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Network analysis is rapidly establishing itself as a powerful tool for studying the 
structure and dynamics of complex systems (Albert & Barabasi, 2002; Newman, 2003). 
It has proven useful in understanding social interactions among humans and non-
humans and how global properties emerge from them (Girvan & Newman, 2002; Watts 
et al., 2002; Dodds et al., 2003; Lusseau, 2003; Lusseau & Newman, 2004; Croft et al., 
2005; Flack et al., 2006; Lusseau, 2007b). It has also been helpful in describing and 
predicting the behavior of technological networks and some biological systems for which 
all interactions can be described as known absolute values. However, the application of 
network analysis to social systems involving non-human organisms has been slower,  
because it has been difficult to infer the statistical and biological significance of 
observed network statistics and structures (Croft et al., 2005; Lusseau et al., 2006).  
Two key aspects have presented difficulties. Firstly, in contrast to some human studies, 
analysts estimate social relationships among individuals, they do not know them, and 
often they estimate those based on quite limited data. Researchers estimate 
relationships by observing interactions or associations between individuals, ranging 
from behavioral events (such as grooming) to co-occurrence. They can then build 
relationship measures using interaction rates or association indices (Whitehead & 
Dufault, 1999). Yet these observations do not represent all the interactions occurring 
between individuals, they are a sample. Studies in animal network analyses have never 
discussed sampling uncertainty even though its consequences can greatly affect the 
results of such analyses when sample size, i.e. the number of times individuals are 
observed, is small. For example if two individuals are together 50% of the time and so 
have a true association index (Cairns & Schwager, 1987) of 0.5, if they were identified 
together 10 times the 95% confidence interval for the estimated association index is 
about 0.3-0.7 (Whitehead, 2008). 

A second problem is that most network analyses of non-humans have focused on 
binary networks, in which relationships are defined as being either present or absent.  
The matrix that represents the network contains only ones (when two individuals are 
defined as associated) and zeros (when they are not). Researchers have used binary 
transformations of continuous matrices of interaction rates or association indices to 
describe animal social networks. These transformations require certain arbitrary 
manipulations which can be justified to varying degrees (Lusseau, 2003; Croft et al., 
2005). For example, one might decide that association indices smaller than an arbitrary 
value (say 0.5) should indicate the lack of a relationship (assigned a value of zero in the 
binary matrix) and those greater than 0.5 as a relationship (assigned a value of one in 
the binary matrix). Another example is to define pairs of which the association index is 
greater than expected if interactions occurred by chance as relationships (ones) and 
others not possessing relationships (zeros). Authors largely ignore these manipulations 
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when considering the conclusions derived from the results of these studies. In addition, 
most of these animal social systems are densely connected and discarding information 
about the strength of relationships might significantly distort the interpretation of the 
network topology. In many non-human communities, all individuals associate with all 
other individuals at some rate, so with complete sampling and association used to 
indicate relationships the binary network would link all individuals to all others.  Different 
sampling rates, and different criteria for judging a dyad linked, can greatly change the 
perceived structure of a network (Croft et al., 2005).  Binary simplification can lead to 
wrong interpretations about the social structure of the population. It can also lead to 
inappropriate divisions when defining community structure using these networks. 
Finally, it can also lead to wrong inferences about the position of individuals within the 
network. 

We can also define networks with links between individuals representing the weight 
of associations between those individuals. These weighted networks can represent the 
matrix resulting from observations of interactions between or associations among 
individuals in the wild. Recent advances in weighted network analyses provide new 
tools to quantify the position of individuals in weighted networks and the community 
structure of those networks (Barrat et al., 2004; Newman, 2004a; Newman, 2006b).  In 
our view, these tools are particularly appropriate for the analysis of non-human social 
networks. However, a shift towards weighted networks in animal behavior requires tools 
to deal with sampling issues. Here we introduce bootstrapping techniques to incorporate 
sampling uncertainty when estimating weighted network measures. We also introduce 
techniques that randomize networks subject to constraints, to assess how data structure 
influences the observed statistical properties of networks. We use two examples to 
illustrate the value of these new techniques. First, we will determine the variation in 
network centrality measures between individuals within a small sperm whale social unit 
(Physeter macrocephalus). We will then apply these methods to assess the uncertainty 
surrounding community structure in the bottlenose dolphin (Tursiops sp.) population 
residing in Doubtful Sound, New Zealand (Lusseau, 2003). Finally, using this bottlenose 
dolphin social network, we will test how transitivity in association departs from random. 
These analyses were implemented in Matlab using the Socprog package which is freely 
available at http://myweb.dal.ca/~hwhitehe/social.htm (Whitehead, 2009). 
 
