functional Fokker-Planck Equation

The derivation begins with the functional Fokker-Planck equation set out
in Section d but now with all terms having functional derivatives of third and
fourth order ignored. For convenience we now introduce a simpler notation for
listing the fields, namely we list ¥ = ¢c,,1/)ér = Yot,UNC = ch,,ij{,C =
YNC+ as Y1, P2, P13, Y4 respectively. Now with ﬂ(r) = {h1(r), 2(r), ¥3(r), Ya(r)} =
()} and 92(r) = {6500, 93(0), 030, 03 (1)} = {fc(r)} the functional
Fokker-Planck equations from Section [ are as follows.

For the two mode condensate case we have.

OP )
il g/dwiéde(I)AA(g(x)’x)P

4 5
+§B//dzdymmHAB(g(x),x,g(y),y)p(lwg

and for the single mode condensate case

oP 1)

0 1)
+ Z /dx WMHAB(K(ZE),{E)P (175)

A<B

Here we use z, y to denote the spatial variables and in accord with the ex-
pressions in Section [ the restriction to A < B in the double sum is to avoid
repetition of double functional derivatives. Since there are four fields involved
[ A,B =1,2,3,4. In both cases the distribution functional is P[g, g*] and

AA(K(‘T)’ x) is the A element of a drift column vector. For the single mode con-
densate case HAB(%)(‘T)’ x) is the A, B element of a local diffusion matriz, and
for the two mode condensate case HAB(E(x),:c, g(y), y) is the A; B element

of a non-local diffusion matriz. In the latter case a double spatial integral is
involved. Also, A4 and Hsp may depend on spatial derivatives 0,19k (x).etc.
but in order to avoid too many symbols we have not shown this. For simplicity
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the Fokker-Planck equation has been written with just one-dimensional spa-
tial variables z,y, but the generalisation to three dimensional variables r,s is
straight-forward.

To proceed further the functional Fokker-Planck equations need to be recast
with a symmetrical diffusion term. The details are covered in Appendix F (|82]).
If we define a new diffusion matrix such that

DAB(K(x)vxvg(y)ay) = HAB(K(I);I;K(?J);ZJ) A< B

DAB(ﬂ(x)axa i(y)vy) HBA(K(y)vya w (LL'),JJ) A> B

DAA(w (ZE),IE, g(y)a y)

%

we see that the functional Fokker-Planck equation for the two mode case be-

Z/dw WAL@:)AA(ﬂ(x)’x)P
A

+§;//dwdymmDAB(ﬂ($),w,g( y),y) P(177)

The expressions have been defined so that D 45 is symmetric. For the two mode
condensate case

DAB(K(x)vxvg(y%y) = DBA(%(y)vyag(x)v‘T) (178)

For the single mode condensate case we may also write the functional Fokker-
Planck equation in the symmetric form

1)
Z/ do s Aa( @) ) P

1 5 5
+5,§/dxmm1?w%<xmp (179)

The proof is similar but now

Dap(y(2),2) = Hap(y(zx)x) A<B
DAB(g(x),x) = HBA(ﬂ(,T),,T) A> B
DAA(K(‘T)v z) = 2HAA(£($) xr) A=B (180)

and again D 4p is symmetric.
Dap(¥(x),2) = Dpa(% (2), 2) (181)

Results (I80) and (I76) enable us to identify the diffusion coefficients in the
general forms (I79) and ({I77) from those in the original functional Fokker-
Planck equation forms (I73) and (I74).

54
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5.1.2. Fokker-Planck Equation for Distribution Function
The field functions ¥4 (z) may be expanded

v) =Yt ei) (182)

where the £/ () are a convenient set of orthonormal mode functions for the A
field satisfying

[sgi@reta = 6 (183)
Z&“(w)ﬁf‘(y)* = S(z—y) (184)

For the various 14 (x) these orthonormal mode functions may be interrelated.
Thus if for ¢ (x) = ¥e(z) the mode functions are &;(x) (i = 1,2), then those
for ¢o(x) = ¥l (z) are &(z)* (i = 1,2). Mode functions for different fields also
may be orthogonal, thus for i3(z) = ¥nc(z) if the mode functions are &;(x)
(i #1,2), and those for Y4 (z) = ¥ o(z) are &(x)* (i # 1,2), then the & (z)
and &3(z) are mutually orthogonal, as are £?(z) and &}(z). However, these
features are not required, the main requirement is that the mode functions for
each specific field are orthonormal. The mode functions may be time dependent,
but this will not be made explicit.

The derivation of the Ito stochastic field equation is based on first converting
the functional Fokker-Planck equation to an ordinary Fokker-Planck equation
via expanding the field functions and replacing the functional derivatives with
ordinary derivatives

Arga)a) - AA(g)
Dap(¥(2),z, $(y),y) or Dap(y (2),2) — D4 ()
P[ﬂvﬂ*] - Pb(%ﬂ%*)
6

e — ZgA 8 A (185)

where A4 is the drift vector, DAP is the symmetric diffusion matriz and Py(
is the phase space distribution function. The drift and diffusion elements de-
pend on the expansion coeflicients Q= {ag,a; } and the distribution function

depends on g* = {a}, o) *} also. The explicit expressions are

Aa) = [ degt@) Aa( @), (186)
D% ()
D) = [ [dr&t @ Dan(y .0

[ [ dwivet @y Dan(u @0 600 P @) Two Mode
€8

z)* One Mode (187)
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These relationships can be inverted using the completeness relationships to give

Aa(y (@), 2) = Zsﬁ@mf@ (188)

Dap((e 500 9) = LD )EN0)  Tuo Mode

_>

Dap (¥ (@), 2)3(x —y) Ze“ D ()7 (y)  One Mode(189)

The diffusion matrix is symmetric
DM q) = D% () (190)

this result being easily obtained from ([I&1]) or (I78). As a result we can always
write the diffusion matrix D in the form

D = BB" (191)

where B has the same dimension as D. This result is known as the Takagi

factorisation [85]. A proof may be found in the textbook by Horn et al. [86]. A

non-square matrix B can also be found, this is shown in Appendix F ([82]).
The ordinary Fokker-Planck equation that is obtained is given by

0P,
b(g g Z_AA Pb(%u%*)

+§ Z aa—AW i (g)Pb(g ) (192)
Aipj 9% 99

This Fokker-Planck equation is equivalent to Ito stochastic equations, as is de-
scribed in standard textbooks (see |83], [84]). The procedure involves replacing
the time independent phase space variables ozf‘ by time dependent stochastic
variables a:!(t). The Ito stochastic equations for the & (¢) are such that phase
space averages of functions of the o give the same result as stochastic aver-
ages of the same functions of the @(¢). The derivation of the Ito stochastic
equations requires that the complex diffusion matrix D is symmetric, a result
we have now obtained.

5.1.8. Ito Equations for Stochastic FExpansion Coefficients
The Ito equations for the stochastic expansion coefficients &ic can be written
in several forms

salt(ty = ai(t+6t)—al(t)
t4dt
= AN+ 3B aw) [ anrpe) ()
%&f‘(t) = —AMNg +ZB“‘D jt wy (t) (194)
- _aNg +ZB PP () (195)
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where & (t) = {ad(t)} = {ar(t),a) (1)} and the matrix B is related to the
diffusion matrix D as in (I9T]).

ZB NBIP(E (1) (196)

The matrix elements Bf,;D( & (t)) are functions of the a(t). The quantity ¢
is to indicate that if the Ito stochastic equation is integrated from t to ¢t +
0t, the Gaussian-Markoff noise term is integrated over this interval whilst the
AX(af (t)) and Bf,;D(Nf (t)) are left at time ..

The quantities w? (t) and T (¢) are Wiener and Gaussian-Markoff stochastic
variables. The Gaussian- Markoﬁ quantities I'Y satisfy the stochastic averaging
results

rPt) = 0
{TPt1)TE(t2)} = Oppdud(ts —t2)
(TP t)TF ()R ()} = 0
(TP E)TP ()T (t3)0F (ta)} = ATP (@) (t2)} {T] (83)0F (84)}
H{TL )T ()} {TF (t2)D'F (t4)}
HIPOTE (ta)} {TF (t2)T 1 (t3)}

(197)

with stochastic averages being denote with a bar. The stochastic average of an
odd number of noise terms is always zero, whilst that for an even number is the
sum of all products of stochastic averages of two noise terms. The Gaussian-

Markoff noise terms I‘kD are related to the Wiener stochastic variables w,? via

W) = [ dnrPn) (198)
0
t+ot
Swl(t) = wP(t+6t) —wP(t) = / it TP (1) (199)
U)D
Gub@) = Jim (M) —rp) (200)

One of the rules in stochastic averaging is

ZF ZF (201)

so the stochastic average of the sum is the sum of the stochastic averages. Also,in
Ito stochastic calculus the noise terms I'P(¢;) within the interval ¢, ¢ + &t are
uncorrelated with any function of the a{ () at the earlier time ¢, so that the
stochastic average of the product of such a function with a product of the noise
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terms factorises

F(&@)NTE (E2)TF (t3)TF, (ta)- T3 (1)}
= F(a@)){TP TP (ts)h (ta) T (t)}  t <tayts, ..t (202)

These key features of Ito stochastic calculus are important in deriving the prop-
erties of the noise fields in the stochastic field equations.

5.1.4. Derwation of Ito Stochastic Field Equations
The stochastic fields 1 (x,t) are defined via the same expansion as for the
time independent field functions ¥4 (x) by replacing the time independent phase
space variables o' by time dependent stochastic variables & (t)
Valz,t) =Y at ()&t (@) (203)

i

The expansion coefficents in (203)) are restricted to those required in expanding
the particular field function 4 (z). Also, stochastic variations in ¢4 (z,t) are
chosen as to only being due to stochastic fluctuations in the a* (). Although the
mode functions may be time dependent, their time variations are not stochastic
in origin, so the stochastic field equations for the 14 (z,t) do not allow for time
variations in the mode functions. _

The Tto stochastic equation for the stochastic fields ¢ 4(z,t) can then be
derived from the Ito stochastic equations for the expansion coefficients. Using
([I88) the drift term in the stochastic equation gives

- Z A& (1)) & (x) 0t = _AA(£(=T= t))dt (204)

which involves the drift vector A4 evaluated at the stochastic fields g (x,1).

The diffusion term in the stochastic equation gives

A;D/ ~ A bt D - A;D ot D
SIS BEPEOEE [ dnrpe) =P @G [ anrp)
i Dk t Dk t
(205)
where
me (9 @) = 3B (& (1) & () (206)

is related via B;?,;D( g(t)) to the diffusion matrix D4 p evaluated at the stochas-
tic fields ¢ (z,t) or ¥ (x,1), ¥ (y, ).
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The stochastic field equations can then be written in several ways

Sha(x,t) = JA@,H&)—JA@,t)

t+4dt
= —AA _> {E t 5t+z7’] I,t / dtlI‘k (tl)
= —AA(E({E t))5t+5GA(£(:1: t),g(u)) (207)
A = ~Aa(0) + a0 b0
= A 0) + D m (8 (@ ) T (L)
Dk
= A )+ oG (1), T11)) (208)

Here we denote g(xa t) = {JA(Ia t)} = {Jl(iﬂ, t)v 1//\)'2(«@, t)a J3(Ia t)v J‘l(xv t)} and
L(ty) = {TL(t4), T3 (t4),T3(t4), T4 (t+)}. The first form gives the change in
the stochastic field over a small time integral ¢.t 4+ dt, the second is in the
form of a partial differential equation. The first term in the Ito equation for
the stochastic fields (208)) —AA(ﬂ(,T,t)) is the deterministic term and is ob-

tained from the drift vector in the functional Fokker-Planck equation and the
second term %GA(K(,T, t), L(t+)) is the quantum noise field whose statistical

properties are obtained from the diffusion matrix, and which depends both on
the stochastic fields g (z,t) and on the Gaussian-Markoff stochastic variables

L(ty).
The noise field term is

O G t), 1) = S P 1)) TP (1) = 3 () TR ()

Dk Dk
(209)

where the stochastic field n?;D( £ (z,t)) is related to the diffusion matrix ex-
dint f the stochastic fields ¢ (z,t) or ¥ (z,t), ¥ (y,1).
pressed in terms of the stochastic fields i(:z:, ) or g(x, ),i(y, )
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5.1.5. Properties of Noise Fields
To determine the properties of the noise field we first establish the connection
between the n?;D and the Dap.

TP (D (o1, )P (3 (02,)

Dk

= [ﬁ(ﬂ(ﬁi))ﬁ(ﬂ(@ﬁ)ip 5

= > &M@BRP(a1)) 6] (22)BRP (A (1)
Dkij

= ZsA 2D P (&) & (w2)

= DAB(E(‘TM t), 171,%(172,15),332) Two Mode

(210)
= DAB(ﬂ(UCl 2,t),21,2) (1 — 22) One Mode

(211)

using (I96]) and (I8Y). Thus for the single mode condensate [77( ¥ (21, t))n(g(:zrg, t), t)T}
AB

is delta function correlated in space and equal to the local diffusion matrix el-
ement, whereas in the two-mode condensate case this quantity is equal to the
non-local diffusion matrix element.

The stochastic averages of the noise field terms can now be obtained. These

results follow from (211)), (2I0) and the properties (I97)), (201), (202) and are

derived in Appendix F (|82]). For the stochastic average of each noise term

(5:Ga(G . 5,00 =0 (212

showing that the stochastic average of of each noise field is zero. For the stochas-
tic average of the product of two noise terms we have

0~  ~ 0~ ~
(EGA(E(xl,tl),g(tH))) (EGB(ﬂ(fvzah)aL(f%)))
- DAB(g(Ilatl,Q)vxlvg(IQatl,Q)va)
X(t1 — ta) Two Mode (213)

= DAB(£($1,27151,2),$1,2)
x(x1 — x2)d(t1 — t2) One Mode (214)

The stochastic average of the product of two noise terms is always delta func-
tion correlated in time. In the single mode condensate case this average is
also delta function correlated in space, and the spatial correlation is given by
the stochastic average of the local diffusion term DAB(K(x172,t),$172) in the
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original functional Fokker-Planck equation (I79). However for the two mode
condensate it is not delta function correlated in space. Instead the spatial
correlation is given by the stochastic average of the non-local diffusion term
DAB(K(xl,t),xl,i(xg,t),xg).in the original functional Fokker-Planck equa-
tion (IT7).

However, although the noise fields have some of the features in (I97)), they
are not themselves Gaussian-Markov processes. The stochastic averages of
products of odd numbers of noise fields are indeed zero, but although aver-
ages of products of even numbers of noise fields can be written as sums of
products of stochastic averages of pairs of stochastic quantities with the same
delta function time correlations as in ([I97)), the pairs involved are the diffusion

matrix elements Dap (¢ (21,t), 21, ¥ (22,1t),z2) rather than products of noise

fields such as (%GA(K(xl,tl),g(tH))) (%GB(E(xQ,tQ),g(tQJF))). Never-
theless, the stochastic averages of the noise field terms are either zero or are
determined from stochastic averages only involving the diffusion matrix ele-
ments DAB(E(‘Tl,t),Il,i(xmt)w?h)- There is thus never any need to actu-

ally determine the matrices n(i(m,t)) such that n(i(ml,t))n(g(xg,t))ip =

D(ﬂ(ml,t),xl, ﬂ(;vg, t), x2) or D(ﬂ(;vl)g,t), x1,2)0(x1 — x2), so all the required
expressions for treating the stochastic properties of the noise fields are provided
in the functional Fokker-Planck equation. Detailed expressions for stochastic
averages of more than two noise fields are derived in Appendix F (|82]) as Eqns.

(EID), (E18), (E23) and (E24).

For the two mode condensate case the results are

{(HGa(d @,t). 50)) (§Co(E (@2, 12), L (t22)))
X (%60(£($3’t3)’ E(f3+)))}
- 0 (215)

for three noise fields and

{(#Ca( o), L011) (5Gn (82, 12), T(021)

L 5
< (FGe(d (w3t2), L tar)) (HCn(F (@ata), L(tas)) )}
¥

= {DAB(i(xlatlﬁ)axla
X5(t1 — t2)5(t3 — t4)

ﬁ

;($27t1,2)7552)} :DCD(J($37t3,4)7$37£($47t3,4)7x4)}

+[DAC(£(I1;t1,3)7$17£(173;t1,3)7333) [DBD(£($2,t2,4),I2, 2(354%2,4),

X(S(tl — t3)5(f2 — t4)

u)]

+[DAD(£(=T17t1,4)75517£($47t1,4)7x2)
X5(t1 — t4)5(t2 — tg)
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for four noise fields. The result for the stochastic average of four noise field
terms is not quite the same as

(5:Ga( Gt 50100) (500(ant2) Ltz ))

<A 8o (@ (ea,ta) 1)) (500 o tah T tas)) ))
H(HOaG o). L) (8@ ). L) ))
A5G0 (en.t2). L1 ) (G0 o000 Tt ))
H(HOaG ). 500)) (580G ). L) ))

x{ (%GB(£($27 t2), E(t2+))> (%éc(£($3, t3), L(t3+))) }(217)

because in general the stochastic average of a product of two diffusion matrix el-
ements is not the same as the product of the stochastic averages of each element.
Results analogous to (2I5) and (2I6) apply also for the single mode condensate
case. For four noise fields factors such as DAB(é(xl,t172),x1,£(:1:2,t172),332)

are just replaced by DAB(K(.I:LQ, t1,2),21)d(x1—x2) etc., (see Appendix F ([82]),

Eqgs.(F23) and (E.24).

5.1.6. Classical Field Equations
Classical field equations can be obtained from the Ito equations by ignoring
the quantum noise term. The classical field equations are

DYSas ()

o = —AA(ﬂda”(:v,t),x) (218)

for both the single and two mode condensate cases. Such equations are not
of course really classical as they involve Planck’s constant. As will be seen in
specific cases (see Eq. ([244) their leading terms are often similar to Gross-
Pitaevskii equations, so they could be referred to as generalised mean field
equations.

5.1.7. Noise Fields for Single Mode Condensate

Having now established the general results for the stochastic averages of
products of one, two, .. noise fields we can show for single mode condensates
that the noise field terms can be written in a different form in which the noise
fields are just functions of the stochastic fields ¢ (z,t) and new fundamental
Gaussian-Markoff stochastic fields Q(:z:, ty) = {Ok(z,t4+)}, pairs of which are
delta function correlated in both space and time [55]. These now replace the
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L(t+). Similarly to the I (1) the Q(, t4) are defined by their stochastic
averages

@ (:vl,tl) = 0
{Ok(x1,t1)01(z2,t2)} Ord(ts — t2)

k

(
{Ok(21,t1)O1(22,t2)Om (23,t3)} = 0
{Ok(z1,t1)0(22,t2)Om (3, 13)On(

$4,t)} = {@k(l'l,tl)@[(xg,tg)} {@m($3,t3)@n($4,t4)}

+{®k($1, t1)®m($3, t3)} {@[(,TQ, t2)®n($4, t4)}

+{@k($1, t1)®n(:1:4, t24)} {@l(xg, t2)®m(a:3, tg)}

with stochastic averages being denoted with a bar. The stochastic average of an
odd number of noise field terms is always zero, whilst that for an even number
is the sum of all products of stochastic averages of two noise field terms. Also,in
Ito stochastic calculus the noise terms Oy (xz,t) within the interval ¢, t + 8¢ are
uncorrelated with any function of the zz (x,t) at the earlier time ¢, so that the

stochastic average of the product of such a function with a product of the noise
field terms factorises

F( 1/) (xl, tl)){Gk(xg, t2)®l($3, tg)@m(df4, t4)---®a(xl7 tl)}

%
= (ﬂ(xlatl)){Gk(x27t2)®l(x37t3)®m(=r47t4)'-'®a(xl7tl)} i1 < ta,t3,...,1,
(220)

As previously, the stochastic average of a sum is the sum of stochastic averages.
These key features of Ito stochastic calculus are important in deriving the prop-
erties of the noise fields in the stochastic field equations. In the case of the single
mode condensate the diffusion matrix is symmetric (I8I]). Hence we can write
the diffusion matrix D in the form D(ﬂ(m, t),x) = B(ﬂ(m, t), x)B(ﬂ(:v, t),x)T
so that

DAB( ZBk ,x))Bj} (w (2,t),2)) (221)

Note that in this case only a single space variable is involved. Now consider the
new stochastic noise field terms defined by

%HA%(:C,t), (z, t4)) ZBk g ,x) O (,ty) (222)

This is a function of the stochastic fields g (z,t) and the Gaussian-Markoff

stochastic fields Q(:z:, t). Tt is straightforward to determine results for the new
stochastic noise field terms. For the stochastic average of each noise term
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(50(E .0, Qo t1)) =0 (223)

showing that the stochastic average of of each new noise field is zero as before.
For the stochastic average of the product of two new noise field terms we have

<%HA(£(xl,t1), g(xl,m))) (%ﬁg(g(u,tz), g(xz,m)))

= DAB(£($C1,277§1,2),£C1,2) X 0(x1 — x2)d(t1 —t2) (224)

giving the same result as before. For products of three, four, .. new noise field
terms the results are again as before, so we can now write the original noise field
term as

O Ba(d (@0). 5(t) = DA (@.1). Qr 12)
= ZBI?@)@J)@) Or(x,ty) (225)
k

This form of the noise field is useful when the diffusion matrix D( i (z,t),x)is

easily factorised, as in Section [£.3]

5.2. Ito Equations for Two-Mode Condensate

The theory involved in writing down Ito stochastic equation for the conden-
sate and non-condensate fields is non-standard. From above, the terms can be
written down from the general form (208)) by identifying the relevant terms in
the functional Fokker-Planck equations set out in Sectiondl All stochastic fields
depend on ¢, but this is left implicit.

For the condensate stochastic field the Ito equation is

%Jc(s,t)
= e Vols) + V(S)Te(s) + LT S ols) ~ 01() ~ [62() o (s)

+ 55205 (8 ()= 01(5)° ~ [0a2(s) Yne(s)- 57 [ duFlu,s) ne(w)
+ 55 o (5)9c()} e ()
+ 2204 c(8)Pne (8)} e (s) + T {no(s)dne () 105 (5)

+arGo(d (6,0, L (t4) (226)

where %éc(g(s,t), L(t+)) is the noise field.
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For the non-condensate stochastic field the Ito equation is

%JN@(SJ)

= TS Te(E) ~ 616 ~ 62} o) -2 [ duF(s wido(w

N
hQ

3= VEne(s) + V()ine(s) + RH20E )00 () = 616) — [62(6) [ Hine(s)

2m
+ 5 e ()98} e (5)

+%éNc(£(s, t), L, (t4))

where %éNc(i(s,t),g(tJr)) is the noise field. Similar equations apply for

7:/;3(5) and zf/;]"{,c(s) The stochastic condensate and non-condensate fields are
coupled together and each is affected by stochastic noise fields. For the con-
densate field, the first line in the equation reads like a time-dependent Gross-
Pitaevskii equation if ¢ (s,t) is regarded as the order function. The three terms
are the kinetic energy, the trap potential energy and the non-linear mean field
energy contributions. Note that for the condensate equation the condensate
density ¥/ (s)yc(s) is depleted by two bosons due to the |¢1 (s)]* and |pa(s)|?
terms. Both Ito stochastic equations are integro-differential equations due to
the terms involving [ du F(s,u) or [ duF(u,s)* - thus on the right side there
are terms depending on stochastic fields at different spatial points. The first
line in the condensate equation comes from the H; term, the second and third
from the Hs term and the fourth from the H3 term. The first line in the non-
condensate equation is a term coupling in the condensate field and comes from
the Hs term, the second and third from the H3 term. The latter two lines differ
somewhat from the form of a time-dependent Gross-Pitaevskii equation, which
is not surprising since these refer to the relatively unoccupied non-condensate
modes.

The stochastic averages of the noise fields are given in (2I13]), where the
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non-zero diffusion matriz elements are

Dc+‘N07(£(S1,t) Slvi(sbt) s2)

i gN

+__{1/’c(51 2)1/10(51 2) — _(|¢1(51 2)| + |¢2(Sl 2)| )}(s1 —s2)

+%QWN{¢NC(51 2)¢c(sl 2) + ¢C(Sl 2)%/11\7()(51 2)}d(s1 — s2)

Dch;c+(g(Sz,t)752,£(51,t)751) (228)
Dcf~Nc+(£(S1,t)751 £(525t)7s2)
—ig—N{d)c(Sl 2)Ué(s1,2) — —(|¢>1(SL2)|2 + [a(s1,0)[*)}0(s1 — s2)

i gN

—ﬁWVﬁNc(Sl 2)¢c(51 2) + %/Jc(Sl 2)¢Nc(51 2)}d(s1 — s2)

ZgN{ SF(s2,51)°}

DNCH’;C*(K(SQat)7527£(slat)7sl) (229)

Dcf~ch(£(Sl,t) S1,£(527t) s2)

_i%gWN{ 7/’0(51 2)1/10(51 2) + ¢NC(51 QWC(Sl 2)}0(s1 —s2)

Dch;cf(g(Smt), s2, g(sl,t), s1) (230)

Dcs. b (s1,t 0 (8o, t
s Nc+(£(517 ),51,£(527 );S2)
Z gN

+FLW{ 2@3(51,2)&%(51,2) + k(51,2008 (51,2)}0(s1 — 82)

DNC+;C+(£(52J), s2, ﬂ:(sl,t), s1) (231)
DNC—‘NC—(E(Slut)asla /{E(527 t),S2)
—fg—N{wsl 2)0c(s1,2)}6(s1 — s2) (232)
DNC+~NC+(£(51, t)7 S1, g(SQa t)v 52)
+19—N{wc (s12)08 (51,2)}5(s1 — 52) (233)

with the notation Dag (¥ (s1,t),s1, K(SQ,t), S9) for

DAB({/;l(Slvt)a 1;2(515 t)?J?)(Slvt)a 17}/4(Slvt)a Sla{/jl(SQa t)v{/FQ(SQa t)vJ?)(SQvt)a 1;4(527t)5 S2

%

and replacements for AB as follows: 1 = C—,2 = (C+,3 = NC—,4 = NC+.
Also we write s;,2 = 81 = sy for the delta function terms. The presence of the
terms F'(sq,s1), F(s2,81)* reflects the non-local nature of the diffusion matrix
and also give an explicit s;,s2 dependence. We see that the average of the
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product of any pair of noise fields is delta function correlated in time but not
in space, and is then given by the diffusion matrix element that appears in the
functional Fokker-Planck equation. The stochastic averages of products of odd
numbers of noise fields is zero and the stochastic averages of products of even
numbers of noise fields can be written as sums of products of stochastic averages
of pairs of diffusion matrix elements in accordance with (2I5]) and (2I4]).

The classical field equations for the condensate field are

2 et (s
= e Vols) + V(she(s) + L (ud shiols) — 01(s) ~ [62() Mo (s)

2m
H 06 UeE)- [61(6) ~ 02l Vo)~ D [ duF(us) vnc(u)
+ 2 (welshbe(s) e (s)

+ 5 20k ene ($)}ve(s) + T {no(s)vne () 1ed ()
(234)

and for the non-condensate stochastic field
a class
&U)J\}C (Svt)

= R Ye() - 06~ 626 Vel - [ duFsuve(w)
2

3V ine(s) + V(shonels) + D208 () — (616 ~ 16:6) onc(s)

2m
+9WN{¢C(S)¢0(S)}¢EC(S>]
(235)

with corresponding equations for ¢, class and wj\}él‘”s. These also are integro-
differential equations.

5.8. Ito Equations for Single Mode Condensate

We will next consider the simpler case where the BEC only involves a single
mode. Here the Ito stochastic equations are relatively standard. From above,
the terms can be written down from the general form (208]) by identifying the
relevant terms in the functional Fokker-Planck equations set out in Section [l
All stochastic fields depend on ¢, but this is left implicit.
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For the condensate stochastic field the Ito stochastic equation is

%JC(SJ)
= A Vols) + V(so(s) + DTS o ls) ~ 161() P iols)

+5H20EE V()N [01(6))° Yive(s) + 55 (o (s)ie ()} ()

5 205 (v ®)o(s) + FHIneUno ()05 (s)

o ~
+DGo(d (60, L02) (236)
where %éc(g(s,t), L(t+)) is the noise field.

For the non-condensate stochastic field the Ito stochastic equation is
9 ~
= t
8thC (57 )
i N e, ~
= A s)o(s) — N [ou(s) e (s)

_%V%ZNC(S) + V(S){/JVNc(s) + %{2{/;5(5){/;0(5) - |¢1(S>|2}{/;NC(S)

+ 5 e ()98} P (5)

o Gnel(d (5,1, L) (237)

where %éNc(i(s,t),g(tJr)) is the noise field. Similar equations apply for

7:/;3(5) and zf/;]"{,c(s) The stochastic condensate and non-condensate fields are
coupled together and each is affected by stochastic noise fields. For the con-
densate field, the first line in the equation reads like a time-dependent Gross-
Pitaevskii equation if ¢ (s,t) is regarded as the order function. The three terms
are the kinetic energy, the trap potential energy and the non-linear mean field
energy contributions. Note that for the condensate equation the condensate
density ¢/ (s)yc(s) is depleted by one boson due to the |¢; (s)|* term. The first
line in the condensate equation comes from the H 1 term, the second from the ﬁg
term and the third from the Hj term. The first line in the non-condensate equa-
tion is a term coupling in the condensate field and comes from the Hy term, the
second and third from the H3 term. The latter two lines differ somewhat from
the form of a time-dependent Gross-Pitaevskii equation, which is not surprising
since these refer to the relatively unoccupied non-condensate modes.

The stochastic averages of the noise fields are given in (2I4), where the
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non-zero diffusion matriz elements are

Devve (§(6,0,5) = 32 {T5E)Tcl) ~ 3N 6:6)7)
3 T (5)00(s) + T ()Pne(s)
- DNc,m(g(s,t),s) (238)
Dowes(G(s0:8) = —+ 2 {ToE)Fks) - 5N (o)}
2 I e ()06 (5) + Te ()0 ()
~ Dycrio—(3(s:1).9) (239)
Demwe(§(:0:8) = —3 2 {2dc(s)ic(s) + ncls)ic(s)
= DNc—-c—(g(Saf)aS) (240)
Desinor(G(,1)s) = +3 X (LTEOTEE) + ThoTE6)
— Ducrio+(3(5:0).9) (241)
Dnc-wo- (4,09 = 12 (Jo(s)ic(s) (242)
Drcies(G(:0.5) = +7 2 (T4 )0(6) (243)

with the notation DAB(E(S, t),s) for

Dap (U (s,t), (s, 1), 1hs(s, t),Pa(s, t),s) and replacements for AB as follows:
1=C-,2=C+,3=NC—,4= NC+. Note that the |¢1(s)|* terms give an
explicit s dependence as well as that in the stochastic fields. We see that the
average of the product of any pair of noise fields is delta function correlated in
both space and time, and is then given by the diffusion matrix element that
appears in the functional Fokker-Planck equation. The stochastic averages of
products of odd numbers of noise fields is zero and the stochastic averages of
products of even numbers of noise fields can be written as sums of products of
stochastic averages of pairs of diffusion matrix elements analogous to (2I8) and

[I6) (see B.1I).

The classical field equations for the condensate field are
9
ot

1

= A Vels) + V(sho(s) + Db (shels) — [61) P hcls)
+ 5 2086 E) N [61(5)° Wone (s) + S {ve()bes)} ()
+ 2 20k c()ene () e(s) + T{unc®)vne)}vd(s)]  (244)

(o)
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and for the non-condensate stochastic field
a class
&U)J\}C (Svt)
)
= A EYCE) - N 161 o)

h? g
— 5, V2 (s) + V(s)ine(s) + TH20E(E)ve(s) — [01(s) Fne(s)
gN
I fo(s e () o(s) (245)
with corresponding equations for wéf class and z/J]J\r,élaSS. If the coupling terms
to the non-condensate modes are ignored then the equation for wg‘”s(s,t) has
a solution g (s,t) = VN ¢1(s), ¥, 1 (s,t) = V/N ¢i(s) for large N , where
¢1(s) satisfies the standard single mode Gross-Pitaevskii equation (63]). Assum-

ing the effects of coupling with the non-condensate field are small, this result
shows that 1glas(s,t) is similar to the usual mean field solution.

5.4 Approximate Solutions - Single Mode Condensate

In general the coupled stochastic field equations are difficult to solve, even
numerically. Approximate solutions can however be obtained which enable some
features of the physics to be explored. As an illustration of how such approx-
imate solutions can be obtained we consider the single mode condensate case
for large N. By applying certain approximations to ([230) - (245) the equations
obtained by Krachmalnicoff et al. |71] can be obtained. Their approach is also
based on a hybrid Wigner P+ distribution functional.

Firstly, we ignore all but the first line in of the Ito equation for the stochastic
condensate field (236]). Thus the noise field term is ignored as are the coupling
terms involving non-condensate stochastic fields. The latter are higher order in
(\/N )=, so this a reasonable first approximation. Consistency in neglecting the
noise field term then requires that the only non-zero diffusion matrix elements
in (230) that are retained are those just involving the non-condensate stochastic
fields, Dyc—.nc— and Dycy;neo+ - Consistency with the classical condensate
field equation (244) also requires neglecting the coupling terms involving the
non-condensate fields. The condensate stochastic field then satisfies

L0~
zhgwc(s,t)

K2 ~ ~ ~ ~
= I V(s) + VENols) + LT ) Te() ~ 1o (5) 1)
(246)
We see from the Gross-Pitaevskii equation (G3]) that a solution is given by

zzc(s,t) = wg‘”s(s,t) =+VNo¢, (s),Jg(s,t) = gdass(s,t) = \/N(b*{(s) Hence

the condensate field now becomes non-stochastic.
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Secondly, the first line in the Ito equation (237) for the stochastic non-
condensate field then becomes zero leaving just the second and third line to-
gether with the noise field term. As the diffusion matrix is now diagonal then
using (220 we can write the noise field as

S Gve( G, L) =\ 2 e Oxclmt)  (247)
O e, D) = T G 0k (208)

where with a,b = 4, — we introduce two Gaussian-Markoff stochastic fields
@ﬁc (z,t). The stochastic average for two stochastic fields is

IE |

2

9%c($1,t1) @?VC(LL'Q, tg) = 5(1:1 — LL‘Q) 6(t1 — tg) 6ab (a, b= +, —) (249)

and the results for products of other numbers of fields satisfy the standard
Gaussian-Markoff rules. It is then straightforward to show that the two noise
fields %G ~e and %G}'{,C satisfy the correct results in ([2I4) etc. for stochastic
averages.
For large N the — |¢1(s)|? term can be neglected, so the Ito equation (237)
for the stochastic non-condensate field is then
2

ih%JNC(S,t) = —;—mV2JNc(s) + V(S){/JVNC( )+ 2_{'/’0( s)v C(S)}{/JVNC(S)

+ T Ue()Te() () + ) +ih T (W) Oy 1) (250)

This equation is equivalent to Eq.(5) in the paper by Krachmalnicoff et al. |[71].
Note however that the derivation involves making approximations to the actual
stochastic field equations for single mode condensates, in particular the neglect
of noise terms in the equation for the stochastic condensate field.

5.4. Stochastic Averages for Quantum Correlation Functions

The quantum averages of symmetrically ordered products of the condensate
field operators {\IJTC(rl)\I/é(rg)....\I/Tc(rp)\llc(sq)..\llc(sl)} and normally ordered
products of the non-condensate field operators
\I/}fvc(ul)\I/}fvc(uQ)....\I/}fvc(ur)\IJNc(vs)..\IJNc(vl) are now given by stochastic
averages. These replace the functional integrals involving quasi distribution
functional given above in (I08). We have

Trp {05 (r1).. 0L () Ue(s,). Pe(s1)}
XU o (). U o (u) U e (V) Une (vh)]

1#;5(1“1) djg (rp) "!JC(SQ) ..’lﬁc(sl)x (251)
X 1/1]-{_70(111) --7/)]-(_7()(“” Yne(vs)-¥ne(vi)

where the bar denotes a stochastic average.
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6. Summary

The present paper sets up a general approach for treating both dephasing
and decoherence effects due to collisions in interferometry experiments using
single component Bose-Einstein condensates in double well situations, where
two condensate modes may be involved. The treatment starts from a descrip-
tion of dephasing and fragmentation effects in two mode condensates in which
the two modes satisfy generalised coupled Gross-Pitaevskii equations, and the
amplitudes describing the fragmentation of the condensate into the two modes
satisfy matrix equations. The two sets of equations, which are coupled and self-
consistent, are derived from the Dirac-Frenkel variational principle. The treat-
ment of decoherence effects requires the consideration of non-condensate modes
and a full phase space method involving a distribution functional is used, where
the highly occupied condensate modes are described via a truncated Wigner rep-
resentation (since the bosons in condensate modes behave like a classical mean
field), whilst the basically unoccupied non-condensate modes are described via
a positive P representation (these bosons should exhibit quantum effects). The
functional Fokker-Planck equation is derived using the correspondence rules and
then Ito equations for the stochastic fields associated with the condensate and
non-condensate field annihilation and creation field operators are determined.
The Ito stochastic field equations contain a deterministic term which is obtained
from the drift term in the functional Fokker-Planck equation, and a noise field
term whose stochastic properties are obtained from the diffusion term in the
functional Fokker-Planck equation. The link with interferometry experiments
is via the quantum correlation functions, which are shown to be equal to phase
space functional integrals of products of field functions with the distribution
functional. These phase space functional integrals are then shown to be de-
termined by stochastic averages of products of the stochastic fields, and in the
present approach the quantum correlation functions would be evaluated numer-
ically via such stochastic averages. Clearly, the general approach presented here
is rather complex, so in order that the reader can understand what is involved
this paper contains a full coverage of all the important steps in the derivations
of the key expressions obtained for the quantum correlation functions, corre-
spondence rules, functional Fokker-Planck equations and Ito stochastic field
equations. These are not covered in any of the standard textbooks and previous
papers only provide a brief outline of how such results are obtained.

For the condensate field, the first line in the Ito stochastic field equation
reads like a time-dependent Gross-Pitaevskii equation if the condensate field is
regarded as the order function. The first line in the non-condensate equation is a
term coupling in the condensate field. The results for the two mode condensate
have unusual features such as the Ito stochastic field equations being integro-
differential equations and the diffusion matrix being non-local. These features
are not found in the situation where there is only one condensate mode, where
the Ito equations are differential equations and the diffusion matrix is local.
The stochastic properties of the noise field terms are determined and are similar
to those for Gaussian-Markov processes in that the stochastic averages of odd
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numbers of noise fields are zero and those for even numbers of noise field terms
are the sums of products of stochastic averages associated with pairs of noise
fields. However each pair is represented by an element of the diffusion matrix
rather than products of the noise fields themselves, as in the case of Gaussian-
Markov processes. Hence it is only stochastic averages involving diffusion matrix
elements that determine all the stochastic properties. Results for both two mode
condensates and the simpler single mode condensate case are presented here.

The Ito stochastic field equations for single mode condensate have been
compared to similar equations in the recent paper by Krachmalnicoff et al.
[71]. We see that their equations are an approximate version for large N of
those presented here, the approximation involving the neglect of noise terms and
higher order terms in the condensate stochastic field equations - which requires
ignoring off-diagonal terms in the diffusion matrix. In this approximation the
condensate fields are non-stochastic and given by the /N times the normalised
solution to the single mode Gross-Pitaevskii equation, or its complex conjugate.
The non-condensate fields are stochastic and involves two Gaussian-Markoff
delta correlated stochastic fields.

Numerical applications to a range of actual and potential interferometry
experiments with Bose-Einstein condensates are planned. These include the
Heisenberg-limited interferometry experiment proposed by Dunningham and
Burnett 6], where the existing theory is based on the Josephson Hamiltonian
in which the two mode functions are unchanged during each stage of the pro-
cess. A more comprehensive analysis of this potentially important experiment
by a theory that allows for changes to the two mode functions and decoherence
effects would be of interest. Future theoretical work will involve the extension
of the present theory to two component condensates in single wells, where there
are also two spatial mode functions involved, and where interferometry exper-
iments of the Ramsey type have already been performed [39]. However, the
current theoretical treatment [39] ignores decoherence and is based on a single
mode theory. A theory along the lines of that presented here for single compo-
nent condensates would enable both decoherence effects and the possibility of
fragmentation effects to be studied.
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Appendix A. - Amplitude and Mode Equations for Two-Mode The-
ory

Appendiz A.1. Angular Momentum Quantities

In the two-mode approximation the N boson system behaves like a giant
spin system with spin quantum number j = N/2 and which can be described via
angular momentum eigenstates ‘ %, k>, where k = —N/2,..,+N/2 is a magnetic
quantum number which describes fragmented states of the bosonic system with
(& — k) bosons in mode ¢1(r,t) and (5 + k) bosons in mode ¢ (r,t). Details
of the spin operator treatment for two mode theory are given in [17]. It is
therefore not surprising that the basic equations will involve expressions arising
from angular momentum theory. These are the quantities X k]l and Ykllm] ™ which
are defined as

N

X = (5‘@51@ —{(_—k)( ‘H)} Ok,i—1

Xg = {(5—Z><N+k>} 1 Xﬁ%(%km (A1)
Yklzlll = (g_k)(%_k_l)ékl

VR = (SR (k- 1)y

Y1212 _ Y1221 Y2112 Y2121 (g_k)(g—’—k)&kl

VT = YR = (DD R e

e G Gt (G S CA)) LR A
AR LE SRS TE STE S e

YR = Yfﬁﬂ—<%+Z>{<§—l><§+k>}%5l,k1

L (C SR TRITE BT RIS o

VRN = (3 kDG R e (A2)

These results would apply for the general two-mode theory before the localisa-
tion assumption is made.

Appendiz A.2. Hamiltonian and Rotation Matrices

The Hamiltonian and rotation matrix elements Hjy; and Uy, that occur in
the amplitude equations (A.I4) involve spatial integrals involving the mode
functions ¢; and ¢o. They are therefore functionals of the mode functions. The
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expressions depend also on the spatial and time derivatives of the mode functions
through the quantities Wu (r,t), Vimjn(r,t) and Ty(r,t), where (i,§,m,n =
1,2), and which are defined by

oy h2 * *
Wir,t) = o- H:;/ Zami Dudi + 1V, (A.3)
Vingn(r,t) = 567 61 65 én (A4)
~ 1

Tij(r,t) = %(3@? b; — ¢; 0r9y) (A.5)

The rotation matrix elements Uy, (—% <kl< —|—%) are given by

1 N N N N .
Uy = %[(8t<5,k‘) ‘5,l> - <?,k‘ (O 5,l>)] =U} (A6)

/dr Uri (61,67 0:6:.0087). (A7)
In the expression (A7) for the rotation matrix the quantity Uy is
Ua = X Ty (A-8)

The result involves the angular momentum theory quantities X ;Jl . Thus for the
rotation matrix, space integrals of the mode functions and their time derivatives
are involved.

The Hamiltonian matrix elements Hy; (—% <kl< —|—%) are given by

Hy = <g,k|f1|g z> H;, (A.9)
- / dr Hi (0,610, 01,0,u60). (A.10)

In the expression (A.10) for the Hamiltonian matrix the quantity Hy,; is a Hamil-
tonian density and is given by

Hy = Z XIWy; + > Y Vi - (A.11)

ijmn

This result involves the angular momentum theory quantities X ,ZJZ and Ykllm an,
Thus for the Hamiltonian matrix, space integrals of the mode functions and
their spatial derivatives are involved.

The coefficients X;; and Yip, jn (4, j,m,n = 1,2) that occur in the generalized
Gross-Pitaevskii equations (A5 for the mode functions are quadratic functions
of the amplitudes by (—% <kl< —l—%)

Xy = Zb;X,i{bl:X;wN (A.12)
Yimjn = Zb* Y by = Y ~ NP (A.13)
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Note the Hermitian properties of these quantities and the N dependence of their

order of magnitude.

Appendiz A.3. Supplementary Equations

Amplitude Equations

ih% = Zz:(HM —hUw)b, (k= —N/2,..,N/2). (A.14)
Mode Equations
ihy Xy %qu = ZXij(—;—zw +V) o,
7 7 m
+ (9D Yim jn Oy bn) b (i =1,2)(A.15)
j mn
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Appendix B. - Functional Calculus

The basic ideas of functional calculus are outlined here for the case of c-
number quantities. The two main processes of interest are functional differenti-
ation and functional integration, but we begin by explaining what is meant by
a functional.

Appendiz B.1. Definition of Functional

A functional F[i(x)] maps a c-number function ¢ (z) onto a c-number that
depends on all the values of ¥ () over its entire range. The independent variable
x could in some cases refer to a position coordinate, in other cases it may refer
to time. If 2 does refer to position then t(x) is refered to as a field function.
Note that the functional is written with square brackets to distinguish it from
a function, written with round brackets.

We will assume that c-number functions 1(x) can be expanded in terms of a
suitable orthonormal set of mode functions with c-number expansion coefficients
ag

Y(z) = Z ag ¢r(x) (B.1)
%

where the orthonormality conditions are

/dI (bz (I)¢l (:E) = 5kl (B2)

This gives the well-known result for the expansion coefficients

an = [ dodi@)iia) (B.3)
and the completeness relationship is

> r(@)diy) = d(x —y). (B.4)
k

As the value of the function at any point in the range for x is determined
uniquely by the expansion coefficients {ay}, then the functional F[¢(z)] must
therefore also just depend on the expansion coefficients, and hence may also be
viewed as a function f(a1, e, .., ak,..ap) of the ezpansion coefficients, a useful
equivalence when functional differentiation and integration are considered.

Flp()] = floa, az, .., o, o) (B.5)

It is sometimes convenient to expand a field function in terms of the complex
conjugate modes ¢ (x). Thus ¢ (x) given by

V@) =) di(a)af (B.6)
k
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is also a field function, and if af = «} then ¢*(z) = ¢*(z), the complex
conjugate field.

The idea of a functional can be extended to cases of the form F[¢(x1, xa, .., )]
where ¥ (x1,x2,..,2,) is a function of several variables x1, o, ..,x,. For 3D
fields the situation z; = z,z2 = y,x3 = 2z is such an application. In addi-
tion, cases F[¢)(x)] where 1(x) is an operator function rather than a c-number
function occur. For example, 15(3:) may be a bosonic field operator. In this

~

case F[¢(z)] maps the operator function onto an operator. Also functionals

F[djl (LL'), ’lﬁg (LL'), ) ¢l (LL'), wn (LL')] inVOlVing several functions wl (‘T)v ¢2 (:E)u 0y wi (‘T)u : ¢n (‘T)
occur. For example, a bosonic field operator 1(x) may be associated with a field

function 1y (z) = ¥(z) and the field operator ¢)(z)" may be associated with a dif-
ferent field function 9 (z) = ™ (x), so functionals of the form F[¢(z), ¢ (z)]
are involved. Of particular relevance are cases where the functional involves
fields and their complex conjugates, such as F[i(z), ¥ (z),¥* (z),¥*(x)]. Func-
tional derivatives and functional integrals can be defined for all of these cases.

Appendiz B.2. Examples of Functionals
A typical example of a functional involves an integration process:

b

Fli(z)] = / ) (B.7)

a

where ¢(¢(z)) is some function of ¥ (z).
The scalar product of ¥(x) with a fixed function x(z) is a typical example
of a functional (written x[¢(z)]) since

X)) = / 4z x* (2) (). (B.3)

A functional F[¢(z)] may take the form of an integral of a function F (¢ (z), 0, ¢ (z))
involving the spatial derivative 0,1 (x) as well as ¥(z)

Flb(@)) = [ do F(o(@). 0,0(x) (B.9)
A function 1(y) may also be expressed as a functional F,[¢(x)]
Blua)] = [ dede—y) o)
= P(y) (B.10)

Another example involves the spatial derivative V,1(y) which may also be
expressed as a functional Fy,[v(z)]

Fo,[0(2)] = / 4z 8(z — y) Vaib(a)
— V) (B.11)
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A functional is said to be linear if

Flew(x) + cotpe(w)] = er F[ga ()] 4 c2 F o ()] (B.12)

where c1, co are constants. The scalar product is a linear functional.

Appendiz B.3. Functional Differentiation
The functional derivative %(g)] is defined by

Fluto) + 0(a)] = Flv(o)] + [ deouto) (255 ) (B.13)
sp(x) /,

where 0¢(z) is small. In this equation the left side is a functional of (x)+d)(x)
and the first term on the right side is a functional of ¢ (z). The second term on
the right side is a functional of §i(x) and thus the functional derivative must
be a function of z, hence the subscript x. In most situations this subscript will
be left understood. If we write dip(x) = ed(z — y) for small € then an equivalent
result for the functional derivative at z =y is

<5F[1/)(:1:)]) i (F[zb(x) +ed(z —y)] - FW(x)]) _ (B.14)

e—0 €

()

This definition of a functional derivative can be extended to cases where
¥(x1, 22, ..,2y,) is a function of several variables or where () is an operator
function rather than a c-number function. Also functionals F[yn (), ¥2(z), .., i (), ..0n ()]
involving several functions v1(z), ¥2(x), .., ¥;(x), .40, () occur, and functional
derivatives with respect to any of these functions can be defined. For exam-
ple, the functional F[¢(x), ¥ (z),9* (), ¥ (x)] leads to functional derivatives
with respect to all four fields defined via an obvious generalisation of (B.I13)), the
conjugate fields ¢ (z),v*(x) and ' (x),"*(z) being regarded as independent
of each other.

Finally, higher order functional derivatives can be defined by applying the
basic definitions to lower order functional derivatives.

Appendiz B.4. Examples of Functional Derivatives
For the case of the functional Fy,[¢)(z)] in Eq.(B.10) that gives the function
U(y)

(A28 — ) {(e) + bz — @)} — [ d26(z — ) b(2)
lim ( )

e—0 €

= dzx—vy) (B.15)

so here the functional derivative is a delta function.
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A similar situation applies to the case where the functional Fy,[i(z)] in
Eq.(BI1) that gives the spatial derivative function Vv, (y). Using integration
by parts

Foy[p(z) + 59 (x)]

I
U
5
(o9

—~
8
I
<
~—
<
8
<
—~
8
~
_|_
(9]
<
5
~—
~—

Hence

(B.16)

so here the functional derivative is the derivative of a delta function.

Appendiz B.5. Functional Derivative and Mode Functions

If a mode expansion for ¢(z) as in Eq.(BI13) etc. is used, then we can
obtain an expression for the functional derivative in terms of mode functions.
By writing

op(z) = Z da, ()
k
we see that

Flo(o) +60()] - Flota)] = [ dssuto) (25,

dip(x)

= dag, | dx dp(x
> e [ do

~ <
—
8
>, =
o
=8
o
=
~__
8

But the left side is the same as

f(a1 + 5041, L 50&]@, ) — f(Ozl, oy Oy ) = Z5ak

Equating the coefficients of the independent day, and then using the complete-
ness relationship in Eq.(B4) gives the key result

(M) = S O ) (B.17)
x k

of (a1, .., ag, ..) SF ()]

Aegaeesd = fwaw (5r50), @
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These relate the functional derivative to the mode functions and to the ordinary
partial derivatives of the function f(aq,as,.., ag,..c;) that was equivalent to
the original functional F[i(x)]. Again, we see that the result for the functional
derivative is a function of z.