 

Defining weighted networks 
Non-human societies, ranging from social insects to mammals, are commonly studied 
using dyadic association data, that is observations of interactions between pairs of 
individuals (Whitehead, 1997; Whitehead & Dufault, 1999; McComb et al., 2000; Watts, 
2000; Shimooka, 2003; Sigurjonsdottir et al., 2003; Boogert et al., 2006; Greene & 
Gordon, 2007; McDonald, 2007). Association measures should indicate whether a pair 
of animals are in circumstances in which they may behaviorally interact (Whitehead & 
Dufault, 1999), and are often based upon common membership of transitive groups or 
other symmetric measures (e.g., within x body lengths), but asymmetric association 
measures are possible (e.g., nearest neighbors). We will limit our explanation to the 
former type of data because the analysis of asymmetric association data requires 
further manipulations of network statistics that are beyond the scope of this study. 
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Analysts record associations among animals in sampling periods, and then use 
these data to calculate association indices (Cairns & Schwager, 1987) which vary from 
0 (never found associated) to 1 (always found associated).  The resulting association 
matrix is the basis of many traditional analyses of non-human social structures (Pepper 
et al., 1999; Whitehead & Dufault, 1999), and it also defines a weighted network. In a 
display of this network, nodes represent individuals, and linking edges have line widths 
proportional to the association index between the two individuals (e.g. Fig. 1).   
 
 

Incorporating uncertainty in centrality measures 
The patterns of interactions within small social communities are difficult to quantify 
because of the issues associated with statistical inference based on a small number of 
data points (individuals in this case). It can therefore be difficult to understand whether 
different individuals play different structural role within these units (Lusseau, 2007a). 
Sperm whales (Physeter macrocephalus) live in matrilineal populations and female 
sperm whales spend most of their life within their natal unit (Whitehead, 2003). 
However, the structure of social relationships within these social units is not clear 
(Christal & Whitehead, 2001). Matrilineal social units in sperm whales function to 
provide care for calves at the surface while mothers make deep dives for food 
(Whitehead 2003). As such, a calf should be a central focus of the unit’s underlying 
social relationships to maximize the likelihood it will survive. 
 

5130

5560

5561

5563

5703

5722

5727  
 
 
Fig 1. The association social network of the GOS social unit of sperm whales, the thickness of the lines 
(edges) represents the weight of the association index (half-weight index). 
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 We examined this issue using data collected on a social unit, the Group-of-Seven 
(GOS), in an area that covered approximately 2000km2 off the Commonwealth of 
Dominica (Gero, 2005). The GOS consists of five adult females, one juvenile male 
(#5727, 8-10 years old) and one male calf (#5703) whose mother was #5722. Following 
previous studies (Whitehead, 2003), we considered that individuals photo-identified 
together in clusters, defined as individuals within approximately 3 adult-body lengths 
from any other member and coordinated in their behavior. We used a half-weight 
association index (Cairns & Schwager, 1987) to define relationships. We collected 515 
cluster samples over 72 days in January-March 2005 and 2006. From the network 
defined by the matrix of association indices (Fig. 1), we calculated centrality measures 
for each individual (Fig. 2 a-d). Several centrality statistics assess different aspects of 
the position of individuals within the network. Strength measures the general sociability 
of an individual and is the sum of its association indices (Newman, 2004a): 

∑
≠

=
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iji AIs , where AIij is the association index between i and j    [1] 