For the case of the functional F[(z),¥™ (z),¢¥*(x), ¥ +*(x)] whose equlva—
lent function based on the expansions (B.I]) and (B.6) is f(a, o), af, o) *), the

generalisation of (B.I7) is

x), T *(z), v (z ap, ok, ot
<5F[1/)( ), ¥ (@), " (2), ¥ ()]) Z(ﬁZ(x)a ko Qg5 Oy )

&b( ) 80%
o) o+ x( + o
< F(x), 9 (S(wl( ), ) _ Z¢k($) of( Oékac(;kuakaak )
k o‘k
SV D@l | f(on.0f 0. 0}")
< e ( zk:%( ) Dot
5F[¢(I),1/}+( ) 1/’+* _ * 6 O‘/mazuak?az*)
( St (x ) = ;(bk(x) o]
(B.19)
and
ag, o, ok, ol " + (
8f( k> akojk ko Pk ) _ /dwqﬁk(:ﬂ) (5F[¢($)a¢ (512( w )
+ +x ).t +(
8.][(0‘/676(;]@0;0%7(1]@ ) _ /dI(bZ(I) <5F[1/’( )51/} (S(wl( 1/) >
k
0 oz,a+,oz,a+* . ) x), T (
8f(o‘kva+’o‘kva+*) _ 5F[¢($)=¢+( ) ¢+*
ot T / dw’“(”( 59+ (z )
(B.20)

which relate the functional derivatives and the derivatives with respect to the
mode amplitudes.

Appendiz B.6. Rules for Functional Derivatives

Rules can be established for the functional derivative of the sum of two
functionals. It is easily shown that

(rsepgen) (i) . (g500)

(B.21)
Also, rules can be established for functional derivative of the product of two
functionals. We will keep these in order to cover the case where the functionals
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are operators

SF@IC@) [ F() oty (SGH@)
< 50() )m_f( 50(2) )m_yGW Il ”( Z );
B.22

A chain rule for functional differentiation can also be derived for the case
where a functional Gy, ()] involves not just one function (z), but a set of
functions each labelled by a variable y. Since G, ()] maps ¢, (z) onto a c-
number which depends on y, we can regard the functional G[i,(x)] also as a
function G(y) of the variable y.Now consider a second functional F[G(y)] of this

function G(y), and we could determine the functional derivative (%(%)]) .

But F[G(y)] is also a functional of the ¥, (z) via

FIGyy(0)l] = FIG(y)]

We obtain the chain rule

where we have left the order of the factors as they appeared in order to allow
for operator cases.
We may also define the spatial derivative of the functional derivative. Thus

(5F[w(w)]) _ (6F[w(w)])
5 (PFl@) Ao M G o
Y\ oy(x) r=y Ay—0 Ay

_ /dx <a%5(x - y)>m_y <%(S)])I (B.24)

This expresses the spatial derivative as an integral involving the functional
derivative and the spatial derivative of the delta function. The result will be a
function of s.

A number of other rules may also be established.

(1) Power rule

Flo@) = [ dovtor
SE@] _ e
S = ) (B.25)

(2) Function rule

= ¢'(¥(x)) (B.26)



(3) Power derivative rule

o) = [ ar( @y
SF[Y(x)] d (@),
@ - @ d ) ) (B27)
(4) Function derivative rule
_ dy ()
o) = [des(®o)
SFY()] _ _d dé
o) dx((d(%))) (B.28)
(5) Convolution rule
Blue) = [doK(.o) i
SR e
(6) Trivial rule
Eyu(x)] = 4(y)
OFy[¢(x)] _ (W)
(Fhet), = ().
= d(xz—vy) (B.30)
This was proved above.
(7) Gradient rule
Foy[p(o)] = vy(y)
PO @ g
() = pe-p = vy @)
This was proved above.
(8) Exponential rule
Fly(z)] = expGly(x)]
SFW@)] o CH)
W = p Gp(z)] 5 (x) (B.32)

The exponential rule only applies in this form if F[¢(x)] and G[¢(z)] are c-
numbers.
All these rules have obvious generalisations for functionals involving several

fields, such as F[y(z), %™ (z), ¢* (x), T (2)].
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Appendiz B.7. Functional Integration

If the range for the function +(z) is divided up into n small intervals Ax; =
x;y1 — x; (the ith interval), then we may specify the value v; of the function
() in the ith interval via the average

Yi

/ dz 1p(z) (B.33)

ALE»;

- Awl

and then the functional F[¢(z)] may be regarded as a function F (Y1, 2, .., i, .., ¥n)
of all the ;.

Introducing a suitable weight function w(v1,vs,..,0;,..,1¥,) we may then
define the functional integral for the case of real functions as

n—o0 e—0

XF(¢17¢27'-7¢1'7'-7¢71) (B34)

where € > Az;. Thus the symbol D stands for dyn dis..dw;..d, w(ihy, Yo, .., Wi, ..y ¥p).
If the functions are complex then the functional integral is

n—o0 e—0

XF(¢17¢27-'7¢727'-7¢71) (B35)

The symbol D?% stands for d?i)1d?wa..d?<;..d* W, w(thy, o, .., Vi, .., ¥n ), where
with ©; = ¥, + i), the quantity d?v; means dib;,di);,, involving integration
over the real, imaginary parts of the complex function.
For cases involving several complex functions such as F[y(z), %™ (z), ¥*(x), pT* (z)]
the functional integrals are of the form

/D21/)F[’L/)($)] = hrn 11m//d2¢1d2¢2d21/)1d21/)n w(1/)1,1/)2,,’(/)z,,’(/)n)

/ / D) D2t Flp(a), o (@), " (2), v ()]
—  lim hm/.../d%d%}.d%..d%n lim hm/.../d%jdwg..d%j..dwj

n—oo e—0 n—o00 e—0
Xw(d]h"7¢i7"7’@[]717’@[]?7"7’@[]?7"7@[];7’;71#1{7"7’@[]:7"7¢Zu¢f*7"u¢j*7"u¢i*)
XF(¢17"7¢7:7"7wn7wi‘r7"7¢;’>7"7¢:7¢T7"7¢;ﬁ7"7w:7wi’>*7"71#;»*7"71#:*) (B'36)

where D% D% stands for
d2¢l"d2¢i"d2¢n d2¢fd2¢1+d2¢: w(¢17 "7¢i7 ©y djnawru "71#;’_7 "7¢:7 ¢T7 "71#;7 oy ’@[J:‘w ’@[Jf_*a ©y ’@[J;’_*u 7¢:*)

and where with ¢i+ = :; + iw;;, the quantity d2¢i+ means dwjgdg/};;.
A functional integral of a functional of a c-number function gives a c-number.
Unlike ordinary calculus, functional integration and differentiation are not re-

lated as inverse processes.
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Appendiz B.8. Functional Integrals and Phase Space Integrals

We first consider the case of a functional F[¢(z)] of a real function ¢(z),
which we expand in terms of real, orthogonal mode functions. The expansion co-
efficients in this case will be real also. If a mode expansion such as in Eq.(B.I13)
etc. is used then the value ¢; of the mode function in the ith interval is also
defined via the average

1
Ami
and hence
Y = Z g Pri- (B.38)
k

This shows that the values in the ith interval of the function v¥; and the mode
function ¢y, are related via the expansion coefficients ay. For simplicity we will
choose the same number n of intervals as mode functions. Using the expression
Eq.(B3) for the expansion coefficients we then obtain the inverse formula to
Eq.(B.38)
ap = Z A:vi (;5;”’@/11 (B.39)
3

Note that this involves a sum over intervals 7 and the interval size Ax; is also
involved.

The relationship in Eq.(B.38)) shows that the functions F (1)1, g, .., %, .., %¥n)
and w(1, P2, .., i, .., 1, of all the interval values 1); can also be regarded as
functions of the expansion coefficients cp, which we may write as

f(al,.-7ak,.-an) = F(¢l(a1,.-7ak,.-an)7-.-7wi(a1,.-7ak,.-an),.-7wn)
(B.40)

v(an, vy @y o) = wWL(Q, oy Oy O )y ey Vi (1 oy Ay Q) vy )
(B.41)

Thus the various values 11,2, .., Y1, Y2, .., V4, ..y Uy, .., ¥, of that the function
¥ (x) takes on in the n intervals - and which are integrated over in the functional
integration process - are all determined by the choice of the expansion coeffi-
cients aq, ao, .., ay, ..a,. Hence integration over all the v; will be equivalent to
integration over all the ay.

This enables us to express the functional integral in Eq.(B-34) as a phase
space integral over the expansion coefficients aq, as, .., g, ..c,,. We have

/D1/)F[1/}(IE)] = lim lim/.../daldaz..dak..dan||J(a1,a2,..,ak,..oen)||

n—o00 e—0

xv(ay, ag, .., O, .0 flag, ag, .., ag, .a) (B.42)
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where the Jacobian is given by

9%y Oy oYy
day dag dan
Oy Oty 0y
[| (a1, gy .y gy )| = || O Oaz 7 Oan (B.43)
Oay Dag Oan
Now using Eq.(B.38))
o;
= B.44
8a;€ d)kl ( )

and evaluating the Jacobian using after showing that (JJT);x = d;x/Ax; using
the completeness relationship in Eq.(B.4]) we find that

1
[[J (a1, ag, .., ok, .om)|| = H () (B.45)
and thus
/D1/J Fly(z)] = nl;rgo 21_{1(1)/ /daldag dayg..doy, H (Aa: )1/2
xv(ag, ag, .., Ak, .0 f(al,ozz,..,ozk,.. n) (B.46)

This key result expresses the original functional integral as a phase space integral
over the expansion coefficients «y, of the function ¢(x) in terms of the mode
functions ¢y (z).
The general result can be simplified with a special choice of the weight
function
w(thr, Yo, o iy ) = [ [(Azi) '/ (B.47)
3

and we then get a simple expression for the functional integral

/Dd) FlY(x)] = lim lim / .. ./daldag..dak..dan flag, as, .., ag, ..ap)
n—o0 e—0
(B.48)
In this form of the functional integral the original functional F[¢)(z)] has been
replaced by the equivalent function f(aq,as, .., ak,..ay,) of the expansion co-
efficients aj, and the functional integration is now replaced by a phase space
integration over the expansion coefficients.

The relationship between the functional integral and the phase space integral
can be generalised to cases involving several complex functions. For the case of
the functional F[¢(z), %™ (x),v*(x),yT* ()], where ¥(z), ¢ (x) are expanded
in terms of complex mode functions as in (B.1)), (B.6) and v;, ;" defined as in

(B:33) we have
1/11' = Zak Qbki- O = ZA:E’L (bzzq/}z
k [

OF = D ol bk af =) Awidr)
K i

(B.49)
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For variety we will turn the phase space integral into a functional integral. We
first have the transformation involving real quantities

opx = Z Az; (Prix Yix + Griv Yiv)

Oy

Z Az (Prix Viy — Priv Yix)
i = DA (rix U — v k)
afy = Z Az (Prix fy + driv i) (B.50)

In the standard notation with oy = arx + iaky, ag = agX + iazy and d?ay, =
dogxdagy, dzaz = dagxdozzy the phase space integral is of the form

//d2a d*a™ fla, o™, o, a™™)

= /.../d2a1d2a2..d2ak..d2an/.../d2afd2a;..d2az..d2a;: f(ak,oe;,ozz,ozﬁ*)
(B.51)

and after transforming to the new variables v; x, ¥y, ¢$<, ¢;§/ we get
/.. ./d2a1d2a2..d2ak..d2an / .. ./dQCJzi"clzozé"..d2oz;€"..dzozjzL flay, ozg, af, ozz*)

= /.../d%d%z.d%..dwn/.../d%fd%j..d%j..dw: [ (e, o, ey )|
XF(q/}l)"7¢i)"7wn7wi"_5"7/¢);_5"7/¢):7/¢)T7")ll/};‘)"7w:7¢f—*)"7¢;_*)"7¢:*> (B52)

where the Jacobian can be written in terms of the notation arx — ag1, ary —

2, iy = iz, ity — aga and Yix — Vi iy = Yo bl — Yis bl — v
in which the Jacobian is the determinent of the matrix J where

Topiv = gfz’“:‘ k=1, ni=1.mpu=1..4v=1.,4)
(1T (s s o, = (g i (B.53)
The elements in the 424 submatrix Ji ; are obtained from (B.50) and are
Az; drix  Am; Priy 0 0
el = _Ax(i)@ﬂy Awi(()b’fiX A!Ez‘?bkix —A$(i)¢kiy (B-54)
0 0 Az driy Az prix
The completeness relationship (B.4) can then be used to show that
Ax; Az Z(¢kiX Orix + Oriv drjy) = Az
k
Ax;Ax; Z(_QbkiX Prjy + driy drjx) = O (B.55)
k
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which is the same as

Z Jrpivdip je = Axidi o, ¢
kp
(5T, e = Aidijoe (B.56)
Hence .
g a0 = [ (A2 (B.57)
i=1

so that we have finally after letting n — oo and Ax; — 0 and with d?a =
[1d2ay, d?at =] d?%a;
k k

//dza d?a™ fla,at, o, a™) (B.58)

= lim lim/.../d2a1d2ag..d2ak..d2an

n—o0 €—0
2.+ 72 + 2 4+ g2 4 + o
x/.../d af oy doa) . d7a;) flog, o), of, o))

= lim lim/.../d%ld%g..d%i..d%n/.../d2 Fd?g . d*f . dPyt

n—o00 e—0

Xw(’@[]la-'ud]ia-'ud]nu’@bfa-'7’@[]?7-'7’@[] ¢17- 7¢17' 7¢n7¢1 9 .. 7’@[]:_*77’@[];7’,_*)
XF(’@[Jlu'-awiu'-awnawru'-7wl'+7'-7¢ d]lu' 7¢17' 7¢n7¢1 9. 7¢+*77¢:*)

/ / D% D>+ Fli(a), o™ (z), 4" (), o ()] (B.59)
whete D202+ = T[@Ps 1001 (0 o b 07 1)

and the weight functlon is

n

w(wla "7¢n7¢;ra "7U) 1/}17 . 51/}77,51/}1 (RN 51/};;*) = H(A$1)2 (BGO)

=1

and is independent of the functions. The power law (Ax;)? is consistent with
there being four real functions involved instead of the single function as previ-
ously.

Appendiz B.9. Functional Integration Rules

A useful integration by parts rule can often be established from Eq.(B.22]).
Consider the functional H[¢(z)] = F[¢(z)]G[¢(x)]. Then

e () - () (ot

)Gl

Then

93



If we now introduce mode expansions and use Eq.(BI7) for the functional
derivative of H[(z)] and Eq.(B:48) for the first of the two functional integrals
on the right hand side of the last equation then

SH[¢(z)] - . Oh(ay, .o, .)
/D1/) <T(;)j) = nl;rgol%/.../daldag..dak..dan ;gbk(x)alTlﬁk

= nlLIr;Og%;¢k(x) /.../daldag..
X{h(a1, oy Ay ap—stoo — R, oy Ay g ——o0 f--dln

so that the functional integral of this term reduces to contributions on the
boundaries of phase space. Hence if h(aq,..,ak,..) — 0 as all o — +oo then
the functional integral involving the functional derivative of H[¢)(z)] vanishes
and we have the integration by parts result

/Dwﬂww(gggﬁ)z—/Dw@%%%)qwm] (B.61)

All these rules have obvious generalisations for functionals such as
Fl(x), v (z),¥* (x), ¥ (x)] involving several fields.

Appendiz B.10. Restricted Functions

It is necessary to also consider functionals involving c-number field functions
¥ () which are still based on an expansion in terms of orthonormal mode
functions ¢y (x), but where there is some restriction on the modes that are
included. Such functions will be referred to as restricted functions. Examples
include the fields ¥ (r), f (r), ¥ne(r), ¥ o(r) used for condensate and non-
condensate modes in the theory of Bose condensates, where even the combined
condensate and non-condensate modes are subject to a restriction, in that modes
associated with a momentum greater than a cut-off value are excluded.

Thus we have

K
K@) = B () (B.62)

k
where the specific restricted mode expansion for the restricted set K is signi-
fied by the symbol K. Other restricted sets involving different modes will be

designated L, M etc., with expansion coefficients v, Jy etc.
Orthonormality conditions still apply to all modes

/d:v (bz (,T)(bl (CL‘) = 6kl (B.63)

and this gives the well-known result for the expansion coeflicients

m:/m%@ﬁﬁ) (B.64)

94



However the completeness relationship is now

K

> y)di(x) = (y, ). (B.65)

k

which defines the restricted delta function dx(y,z) for the K set. This is a
function of two variables  and y, and does not depend on y — x.
The restricted delta functions have some interesting properties

// drdy 7 (1) 65 (4,2) bm(@) = b (Lm e K)
0 (¢K,m¢K) (B.66)

L

K
/ 0w S (y,2) b1 (2, 7) = / dr S on)oi(@) S (@) ()
k

l

K L
= ) k() oka Y i (2)
k l
= 5K,L 5K(y,z) (B.67)

and

/daz Ok (x,z) = Nk (B.68)

where Nk is the number of mode functions in the set K. Unlike the normal
delta function the restricted delta functions are non-singular and can be treated
as standard c-number functions within expressions.

Appendiz B.11. Functionals of Restricted Functions

As for general functions, a functional F[(¥ ()] of restricted functions % (z)
maps the c-number function ¢¥ (x) onto a c-number that depends on all the
values of ¢ (x) over its entire range.

The restricted function X (y) can be expressed as a functional Fy[¢¥ (z)]
of the restricted function ¢ (x). In terms of the restricted delta function we
have

$ () / 0 S (y, ) 6" ()

= F[v" (@) (B.69)

showing how ¥ (y) can still be written as a functional F, [t)¥ (z)] of %% (), but
now Eq. (B.69) applies which involves the restricted delta function dx (y, z) as
a kernal, rather than Eq. (B10) which involved the normal delta function and
applied to functions ¢ (z) with unrestricted mode expansions.
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The spatial derivative V4% (y) of the restricted function 1% (y) can also be
expressed as a functional Fg, [¢X (z)] of X (z). Using (B.69) we have

V() = / 02V b5 (g, 2) 0" (2)
= Fy[v" (@) (B.70)

which now involves V,0x(y,x) as a kernal. We can confirm the validity of
(B.70) by substituting for ¢ (z) from (B.62) which gives

K
/d:z:Vy(SK(y,a:).i/)K(:z) = Zﬂk /da:Vy(SK(y,a:).gbk(x)
k

K K
26 ) [ eV, @)on(a)
k l

K
> Bk Vydr(y)
k

vy¢K(9)

as required.

As the value of the function at any point in the range for x is determined
uniquely by the expansion coefficients {3y}, then the functional F[s¥ (x)] must
therefore also just depend on the c-number expansion coefficients, and hence
may also be viewed as a function g(B1, B2, .., Bk, .-Brn) of the expansion coeffi-
cients, a useful equivalence when functional differentiation and integration are
considered.

FlpX ()] = g(B1, B2y s Bry --Bn) (B.71)

Appendiz B.12. Related Restricted Function Sets

We may also consider restricted functions based on the conjugate modes.
This set will be referred to as K* or K+. Thus the previous equations become

K

@) = D e@)B (B.72)
k

s = [dro@e @) (B.73)
K

Ski(pa) = 3 di(y)en(a) (B.74)
k

where the last equation defines the restricted delta function for the Kt case.
We note that the restricted delta function dx4(y, x) is related to the previous
one via

Or+(y,z) = dk(x,y). (B.75)
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We can again write the restricted function ¥ (y) as a functional F, [+ ()]
via

Py = / 0 b 4 (y,2) 5+ (2)

/ da 81 (2, y) 05+ (1)
= R (@) (B.76)

Similarly the spatial derivative V1% ¥(y) of the restricted function is also
a functional Fy, [ (z)] given by

V) = / 0V 3.+ (9, 7)< (2)

_ / dz V05 (2, ) 5 (2)
= Fy,[p5F ()] (B.77)

Note that considered as a function of y, the restricted delta function dx (y, x)
is a member of the K set of restricted functions ¢ (y) (the expansion coefficients
are ¢y (z)). On the other hand, considered as a function of = the restricted delta
function 0k (y, z) is a member of the conjugate set K+ of mode functions ¢} (x)
(the expansion coefficients are ¢ (y)).

As the value of the function at any point in the range for x is determined
uniquely by the expansion coefficients {3, }, then the functional F[y%*(z)]
must therefore also just depend on the c-number expansion coefficients, and
hence may also be viewed as a function g+ (ﬁf‘, B;, . ﬁ,j, ..3;7) of the expansion
coefficients, a useful equivalence when functional differentiation and integration
are considered.

P+ (@) = g* (87, B s B BY) (B.78)

A second related restricted set is the complementary set K which includes
all the other orthonormal mode functions not included in the K set.

Clearly, any function can be expanded in terms of modes in the K and K
restricted sets. Thus we now have

¥(x)

K K
Z Y Gr(x) + Z Tk Ok () (B.79)
k k

Vi /d:zc or(z)Y(x) ke K,K (B.80)

K
Sely,m) = > ey)si(z) =Y du(y,2) (B.81)
k

L#K
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and now the full Dirac delta function is

K K
Sy, x) =)o (@) + Y dr(y) ok (x) (B.82)
k

k

The general function ¥ (y) may be written as a functional Fy[i(z)] of ¢(z)
involving the full delta function

o) = [ desl.)0)
= F@) (B:83)

Applying (B.67) we obtain the interesting result

/da: Ok (y,x).05(x,2) =0 (B.84)

Note that the full delta function is still written as a function of x and y.
Because the total set of functions is still restricted it will have a narrow though
finite width and can be treated like a normal function.

Appendiz B.13. Functional Derivatives for Restricted Functions

K T .
%(;))] is defined by

The functional derivative
SF " (2)]
i (x)

where 6% (2) is a small change in ¢ (x). Since as in (B.7I) the functional is
equivalent to a function of the expansion coefficients [, the only meaningful
change to ¥ (x) would be associated with changes §3; in these expansion coef-
ficients and thus 6y (x) will be within the K restricted function space. In this
equation the left side is a functional of 1% (z) + 6y () and the first term on
the right side is a functional of ¢/ (x). The second term on the right side is a
functional of §1/% (z) and thus the functional derivative must be a function of x,
hence the subscript . In most situations this subscript will be left understood.

Thus the functional derivative will be defined in terms of changes to the
restricted function of the form

P (@) + 5% ()] = Flo¥ @) + [ deov (@) ( ) (B.85)

K
SR () = 6Bk ¢ () (B.86)
k

As the functional derivative is just a function of x we can expand it in
terms of all the conjugate modes (these also form a full basis set of orthogonal

functions)
OF[ (@) _ "
(SSom), = Smei
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then we have

/d:z:51/)K(3:) <%K(S)])m = Zm/daz&/) z)¢; (v)

= Z M6 Bre
%

since the contributions from modes I not in the KT set will be zero using orthogo-
nality. This shows that any contribution to the functional derivative from modes
o7 (z) outside the K set cannot contribute to F[) (x) + sy ¥ (z)] — F[¢X (2)],
and hence can be arbitarily set to zero in determining the functional derivative
with respect to restricted functions ¥ (z) in the K set. Thus we have

(%) an op(z (B.87)

showing that the functional derivative is a function in the KT = K* set.

Noting that the function dx (x,y) is within the restricted function space, we
may obtain a useful expression for the functional derivative by applying (B.69)
for a function in the K* set. Since dgx+(y,x) = dx(z,y) this shows that the
functional derivative may be obtained by choosing §9* (z) = edx (z,y) for small
€ in the definition (B.8)

[ . (“;55}5;”)

<F[¢K()+€5K(I,y)] Fly ()])_

€

(Fomr),

= lim
e—0

To confirm that the right side of the last equation does in fact give ( %K(g)])
y
we substitute from (B.87))

/d:v ok (%,y) (%K(g)]) x

an /d$5K z,y)or(x)
S S 6 ) [z @) oi(0)
k l

K

Zﬁk or(y)

k
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as required. Thus we have the useful expression for the functional derivative of
restricted functions

(58

= lim
e—0

(FWJK(x) + b (w,y)] — FW@)]) (B.88)

€

We may also have functionals F[y% (z),9(z)] that involve two functions
P (x), ¥ (x) in two different restricted sets K, L. The straight-forward gen-
eralisation of useful result (B.88) is

(SR (FIS ) 4 el o) PV,

5K (x) €0 €
(B.89)
(SN g (P07 )] - P07
L (x) ’ =0 €
(B.90)

K+
Similar results apply for the functional derivative %ﬂg)] with respect to

the restricted function ¢*+(x) in the K+ = K* set, which is defined by

PO @) 450 )] = F @)+ [ dedu* (o) (%f(gﬂ) (B.91)

where 9%+ (x) is a small change in ¥¥*(z). The function §¢¥*(z) be asso-
ciated with changes 55; in these expansion coefficients and thus 6%+ (z) will
be within the K restricted function space. We then have

SFE T (x al

showing that the functional derivative is a function in the K set.
Also the function dx 4 (x,y) is within the restricted function space, we may
obtain a useful expression for the functional derivative as

(B g (EW ) el - F )]
dpE+(x) €

e—0

e—0 €

. (F[W(x) + ey, 1)) — PO (@) )

Appendiz B.14. Examples of Restricted Functional Derivatives

To obtain the functional derivative of the function ¥ (y) with respect to
x), we note that this derivative exists as a function of z in the =
K te that this derivati ist function of z in the KT = K*
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restricted set since ¥ (y) is also a functional ¥ (y) = F,[¢® (z)]. We can thus
use the expression ([B.8S))

(55 Ww)z . (Fy[wK<u>+eaK<u7w>1—Fy[wK<u>])

51/)K X e—0 €

gy (L0000 i) )t ()

e—0 €

= 213% (/duéK(y,u)5K(Uax)>
— Sklya) (B.94)

where (B.67)) has been used. As noted before considered as a function of x, the
derivative of 9% (y) with respect to X (z) is in the K* restricted set, but is in
the K set considered as a function of y. This result is the modification of (B.15))
for restricted functions.

A further result can be derived for when the functional derivative is with
respect to X (z) is in a different L restricted set. Applying (B.90) we get

; (B @), ) + ey ()] 5 (), 9w
(7 ), - - )

x

(L)) ity )
= 0 (B.95)
since the functional X (y) = F, [ (z), %" (z)] does not involve % (z) at all.

For the functional derivative of the spatial derivative VX (y) of the func-
tion X (y) with respect to ¥ (x), we note that this derivative exists as a
function of z in the KT = K* restricted set since V,%¥(y) is also a functional
V" (y) = Fy, [ (x)]. We can thus use the expression (B.88)

(5o @) = iy (Bl +cortun) - R )
. (fduv O (W) UK (u) + edx (u, )} — [ duv, 5K(y,u)1/)K(u)>
g (/

e—0 €

duV 4OK (Y, u )5K(u,x)>

= V, (/duéK(y,u) 5K(u,:17))

= V,0x(y,x) (B.96)
showing that the functional derivative involves a spatial derivative of the re-

stricted delta function with respect to y. As pointed out previously, considered
as a function of x the functional derivative is in the KT set. Note also that
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we see that the functional derivative and the spatial derivative processes can be
carried out in either order

(M)%(x)vyw}((y)) = v, (W‘(@wy))
: = V,0k(y,) ’ (B.97)

We also can obtain similar results for the function 9%+ (y) which is in the
K* = K* restricted set, and can be written as a functional F,[X*(z)] =
»E+(y). Thus

0 i F, "+ (u) + e84 (u, 2)] — F, 5+ (u
<Ww<+<y>> - hm( CaMORLD) SCLY <>])

e—0
T

J dudge (y, ) {"* (u) + iy (u, @)} — [ dudr(y, u)1/)K+(u))

= lim
e—0 €

~ lim ( / du S+ (y, ) 5K+<u,w>>

= 5K+(y7x)
= Og(z,y)

For the spatial derivative V, % * (y) of the function 5+ (y) we have

e—0

K u € U, )| — K u
) B Y e

x

)

(B.98)

gy (L8 Tl T 0) s 1) e 01 (0)

e—0 €

— i ( / duV 55+ (y, ) 5K+(u,x)>

e—0

— (/ du¥ y0x (u, y) 5K($7U))
= V,0k(z,y)
= Vyoki(y,2)

as expected. Note also

(5o T ) = W (5 0)

x x

— VY, 0k (y,) (B.100)
Appendiz B.15. Restricted Functional Derivatives and Mode Functions
sy (x)

respect to restricted function ¥¥ () in terms of the ordinary derivatives of the
function (B.71) that is equivalent to the functional.

K
We can obtain an expression for the functional derivative (M) with
x
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Substituting from (B.86) we see that

F[™ (z) + 6" ()] = F[v" ()]

K
[ dzov<ia) <5§¢¢K

Fon faroin (555

But the left side is the same as

9(B1+ 6Bu, o B+ 6Bry ) — 9(Br, oy Bry ) 253 ﬂl{v?#ﬂkv-)

Equating the coefficients of the independent day, and then using the complete-
ness relationship in Eq.(B74) gives the key result

5F[1/)K ﬂlv . aﬂka )
( SR _) Z¢ —%k (B.101)

This relates the functional derivative to the mode functions and to the ordinary
partial derivatives of the function ¢(5i, .., Bk, ..Bn) that was equivalent to the
original functional F[)® (z)]. Again, we see that the result is a function of
z. Note that the functional derivative involves an expansion in terms of the
conjugate mode functions ¢ (x) rather than the original modes ¢y (z).

The last result can be put in the form of a useful operator identity

(M)K ) qu 8ﬂk (B.102)

where it is understood that the left side operates on an arbitary functional
F[¢X (2)] of the restricted function ¥ (x) and the right side operates on the
equivalent function g(fi, .., Bk, -.).
K+
We can obtain a similar expression for the functional derivative (%ﬂg)]) with

xr
respect to restricted function ¢X*(z) in the K+ set in terms of the ordinary
derivatives of the function (B.78) that is equivalent to the functional.

5F Bt (x (B, LB,
k

The last result can be put in the form of a useful operator identity

((W‘* ) Zqﬁk 3& (B.104)

where it is understood that the left side operates on an arbitary functional
F[¢E+(2)] of the restricted function ¢¥*(z) and the right side operates on the
equivalent function g™ (8], .., B, ..).
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The spatial derivative of a functional derivative can be found from

K x a 1y ..
x k

K (x) OBk
K+(y K B, LB
v (M) - > (Va0 ) Baon)

in the two cases of functionals of ¥ (x) or 1%+ (x). Clearly the spatial derivative
acts only on either the ¢} (x) or the ¢y (x).
The last results can be put in the form of operator identities

””(Wﬂx)) = Z{V e 86 (B.107)

1)
Ve (W) - Z{V Pl Bﬁk (B.108)

where it is understood that the left side operates on an arbitary functional
F[yX(2)] or Fl®*(x)] of the restricted function % (x) or ¥*+(x) respec-
tively, and the right side operates on the equivalent function g(f1, .., Bk, ..) or
gt By, -, ﬂ,j, ..). These operator forms are useful in deriving results for applying
functional derivatives in succession.

As an example of applying these operator identities consider the case of the

functionals Fu[qu(x)] = K (y) = ijﬁmk(y) and Fy[wKJr(x)] = EF(y) =
> be(y)ﬂ,j . Since in these cases
k

8g(B1, ., Brs - gt (BT, .. B, .. .
260, s s ) %kﬂk R (ﬁlaﬁl.:ﬁ’“ ) — i)
we have
5= (y) &
(fres), = Leitaronts) =oxto)
pK+ =
CET R v ——

for the functional derivatives as before, and

Sk
<5,¢ng;> = Z{Vm¢k )}or(y) = Valdx(y,z)  (B.109)

K
Ve <§ZK18§> = Z{mG )} 9%(y) = Va1 (y, ) (B.110)
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for the spatial derivatives of the functional derivatives.
Similarly for the spatial derivative functionals Fg,[¢v5(z)] = V, 05 (y) =

S BkVyn(y) and Foy [0 ()] = Vo™ * (4) = S V46 (y) 3 - Since in these
cases

89([31a "7ﬂka )
9Bk

ng(ﬂi‘r? "’/8]:’_7 ") —

= Vyon(v) o
k

Vydr(y)

we have

(wwa(y)) D) Vyor(y) = Vyox (y,2)

S (x)

<5Vy1/fK+(y))

SR+ (z) bx(7) Vyop(y) = Vyor (y, )

e
Yo

K
which are the same results as before. Note the distinction between ( M)
xT

)

and V, ( oK (y;> - the first being the functional derivative of the y spatial

derivative Vyz/JK( ) with respect to 1% (z), the second being the x spatial
derivative of the functional derivative of ¢ (y) with respect to ¥ ().

Appendiz B.16. Functional Derivatives in Theory of Bose-Einstein Condensates

The theory of Bose-Einstein condensates (BEC) often requires separate con-
sideration of certain highly occupied modes - the condensate modes, and other
sparsely occupied modes - the non-condensate modes. In phase space distribu-
tion functional methods these two types of modes can be used in defining conden-
sate fields and non-condensate fields as restricted functions, and the treatment
presented in this section can then be used in evaluating the various functional
derivatives.

In applying these rules to the BEC problem, the following functional deriva-
tive results can be obtained as straightforward generalisations of (B.94) and
(B.95). The general functions v(r) and ¢ (r) each will be used to cover
the results for condensate and non-condensate modes. For the case where
P(r) = Ye(r) the restricted set K refers to two modes ¢1(r), ¢2(r), and for
the non-condensate case where 1(r) = ¥y (r) the restricted set K refers to the
remaining modes ¢ (r). For the case where 1)* (r) = 2 (r) the restricted set K+
= K* refers to two conjugate modes ¢ (r), ¢3(r), and for the non-condensate

case where ¢+ (r) = ¢}~ (r) the restricted set K" refers to the remaining con-
jugate modes ¢ (r). Because the coeflicients are unrelated we are dealing with
functionals such as the distribution functional

Plipc(r), v (r), ¥ne(r), e (r), va(r), v (1), ¥xe (r), ¥ ie (r)] which involve
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eight independent functions, namely ¥c (r), ¥ (r), ¥nc (r), o (r) plus the com-
plex conjugates Y5 (1), 5" (r), o (r), v e ().

g 5
W(S)d)(r) = 5}((1‘,5) Wdﬂr(r) _ 5K+(I‘,S) _ 5K(S,I')
g 5
W(S)W(r) =0 Ww(r) =0 (B.111)

Note the reverse order of r,s in the second result, due to (B.95). The func-
tional ¥ (r) is not a functional of ) (s) and vice-versa, the other two functional
derivatives are zero. Similarly the functional derivatives of condensate fiels with
respect to non-condensate fields are zero, and vice-versa. Thus

0 0

m%\/c(r) =0 md’;\rrc(r) —0
J 5
WT(S)W\?C(I') =0 mﬂwdr) =0 (B.112)

with four other results obtained by interchanging C' and NC.

Appendiz B.17. Supplementary Equations

Field Expansions

Yol(r) = aii(r) + az ¢a(r) (B.113)

&) = ¢i(r)af +¢3(r)ay (B.114)
K

Yno(r) = > akdi(r) (B.115)
k£L2
K

Yo = D ¢im)a) (B.116)
k#1,2
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Appendix C. - Quantum Averages

To prove Eq.(C)) it will be convenient to treat the condensate operators first
ignoring the non-condensate operators and with the quasidistribution functional
being purely of the Wigner type. Following that we then reverse the process
by treating the non-condensate operators with the quasidistribution functional
being of the positive P type.

Appendiz C.1. The Condensate Averages

The functional derivative of the symmetrically ordered characteristic func-
tional with respect to say, {(r) is defined by

<5><W[§(r)7 & (r)])  lim (xw[é(r) ted(r—r) & ()] — x"[E(r), 5*(1“)])
d¢(r) r=r € '

It is not difficult to see that
WIE(r) + ed(r — r1), £+ (x)]
- /// D D2+ Wip(r), v+ (r)]
x expi / dr {(€(x) + 6(x — 1)) (r) + H(0)ET (1))
- r), €4 (r)]
/ // D2 D2t Wi(x), o (1)) 4+ (1) expi / dr (€007 (1) + D(r)ET (1)}

Thus the functional derivative is

5XW[§(1")7§+(1")]) _ 2 2.+ +

(") = [ rrerrer ww. e
it () expi [ de {6(07 () + v ()

Note that the field function at position r; is still subject to the functional

integration.
Similarly

(%)_ _ /// D2 D2t Wy(r), v (v)]
xivfey) expi [ de (€00 () + B (0.

Thus we see that these functional derivatives are in the form of expressions for
characteristic functionals in which W i(r), 9" (r)] is replaced by ity ™ (r1 )W) (r), ¥t (r)]

or ith(r1)Wip(r), *(r)].
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Continuing in this way we may establish a result for higher order functional
derviatives

(6”+qXW [£(r), £ (r)] )
OPE(r) GUET(X) /o vy rpisy,.sosn

JJ v D2¢+W[w(r)7;+vv(»;)]‘

XL () 6 () 0 (1) (5,) - 0(52) (1)
xexpi [ dr (€v (1) + 00T ©).

where for bosonic systems the functional differentiation can be carried out in
any order but with the differentiation with respect to £(r) involving positions
ri,Tr2,..,rp and the 7 (r) differentiation involving positions s, .., s2, S1.

Evaluating the functional derivatives and then letting &(r),£T(r) all ap-
proach zero (symbolically £ — 0), we have for bosonic systems

<5P+Q><W[5<r>,§+<r>1>@°

61)5(1‘) §q§+(r) ry,r2,..,r'p;Sq,..,52,81;

/ // D>y D*§+ W[ih(x), v (r)]
)Pt (r1) 7 (r2) T (rp) P(sg) -1(s2).1b(51)

We then apply the same process to the definition of the characteristic func-
tional

Vigw @] = Tr@exp [ deifee) P + Do)
— Z%Tr(ﬁ (/drif(r)\fﬁ(r)—i-/dr\f/(r)z{*(r)) .

Now with A[¢ = [dri&(r Ut(r) and B §+ fdr r) it (r) there are
N(p, q) = (p+q)'/p q! ways that the operator A appears p times and the operator
B appears ¢ times when we expand (A + B) (where n = p+¢) and cach order

of these operators appears once. We can introduce the symbol {(A ) (B ) } to
denote the average of these N (p, q) ordered products

{(A)P (B)1} =

and write



__In this fo/\rm it is convenient to calculate the functional derivatives, since
A[¢(r)] and B[¢T(r)] are functionals only of £(r) and £ (r).respectively, so their
functional derivatives with respect to the other function will be zero. Then

(5?1[5@)1) . (ﬁ[s<r>+e6<r—r1>1—fl[«r)])

55(1‘) e—0 €
— lim (7%\1/*@1))
e—0 €
= i\/I\JT(I‘l)
Similarly
JBlEH(r)] s
< 65"'(1‘) ) _ —’L\I/(Sl)

We see that each time that either A[¢(r)] is differentiated with respect to £(r) or
B¢+ (r)] is differentiated with respect to £ (r) an operator results, and there-
fore no further functional differentiation can occur. We also note that as { — 0
both A[¢(r)] and B[¢1(r)] become zero. To proceed further we need to calcu-
late functional derivatives of products of A[¢(r)] and B[¢T(r)]. This can be
carried out by applying the general rule for functional derivatives of products of
functionals. Consider the term {(A)? (B)?} (which is the average of the N(p, q)
ordered products where A[¢(r)] appears p times and B[¢* (r)] appears ¢ times).If
each of the terms in {(g)p (E)q} is differentiated less than p times with respect
to £(r) then there will be at least one factor A[¢(r)] still remaining and thus as
§ — 0 the result of the differentiation will be zero. Similar conclusions apply if
the term in {(A)? (B)?} is differentiated less than ¢ times with respect to £¥(r).
On the other hand if ach of the terms in {(A)? (B)?} is differentiated more than
p times with respect to {(r) then the result of the differentiation must be zero
because after the pth differentiation all of the A[¢(r)] will have been replaced
by a factor iU (r;) and therefore further functional differentiation with respect
to &(r) will give zero. Similar conclusions apply if if the term in {(A)? (B)9}
is differentiated more than ¢ times with respect to £7(r). Hence only the p,q
term in the last expression for x[¢(r),£T (r)] contributes in the required result
for

<5p+qu[s<r>,s+ (r)])”

61)5(1‘) 5q§+ (r) ry,r2,..,r'y;Sq,..,52,81;
~ ~ £—0
_ 1 [ (erar By
plg! OPE(r) GIET(r) | e
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Now consider the pth functional derivative of any term in {(A)? (B)?} with
respect to the £(r), where the ¢ factors B [T (r)] are just represented by dots.
The result will be the sum of products of factors iW(ry), iUt (ry), .., i\TJT(rp) in
all p! orders

£—0

7¢(r)

=P 3 (B () BT (1) B () BT (1)

(61)(2{5@)1.@[5@)]..E[«r)]..ﬁ[g(r)])m)

ry,ra,..,r'p

where the sum is over all permutations P =% (”—“7“7#) of 1,2,.

Considering also the gth functional derivative of the same term in {(A)P (E)q}
with respect to the £+ (r) we get overall

<5”+‘1(g[§(r)]--1§[§+(r)]--ﬁ[§(r)]--1§[€+(r)]--E[é(r)-ﬁ[ﬁ(r)]l)p’q ) o

o7& (r) 09€+ (r)
ri,r2,..,rp;Sq,..,
= ip+qZ(\I!T(rm)..\I!(S,\q)..\IIT(rm)..\II(SAZ)..\I!T(rHP)..\If(s,\l))
P,Q
where the second sum is over all permutations Q =1 (ﬁ )‘7 %Tl) ofgq,...,i,..,2,1.

Now within each of the N(p,q) = (p + ¢)!/plqlorderings of products of A
and B where A appears p times and B appears ¢ times, there are p! order-
ings of the vl operators and glorderings of the T operators, giving a total of
M(p,q) = N(p,q)plq! = (p + q)! different orderings of the p operators Tt and
the ¢ operators \/I\f and all possible orderings are present in view of the sum over
the permutations P, Q. Taking into account the factor 1 / plq! we see that the
when the differentiation is applied to the quantity {(A)? (B)4} itself we see that
we just get zp+q{\I/T(r1)\IIT(rg)....\I!T(rp)\II(sl).. (sq)}. Thus

<5”+‘1XW [«r),ﬁ(rﬂ)“"
3PE(r) 69ET ()

—irtary (ﬁ{\fﬁ(rl)\fﬁ(r2)....\fﬁ(rp)@(sq).@(sl)})

ry,r2,..,rp;Sq,..,82,81;

where the symmetric ordering symbol is given by
{‘T’T(rl)@(rz) T ()W (s,).- U (s1)}

547 Gt o RO ) e2) 1) B 5) (1)

In the the sum over R is over all (p 4 ¢)! orderings R of the factors
\I/T(rl)\I/T(rg)....\I/T(rp)\I/(sq)..\IJ(sl).
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Hence we obtain the following key result for the quantum average of the
symmetrically ordered product {¥T(r1)W(rs)... W (r,)¥(s,)..¥(s1)} of the field
operators

({07 () (x2)..o BT ()T (5,)- B (s1)} )

- Tr (ﬁ{@f(rl)@f(m)...@f(rp)@(sq)..@(sl)})

/Z]Lﬂwzﬂ¢+wq¢@»¢+@ﬂ

X (r1) ¥ (r2) T (rp) (sq) - (s2) 1h(s1)

This result gives the required synmmetrically ordered average as a functional
integral involving the quasi-distribution functional Wi (r),?™ (r)] times the
product of the field functions, with the field operator \/I\IT(ri) being replaced by
¢+ (r;) and \Tl(sj) being replaced by ¥(s;).

Appendiz C.2. The Non-Condensate Averages

The functional derivative of a normally ordered characteristic functional with
respect to say, £(r) is defined by

<5XN[§(1“)7 5*(1“)]) ~ tim <XN[§(I“) +ed(r —r1), & (r)] — xw[E(r), 5*(1“)])
3¢ (r) r=r € '

It is not difficult to see that
£(r) + eb(r — 1), €7 (1)]
- /// D2y D2 PH(r), o+ (1)
X expi / dr {(£(r) + ed(r — r1))* (r)} expi / dr {($(r)€* ()}
= @), £ @)
tie / // D2 D2+ PHp(r), o+ (1) ot () expi / dr {€(r)0* ()} expi / dr {((r)E+ ()}

e—0

Thus the functional derivative is

(W)_ - /// D>y D>yt PH(x), ¢ (v)

xiw+<r1>expil/'dr{5<rwp+<r>}expit/'dr{¢mr>s+<r>}.

Note that the field function at position r; is still subject to the functional
integration.
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Similarly

(%W)_ - /// D>y D>yt PH[(x), v (v)

xig(r1) expi / dr {£(0)9* (x) expi / dr {$(r)E+ (1)}

Thus we see that these functional derivatives are in the form of expressions for
characteristic functionals in which P*[¢)(r), 4 (r)] is replaced by iw ™ (r1) P¥ [ (r), T (r)]
or (1) P* (), v+ (r)].

Continuing in this way we may establish a result for higher order functional
derviatives

(5”*“sz [£(x), £F (x)] >
61’5(1‘) 6q§+(r) ri,ra,..,rp;Sq,..,$2,81;

- /// D*y D>yt PT[y(r), v (r)]
)PPt (ry) ¥ (ra) T (rp) Y (sg) 1b(s2) ¥(s1)
xexpi [ dr (€0t @) expi [ dr (DIETE)

where for bosonic systems the functional differentiation can be carried out in
any order but with the differentiation with respect to £(r) involving positions
ri,Tr2,..,rp and the 7 (r) differentiation involving positions s, .., s2, S1.

Evaluating the functional derivatives and then letting &(r),£T(r) all ap-
proach zero (symbolically { — 0), we have for bosonic systems

£—0

(5”+‘1sz [£(r), £ (r)] >
7€ (r) 696+ (r)

_ /// D) D¢+ PT (), ¢ (r)]
Pt gt (ey) Yt (ra) T (1) P(sg) () P(s1)

We then apply the same process to the definition of the characteristic func-
tional

ry,r2,..,rp;Sq,..,82,81;

), €4 ()]
= T [difgm i)} e [drie )

S oo ( [ avieto) @Wr))p ([ arivee Z-g+(r>>q>,

Pyq ’
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Now with A[¢(r)] = [drié(r) Ui(r) and Blet(r)] = [dr¥(r)ict(r) we see
that

1 PR
NEORHGIEDY ]TQ!TT(ﬁ( )P (B)9).
p.q
keeping strictly to the operator order.
__In this form it is convenient to calculate the functional derivatives, since
Al¢(r)] and B[¢T (r)] are functionals only of £(r) and £ (r).respectively, so their
functional derivatives with respect to the other function will be zero. Then

(5?1[5@)1) o (ﬁ[s<r>+e6<r—r1>1—fl[«r)])

0¢(r) =0 ¢
. (w)
e—0 €
= ivi(r)
Similarly
B¢ (v)] =
<_55+(r'> )r_s =¥l

We see that each time that either A[¢(r)] is differentiated with respect to £(r) or
B¢+ (r)] is differentiated with respect to £+ (r) an operator results, and therefore
no further functional differentiation can occur. We also note that as £ — 0
both A[£(r)] and B[ (r)] become zero. To proceed further we need to calculate
functional derivatives of powers of A[¢(r)] and B[¢*(r)]. This can be carried out
by applying the general rule for functional derivatives of products of functionals.
Consider the term (A)? (B)? where A[¢(r)] appears p times and B[¢T (r)] appears
q times.If each of the terms in (A\)p (f?)q is differentiated less than p times with
respect to £(r) then there will be at least one factor A[¢(r)] still remaining and
thus as £ — 0 the result of the differentiation will be zero. Similar conclusions
apply if the term (A)? (B)? is differentiated less than ¢ times with respect to
£+(r). On the other hand if each of the terms in (A)? (B)? is differentiated more
than p times with respect to £(r) then the result of the differentiation must be
zero because after the pth differentiation all of the A[¢(r)] will have been replaced
by a factor iU (r;) and therefore further functional differentiation with respect
to &(r) will give zero. Similar conclusions apply if (A)? (B)? is differentiated
more than ¢ times with respect to £7(r). Hence only the p, ¢ term in the last
expression for xn[£(r), £T(r)] contributes in the required result for
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(6P+Q><N[g<r>,5+<r>1>f*°

51)5(1‘) 6q§+(r) ry,r2,..,r'p;Sq,..,52,81;
~ ~ £—0
_ L [ (@ B
e P\ ey )

Now consider the pth functional derivative of (A)? (B)? with respect to the
£(r), where the ¢ factors BT (r)] are always to the right of the A[£(r)]. The
result will be the sum of products of factors iWi(ry),iW(rs),..,i¥T(r,) in all p!
orders

5 (Ale () Al (). Al Ble+ @\
7¢(r)

= @ Z((I}T(rH1)"(I}T(ruz)"@T(rM)"@T(rHP)§[€+ (r)]q)

P

£T(r) we get overall

£§—0

<5P+q(ﬁ[§(r)]../T[g(r)]...A

ry,rz,..,rp;Sq,..,82,81

~

= ip+qPZQ(\TJT(rM)..@T(rm)...\lﬁ(rup).\Tl(s,\q)...\/l\f(sh)\Tl(s)\l))

where the second sum is over all permutations Q =1 (% . é—] o % %) ofgq,...,i,..,2,1.

Now all of the p! products of the \T{\T operators commute with each other and can

therefore be set out in the order W'(ry). Wi (rs)...¥f(r,). Similarly, all of the ¢!

products of the \Ti operators commute with each other and can therefore be set

out in the order ¥(s,)...U(s2) ¥(s1). Thus the sum over the permutations P, Q

just cancells out the 1/plg! factor and we just get i’”‘q{\/l\ﬁ(rl)\fﬁ(rg)....@T(rp)@(sq)..@(sl)}.
Thus

<5P+Q><N[ (r), £ (x )J)”
5;05( )§q§+( ) ri,ra,..,r'p;Sq,..,82,51;

—i+ary (pqﬁ(rl) t(rs). ..@T(rp)@(sq).@(sl))
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Hence we obtain the following key result for the quantum average of the nor-
mally ordered product U (ry)WT(re).... W (r,)¥(s,)..W(s;) of the field operators

<\Tﬁ(r1)\Tﬁ(m)....\iﬁ(rp)@(sq)..@(sl)>

= Tr (ﬁ\TJT(rl)\fﬁ(rg)....\fﬁ(rp)\fl(sq)..\fl(sl))

/// D2 D2+ Pp(r), o (1)
X (r1) T (r2) b (1) h(sq) -b(s2) P(s1)

This result gives the required synmmetrically ordered average as a functional
integral involving the quasi-distribution functional P*[¢)(r),v™ (r)] times the
product of the field functions, with the field operator \/I\IT(ri) being replaced by
¢+ (r;) and \Tl(sj) being replaced by ¥(s;).