 
However, this statistic does not provide any information about the range of associations. 
The coefficient of variation of association indices of an individual provides a measure of 
the heterogeneity of an individual’s relationships (although this will be affected by 
sampling effort): 
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Eigenvector centrality is another measure of how well connected an individual is 
(Newman, 2004a). Mathematically, these centralities are simply elements of the first 
eigenvector of the matrix of edges or weights (e.g., an association matrix). They indicate 
the contribution of each individual to the structure of the association matrix.  It indicates 
its connectedness within the network. Thus, an individual can have high eigenvector 
centrality either because it has high gregariousness or strength, or because it is 
connected to other individuals with high gregariousness.  Finally, the clustering 
coefficient is helpful for understanding the transitivity of associations around an 
individual, i.e. the clustering coefficient for individual a indicates how well connected the 
individuals that are connected to a are to each other.  Here we used a version for 
weighted networks introduced by Holme et al. (Holme et al., 2004):  
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It is not possible to test for the significance of the observed differences in centrality 

measures among individuals without an understanding of the confidence we have in 
those estimates. Bootstrapping can help us assess the confidence with which we 
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estimate association indices and consequently derived network measures. In this re-
sampling method the observation samples are considered to represent the best 
understanding we have of real associations between individuals in the population. We 
can obtain a bootstrap replicate of the data by re-sampling (with replacement) these 
samples. This replicate has the same sample size as the real data and we can obtain 
an estimation of the association matrix using these bootstrapped data. The process is 
then repeated a number of times, typically 1000, to obtain robust estimates of 
confidence intervals (Efron & Tibshirani, 1993). The confidence intervals surrounding 
each pairwise association index is then inferred from the observed variance in 
association indices in the bootstrap replicates (Efron & Tibshirani, 1993).  Thus, we 
obtained 1000 bootstrapped association matrices for which we could measure network 
statistics and we used these to estimate confidence intervals for the statistics. While 
centrality statistics vary greatly between individual sperm whales within the social unit, 
their bootstrap errors largely overlap (Fig. 2 a-d). Pairwise comparisons show that some 
individuals do have significant differences; for example #5703, the calf, has a 
significantly greater contribution to the dominant eigenvector than any others (Fig. 2d). 
This analysis shows that some individuals have different contributions to the structure of 
the network.  However, the clustering coefficient did not vary significantly among 
individuals of the sperm whale group (Fig. 2b). 

 
This analysis is the first formal quantitative test showing that calves can play a 

significantly central role in the association patterns within the unit by being the 
individuals that contribute most significantly to the social network. Differences in 
centrality measures may also result from differences in the function of the association 
between individuals. Gero (2005) found that some individuals in this unit were more 
likely to escort (be in the same cluster at the surface) the calf than others. In particular, 
one individual, #5561, acted as the primary babysitter. A propensity for certain 
individuals to fill specific functional roles within the unit undoubtedly affects the structure 
of the social network. 
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Fig 2. Violin plots of the bootstrapped (1000 iterations) centrality measures for each of the seven 
individuals: strength (a), clustering coefficient (b), Coefficient of variation of the association index (c), and 
contribution to the dominant eigenvector (d). Violin plots are composed of Kernel density estimates (Scott, 
1992) (frequency distribution) mirrored on both sides of box plots for each individual. Plots were obtained 
using R (http://www.r-project.org). The 95% confidence intervals overlap was measured for pairwise 
comparisons. 
 

 
 
 

Defining community structure 
One of the fundamental elements of the social organization of a group-living species is 
its community structure; that is how individuals segregate into communities in the 
population (Krause & Ruxton, 2002). This division is obvious in many instances 
because communities maintain clearly segregated home ranges.  However, 
communities are not spatial segregated in many fission-fusion societies (Lehmann & 
Boesch, 2004; Croft et al., 2006; Lusseau et al., 2006; Ramos-Fernandez et al., 2006; 
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Sundaresan et al., 2007). Yet communities of individuals play a fundamental role in the 
ecology and sociality of these populations and we can attempt to define them using 
association patterns (Clutton-Brock et al., 1999; Lusseau et al., 2006). Techniques for 
dividing association matrices into clusters of closely associated individuals, borrowed 
mainly from multivariate statistics (“cluster analysis”), are plentiful but rarely provide 
consistent results (Whitehead & Dufault, 1999). There is also no well-accepted metric 
for comparing the acceptability of different clustering configurations. 