Appendiz C.3. Supplementary Equations

Quantum Correlation Function
(T ) L) e (50)- Te(s0)} T (). T () Tne(v) Fno(vi))
= Tr (ﬁ{\flg(rl)....\Tlg(rp)\flc(sq)..\flc(sl)}\TJ}LVC(ul)....\TJ}LVC(uT)\TJNc(VS)..\T/Nc(
= [[[] PPec 2ot 2one D20t

Xp[wc(r)v wé‘_(r)u '@[JNC(I‘)? wj-i\_fc(r)v wz‘(r)v é‘_* (I‘), '@[17\70(1‘)7 '@[J]-’\_Z*C(r)]
X (r1) i (ra) E (rp) Yo (sy) -o(se)Po(st)

xPio(m) vho(ue) ho () vne(vs) e (va) ¥ne(vi)
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Appendix D. - Correspondence Rules

As the expressions can get cumbersome we find it convenient at times to use
the following notation:

A
=
Il

{€c(r), €4 (r). Enc(r), € e ()}

{€c(r), &4 (r)}

X[gca 52:7 §NC; g?\_fc]
{vc(r), v (r), ¥ne(r), vre(r)}
(Ve (), v (x), vie(r), vie ()}

£ = {Ene), o)

Appendiz D.1. Functional Derivative Rules - Condensate Operators

To proceed further we need to establish some rules for functional derivatives
of operator expressions.Consider

Qcléc,el] = expGléc, &)
Glee.eh) = / dri{ec ()Tl (r) + To(r)eh 1)

(1) We first establish a result for Q¢ [éc, &5 \/I\/TC(S) Now

8Qcléc, €]
5&c .

. (expé[sc<r>+ea<r —5). 6 (1)) — exp Gléc (1), (1)

e—0

€

)

e—0

€

. <exp{é[§c<r>,5g<r>] + el (s) - expé[gcu),gg(r)])

Now we can use the Baker-Haussdorf theorem which is that exp(zzl\ + E) =

~ ~

exp(A) exp(B) exp{—%[ﬁ, B]}, if the commutator commutes with A and B, so
with A = @[ﬁc(r),féf(r)] and B = ez\Tch(s) we have

exp{Gléc(r), &4 (x)] + €iPl(s)} =

exp é[fc (r), 523 (r)] exp ez\/I\ch(s) exp %653 (s)

exp Glec(r), € (0] {1 + (T L(s) + 5E5(5))
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since using Eqgs.(19, 22)

[Gléc(r), &) iVl (s)] = i / dri[{Ec(r) U (r) + Ve (r)ed ()}, U (s)]
= [ dr )l This)
= o [ drgi (s

= —e¢l(s)

noting that the 525 (r) only involve complex conjugates of condensate modes.
Hence

PAN +
(w) — ol €21 GTL(E) + 265(5)
o ). :

5Qeléc, &

ﬁc[fc,fcr]@c(s) - %( }3e]

) | 0cle €156
B (D.7)

(2) We next establish a result for Qc[éc, &5 Ve (s). Similarly

<5ﬁc[gc,sé1> . <expé[sc<r>,sg<r>+ea<r —s) - expé[gc@),&;(r)])

5¢4, €

. (exp{é[sc (). 6 ()] +€i¥o(s)} — exp Gléc(r). & <r>]>

e—0 €

Using the Baker-Haussdorf theorem again but now with A = G[¢o (r), &L (r)]
and B = €i¥(s) we have

exp{Clec(r). &) +eilicls)) = expBléc(r), & ()] expeilio(s) exp—getc(s)
= o Gléc(r), €] {1+ e(iTo(s) -~ 3c(s))

since using Eqs.(19, 22)

[Gléc(x), 65 (r)], eiTe(s)]

ci / dril{€c(r)UL (r) + Ve (r)eh (1)}, Uo(s)]
= o [drge(Th (), Be(s)

= E/drﬁc(r)%(sar)
= ec(s)
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noting that the {c(r) only involve condensate modes. Hence

_ . R R
(%) = Qclée, 5] (1%c(s) - S60(®)
3@ s ?

0 = 0O +
Ocléc, €5 Tols) = %(M

1~ 1
S ) + 290[50755] 550(5)

r=s

(D.8)

(3) We next establish a result for \/I\/TC(S) Qcléc, ¢5]. From above

<5ﬁc[5c,§g]> e (exp{é[gcu),fg(r)] + il (s)} - expé[gcu),gg(r)])
0&c . €

e—0

Now we use the Baker-Haussdorf theorem with A = ez\T/TC(s) and B = G[¢c(r), &5 (r)]
we have

exp{Clec(r), &5 ) +ilbls)} = expeilih(s) exp Gléc(r), £ (r)] exp—5ecs(s)
S {1 e B() — 585 ()} exp Gleo (), €5 ()

using the commutation result derived earlier
Hence

1

(M) = (BL(s) - 5E4() Deleo. 6]

ééc

8Qclée, &

UL(s)Qcléc,&l] = %( 5éc

) + %%ég(s) Qclée, 5]

(D.9)

(4) We next establish a result for Ue(s) Qclée, ¢5]. From above

e—0

<5Qc[§c7§$]> ~ lim (exp{é[ic(r),é‘é(r)] +eilc(s)} — exp @[50(1‘)755(1“)])
552: r=s €

Using the Baker-Haussdorf theorem again but now with A= il o(s) and B=
Gléc(r), €5 (r)] we have

exp{Clec(r). &) +eiliols)) = expeilio(s) expllec(r), €(r)] exp+etc(s)
S {1+ eliTcls) + 5Ec(s) exp Glée(r), & )]

using the commutation rule derived earlier.
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Hence

A +
<Mc+,€cl ) = (iWc(s) + 1éc(s) Delée. €
&) ’

Veo(s) Qeoléc, €]

~ n ~
% (M) _%%gc(s)Qc[fcaﬁJcr]

08¢
(D.10)
(5) To establish a result for Q¢[¢c, L0, ol o (s) we start with
~ ) o(s+ As,)
) — i u
Ouols) = ( )
so we can use previous results in Eq.(D.J) for 90[50,50 \Tl . Using the

previous results we have

N i T Qclec, &) _ 0Qc(éc, €8]
Qclée. 6510, 00(s) = Alslunio i As, (( oéc N 98] _

- i 3clee.t] 5 (5o (6+As) - €6))
"

As,—0 1

1 sQcléc, € 1A
- g<aﬂ (%)) ~ 2Bclée, &)

so that from the definition of the spatial derivative we obtain the result

8Qelée, &l
}3e,

(8#§g)r:s

N =

) - L Bclec. &) 30,65 (e)
r:S (D.11)

ﬁc[éCagér] (8u(1\ﬁc(s)) = % <8,u

(6) To establish a result for Q¢ [¢c, &t Q}Tlc(s) we start with

9, Bc(s) = lim (‘I’d”“#)‘%@)
As,

As,—0

so we can use previous results in Eq.(D.8) for ﬁc[fc,fcr] U(s). Using the
previous results we have

~ ~ .11 8Qclec, 5] 8Qcléc, &)
Q &8 0,0 = lim - c _ c
CKC gC] a C(S) ASI;LHLO ? AS“ (< 555 )r‘_erASM < 653 )r_s>

# lim $0clée. 6815 (zo (Cols + As,) — ols))

Sp

. N ~
= % (8# <M>> + %90[50755] % (M 3e)

3¢l
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so that from the definition of the spatial derivative we obtain the result

) + 2 00tc, 2] 50,60 (6)
r:s (D.12)

(7) To establish a result for Q}TJTC(S) ﬁc[gc,ggg] we can use Eq.(D.9) and
follow the previous procedure to obtain the result

8elée, &)

[50750] (8 ‘I/C( )) z (au 550

8Qcléc, €]

~ ~ 1
6M\I]TC(S) 90[50755] = 7 (au S5éc

11 ~
) + g§5u§§(s) Qclée, &L
) (D.13)

(8) To establish a result for 8,V (s) Qclée, ¢4 we can use Eq.(D:I0) and
follow the previous procedure to obtain the result

= ~ QO +
0, () Qclée. &) = & @w) 1

73 — 7500 (s s) Qcléo, €8]
c _

(D.14)

Appendiz D.2. Condensate Operators
(1) If p is replaced by U(s)p then the characteristic function becomes

X[507§ga€NC‘7§]<\F[C] - Tr ( C( )pQ[é.CagCagNCagNC])
= (ﬁQ[€Ca€Ca€NCa€NC]\IJC( ))
= Tr(p Qcléc, 8] e(s) Qne)
using the cyclic property of the trace and the feature that condensate operators

commute with non-condensate operators.
Hence from Eq.(D.8))

8Qeléc, &

xléc, € €nc. €] = Tr(p < e
C

+foléc, €8] %sc@)) fvc)
Hence

X[gcaggvé.Ncagj\_]C] - = 1 ( 0 + 50( )) X[gcvggachagth]
i \0&5(s)
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Then using the relationship to the distribution functional we see that

1 1) 1
xléc. &8 Enve, Eel — A (m + 550(5)) /// D*pe D*¢E D*Yne D> P[ﬂ(r),ﬂ(r)]

X expi / dr {&c(r)pd (r) + Yo (r)éd (r)}
X expi / dr {Enc(E)ho(r)) expi / dr {¥ne()E e (1)}
— /// D*pc D*Yf, D*ne D>l P ¥ (x), 4 ()]
S
2 59 (s)
X expi / dr {Eno (0) ()} expi / dr (e ()Eh o)}

x[(¢c<s> >expz' [ de et ) + vewes )

since from the functional differentiation rules with G[yc, &5, €o, ] = i [ dr {€c(r)yd (r)+
ve(r)él (r)}

expi / dr {Ec ()0 (1) + vo(r)Es (0}

6Gve, &L oy vd]
3645 (s)

= %expG[wc,fg,fcawg] ic(s)
= Yo(s) expGpe, &, &, 0] (D.15)
! expi / dr {Ec(r)vd(r) + do(r)Es ()

L0

251/)5(5)
1 n 11 0GR, 68, €0y ¥
= _EexpG[d)Cangé.Cad}C] 51/)5_(5)

= 5 PGl & o Vel iEc(s) (D.16)

%%gc(s) exp G, &L, €, v

1 9 ,
= e o / dr {Ec(X)vd(r) + vem)E ()} (D7)

To proceed further we need to replace the functional differentiation of the
exponential functional with a functional differentiation of the quasi distribution
functional itself. This can be accomplished using a functional integration by
parts result, which requires the condition that the mode expansion form of the

product functional P[ﬂ(r), ﬂ(r)] expi [ dr {&c(r)yG(r) + Yo (r)éL ()} goes to
zero as the expansion coefficients become large (note that there is no normal-
isation condition on the ¥c(r), 2 (r) that bounds the expansion coefficients).

5
084:(s)

1
= {expG[wc‘,géafCawg]
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Using this integration by parts result we then find that
Vlo&htvo&hel [ Do DPug Drume Do

x{(ws) n Pl (r), 4" (1))}

1 9
§5¢g(s)) =7
X expi / dr {€c (X0 (r) + Yo ()Es()]

X expi / dr {Enc(E)ho(r)) expi / dr {¥nc()Eho(r)}

Hence the change to the characteristic functional if p is replaced by \ffc(s)ﬁ
is equivalent to then the quasi distribution functional is replaced as follows

Pl @] = (Ve + 2= ) Plumuel (a9

2698 (s) SV L

Thus P[g(r),ﬂ(r)] is both multiplied by ¥¢(s), the field function that the

operator \Tlc(s) is mapped onto and functionally differentiated with respect to
@/J&L(S), the field function tEat the operator \IJTC(S) is mapped onto.
(2) If p is replaced by \IJTC(S)ﬁ then the characteristic function becomes

xléo &8 Enve Ehel = TrWL(s)pQlc, &8, Enve, E50))
= Tr(pQléc. €. enc, 5T (s))
= Tr(p Qolée, € Th(s) One)

using the cyclic property of the trace and the feature that condensate oper-
ators commute with non-condensate operators.

Hence from Eq.([D.7)

ot
c
Q

1 <5§c[§c,§$]

X[gcvggvé.chgj—\i}C] — TT(p ; 650(5) - 60[50555] %55(@) ﬁNc)

Hence

4]
550 (S)

st énentlel + 1 (g — 364®) Xor & 6ven el
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Then using the relationship to the distribution functional we see that

0
deertine el = 1 (5~ 360 [J]] Pve D70 DPone D0 PL 0.0 0)

X expi / dr {&c ()l () + e (r)él (r)}

X expi / dr {Enc(t)ho(r)) expi / dr {¥nc()Ehe ()}

=[] pve Do Do DUk Pl ). )
1.0
20vYc(s)
X expi / dr {Eno (X))} expi / dr {¥nc(D)Ehe ()

(0660 + 55 ) e [ e e )+ vele )]

where the proof of the second step is similar to that in (1).
To proceed further we use integration by parts result we then find that

xléo. &8 énve, &) — /// D*yc D*t D*Yne D*ic

<0660~ §m ) PLL@ )

X expi / dr (€0 (DA ) + Yo e )}
X expi / dr {Enc(E)ho(r)) expi / dr {ene(t)E o (1)}

Hence the change to the characteristic functional if p is replaced by \flg(s)ﬁ
is equivalent to then the quasi distribution functional is replaced as follows

1 46
P * bs)—=— | P * D.19
@] (00 - 55 ) Plumuel (019
Thus P[g(r),ﬂ(r)] is both multiplied by 1 (r), the field function that the
operator \Tlé(r) is mapped onto and functionally differentiated with respect to

e (r), the field function that the operator \Tlc(r) is mapped onto.
(3) If p is replaced by p U (s) then the characteristic function becomes

X[607§g7§N07§}\F]C] — Tr(ﬁ(l}C(s)Q[§C7§g7§NC’7§]<\F[C])
= Tr(p¥c(s)Qcléc, &) One)

using the feature that condensate operators commute with non-condensate op-
erators.

Hence from Eq.(D.10)

~

~ + o~
5L (cliebel 1, o Qc[écfé]) fIve)

X[gcvgé‘rvé.NCvg]J\r[C] — TT(p i < 554—(5) 2
c
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Hence

1 1) 1
X[607557§N07§;’\_]C] — ; (m - 550(5)) X[é-CaggugNCug]J’\_]C]

Then using the relationship to the distribution functional we see that

1 1) 1 2 2 2 2 *
et te o)~ 1 (7 ~ 3600 [ oo D2 Drowe D2 Pl . v )
xexpi [ dr {6ce)ut ) + Vo)t @)
xexpi [ dr {Evomvio) expi [ dr (ncwele)
=[] pve Dot Dome Dk PLY ). 3 0)
1 6 .
A(ve + 35t ) v [ e )+ vemE o)
xexpi [ dr (no)udomewi [ dr hne@elom)
To proceed further we use the integration by parts result and then find that
Ko tnnenticl =[] Dve D Do D
1 4
><{<1/JC(S) - 5m) PLY (1), ¢ (] Pl (0), 66 1), Y (), o ()]}
xexpi [ dr {6ce)ut ) + Vo)t )
xexpi [ dr {evo)ude )} ei [ dr (ncmeiem)

Hence the change to the characteristic functional if p is replaced by ﬁ\flc(s)
is equivalent to then the quasi distribution functional is replaced as follows

P00 = (Vo) - gt ) Pyl D)
Thus P[i(r),ﬂ(r)] is both multiplied by ¥¢(s), the field function that the

operator \Tlc(s) is mapped onto and functionally differentiated with respect to
¥ (s), the field function thaﬁ the operator \IJTC(S) is mapped onto.
(4) If p is replaced by p \IJTC(S) then the characteristic function becomes

X[607§é7§N07§]<\F/'C] — TT(
T

UL (s) Qlec, €. Enves 5]
= Tr(pUl(s)Q

0
pUL(s) Qcléc, &l] Qne)
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using the feature that condensate operators commute with non-condensate op-
erators.
Hence from Eq.([D.9)

1

50 +
xléc, &8 éne  Efcl = Tr(p - (M

1 A ~
secm) T 2%c® QCECaé‘éJ) Qne)

Hence

S N s Bl o w0 ) PSRN

i \0&c(s)
Then using the relationship to the distribution functional we see that
1 1) 1 .
xléc, €6 Ene Efel — 7 <5§C—(s) + 555(5)) /// D*po D*¢t D*Yne D*P P[g(r)vﬂ(r)]

X expi / dr {&c ()l (r) + ve(r)él ()}

X expi / dr {Enc ()it (r)) expi / dr {xe (r)Ehe (r)}
= [[J] P*ecp*ut Dove Do PLY ). 010

<[(56) - 3572
X expi / dr {Enc (ko (r)) expi / dr {xe (r)Ehe (r)}

> expi / dr {50(1‘)1/123(1') + 1/10(1')55 (r)}]

To proceed further we use the integration by parts result and then find that
Me b évortic) — [[[f DPoe Dot Do DA

x{@é(s) TS wj(s)

X exp i / dr {&c(r)vd (v) + e (r)éd(r)}

) Pl

X expi / dr {Exo(r)ile ()} expi / dr {ne(D)Eb o ()}

Hence the change to the characteristic functional if p is replaced by p \/I\/TC(S)
is equivalent to then the quasi distribution functional is replaced as follows

PLE .60~ (026 + 50 ) O] ©2)

— 2 0tpc(s) - =
Thus P[g(r),ﬂ(r)] is both multiplied by 1/ (s), the field function that the

operator \TITC(S) is mapped onto and functionally differentiated with respect to
e (s), the field function that the operator ¥ (s) is mapped onto.
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(5) A summary of these key results is as follows:

P Telwp Pl )= (vele) + it ) P, v0)
P B P (v - 35 ) Py,
P pels) Pl ] = (vl - g5 ) P v
P P P~ () g ) Pl )

(6) If p is replaced by 8#@c(s)ﬁ then the characteristic function becomes

X[507§g7§]\/07§}\50] — Tr(a#\/ﬁc(s)ﬁﬁ[é.Cagé:v§N07§]<\F[C])
= Tr(p Qcléc, 59,V c(s) Une)

using the cyclic property of the trace and the feature that condensate operators
commute with non-condensate operators.

Hence from Eq.(D.12)

SN )
e 6 nc €l = Tr(p; ((a%fc]) +fclée, & laﬁds)) Qxc)
c I‘) r=s 2

Hence

8Qcléc, €8]

1
X[607557§NC’7§;’\_]C] — ; ((au 65;(1‘)

) +§C[§Cugg] %aué-C(S)) X[é-CuggugNCug]J’\_]C]

Appendiz D.3. Functional Derivative Rules - Non-Condensate Operators

To proceed further we need to establish some rules for functional derivatives
of operator expressions.Consider

Onclénve, &he] = expFlenc] exp HlES ]

Flene] = / drif{éne(r) o)} Hlghel = / dri{Unc(r)&fe(r)}

(1) We first establish a result for ﬁNc[ch,fj\r;c] \/I\/}ch(s) Now using the
product rule and noting that H [{?{,C] is not a functional of {n¢

Sncléne, ol
¥nc .

= lim
e—0

<expﬁ[@vc<r>+e6<r —s)] — exp Flénc(r)]

€

) €Xp ﬁ[fj\r/c]

e—0 €

. <exp{ﬁ[§Nc<r>1 +eillo(s)} - expﬁ[sm(r)]) exp HleL)
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Now we can_use the Baker-Haussdorf theorem which is that exp(A + B)
exp(A) exp( B) exp{——[A B]}, if the commutator commutes with A and B, so
with A = Fléne(r)] and B = ei\/I\f}ch(s) we have

exp{ﬁ[&vc(r)] + ei@}L\rc(S)} = exp?[&vc(r)] exp ei\/I\f}:\\,C(s)
= exp Flene(r)] {1+ e(i@he(s)}
since using Egs.(D.32} [E:318))

Flevo )], cillyo(s)] = / dril{enc(®) T o)}, Tlo ()
= 0

Hence

<M> = exp Fléc] (1T (s) exp Alec)
6€Nc r=s

But although i NC( s) does not commute With exp e can use the iden-

2

378

o
tity = expS = exp S {E — [S,5] + 719, [S,5]] — 715,15, [S,E]]] + ..} to place
the exponential on the left. Here we have § = H[fNC] nd = = z\I/}LVC( ). Using
Eqgs.(D.32, [E3I8) we have on noting that £ (r) only involves the complex

conjugates of non-condensate modes
G chitle®) = & [ dr (e, The ) o)

= —/dr(SNc(I‘,S)f?\Lfc(r)
= —{j{,c(s)

Thus we see that the series terminates after the second term giving

3 +
<6QNC(£§N07§NC]> = exp FlEne] exp HEG o {i0ho(s) + €50 ()}
Ene r=s
= Qncléne, &1{iTa(9) + &5 e(s)}
veleve el Thols) = 1 (TR

—_

Qneléne, el

1 .
Senc )r_s - ;ffx?c(s) Oncléne, E5¢]

(D.22)

NC
( e ch,éNd) _ %@Nc[@vc,gm e (s)

(2) We next establish a result for (AZNC[Q“NC,G\}C] Une(s). Similarly using
the product rule and noting that F[¢xc] is not a functional of &
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<5§Nc [Enves el )

~ ~p H et S(r — sV — exp HleT
3Exc = oxp Fléne] lim (e PHNc(r)tedlr —s)] —e pH[ch@)])

€

= exp Flénc] lim (exp{ﬁ[ff\?c(r)] + iV ne(s)} — exp ﬁ[{}dr)])

€

Using the Baker-Haussdorf theorem again but now with A = H (€4 c(r)] and
B = il yo(s) we have

exp{H[E4o(r)] + eilne(s)) = expH[EGo(r)] expeilyc(s)
exp H[G o (0)] {1+ €i¥ne(s)}

since from Eqs. (D32 [E31])
[H Ko@) ei¥nols)] = Ei/dri[{‘f’Nc(r)fﬁc(r)}v‘T’NC(S)]
=0

Hence

Mwoléne Ecl — exp Flewe] exp Hleho ()] (Txo(s)
6§Nc r=s

= Oncléve, el (Tne(s))

A ~ 0 +
Oncléve, &4l Tne(s) = l(éQNc[ﬁNc’chg (D.23)

1 551‘\",0

(3) We next establish a result for \/I\I}ch(s) Oncléne, &hc]. From above and
now using the result that Z'\I/}LVC(S) commutes with F[¢¢]

<5§Nc[§Nc, 55])

e = expFlc] (1T} (s)) exp HER ]
NC

o(s)) exp Flec] exp H[x ]
o(8) Qneléne, ]

1 Qneléne, 5;])
)

Ul (s) Qneléne, €] 5€
NC

(D.24)

(4) We next establish a result for Une(s) Qne[éne, &%) From above and
now using the result that i¥ yc(s) commutes with H[¢[]

<5QNC[§N()7 fzJ\rzc]>

St = oxp Fléne] exp HEh o (n)] (i@ no(s))
Ene

= expFlenc] (i¥nc(s)) exp H[EG ()]
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But although iV ¢ (s) does not commute with exp F[¢y¢] we can use the iden-

tity expS = = {E+[5, 5]+ %[g, 15,2+ %[é’\, (5,15, E]]]+..}exp S to place the
exponential on the right. Here we have § = F[¢y¢] and = = iUy (s). Using
Egs.(D.32] [E:318]) we have on noting that £y (r) only involves non-condensate

modes

Flével ivo(s)] = [ drlwe)The), Tcls)

/dI‘ Enc(r)one(s,r)

= +&nc(s)
Thus we see that the series terminates after the second term giving
Hence
59 N3 - - _
( NC(EZJIC W) = (i¥no(s) +&ncl(s)) exp Fléwe] exp HIES o (x)
NC r=s

(iTnc(s) + Enc(s) Aneléne, €]

~ + ~
% <5QN6‘6[€ZJ\£CH §Nc]> _ lch(s) Qncléne, Exel
§NC r=s !
(D.25)

Uno(s) Qveléne, el

Appendiz D.4. Non-Condensate Operators
(1) If 7 is replaced by ¥y (s)p then the characteristic function becomes

Xléo, &5 éne el = Tr(Enc(s)pQléc, & éneéiel)
= T’I”([/)\ﬁ[é.Cagé,‘»agNCagj\}C](I\/Nc(s))
= Tr(ﬁﬁc ﬁNC[fN& 5}\‘}0] (I}NC(S))

using the cyclic property of the trace and the feature that condensate operators
commute with non-condensate operators.

Hence from Eq.(D.23)

~ 0O +
xlée €L énve, &) = Tr(pQe 1 <5QN0[§NC,§NC]> )

i 3\
Hence

1 1)
xléo, &8 Enve, Efe) — = (m) xléc. & Ene, €]
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Then using the relationship to the distribution functional we see that

dee-&ttvetic) = 7 (5rg ) [ PP Do Dowe Dt Py o). 450

t 55\?0

xexpi [ dr {6ce)ut ) + Vo)t ()

xexpi [ dr (no)udomewi [ dr hve@elom)
=[] pve Dot Dime DUk Pl ). 3 0)

<[(ne®)expi [ dr {goids) + ve@ed m)

xexpi [ dr {Evomvfo) expi [ dr (ncele)

To proceed further we only need to place the multiplicative term 1 yc(s)
next to the quasi distribution functional itself. We then find that

xle. &8 Eve, Ee]l — /// D*¢c D*¢E D*ye D>
X{(ch(s))P[g(r),ﬂ(r)]}

X expi / dr {€c (05 (x) + e (0L ()}
X expi / dr {Enc(r)ile ()} expi / dr {ne(D)Eb o ()}

Hence the change to the characteristic functional if p is replaced by T no(s)p
is equivalent to then the quasi distribution functional is replaced as follows

P[4 (r), ¥ (r)] = (¥we(s) Py (r), ¥ (r)] (D.26)

SV -
Thus P[g(r), ﬂ(r)] is multiplied by ¥nc(s), the field function that the oper-

ator U yc(s) is mapped onto.
(2) If p is replaced by \I/}ch(s)ﬁ then the characteristic function becomes

X[&Cv&év&NCN&]‘\?C] — TT((I};VC(S)Z)\Q[&C)gé,‘»agNCag?\}C])
= TT(Z)\Q[€C775575]\/075?\}0]\1}3\]0(5))
= Tr(pQc Qvcléne, ol T ()

using the cyclic property of the trace and the feature that condensate operators
commute with non-condensate operators.

Hence from Eq.(D.22)

X[gc,gg,ch,%C] N T”(ﬁﬁc 1 <6QNC‘[§NCH§]J\FZC]

1 .
2 5§NC > ) —25;\?0(5) QNC[&NC)&]J\FIC])
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Hence

1 6
X[607557§NC’7§;’\_]C] — ; ((%TC(S) _5]—"\_]0(5)> X[507557§NC’7§;’\_]C]

Then using the relationship to the distribution functional we see that

xléo, €8 énve, &) — l <5§NLC(S) - §§C(S)> /// D*ype D*¢t D*Yne D*Yfi o P[i(r),ﬂ(r)]

7

X expi / dr {€0 (1)0d (r) + Yo (r)ed (1)}
xexpi [ dr {Evovio) expi [ dr (ncwele)
=[] pve Dot Dome DUk PLY ). 3 0)

x[(wvc(s) + ) expi / dr {Enc ()b ()} oxpi / dr {bnc(E)Ehe )]

_0
dYnc(s)
X expi / dr {&c(r)vd (r) + e (r)éd(r)}

To proceed further we use the integration by parts result we then find that

Ko tntnenticl =[] Dve D Do D
(el - 5 ) PLEEL D)

X exp i / dr {¢c (r)l/fCL (r) +vc (r)chr(r)}
xexpi [ dr{enc @i} ewi [ d hnemeicm)}

Hence the change to the characteristic functional if p is replaced by \/I\I}ch(s)ﬁ
is equivalent to then the quasi distribution functional is replaced as follows

P @ 0] = (Vo) - 5o ) Pl 021

ﬁ

Thus P[i(r), ﬂ(r)] is both multiplied by 1% (s), the field function that the

operator \TI}L\,C(S) is mapped onto and functionally differentiated with respect to
Yne(s), the field function that the operator ¥y (s) is mapped onto.
(3) If p is replaced by p ¥Uxc(s) then the characteristic function becomes

NC(S) [5075&?75]\[076}\50])

X[é-Caggachﬂgj\ch] — TT( ﬁ
c Une(s) Qneléne, el
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using the feature that condensate operators commute with non-condensate op-
erators.

Hence from Eq.(D.25)

X[&Cagé‘_agNCang’\_IC] — TT([/)\QC

1 (6ncléne. &kl
i e

) —2enc(s) nclene, Gl

Hence

X[607§é‘»7§]\707§?\}c] — l

Then using the relationship to the distribution functional we see that
deertine&icl = 1 (5eg — oxe®)) [Jf] e Do Dhove D0 PL ). 0200
ySCHSNCHSNC i 55;0(5) NC C C NC NC > 7_>

xexpi [ dr (€ n) + vo e )
xexpi [ dr (no)ude ) ewi [ dr ove@elom)
= [[J] Prec 2ot Dove Dot Pl @) 010

x[(wms) i ﬁ) expi [ dr {eno (vt} expi [ dr fncmieomH

- §N0(5)> X[607§é‘»7§]\707§?\}c]

X expi / dr {&c(r)pd (r) + Yo (r)éd (r)}

To proceed further we use the integration by parts result and then find that

los b enon€he] — /// D D2 D2 Db

x{<¢Nc<s> - L) P4 (r), 4" ()]}

5S¢k (s) ==

X exp i / dr {&c(r)vd (v) + e (r)éd(r)}
xexpi [ dr{enc@lc®}ewi [ d hnemeicm)}

Hence the change to the characteristic functional if p is replaced by ﬁ\Tl Ne(s)
is equivalent to then the quasi distribution functional is replaced as follows

P (), ¢ (2)] = (wms) L) P (1), ()] (D.28)

=075 S ohas)) =
Thus P[i(r), ﬂ(r)] is both multiplied by ¥ nc(s), the field function that the

operator ] ~e(s) is mapped onto and functionally differentiated with respect to
Yo (s), the field function that the operator \IJ}LVC(S) is mapped onto.
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(4) If p is replaced by p \TI}L\,C(S) then the characteristic function becomes

X[507557§NC7§]-\"}C] — T’l"(ﬁ@kc(s) 6[50755751\/076}\’}0])
= Tr(pfc Tho(s) veléive. )

using the feature that condensate operators commute with non-condensate op-

erators.
Hence from Eq.(D.24)

N 0 -
X[&Cagé‘»agNCagj\}C] — TT(//)\QC = <w> )

i ¥nc

Hence

s éventlel » 1 (5pamggy ) Meos € 6wl

Then using the relationship to the distribution functional we see that

deertine€icl =+ 1 (5 ) ] PPve 2ot Done D2uic Plu .0 o)
xexpi [ dr (o) +vore )
xexpi [ dr (eno)ude ) ewi [ dr hne@elom)
=[] pve Dot Dome DUk Pl ). )
<((v40(s) expi [ dr {Evomvlo) expi [ dr (newele)]
xexpi [ dr {6ce)ut) + Vet ©)

To proceed further we only need to place the multiplicative term 1% ~(s)
next to the quasi distribution functional itself. We then find that

Ve b évorhic) — [[[f DPoe Do Do D2
< (U0(8)) PL (), ()

X exp i / dr {&c(r)vd (r) + e (r)éd(r)}
xexpi [ dr{enc@lc®}ewi [ d hnemeicm)}

Hence the change to the characteristic functional if p is replaced by p \TJ}L\,C (s)
is equivalent to then the quasi distribution functional is replaced as follows

Pl ()07 (0] = (0 (5)) PL6 (), 07 (1) (D.29)
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Thus P[g(r)7 ﬂ(r)] is multiplied by ¥~ (s), the field function that the oper-

ator \TJ}L\,C(S) is mapped onto.
(5) A summary of these key results is as follows:

P Une()p PLYE), w0 - (hels)) Pl (), 07 0]
P Wholp P00 (el - 5 ) Pl )
P Pl Pl ] = (vnels) - 5 ) P, v)
P ¥e(s) Pl ¢m] = (Whe(s) Pl (), ¢ (1)

Appendiz D.5. Time Derivative
If p is replaced by g—f then

0 __~
X[607§g7§N07§}\F]C] — Tr(ap 9[507§g7§N07§]<\F[C])

0

= aTr(ﬁﬁ[{c,fé,chaffo/c])

0
= ax[607§é‘>751\707§?\}c]

Hence
Mo 66 €] > /// D) D D*ne D*Uiie Pl (), ¢ (x)]
X expi / dr {&c(r)pd (r) + Yo (r)éd (r)}
xexpi [ dr {Evomvfo) expi [ dr (ncehe)
= [[J] Proe Pt Duwe e S Pt v )
X expi / dr {&c(r)pd (r) + Yo (r)éd (r)}
xexpi [ dr {Evomvfo) expi [ dr (ncele)

Thus the change to the characteristic functional if p is replaced by g—f is equiv-
alent to then the quasi distribution functional is replaced as follows

PL (0,4 ()] = o Py (r), 02 () (D.30)

- -

Thus P| g (r), ﬂ (r)] is replaced by its time derivative.
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Appendiz D.6. Supplementary Equations

Commutation Rules and Delta Functions

[%@@@@1:0
[We(r), UL = ¢1(0)d} () + do(r)ds(x')
= d¢c(r,r) (D.31)
[Cne(), The)] = Y de(@)ep(r)
k#1,2
= dnc(r, 1) (D.32)

Field Expansions and Delta Functions

Ye(r) = ardi(r) +asge(r)  ¢h(r) = ¢i(r)af +¢3(r)ay (D.33)
dne(®) = Y akde(r)  Vhe(r) = Y si(r)af (D.34)
E#£1,2 k#£1,2

velw) = [d'sotayel) b = [ A b))
Une(r) = /dr’ dnc(r,r)ne (') ¥(r) =/dr’¢$(r’)6c(r’arID-35)
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Appendix E. - Functional Fokker-Planck Equation

In this Appendix we derive the Functional Fokker-Planck equation. We will
derive it based on the full Hamiltonian including the H; and Hy terms. This
gives the exact equation. We can then write down the corresponding FFPE
for the case of the Bogoliubov Hamiltonian (E:314) by discarding terms for the
exact FFPE - which would be needed for the stong interaction regime. For this
derivation it will be convenient to write the Hamiltonian in the form

H=Hc+ Hyo+V (E.1)
where
~ h2 - ~ ~ ~
He = / dr(%V\Ilc(r)T SVUeo(r) 4+ Ue(r) VIo(r)
+20e) o) To ()T (r) (E:2)
~ B2 . ~ ~ ~
Hye = /CZI‘(%V‘I’NC(I‘)T VUne(r) + Une(r) Ve (r)
+ 20w (@) e (@) Pne ) Tno () (E.3)

are Hamiltonians for the condensate and non-condensate. The interaction be-
tween condensate and non-condensate is written as the sum of three contribu-
tions which are linear, quadratic and cubic in the non-condensate operators

V = B+t (E.4)
Vo= /dr(%V@Nc(r)T-V\ch(r) + %V@c(r)T-V@Nc(r)
+Uno (@) V() + To(r) V()
+gUnc() o) o (r)To(r) + gPc(r) Te(r) Weo(r)Tne(r)) (E.5)
o= / dr(GU ) Unc@) Tem)Per) + STe@) o) e () Pre(r)
+29U N (r) o (r) Wne(r)Po(r)) (E.6)
Vi = / dr(g¥ne(r) Uno(r) Une(r)Veo(r) + g¥e(r) Uno(r) Une(r)Uno(r))
(E.7)

However, using the coupled generalised Gross-Pitaevskii equation we can
make the simplifications

/dr Tye(r)f {<—%v2 + V> \T/C(r)}

_QWN//drdsF(I‘,S)\T/NC(I')Jf V(s)

/dr {(_%vuv) \Tﬁc(r)}@m(r) = —QWN//drdsF*(s,r)\Tlc(r)T@Nc(s)
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to write V3 in a form

Vi, = /drxfz}vc(r)g{@g() ) }We(r //drdng $)Wne(r) Ue(s

)

n / dr B (0)g (T (1) Te (1)} T no(r) / / dr ds gF* (s, 1)8 () @ e (s)
(E.9)

We see that 171 is the sum of term 1714 which is fourth order in the field
operators and a term Vi, which is second order.

Vi = VitV (E.10)
Vu = g / dr (B0 ()T () e (0)Te(r) + g / dr (1) B (1) T () ne(r)

(E.

11)

Vie = —g//drdsF r,s)Une(r)f //drdsF* s, 1)Ue(r) U ne(s)
(E.12)

Thus we see that V is now associated only with boson-boson interaction terms.

From Eqgs. (EJ), (E2), (E3) and (E4) we see that there are a total of
seventeen distinct contributions to the Hamiltonian to be considered, ranging
from the kinetic energy contribution to the condensate Hamiltonian to an in-
teraction term between the condensate and non-condensate fields which is third
order in the non-condensate field. For the Bogoliubov Hamiltonian for which we
derive the functional Fokker-Planck equation the terms V3 and the boson-boson
interaction in the non-condensate Hamiltonian Hy¢ are discarded.

In order to avoid using too many superscripts and subscripts, in considering
each term a simplified notation will be used, which is as follows. For terms
which only involve condensate fields or only non-condensate fields we will use
Y(s) and ¢F(s) for e (s) and ¥/i(s) or Yne(s) and ¥fo(s). We will write
W((r), T (r)] or Pl(r),?(r)] (and sometimes just W or P in large expres-
sions) instead of the complete expression

Plipo(r), v (x), ¥no (), ¥e (r), ¥a(r), 08" (1), Yo (), vie ()] = Pl (v), 47 (x)

in the pure condensate and pure non-condensate cases. For the interaction be-
tween condensate and non-condensate we will write W P[¢)(r), ¥ (r), ¢(r), o7 (r)]
(and sometimes just WP in large expressions) instead of the complete expression

Plibe(r), & (x), eno(r), v (r), 05 (), v (x), ¢re (v), v ()] = Py (v), v (x)],

using (s), 1 (s) for Ye(s), 5 (s), and o(s), 6" (s) for o (s), ¥he(s) in the
expressions, since both condensate and non-condensate fields will be present
and must be distinguished. In this notation the fact that the distribution func-
tionals also depend on the complex conjugate fields 1*(s), ¥ ™*(s) and ¢*(s),
¢T*(s) has been ignored. This is because functional derivatives or functions
involving these complex conjugate fields are not involved in the derivation as a

consequence of their absence from the correspondence rules. As in
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the general notation that applies is

Y) = {Yo), v @), vner) dye ()} (E.13)

Vi) = {Ye ), 08 (1), ¥ie (), e (n)} (E.14)

P[4 (r), ¢ (r)] = Ple(r),vd (), vne(r), ¥ner), ¢a(r), 87 (1), e (r), vie ()]
(E.15)

g = {Otk, Oz;:} (E16)

g* = {a},a;"} (E.17)

Pb(gag*) = Pb(akaazaaltao‘z*) Ep[g(r)vﬂ(r)] (Elg)
At the completion of the determination of the contribution to the Fokker-Planck
equation, the original notation
P4 (r), ¥} ()] = Pl (), 6 (1), ¥ne (), Yo (r), $a(x), 67 (x), e (v) vie ()
for the distribution functional will be reintroduced.

Also, to avoid too many nested brackets we will adopt the convention that a
functional derivative will operate on everything to the right of it unless otherwise
indicated. Note that spatial derivatives do not operate on functionals, only on
functions.

The terms in the Bogoliubov Hamiltonian that we need to consider are

~ 2~ ~ ~ ~
H = /dr(%V\Iﬁc(r) -VUco(r) + \Ifé(r)V\I/c(r)
A R
+ a7 L@ TEE) To () T (r) (E.19)
The term H; is the sum of the condensate kinetic energy, condensate trap
potential energy and condensate boson-boson interaction.
~ ~ h2 ~ ~ ~ ~ ~
H2 = /dI‘(\Ich(I‘)]L {—%V2\PC(I‘) + V‘Ilc(r) + gWN\IJTC(I‘)\Ifc(I‘)\Ilc(I‘)}
h? - ~ ~ ~ ~ ~
T + o)V + DELWTL T | e
(E.20)
The term H, is the coupling between the condensate and non-condensate fields
that is linear in the non-condensate field. It can be put into different forms not
involving the spatial derivatives. Thus
Hy = Hyys+ Hao (E.21
Has = 55 [ dr (Whe@ V) o) Pe@) + 55 [ dr (TL@)TL ) o) Tye(r)
(E.22
Hyyy = —QWN //drds F(r,s)Une(r) Ua(s) — gWN //drds F*(s,1)Uc(r) U ye(s
(E.23
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B2 ~ ~ ~
Hy = / dr{—mV\IJ}r\,C(r)-V\IJNc(r)—l-\I/}‘VC(r)V\I/Nc(r)}

+ 23 [ ar { W@ e @TomTer) + BL 0L TncTne |
+ﬁ dr{4%0@)@3@)@%@)@0@)} (E.24)
Appendiz E.1. Condensate Kinetic Energy Terms
We write the kinetic energy as
2 - -
=5 Zﬂ:/dsaﬂqf(sﬁaﬂxp(s) (E.25)
Now if
PO s = SN
- Tp=5— ;/ds(aulll(sﬁ 9,(s))p (E.26)
then
[w( ), U (r)]
(s) — 1 ] 1 0 >} n
Z/dSK“‘” s (90 + 30 )} Wi
(E.27)

After expanding we find that
W(r), " (r)]
- ;—m > / ds { (9,07 (s)) (9u10(s)) } Wb, ¢

5 o (g s
i = [ 53 { (i) a0 Wi
Z/ i (i) (v ) e

Now the standard approach to space integration gives the result

(E.28)

/ ds {9,C(s)} =0 (E.29)
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for functions C(s) that become zero on the boundary. This then leads to the
useful result involving product functions C(s) = A(s)B(s) enabling the spatial
derivative to be applied to either A(s) or B(s)

/ ds {9, A(s) } B(s) = — / ds A(s) {9, B(s) } (E.30)

We can assume that the 1(s) and " (s) become zero on the boundary, since
they both involve condensate mode functions or their conjugates that are lo-
calised due to the trap potential. Also the functional derivatives produce linear
combinations of either the condensate mode functions or their conjugates (see
(B:87), (B.92)) so the various C(s) that will be involved should become zero on
the boundary.

For the first term, the product of the spatial functions can be written in
opposite order so that

/ds { (au‘/’Jr(S)) (8fﬂ/’(s))} W, v
_ / ds {(9,4(5)) (9,0 () } Wb, 0% (E.31)

We can then use (E.30) together with the explicit forms (E.3T5H) for the
functional derivatives and their spatial derivatives to modify the terms in the
new Wy, ¢T], which is equivalent to the function w(ay, o) if ¥(s) and ¢ (s)

are expanded in terms of modes ¢y (s) or ¢} (s), as in (E310) and (E:317) with
expansion coefficients oy, and af.

In the second term, the spatial derivative of the functional derivative can be
removed and applied to the spatial function

[as{ @) (055 ) i
= [as Y tasiieNat Y (0,05 gpulon.a)

k=1,2 1=1,2 1
0

= [ S 1GoiNal 3 o)) 5 ulanal)
k=1,2 1=1,2 l

- / ds{(a§¢+<s>) ( wf(s))}ww,wﬂ

Applying the product rule (E2319) to the product of (821/)*(5)) with the distri-

(E.32)
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bution functional gives

(20 (s)) (M)%(S)W[w,w*])

_ g 2.+ (s _ g 20+ (s
— (55 @) WD) - (555 @) ) Wisw)
5 oo
— (5 @) Wl oD - (o) W o]
(E.33)
using
( O (@2 (s) ) S () 3 {0201(8)}at
op* () 1=1,2 l k=1,2 o *
= > {en(s)Homei(s)}
k=1,2
= we(s) (E.34)

Note that the function we(s) just defined only depends on condensate mode
functions. Thus the second term becomes

Jas{ @t @) (057 ) i)

= [t @) e+ [ dsacs) Wi

(E.35)
In the third term
[as { (a#%()) (am(s))} W, 4]
- / ds 3" {0,6%(s) Z ar{9uu(s) (e, of )
k=1,2 1:1,2
- / ds 3" {¢i(s) z ar{]61(s) (o, o)
k=1,2 k= 1,2
- - [e{(55) (azws))} Wi, 9] (E.36)

For the fourth term, the double functional derivative term can be written in
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the opposite order

[={(05mm) (‘9“61/;5( ))} Wi, W

/ ds > {0.0i(s) Z {0u¢1(8)} == w(ax, ay)

k=1,2

/ ds 3" {9uu(s) 8 ot 2 (Du0h(8)} 5 —wlon, o)

1=1,2 lk12

- [e{(emg) (o 5w5<s>)} W] 0

Using results (E31)), (E39), (E38) and (E31) we find that
Wp(r), ¢ (r)]
h? *( +
= —Z/ds 0,0(9)) (B (9)) } W, 6]

Z/ {WS) 820 (s) } [, 9]
+—z/ds {we(s)) Wip, v+

L o (st o

—zh—mz/ wi{ (i) (o) 7o) @3

o~ 2 o~ ~
Pl =5 Y [ dsp0,8(9) 0,8(s) (E39)

Now if

then

W (r), ™" (r)]

£ (- ) (o e

(E.40)
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After expanding we find that
Wp(r), s (r)]
h? + +
= —Z/ds 0,0(®)) (0,67 ()} W[, ]

+—Z/ ; { 9 Oz ) f 1o
5 ft{ () o

Z/ds {< H >) ( %(S(S))}W[w,wﬂ

(E.41)

Applying the same approach as above we find that the second term becomes

@) (B ) Wl ut)
Je{owen (o555

— / {&/}‘S(S) (924 (s ))} [w,w+]+/ds {we(s) } W, o]
(E.42)

and the third term is given by

[ s{ (a5 ) @) bt

. / ds{<w+(s)) (agw(s))} W, ot (E.43)

Using results (E.42)) and (E.43]) and using the result obtained from integra-
tion by parts

[ dstctsry = [ dstwets) (E.44)
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we find that
Wi (r), 3™ (r)]
h2
5 a3 [ s (@) (@)} Wi

o> [asg {5 @) bwivv)

+2h_mz / dsg {we(s)} W, ]
+%;/d > { (7)) oo pwivns

2 [ #i{ () (o) e

(E.45)
We now combine the contributions so that when
— [T, = Z/dsa\y . U(s)), 7] (E.46)
then

Wp(r), " (r)] — W (E.47)

where

W= /ds{&/j(s) <Z;—m U ))) [v w*]}
. ds{ s (Z 2 g >> g M}

(E.48)

where the (we(s)), the (9,1(s)) (9,47 (s)) and the (aﬂ&%(s)) (aﬂ%) terms
cancel and the first order functional derivative terms combine to remove the %
factors. Thus only a first order functional derivative term occurs.

Overall, the contribution to the functional Fokker-Planck equation from the
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kinetic energy term is given by
9]
(gwivv])
=i J B2,
= {—/ds {m <¥ %3M7/1+(S)> W[‘/’ﬂ/’ﬂ}}

—i 8 R
+— {—l—/ds {W(s) (Z %aﬂ)(s)) WWJ,W])}} (E.49)

m

Reverting to the original notation, the contribution to the functional Fokker-
Planck equation from the kinetic energy term is given by

(FPm e

-

)
RITANR S

(E.50)
Appendiz E.2. Condensate Trap Potential Terms
We write the trap potential as
V= /ds(\if(s)w\y(s)) (E.51)
Now if
p—Vp= /ds(@(s)fv\y(s))ﬁ (E.52)
then
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After expanding we find that

W (r), ¢ (r)]
=+ [aspreve) }Ww ¥]
+ [ s {W(s g VI
ds% { . j(s } W, ]
- [ i e e

(E.54)

We can now use the product rule for functional derivatives (E.319)) together
with (E.:320) and (E.321)) to place all the derivatives on the left of the expression
and obtain

(E.55)

Details are
T2

T (T Y EW)

- {M%(S) +<s>}v<s>w+w+<s>v<s>{w%(s)

= OO + OV 5 W)
w+<s>v<s>{w%()ww,w+l}

W}

= 5¢+( ){W( )V ()W, o]} = dc(s, )V (s)W [y, ¢

Now if
p—pV = / dsp¥(s)TVU(s) (E.56)
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then

P(r), v (r)

]
- Jolon k) o S
(E.57)
After expanding we have
[¢(r), W( )]
= / as{($)V(8)0™ (8) W, ]
AT
- [asy {5t v Wi
- [ o3 {mrmv e e
(E.58)

We can now use the product rule for functional derivatives (E.319) together

with (E:320) and (E:327)) to place all the derivatives on the left of the expression.
However the results can more easily be obtained by noticing that the pV is the
same as the Vp if we interchange v(s) and ¢ (s) everywhere. Hence

W (r), 6 (1))
5 / ds {Y(E)V ()t (s) Ww,pt] T

{¥(s)V(s)} — dc (s, S)V(s)} W, vt]  T22,T21

(=9}

_|_
—

U

n

)
s\

- [ass st ver e w1

et rm oL LU
(E.59)

‘We now combine the contributions so that when
P V7= ([ ds U V©)T(6).7) (E.60)
then

Wp(r), T (r)] = W+ Wt + w2 (E.61)
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where the terms are listed via the order of derivatives that occur
WO
[ s @V} Wik wt - [ ds {os)V )06} Wik o

+ [[dsy (=ocls V) Wl o] - [ dsg (~oc(s.8)VE) W o

(E.62)

1 0
e Ve [l - [asg{ s weven e

]

Ve wiswt+ [ sy { vt e) [l

e Wi+ [a{ ot ovewte e
(E.63)

i A o o) LR K M or I R
=0

(E.64)

Overall, the contribution to the functional Fokker-Planck equation from the
trap potential term is given by

(W)

= - [ {sasvesen e+ [a{2overe e
(E.65)

which only involves first order functional derivatives.
Reverting to the original notation, the contribution to the functional Fokker-
Planck equation from the trap potential term is given by

(P e.w;01)

o B e P O SO RN

v ([ { 5t vemee iy}
(E.66)
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Appendiz E.3. Condensate Boson-Boson Interaction Terms

We write the boson-boson interaction potential as

Now if

(E.69)
After expanding we get
W (). ()
5 4 [astereureueue i+ § [ag{ot e et v

+5 [y (o omrgra W e (v oot v
4 [asg{ur s isveue fw -2 [ast foro et w

4 [ v onmarae e} v -1 e Onm e )
4 [yl oweue fw -4 [ast{ L ovroue i b

-4 [ e mm Omr ol v -3 e e O Y
+4 [ei{mmmar @+ 4 [ e mommOm

4 | e mmmmaa )V 5 [ enl menm ) Y

(E.70)

We can now use the product rule for functional derivatives (E.319) together
with (E.:320) and (E.321)) to place all the derivatives on the left of the expression
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and obtain
Wip(r), " (r)]
o 8 [as{uteut eueeE w11

+

+
o
n

/3
+4 [asy {8 v 60 s)ts) ~ Wols. )0 Suls) [ T2 T
—i—%/dsi {Wf(s) wf(S)W(s)W(s) - &/}%(S)zxéc(s,s)w*(s) +25K(0)2}W T43,T42,T41
8 [y {5 e 13
—g/dsi {&f(s) Mf(s)w(sw(s) - %@50(5,5)“5)} W T62,T61
-2 [ as { . f@ . wf(s)ws)w( ) - %@50(5,%(5)} W TT2, 7T
-5 [ asg {&f(s) I EIACE %(S)M%(S)zws,s)} W eI
-8 a3 {spgvr e w1
—g/dsi {51;(5) 5¢f(s)w+(s)w(s) - %(5)50(5,5)1#(5)} W T10.2,710.1
—g/dsi {&f(s) 5¢i(s)‘/’+(sw( )— %@50(5,5)“5)}%/ T11.2,T11.1
—g/ds% {&f(s) (Mf(s) ME(S)W(S) - %(S)M%(S)%C(s,s)}w T12.2,T12.1
ot
o [ el mmmmmrgrefy
o [ s {mammmare)y 1o

] / 1( 5 5 5 3

50() 50(3) 507 (3) 507 (3) } weTe

—_
D

(E.71)

Details include
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T2

- 1

L + S + S S
S O v

5
39t (s) 39t (s)
5 5

+¢+(S)¢+(S){W¢(S)}W + 9T (s)9 " (s)v(s){ 0T s)

YT (s) b (s)W

()T ()b ()W + ¥ (s){

W}

= {0c(s,8)} T () (s)W + ¥ (s){dc(s, s) }b(s)W

0 6 (s g W)

= 2ocl 5 SO+ 0 0 ) W)
T(s)y T (s)y(s 0 +
0 0 OV e Wl o)
— G O S I ) — 20l 9 () Wb
6 + S + S S
st O W)
) 1)
(G G O + i () (ShsW)
T (N )
So (5.0 SIS + 0 (el W) + 6 ()07 ()5 L vV
0O O G VW)

(M%(S){W(S)W(SW(S)WW, U]} = 20c(s,s)y (s)v(s) W, v7]
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Tb
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5T 07 (E)
1) 1)
() ({61/1*(5)
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T ) [ ] S g e Y ST} P
) ) e T
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e s )
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0 5
= 5ot T ENEREI + v O i)W
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O e
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After expanding we obtain

W), o (o)

= 4 [astueueet et e+ 4 [ g {ueuen e
+4 [ s} {w( st W i {uwues st
4 [asfoostgrrerew -1 [al fuetoreis
B e e oA M R (O v el A
-5 [ {mrare e -4 fag{giguent g v
5 [l @mm e -5 [ e e O mm e Y
w5/ dsi{swfww o epwf [l srmae Onm
5/ ds%{zswf(s) 507 (s } +3 ] {wf(s) S T

We can now use the product rule for functional derivatives (E:319) together
with (E.320) and (E:321)) to place all the derivatives on the left of the expression.

However the results can more easily be obtained by noticing that the ﬁl? is the
same as the Up if we interchange 9 (s) and T (s) everywhere. Hence
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Wp(r), v (r)]
N g/ds{¢s¢(sw+(s )} w Tl

-

5
+ /ds% {&b(s (s) 25c(s,s)¢(s)¢+(s)} W 722,721
5
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b 5
et Lt 1
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*i/“é{wﬁ L 5w®¢“ﬂ}w e
g 1 1) 0
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9 ] ) 1)
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(E.75)

We now combine the contributions so that when

P (0.7 = (4 [ ds 0(s)10(5)1 )

)
=
J
2

then
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W(r), ()] = WO+ W+ W2+ W3 + W
(E.77)
where the terms are listed via the order of derivatives that occur
WO
- g/ds{w+s Wt (s)(s)y s}W—g/ds{z/J () (s)yT(s)} W
2 /ds {=26¢(s,s)yT(s)y(s)} W — —/ds§ {=26c(s,s)v(s)yT(s)} W
2 /ds {=206¢(s,s)y " (s)y(s)} W — —/ds% {=26c(s,s)v(s)yT(s)} W

+§/dSZ {+26c(s,8)*} W — E/dsz {+26c(s,8)*} W

=0
(E.78)

Wl

=+ [asp {2t onteue w2 [at{ D veuene)
W [ast{ ot owtene w2 [ull S o)
+g/dsi {_5 f(s)45c(s syt (s) L — g/dsi{ %(S)Mc(s,sws)
_g / ds% { 5 w‘s(s) w(sm(s)w(s)} W+ g ds% { 5 wi (S)¢(s)w+(s)¢*(s)
-5 sy {mmpeen jw g [y {-grigpessn o)
-5 [asy e+ [si{-grigpeeent @] w
-5 [asg { g enene }w§ [isg {grrguiant ot o fw
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(E.79)
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(E.82)

Overall, the contribution to the functional Fokker-Planck equation from the
boson-boson interaction is given by

( Wie'])
o [ 55 (0 61006 ~ dcls.)(s)) Wb, 71|

+g [ s wf( {0 E006) - o507 ()} Wb, 71}

1 9 ] 4]
’ / 1 P T 757 (ot o1}

—i 5 5 5
7{ / ds46¢+< ) 50+ (s) w(s){W(S)}WW,w*]}

> 1
r—’Hr—’Hr—’H

(E.83)

which involves first order and third order functional derivatives. We have re-
placed 05 (0) by its full form Jx(s,s).
Reverting to the original notation we have

<%P[g(r),ﬂ(r)1>U

= e [ (e - dets.s)ve®) Pl . v}
+ {4 dsﬁ (W (s)vc(s) — belo, 9w (s)} PL ). 0]
—1 ) ) *
o [ e >a¢c< LRCIUCERD)
—i 1) 1)
i) 50&(5) 30E(5) o TP ;0
(E.84)
Appendiz E.4. Non-Condensate Kinetic Energy Terms
We write the kinetic energy as
T = % Z/ds (’“)H\TJ(S)T (’“)H\T!(s) (E.85)
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Now if

P To= Y [ @80 9,560 (5.56)
then ’
Ply(e. )
Z/ds {0070 - 57 ) @uto) } Plo.
(E.87)
After expanding we find that
Pl (). v (1)
- h—2 Z / ds { (0,97 (5)) (Outi(s)) } Pleo, v]
g 2 [ o5 (i) @uvton | P
(E.88)

For the first term, the product of the spatial functions can be written in
opposite order so that

[ ds 1@ ) @uvton) Pl o)
= [ i (@) (00 ()} Plov ] (E59)

We can use (E.30) together with the explicit forms (E.318) and for the func-
tional derivatives to modify the terms in the new P[t, ], which is equivalent
to the function p(ag,a;) if ¢(s) and ¢ 7(s) are expanded in terms of modes

¢K(s) or ¢i(s), as in (E316) and (E331T) with expansion coefficients oy, and o
In the second term we use (E.30) to apply the spatial derivative to the 1 (s)

factor
/ ds { (aH%) (a,m(s))} Pl 4]

K
- /ds Z {8,0%(s) Z a{Oudu(s)kp(ak, o)
k#1,2 LRI
K
_ / ds Z (616} - S w{@26u(s)hp(ow, of)
k#1,2 LI
- - [{(ww >> (©2016) } Pl (40
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Using results (E.89) and (E.9Q) we find that
Ply(r), v (r)]
h2
TP / ds {(9(s)) (O™ (s)) } Pl "]

+% zﬂ: / ds { (%) (029(s)) } Py, Y] (E.91)

Now if o - -
P = 5> [ ds(@,0(5)' 0, 5(s) (E:92)
then ’
PLyE) 0]
Z [as{(0:00) - 050 ) @ o) | Plv ]
(E.93)

After expanding we find that
Pl(r), ¢ ()]
h2 N N
g 2 [ e 00016 (0790} P
Z/ds{( H51/)+ ) (au¢+(s))}P[¢a¢+]
(E.94)

Applying the same approach as before the second term is given by

/ ds { <‘9“6w+<s)> CR0) } Py, 4]

_ —/ds { (51/;%(5)) (agw(s))}P[w,w] (E.95)

Using the result (E.95) we find that
Pli(r), " (r)]
52 + +
g [ s {(@u0() @ )} Pl v

Z Jas{ (55 ) @ere) Pl @)
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‘We now combine the contributions so that when

P (1.7 =5 Y [ 0,80 8,5(6).7) (E.97)
then
Plp(r), 9" (r)] — P! (E.98)
where

(E.99)

where the (9,1(s)) (0,47 (s)) terms cancel. Thus only a first order functional
derivative term occurs.

Overall, the contribution to the functional Fokker-Planck equation from the
kinetic energy term is given by

(rrwv1)

- = {— [ s {(w%m (Z %aﬁ*(s)) Pw,w}}

m

—q ) h?
ol (5 B o)

(E.100)

Reverting to the original notation, the contribution to the functional Fokker-
Planck equation from the non-condensate kinetic energy term is given by

(FPL e
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Appendiz E.5. Non-Condensate Trap Potential Terms
We write the trap potential as

- / ds(B(s) VT (s)) (E.102)

Now if
p—Vp= /ds(@(sﬂv\if(s))ﬁ (E.103)
then
P(r), ™ (r)]
o Jas{(v0) - 5 ) Ve o) | Pl

505)
(E.104)
After expanding we find that
(), 6+ (1)
- / s (w0 )} Plowt] - [ das{ v} Pt
(E.105)
where we have re-ordered the 1T (s)V (s)i(s) factor in the first term.
o p—pV = / dsp¥ (s) VU (s) (E.106)
then
), 6 (1)
E / is ( it ) V() Pl
(E.107)
After expanding we have
[ (x), 6+ (1)
= / (V0 )Pl - [as{ 5Vt s) | Pl o]
(E.108)
‘We now combine the contributions so that when
P 7.5 = [ ds 56V (5)06).7 (E.109)

then
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Pl(r),v"(r)] —» P! (E.110)
which only involves a first order derivative since the zero order terms cancel.
pl
— — [a{s e} v+ [as{ v} P
50(5) )
(E.111)

Overall, the contribution to the functional Fokker-Planck equation from the
trap potential term is given by

(5rw01)

_.%{_/@{Eﬁgnuw@n}muwﬂ+/%{ﬁé@VSWWS}waW}

which only involves first order functional derivatives.
Reverting to the original notation, the contribution to the functional Fokker-
Planck equation from the non-condensate trap potential term is given by

(FPLe- e

=05
- - [t vewmen | Py, e}
2 ds{mwswc@}P[g(w,ﬂ(r)]} (B113)

Appendiz E.6. Non-Condensate Boson-Boson Interaction Terms

For the Bogoliubov Hamiltonian for which we derive the functional Fokker-
Planck equation this boson-boson interaction in the non-condensate Hamilto-
nian Hy¢ is discarded, but for completeness we treat it here. We write the
boson-boson interaction potential as

ﬁ:%/@@ﬂ@@@@@@

(E.114)

Now if

(E.115)
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Pl(r), ¢ (r)]
> 5 (WS) - 5&5)) (w*<s> - %) (¥(5)) ((5)) Pl 0]
= % / ds {yF ()™ (s)y(s)¥(s) } Py, v

+4 [ vene P

2 d1p(s)
2 [ {_ﬁs)ws)w(sw(s)} Pl o]

+2 / ds{ : j(S) 5 j(s)@b(s)w(s)} Py, p*]

(E.116)
After expanding we get
Pt @] = 4 [ds{ut©ut e} Plov’)
-8 [as{ur o5 uene P

d1p(s)

g 5
__/ds{ w<s>w+(sw<s>w(s) Pl 7]

(9]

(E.117)

We can now use the product rule for functional derivatives (E.319)) together
with (E.:320) and (E.321)) to place all the derivatives on the left of the expression
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and obtain

Pl(r), " (r)]
R /ds{w ()¢ ()47 ()} Pl vt

e
+g/ds{55( 596) S)}WW+

where we have also rearranged the order of the factors in ¢ (s)y+(s)y(s)y(s).
Details include

(E.118)

T2
s N P)
= 6 + s)(s (s 0 s)(s
- ¢+<s>{%(s)¢<sw<sﬂ?}
0 Mg SO PI )
1)
— SO P
Now if
P 0 =4 [ dsplis) B(6) U)T(s)

(E.119)
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then

Kl
8 [as{ost v eute P
7l

—ws)ws)} Pl o]
(E.120)

After expanding we obtain

Plp(r), 9" (r)] —

s {Y(8)u(s)y™ (s)v (s)} P, 9]

[NJSY
—
=N

-4 [ {ue) im0 0 ) Plo
-4 [as{ S o) Pl
4 [as{ Lt} Pl

(E.121)

We can now use the product rule for functional derivatives (E.319)) together
with (E:320) and (E:327)) to place all the derivatives on the left of the expression.
However the results can more easily be obtained by noticing that the ﬁﬁ is the
same as the Up if we interchange v (s) and ¢ (s) everywhere. Hence

170



P[p(r), ¢ (r)]
- g/ ds {¥(s)y ()0 ()0 (s)} P, 7]

4 [as{ vt ot @) Pl

-8 [as{ s v o) Pt

o g
o [ {rmmrme @y @ e

- %/ ds {4 (s)u(s)v ()0 (s)} P, v7]

o [ {5t uet et o) | Pl ]

1) 1)
o4 [as{ st e ) Pl

‘We now combine the contributions so that when

- [0.7=12 / ds (s) 10 (5) B (s) (5), 7

then

Ply(r),v*(x)] — P* + P*

where the terms are listed via the order of derivatives that occur
Pl

— / ds{ wf(s)wws)w(sw(s)} Pl ]

o [ ds{ vt o) | Pl o]

1) 1)
s { 507 (s) 507 (s)

/ 56 (5) | Pl
[as{ st mms v b P
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(E.123)

(E.124)

(E.125)

(E.126)



Overall, the contribution to the functional Fokker-Planck equation from the
boson-boson interaction is given by

(57 w*])

= oo facts <s>w<s>}w<s>}P[w,w+]}
+h{ dsw(){w*(w }Pw+}
v {8 [ a5 ()w() 1.}

) 6
—if g 6 + (g \at +
+ {3 [ as U (S ()} Pl
T [ st S OO Pl )
(E.127)
which involves first order and second order functional derivatives.
Reverting to the original notation the contribution to the functional Fokker-

Planck equation from the non-condensate boson-boson interaction term is given
by

0 {wfvc(s)wzvc(s))w;c(s)} Pl (o) w*<r>1}

5 *
. / pa— o - : (e (s)me ()} Pl ), v}
i}

(E.128)

{5 1Z)Nc( J¥ne($)}PY (x),

15

/ 51/1Nc )WNC()

Note that this term is not included in the final functional Fokker-Planck equation
for the Bogoliubov Hamiltonian.

Similar expressions for the functional Fokker-Planck equation in the case of
a pure P representation (but not involving a doubled phase space) are given in
the paper by Steel et al [|55]] (see Eq. (17)). Comparisons can be made by
substituting wj\r,c(s) with ¢y (s). As in the present result, no restricted delta
function d¢(s,s) term in the interaction contribution appears in a P represen-
tation approach.
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Appendiz E.7. Condensate - Non-Condensate Interaction - First Order in Non-
Condensate

The first order term in the interaction between the condensate and the non-
condensate is

V, = g/dr@jvc(r){@c( ) Ue(r)} We(r //drdsF r,s)Une(r) Ueo(s)

+g/dr@g(r){@fc( ) Ue () W ne(r) //drdsF* s, 1)U (r) Uyne(s)
(E.129)

This is the sum of two terms, one fourth order in the field operators, the
other second order.

~

1714 = g/dr \TJ}LVC(r)\TJTC(r) \I/c(r)\flc(r)—i—g/dr\/l\fé(r)@Tc(r) ‘/I\’C(r)‘/f’NC(r)
(E.130)

1712 = —g//drdsFrs\Ich //drdsF sr\Ifc )T\IINC()
(E.131)

Appendiz E.7.1. Fourth Order Term
Now if

P V=g [ ds(@hc@®TLE) Tels)Te(s) + Th(s)PL(s) To®)Tne(s)p

then
), %7 (r), o(r), ¢+ (r)]

WP[y(r
— g/ds<
(v6s

1 5
259 (s)

)
o[ (00 35) (0 sww) (404 35)
< (9(8) WP, v, 6,6°]

X )+ =

Expanding out the terms gives

WP[Y(r), 4" (r),¢(r), 6" (r)]
= WP(r), ¢ (r),¢(r), ¢ (r)]1-16 + WP[(r), " (r), ¢(r), ¢ (r)]17-24
(E.134)
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can be simplified in terms of placing all the functional deriva-

he left by using the product rule (E319) together with (E320) and
r functional differentiation and noting that many functional deriva-
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or the T8 term
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WP(r), v (r), fb( )¢ " (07—
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(E.138)

Collecting terms with the same order of functional derivatives we have

WP[p(r), v (r), o(r), o™ (r)]
— WP+ WP'+WP?2+WP+WP*
(E.139)
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where we have used upper subscripts for the 1714ﬁ contributions and
wP°
g [ ds (ot (©uEuE WP
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(E.140)
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(E.146)
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Again we use the product rule (E319) together with (E.320) and (E.321) to

on the left.
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all the functional deriva
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For the §22T14 term
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Collecting terms with the same order of functional derivatives we have
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Thus we see that the 1714 term produces functional derivatives of orders

one, two, three and four. We may write the contributions to the functional
Fokker-Planck equation in the form
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riginal notation we have

Reverting to the o

— —N o
[ = — = 1
) =) O —— 2
& = = = ErE == o i d
= 7 s = 22 1 E OO
Tpo—— o &R = 0z = = ==
—~ = = =l i \ Mﬁ Mﬁ = = =T Wﬁ
2 = L 0z = = =~ & = 3 &5 &
O ~ ~— g — — A N
v —— n —— n n — — — — ] QO
w iy ) -~ w 2 ¢C +¢C @ @ = =
~ ) ~— \S/ ~— ~— -~ S7 \mu/ —
SRR S 2 = I X T i
_ _ += +0 0 = =
N ) O +D R N i N N N
S +0 = = o~ —~ — —~ —~ —~
= B = ¢C = = n n 0 n 0 n
2 0L s 5 =2 2 o]0 | 0w|0 w|0w|T w0
0 = o = 1D Q Z, += 2 +2 z =
s s L = = =S I~ = s~ b~ =
= = = = = N~ N N N -
BN OB IO ORE CONS < < O O OB OER RN O
— SO 4L R |+ | D C.\O NvO.TN ™ SO | O PHLD | D | D W HD
VRN = = = = = = PR = = = = = =
— S S Y S S S — Y S S Y Y Y
=T = S S SN > S BT = SN S S S >
. + + I I I + a I + + I + I
e e e e e I S e N e e e i e
A.O _m e e e e e e nd _ﬁl.m e e e e e e
 Tl= Tl Tl Tle T Tle Tl T Tle Tle Tle Te

209



— o
— = r~
= = -
— T e R oy 518
(((((( = =
BT %t ) ) ¢e( =4 = «
T E T 0 & & o = TEZ
N 2z )
S S S S = <8 T
Ay A R~ A Ay Ay 1JJ8 — 100 = =
— A N A S — et Ra) *_
A R _—~T 5 @
S O tD O O 1O 2 .|l = g
+2 = > = = = w | O +2 =
= D I A =N | z, = 2z <
I —~ — — = o ¥ .
RGN D o n 0 N S )
Z BT LT lT [T = |z £ s
~ — Lo S S 0 —
|0 W+ Z, +Z Z, +Z 2 o v — +
= = = = = = w | O = —
B S o o B B = S — =
~— N N N N . 3
e Y N Y N N ~ | C
=z |2 |2 = = |= == ® =
CHLU | D PHO | D ©| D W |+0 N O %
> = > = > > w |+0 = (A g
S > S > S > N S g it ~
~— N~ N N~ N S N 5 = <
RN R R ~ &~ 5 —
—~ —~ — —~ — —~ PN — “ n
(S\ /nhu\ (S\ /nhu\ (S\ ~— ) n O N /m
o0 R | D PHL | D O L e | D > |8 w|T T = =
/~ > = > = = = TN W 4D = Q %) =
b B Y B Y Y B — By 5 L =
I S N N N g N = BN ;m = 5
*\ﬁ{{{{{{ *\_/(, 7 S F =
= " = e, S 0 wn
— S = = = = S = n S w0 = =
C R =2 - 5 —
L - - oy Y — o~
SN .
nd. Q = I 8 [N o= QU
Tl T Tle Tl Tk Tk = Tl T 25 _ S
S o2 =
Il I & o T
<t = (L

(E.175)

210



where we write AV (s,u) = —gF(s,u) for short, then

WP[)(r), v (r), ¢(r), ¢ (r)]

o) v (s
]

//dsdu{<1/)+ —%m) V(u,s)* (¢(u ))} WP, ¢,¢7]
(E.176)

Expanding we get

P[ip(r), 9" (r), ¢(r), ¢ (r)]
—>//dsdu {(¢7(s)) AV (s,u) (¥(u))} WP, ", 6,67

] fom{oraven () oot

)AV (s,u) w(u))} WP, 4, ¢, 6]

u( e )}Wwa+¢¢>+]

¢ (s) )
(

(E.177)
The first term is
//dsdu {(6"(s)) AV (s, u) (¥(u))} WP, 0", 6,67
//dsdu ) AV(s,u) (6+(s))} WP, 9+, 6, 6]
(E.178)

Using the product rule and the second term becomes
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The third term is

//dsdu{( " )AVs W) ((u ))} WP, ", 6, 67]

//dsdu{(w‘is) (AV(s,u)(u ))} WP, 0", 6, 6*]

(E.180)

Using the result that the functional derivatives can be performed in either
order the fourth term is

//dsdul{( 0 ) >(w+‘(w)}WP[w,w+,¢,¢+]
- ] o) () v o

(E.181)

Combining these results we find that

WP[y(r), 4" (r),¢(r), 6" (r)]
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2
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(E.182)
Now if
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then
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2 51(s)
(E.184)
Expanding out gives

[¥(x), 7 (x), ¢(x
(

— //dsdu (¥(u))
ses

//dsdu{ (u)) AV (u,s)* (v (s))} WP, v", ¢,¢"]

of [

//dsdu{ = )AVus )}WP[wWWﬁ*]
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Using a similar approach to that above we find that
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(E.185)
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Now if

p— [Via, 7l
1 [ dsdu (e (s) AV, Fo(w) + (o) AV(ws) xc(w). 7
(E.186)
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Thus we see that the 1712 term produces functional derivatives of orders
one and two. We may write the contributions to the functional Fokker-Planck

equation in the form

0
<EWP[1/}5 1/}+7 (bv ¢+]>

V12

0 0
- <§WP[¢,¢+,¢, ¢>+]> + (atWP[w v, w)
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(E.189)

where
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) () deven e
: (

) GAV@S T WPl 067}
(E.191)

For the single condensate mode case the result is simpler and can be obtained
via the substitution AV (s,u) = AV (s)é(u—s) with AV (s) = —g <\TJC(S)T\TIC(S)>
and is given by

9 1
9 o gt
(Gwrwwt.o.6m)
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(E.192)

) () o} wris )
) GOV wPb.ut.6.0]
(E.193)

Reverting to the original notation and replacing AV (s,u) = —gF(s,u) we
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have for the two mode condensate case
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We can show using the special form of F(r,s) for a single mode condensate,
that the Fokker-Planck equation terms for Vi, can be obtained from the two
mode case. We have

Fr;s) = (N = 1)¢1(r)¢1(r)or(r) 97 (s) (E.198)

we can use the forms (E-310) for the functional derivatives involving the expan-
sion coeflicients
) 0 0 0

e - e e e

5 N 5 P
Snels) Z%(S)({?T% 5%@0(5):2%(5)@

k#1 k#1
P[4 (x). 4 (x)]

Py(a, o) (E.199)

to show that this is the case.
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that

Considering the first order functional derivative terms we see
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which is the same as the single mode condensate result. We have used the
results

[ duorwisita) = [ dsons)eis) =
in the first and second terms and
[sansrvie) = af
[usityve = a
in the third and fourth terms, changed dummies of integration and recalled the

notation <\ffc(s)T\/I\fc(s)> = (N —1)|¢1(s)]>.
For the second order functional derivative terms

(57 [g@ﬂ(r)})iu

_ —Z{+g//dsdu {Gitm) o) trsn } pluo. vz}
{ )

1)
(55e) <6¢J+Vi<u>> (R )} Pl 0

- 3 {+g/dsl {<6w§<s>>

0
(572 ) ((Fe@ )} Pluw.v o}
)

3 {0 ) o3 {(ew) () WFew tew | Py s} (5.201)

which is the same as the single condensate result. Again the results [ du¢;(u)¢i(u) = [ds¢i(s)oi(s) =1
are used.
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Appendiz E.8. Condensate - Non-Condensate Interaction - Second Order in
Non-Condensate

The second order term in the interaction between the condensate and the
non-condensate is

172 = g /ds{\/I\ch(s)T\/I\ch(s)T\/I\fc(s)\/I\fc(s) + @C(S)T@C(S)T@Nc(s)\ff]vc(s)
H4U N (8) W (8) U pe (s) T e(s))
(E.202)
This term is due to the boson-boson interaction.
Now if
po— Vap
- ! /ds(\ch(s)T@Nc(s)quc(s)@c(s) + T (8) T () Tne(s)Tno(s)p
+g ds(40 e (s) e (s) U e (s)Te(s)p
(E.203)
then
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(E.204)

Expanding gives

WP[p(r), v (r), ¢(r), ¢ ()]
= WP[Q/% ¢+7 (ba ¢+]1—16 + WP[Q/% 2/1+7 (ba ¢+]17—20 + WPW’ ¢+a ¢7 ¢+]21—28
(E.205)
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The functional derivatives are now placed on the left using results in which the
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The two terms that needed extra treatment are
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Collecting terms with the same order of functional derivatives we have
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Expanding this result gives

where

WP[Y(r), 4 (r), ¢(r), 67 (r)]
WP[Q/% w+7 (ba ¢+]1—4 + WPW’ w+7 ¢7 ¢+]5—20 + WPW’ w+7 ¢7 ¢+]21—28

(E.220)

Wp[wvarv(bv ¢+]1—4
= 5 [ dsws) 6s) (67 (9) (67 (5) WP

230



_,
" W —
—~
W W ~ —~ 2 g
A A A A w = =
— —~ = =2 T _Ie
A, A, W W —~ A W W —~ »n = = — |
W —~ /NU\W —~ /S\IT o & N~
—~ n ~ o~ n ~ B N~——
& w2 s = 9 e S Lo - RO 2
W\)\\.U.\O/@.T _MM(\(.T _mw(\(@\ =z = =
—~ wn = — — haSd )
O N T T T A A )
n ¢¢ — |~ —~ R »n —~ —~ R 0 = & —
~— ~_ R ) o —~ —~ o
w \)\)\l/\)w .__.w_l_21_2+¢ .__.w_l_21_2 @ @ @ @
N rOS( = " = = o4 |t W+ =+
® = 2 o2 = S S S B
nﬂ\ o —~ —~ —~ —~ wn (S\ wn w© w w w©
= <
S~— ~—
~—
~—
%)
S~—
&

m N N M B WS T N NS N ST N T N T N TN TN
_ wn — —~ —~ — — —~ —~ —
0 = = _ _ _ _ 2 2 2 2 2 2 2 2
¥ = = T T+ W+ |+ W+ W+ W+ |+ |+
T2 2 2 2 2 2 2 X2 2 IR IR IR IR IR IR
S 2 &z =2 &2 &z &z =z =2 | | | | | | | |

< 8 < b S b S| S| b b S| S| b b S| S| b
- DN A A A DA A A A A QA AN DA A N D S

2+ + 4+ 4+ + + o+ 4+ 4+ o+ o+ o+ O+ o+ o+ o+
I

231



WP, ¢, ¢, ¢+]21 28

= 29 [ ds(0(5)) (608) (67 (9)) (67 (5)) WP
ooty e
+2g [as(u ( i) () (@) WP
w20 [ et (- 55255) (o7 ) () WP
w29 [[as (<450 ) 006 (57 6) (67() WP
w20 [ os (<3570 ) 000 (3757 ) ) WP
s i (<350 ) (“5m ) (676D (07 ) W
w0 [ (355 () () (") WP

The functional derivatives are now placed on the left using results in which the
functional derivatives of differing fields are zero (see (E:320) and (E321))) giving
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The two terms that needed extra treatment are
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where we have used lower subscripts for the ﬁf/gcontributions and
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then
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Vs p. We find that
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s [as (09— 550 ) (679 - 50 ) (000

o
x (¢(8)) WPy, ¢, 6,07
(E.247)

Expanding gives

WP[)(r), v (r), ¢(r), ¢ (r)]
= WP, ", 0,0 ]1i-s + WP, 0", ¢,¢]o_12 (E.248)

where
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(0*6) 06) (5575 ) WP
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(

“5o) O (37577) V7
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(E.250)

The functional derivatives are now placed on the left using results in which the
functional derivatives of differing fields are zero (see (E:320) and (E:321))) giving

WP (), &+ (x), 6(r), 6" (1)1 s
g / ds{6" (8)6H ()OE)(E)IWP Vi

]
s [ (5,25 ) 5ot @ @enwe V2
{

o) ds 5o(s) (5¢+(S)> {§¢+(S)¢(S)}WP V6
7] =55 ) o)
) ) 5 1
+g [ ds 5o(s) <5¢(S)) (5¢+(S)> {2¢(S)}WP Vs
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Collecting terms with the same order of functional derivatives we have

WP[p(r), ™ (r), ¢(r), ¢ ()]
— WP+ WP+ WP+ WP? (E.253)

(E.252)

where we have used upper subscripts for the f@,ﬁcontributions and
wp°
— o [ (o )0 @ouEIwP VI

g / ds{4 (5)6" (8)6(8) () WP V9

U
n
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(E.255)
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Now if
po— Vs
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(E.259)

Expanding gives

WP[)(r), v (r), ¢(r), ¢ (r)]
= WP, ", 0,0 s+ WP, 0", 6,0 |5 12 (E.260)
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WP, b+, ¢, T ]1-4
. / ds (1(s)) (6()) (67 () (6F(5)) WP
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(E.261)
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The functional derivatives are now placed on the left using results in which the
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functional derivatives of differing fields are zero (see (E.320) and (E321))) giving
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(E.264)
Collecting terms with the same order of functional derivatives we have

WP[y(r), 4" (r), ¢(r), ¢ (r)]
— WP +WP,+WP,+WRPs (E.265)
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where we have used lower subscripts for the ﬁf/g contributions and
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(E.270)
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where the W P} are obtained by subtracting the results for p /‘}3 from those for
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Vs p. We find that
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' \idorenwr  wiz
s)) \d6¢*(s)) "2
(E.275)
Thus we see that the /Vg term produces functional derivatives of orders one,

two and three. We may write the contributions to the functional Fokker-Planck
equation in the form

0
_WP7+77+>
(wrwwtost)
3

B (o (9
= <§WP[1/},¢+,¢, ¢+]>V3 " <§Wp[w,¢+,¢, ¢+]>V3 " <§Wp[w,¢+,¢, M)VS
(E.276)
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Note that these third order terms are



Appendiz E.10. Summary of Results

The functional Fokker-Planck equation may be written in the form

(57w )
- (rym.sm) +(Srymee)
+ (G (E.250)

of the sum of terms from the condensate, non-condensate and interaction terms
in the Hamiltonian.

Appendiz E.10.1. Condensate Hamiltonian Terms

The contributions to the functional Fokker-Planck equation from the con-
densate Hamiltonian may be written in the form

(F1se.v0)
_ <% [g(r),ﬂ(r)]>K+<%P[g( ),ﬁ(r)]>v
+ (Pl e) (8281

of the sum of terms from the kinetic energy, the trap potential and the boson-
boson interaction. Derivations of the form for each term are given in[Appendix EJ
Here and elsewhere 0, is short for a

The contribution to the functional Fokker Planck equation from the kinetic
energy is given by

(FPe.vm)

3ol )
el )

(E.282)

The contribution to the functional Fokker-Planck equation from the trap
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potential is given by

(E.283)

The contribution to the functional Fokker-Planck equation from the boson-
boson interaction is given by

(Pl w0 >])

- % { / 51/1 VG (s)a(s) = dals, s)lbo(s) ) P[ﬂ(r)vﬂ(rﬂ}
fl{ 5%( 3 {[wc< Yo(s) — dc(s, )| (s)} p[ﬂ(r),ﬂ(r)]}
%i {g/ds(;wg(s) 51#5( )wc( ){ Lo (s )}P[i(r),ﬂ(r)]}
%i {_g dséwi( )&/;i( ) wa( ){1 S (r ),g(r)]}
(E.284)

which involves first order and third order functional derivatives. The quantity
dc(s,s) is a diagonal element of the restricted delta function for condensate
modes. We note that

/ds do(s,s) =1 (E.285)

corresponding to there being a single occupied condensate mode in this treat-
ment. The total condensate number given by

Ne = [JIf Dve D0 Dowe D0 [ dstu @ve(s) Pl )0 )
(E.286)

is depleted by one.

Appendiz E.10.2. Non-Condensate Hamiltonian Terms
The contributions to the functional Fokker-Planck equation from the non-
condensate Hamiltonian may be written in the form
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(FPse.o)
- (Frgowe)) +(Friymee)
+ (%P[g@),ﬁ@)})U (E.287)

of the sum of terms from the kinetic energy, the trap potential and the boson-
boson interaction. Derivations of the form for each term are given in[Appendix E|

The contribution to the functional Fokker-Planck equation from the kinetic
energy is given by

(FPL )

- =
—1 2
S {_ /d{ﬁ (Z j_maiwms)) P[g@),g(r)]}}
—1 2
v {+ [ s {WZ@ (z j—mazwm<s>) P[g@),ﬂ(rn}}
(E.288)

The contribution to the functional Fokker-Planck equation from the trap
potential is given by

= - [l e} ) Pl w. v}
T+ o vetes | Py, v}

(E.289)

The contribution to the functional Fokker-Planck equation from the boson-

259



boson interaction is given by

(SPtm.uon)

- %i{_g / ds&/,%c(s){[w$c(s)wwc(s)]wwc(s)}P[g(r),ﬂ(r)]}
%i {+g / ds fi;( S {WRe@)no@Wke®)} PlY, (r),ﬂ(r)]}
%i {+g/ ds51/1N50(S) 5¢N60(s) {%¢N0(S)¢Nc(s)}P[ B (), ¥ (r)]}
%{‘g dséw]ti(s) w;i(s){%%c(s)wztc(s)}ﬂg(r), _>;<r>]}

This term is part of the interaction term ﬁ5 and its contribution to the func-
tional Fokker-Planck equation will be ignored.

Appendiz E.10.3. Interaction between Condensate and Non-Condensate Terms

The contributions to the functional Fokker-Planck equation from the inter-
action Hamiltonian between the condensate and non-condensate may be written
in the form

+ (%P[i(r),iﬁ*(r)])vg (E.291)

of the sum of first, second and third order terms in the non-condensate field
operators. Derivations of the form for each term are given in

First Order Terms The contribution to the functional Fokker-Planck
equation from the first order term in the interaction Hamiltonian between the
condensate and non-condensate may be written in the form

(FPse.v0)
- (Frumee) +(Frumee) e

These two contributions may be written as the sum of terms which are linear,
quadratic, cubic and quartic in the number of functional derivatives. For the
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sults may also be written as
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<5w5(s>) (5¢N50(S)> <5wNac<s>) {;WC( ”’} KA Ry ”}
1 " }
¥

<5¢g(s)) (&pj{i(s)) <5¢;C(S)){ Unols )}} Pl (r), 41 (r)]

This term is part of the interaction term ﬁ4 and its contribution to the func-
tional Fokker-Planck equation will be ignored.

Appendiz E.11. Supplementary Equations

Bogoliubov Hamiltonian
ﬁB:ﬁ1+ﬁ2+ﬁ3 (E314)

Operator identities for various functional derivatives

(eim), = Soom  (mmow).= 350

k=1,2 k#1,2
5 B ) 5 _
(&pg(s))S - k;f’“(s) Do (wfvc(s));k;f’“ daf
(E.315)

Field Functions

Yo(r) = ar¢i(r) + azga(r) w*( ) = ¢i(r)af +¢5(r)ay (E.316)
Une) = Y arge(r)  Vhe(r) =Y ¢i(r)a) (E.317)
k#1,2 k#1,2

velw) = [d'sota o) b = [ df v
Yne(r) = /dr'&vc(r,r')wzvc(r') ¢(r)Z/dr'wé(r')%(r'afﬂm@
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Product rule for functional derivatives

]

521 (PO 16T, (1)
— (g PO 0 @D )0 (1) + L), v (1) s Glote). 0 ()
5y P 0 Gl ) 0 ()
— (g POt DGR, " ()] + P, o (1) s Glote). v )
(E.319)
Functional Derivative Results
s le® = delrs)
SV = dortrs) =dele )
5 wi(s) o(r) = 0 %y}c(r)_o (E.320)
w%@wm(r) =0 @zﬁvc(r):o
SoE e = 0 gEoue =0 (Ea)
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Appendix F. - Ito Stochastic Equations

The Ito stochastic equations are obtained after neglecting third, fourth order
functional derivatives in the functional Fokker-Planck equation. The drift and
diffusion terms are then identified from the remaining first and second order
functional derivative terms that are left and the Ito stochastic equations for the
stochastic fields can then be written down.

Appendiz F.1. Symmetric Forms of Functional Fokker-Planck Equation
For the two mode case the diffusion term in (F.27)) becomes

) )
Toisy = Y, //dﬂﬁdymmHAB(ﬂ(iﬂ)a%ﬂ(y)ay)P

A< B
1 5 5
-3 > //dwdymmffw(g(w)aw,g(y),y)P

A< B

1 0 0
+§é//dxdymmﬂw(g(@mg(y),y)P
5

1 )
+§;//d$dymmﬂm(g(w)% (v),y) P

K4
1 ) )
+§;//dwdymmﬂm(g(w)%g(y%y)P

If we interchange A, B and x, y in the second term and just x, y in the fourth
term, we find on using the result that double functional differentiation can be
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carried out in either order that

1 1) 0
Tpiry = B Z //dxdymmHAB(g(I),x,i(y),y)P

A< B

1 6 6
*3 > //dwdymmffm(g(y%yvg(iv)aiv)P

B<A

1 0 0
+5§/ / drdys s soat) A @2, 4 W) 9) P
1 ) 1)
+§;//dxdymmHAA(g(y),y,g(w),w)P

-3 //dwdymmm%(w,g@),y)P

A< B

1 1) 1)
+§ Z //dxdymmHBA(g(y)ayv (I)aI)P

A>B

If we now define a new diffusion matrix such that

DAB(K(x)vxvg(y)ay) = HAB(K(I);I;K(?J);ZJ) A< B
DAB(ﬂ(l'),l"ﬂ(y),y) = HBA(ﬂ(y)vyuw(x)vx) A> B

%
DAA(K(x)#E, g(y)a y) HAA(K(x)#E, g(y)vy) + HAA(E(y)vya g(x)vx)

we see that the functional Fokker-Planck equation for the two mode case be-
comes

oP 0

1 0 0
+5§3/ 4o iy P (B 400 P
(F.4)

The expressions have been defined so that D 45 is symmetric. For the two mode
condensate case

DAB(g(w)awag(y),y) = DBA(ﬂ(y)vyug(x)vx) (F.5)

Appendiz F.2. Complex Symmetric Matrices

We present a proof that any n x n complex symmetric matrix F can also
be written in the form F = BBT, where B is also complex and has dimension
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A=B
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n x 2n. The proof is adapted from material in [|83]] and [|84]] (see Sect. 6.4.7).
This result is less useful than the Takagi factorisation, where B has dimension
n X n, the same as F.
The matrix F'is n X n and we have Fpq = Fg,.
We first write
F=F*+{FY (F.6)

where F'* and FY are real symmetric matrices, both n X n in size.
We then construct a 2n x 2n matrix D using F'* and FY as sub-matrices

D_[ lpa %Fy :|_|:Dxx D™y ] E7)

% 1 T
§F.7! _EF DY DYy

Clearly D is both symmetric and real. We use D** .., DYY as an alternative
notation for the n x n submatrices of D.
Hence we can find a real 2n x 2n matrix B such that

D =BBT (F.8)

Such a matrix can be obtained by construction using the real eigenvalues A and
real, orthogonal eigenvectors X of D. Thus with

DXy = MX) XIX,=6x,
D = Y Axx| (F.9)
A

we can choose

B=> VAX\X] (F.10)
A

from which it is easy to show that D = B BT. Note that B is complex unless
D is positive semi-definite.
We now divide B into two n x 2n submatrices as

B= [ gz ] (F.11)
Clearly as
BB" = D ., .
- | BBalon Bomr o (P12
we can express the submatrices of D in terms of B* and BY.
Now define the n x 2n complex matrix B as
B =B +1iBY (F.13)
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Then

BBY = (B*+iBY)(B*T +iBYT)
B* B*T +iB* BYT +iBY B*T — BY B¥T
D™ — DYY 4 (D™ + DY*)

1 1 1 1
_ o _ (T Yl nil] -y
S = (- +iGFY + 5 FY)
= F®+4iFY
F (F.14)

showing that a n x 2n complex matrix B can be found such that BBT = F, as
required.

Appendiz F.3. Properties of Noise Fields - Two Mode Case
We can use the results in (E228) relating the n?;D(é(:r, t)) to the non-local

diffusion terms D4 g (g(:zrl, t1),x1, g(.ﬁz, t2), x2) and the fundamental noise prop-

erties of the Gaussian-Markov noise variables I'Y in (E.30), together with (E.31])
to determine the stochastic properties of the noise fields. For a single noise field

(F.15)

Il
=
n

5
—~
=
)
=

-
S
S~—
S~—

ﬁ
=5
—~

~
S

S~—
Il

(e}

and for two noise fields.

%

{(%éf\({/;(xhtl), g(tpr))) (%éB(é(I‘Q, tz), g(t2+)))}

= ﬁ?;D(g(Ilatl))FE(hHZWF;E(E(M@))F[E@H)
Dk El

= 2D (@ @ a)EP () (3 (w2, 12)0F (21)

Dk El

= 2D (@ t))m’ P (Y (2,12)) TP (0)0F (2

Dk EIl

= D2 (G )0 (6 (52,12)) Sudppd(ts — t2)

Dk EIl

= n?;D(ﬁ(fﬁatl,z))ﬁf;D(ﬁ(fvzatl,z)) o(t1 —t2)
Dk

= DAB(i(II;t1,2)7$17£(172;t1,2)7x2) d(t1 —t2) (F.16)

Thus the stochastic average of the linear noise term is zero, and the stochastic
average of the product of two linear noise terms is delta function correlated in
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time, but is not delta function correlated in space. Instead the spatial correlation
is given by the non-local diffusion term in the original functional Fokker-Planck
equation!

The noise terms do however satisfy the Gaussian-Markoff conditions that
averages of products of odd numbers of noise terms are zero, however averages
of products of even numbers of noise terms can be written as sums of stochastic
averages of products of pairs of non-local diffusion terms, rather than pairs of
noise terms. Thus

{<%GA(£($1,tl)u£>(tl+))) (%éB(£($2,f2),£>(t2+))> (%éc(i(a@g,m),g(tﬂ)))}
= >3 (¢ (1t )ﬁB;E(ﬂ:(szafz))nncw;F(ﬁ:(fUaat3)) TP (b1 )T (24 )T (t34)

Dk El Fm
- 0 (F.17)

- ; o n?;H(i(%,tl))ﬁlB;E(g(Iz, tz))ng;F(ﬂ(Ig, tg))nD;G(é(M, 1)

1 (1 )TF (b2 )T (83)T'S (tas )
= L o o o (4 o) 1)

El Fm Gn
x { (Orki0mEd(tr = t2)) (6mndrad(ts — ta)) + (SkmOmrd(ts — t3))(6nidpad(ta — ta)) }
+(5kn6HG5(tl - t4))( ml(SEF(S(tZ - t3))
)
t

[ZHk nl?;H(g(xlvtl))ZEl m ( U (22,2)) 00 B6 (1 —t2} _
XX 1 (8 (@3,19)) s (s )]

{ZHM ﬂ(f D) D 15T (0 (03, 63))Okm S0 (8 — fa);
[EEl 7713 (ﬂ(@, t2)) > M (w4,t4))0n10Ec(t2 — t4)_

[ (8 (@1,40)) Co 2 (9 (24,1400 S0 (11 — 1))
x [ZEWIBE(ﬂ(ZU%Q))ZFm F(ﬂ($3,t3))5lm5EF5(t2—ts)}

== {DAB(é(xlvtl,Q);Ilvé(IQatl,Q)va)}

(x4,t4))0mndrcd(ts —

ﬁ

Y
y
+
“(4

Dep(¥ (@3, ta.0), @3, 4 (w1, t3.0),24)| 311 = £2)3(ts — ta)

+[DAC( ~($17t1,3)7$1,£($3,t1,3) )} [DBD( (2,12,4), T2, £($47f2,4),$4)} O(t1 —t3)0(t2 — ta)

¥
+[DAD(£($17t1,4)7x17£($4at1,4)71'2) [DBC(£(1'271€2,3)7$27 £($37f2,3),$3)} O(t1 —ta)o(ta —t3)
(F.18)
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using the results (E.28). This is not quite the same as

(5EaG et 500 ) (580 @20, L))
<A(gpGe o tah 500 ) (G0 onta) T 0421 )}
H(Ha G0, 50)) (5Ge(d (0,10, Tt ))
<A(pGo(d a2, 5020 ) (5Go (G et itan))))
+{(%6A<£(xl,t1>,g<tl+))) (§GD<g(x4,t4 I (tar) )}
<A(pGotd a2 5020 ) (Gl oo ta). D) )}
(F.19)

because in general

{DAB(ﬁ(CChth),Il,g(m,tu),xz)} {DCD(£($3,4J3),Is,é(u,t&@,m)}

# DAB(£($17t1,2)7=T17£(«T27t1,2)7$2) X DCD(£($C37L‘3,4),£C37£($4,t3,4)79€4)
(F.20)

etc., so the noise terms are not themselves Gaussian-Markov processes, though
there is some similarity.

Appendiz F.4. Properties of Noise Fields - Single Mode Case
We can use the results in (E.29) relating the n?;D(g(:c,t)) to the local
diffusion terms D 4p( £ (z,t),z) and the fundamental noise properties of the

Gaussian-Markov noise variables 'Y in (E.30)), together with (E.31) to determine
the stochastic properties of the noise fields. For a single noise field

((5Ga(Z ). L))

%

= e (é(iﬂl,tl)) I'P(t1) =0 (F.21)
Dk
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and for two noise fields

{(%@@xl,tl), g(m))) (%@B@xg,m, g(m)))}

n?;D(g(m , tl))l“,?(tpr) Z nlB;E(ﬂ:(ﬂCz’ L‘z))rfg(f%)
El

Dk
>3 n P @ )P (b n (4 (w2, 1) D (224)

Dk EIl

>3 P e )T (9 (2, t2) TP (6T E (21)

Dk EIl

2D P ) (4 (w2, 12) Sudpmd(t —t2)

Dk EIl

nEP (9 st (3 (2, 11.2)) Ol — )
Dk

DAB(é(xl,Qatl,Q);xl,Q) d(z1 — w2)d(t1 — t2) (F.22)

Thus the stochastic average of the linear noise term is zero, and the stochastic
average of the product of two linear noise terms is delta function correlated in

time, and is also delta function correlated in space.

The spatial correlation

is given by the local diffusion term in the original functional Fokker-Planck

equation!

The noise terms do however satisfy the Gaussian-Markoff conditions that
averages of products of odd numbers of noise terms are zero, but averages of
products of even numbers of noise terms can be written as sums of stochastic
averages of products of pairs of non-local diffusion terms, rather than pairs of
noise terms. Thus

(5

EGA(i(xl’tl)’L(tH))) (%éB(i(xz,tz)vg(ter))) (260

ot

(3 (aa.ta). 52 )}

>3l () (9 . )0 (4 (w3, t)) TP (62 )TF ()T (Fa)

Dk El Fm

0
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and

{(%éz“(i(fcl t1) B(tlJr))) (%GB(é(IQ ta2), g(t2+)))

% (§:Go(d (wa,t2), L tar) (£ (8 (@ata), L(tas)) )}
ZZZH?;H@;(MJQ)WP (¢ (2, t2))ngF(£($3 t3))1m
El Fm

G @ b)) (9 (@2 b)) (9 (s, 1)) (4 (@, 1))

xT
D BT
x{<

0ki0mEd(ts —2))(0mndrad(ts — ta)) + (OxmOmro(ty — t3))(0ndEao(tz — ta)) }
+(Okndrco(ts — t4))(6midprd(ts — t3))

[ZHk nl?;H(g(xlvtl))ZEl m ( ) (2, 12)) 010120 (1 —t2)} _

ty4)

(3,t3))0km O rpd(t: — L‘3);
(@4,t4))0n105G0(t2 — t4)_

X [ZFm HC*F(é(Is,%))ZGn m?G( (24,t4))0mndrGo(ts —

[szn;?H(g(xl 0)) X 1 <
[ZElnlB (

¥

[ (0 (@1, 1)) E 2
+

[P (@, 12)) X G

ﬁ

Y
y
+
“(Y

b (24,4))0kn0mGo(t — t4):
b (23, t3))01mOpFo(ts — f3)}

I =

{DAB(g(ZM 2,t1,2), Z1, 2)} :DCD(£($3 4, t3,4),173,4)}
X5($1 — 1‘2) ( xr3 — 1'4)6( — tg)é(t3 — t4)

[DAC( Y (21,3,11,3), 71 3)_

X5($1 — .Ig)(S(IQ — ZC4) (tl

[DBD(£($C2,4, t2.4), 582,4)}
—t3)d(ta — t4)

+ [DAD(i(Il 4,t1,4), 21, 4)

X5($1 — 1‘4)6($2 — 1‘3) (tl

[DBC(£($2,3, t2,3), 502,3)}

— t4)6(t2 — tg)
(F.24)
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using the results in (.29). This is not quite the same as

G 01,00 500)) (G( T an,t2). L 020) ))
5iGelE (e ta), D) ) (5 G0(E ot B0 )}
(5:Ga(Z @t 500 (56D nta). L))
(5:Go(E 0. Tit2)) (G ot Tt ))
(564G 500) (58 anta). Lt ))
A58 on.t2) K1) ) (Gl st S0 ))

because in general

{DAB(£($C1,2J1,2),CC1,2)} {DCD(£($C3,4J3,4)7$3,4)}

# DAB(E(Il,Qvtl,Q)yxl,Q) X DCD(£($3,4,153,4)7503,4)

(F.26)

etc., so the noise terms are not themselves Gaussian-Markov processes, though

there is some similarity.

Appendiz F.5. Supplementary Equations

Functional Fokker-Planck equation for two mode case

Z/dw M%A;;(i(m),x) P

+ 3 [ [ ety g e e 40

A<B

Summation results

an _>£C1,t UE;D(ﬁ(ZCz,t))

= DAB(ﬂ(xl, t), (El,ﬂ(fbg,t),l'g) Two Mode

= DAB(ﬂ(ffl 2,t),21,2) 0(x1 — x2) One Mode
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Gaussian-Markoff rules

IPt) = 0
{TP(t)TF(t2)} = dpEdud(ts — t2)
{TP)rf ()TN (ts)} = 0
{TP@)TP ()N (t3)0G (ta)} = ATP ()T (t2)} {TF (t3)TG ()}
HOE (#)TE (t3)} {TF (12)T5 (t4)}

TE(
HIPOTE (ta)} {TF (t2)T1 (t3)}
(F.30)

Decorrelation Rule

F(a (t){TR (t2)TF (t3)TF, (ta) - T (00) }
= F(gt)) TP )TF(t)TE (ta) T ()} t1 <ta,ts,...ti (F.31)
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