We used a recently introduced network modularity technique to identify 
communities in social networks (Newman, 2006b; Newman, 2006a). This technique is 
based on defining a parsimonious division of the network which maximizes the number 
(and weights) of edges within communities and minimizes the number, and weight, of 
edges between communities. A good cluster division provides many edges within 
clusters and few between (Newman & Girvan, 2004). A modularity coefficient can 
quantify this. This coefficient, Q, is the sum of associations for all dyads belonging to the 
same cluster minus its expected value if dyads associated at random, given the 
strengths of the different individuals. This coefficient has the advantage of considering 
the possibility that all individuals belong to only one cluster. Therefore, the “best” 
clustering of a network is the division that maximizes Q. 

Newman (Newman, 2006b) recently introduced a clustering algorithm which uses 
the modularity matrix: the weight (association index in our case) between two vertices 
minus the expected weight if weights were randomly distributed, which is related to the 
strengths of the two individuals involved in the pair compared with the overall sum of 
weights in the association matrix (Newman, 2006a). The eigenvector of the dominant 
eigenvalue of this matrix provides a good division into two clusters (positive versus 
negative values on this vector, see Newman (2006b) for more details). The technique is 
then used iteratively splitting clusters produced by the previous division, and the 
candidate community division is provided by the iteration that maximizes the modularity 
coefficient (Newman & Girvan, 2004; Newman, 2006b).   

We applied this technique to school membership data obtained on a small resident 
population of bottlenose dolphins (Tursiops sp) which lives in Doubtful Sound, 
Fiordland, New Zealand (Lusseau et al., 2003).. We observed 437 schools over 126 
days from December 1999 to April 2002 (Lusseau et al., 2003). We used a half-weight 
association index (Cairns & Schwager, 1987). Applying the modularity matrix technique 
to the association matrix provided the same division into two social units (Fig. 3) as 
defined previously using a binary social network of preferred companionships and a 
variety of clustering methods (Lusseau & Newman, 2004; Newman, 2004b; Newman, 
2006a).   
 

Incorporating uncertainty in community structure 
We can examine the uncertainty surrounding the structure of a network using 
bootstrapping. We used the Newman modularity matrix technique on bootstrap 
replicates obtained using the technique described in the previous section. We could 
then determine how often individuals that are at the border of clusters were classified as 
belonging to one cluster or the other. The results of using this method on the Doubtful 
Sound bottlenose dolphin data highlights the great advantages of incorporating 
uncertainty in the estimation of community structure (Fig. 3, Qmax=0.1; 95% confidence 
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interval: 0.088-0.12). It is important to understand social unit membership accurately in 
order to define the socioecology of this population based on observed social behaviors 
(Lusseau, 2007a). While there were two social cores, some individuals could belong to 
one unit or the other with varying degrees of probability. Indeed, some individuals were 
equally likely to belong to one or the other and therefore unit membership could not be 
resolved for them. The presence of the social cores reinforces the definition of social 
units in this dolphin population. The social structuring of dolphin populations has been 
difficult to assert because they do not always display the home range segregation 
observed in other species living in fission-fusion societies (Lusseau et al., 2006). This 
echoes similar challenges arising in other fission-fusion species (Ramos-Fernandez et 
al., 2006). This study confirms the relevance of social relationships in defining social 
communities within populations, which has important implications for their conservation 
(Lusseau et al., 2006), the study of cooperation (Lusseau, 2007b), and the evolution of 
behavior (Whitehead & Rendell, 2004). 
 

Pajek  
 
 
 
Fig 3. The Doubtful Sound bottlenose dolphin social network from associations observed from 1999 to 
2002. Edges represent the number of times two individuals co-occurred in the same social unit over all 
bootstrap replicates. The shade of lines represents the likelihood of co-membership (the darker, the 
greater). The darker the center of a vertex, the more likely it is that the individual belongs to social unit 2. 
The darker the border of a vertex, the more likely it is that the individual belongs to social unit 1.  The 
network was drawn using the Kamada-Kawai algorithm, a spring-embedder layout, (Kamada & Kawai, 
1989) in Pajek (Batagelj & Mrvar, 2002). 
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co-member of the same cluster. 
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Understanding social behavior: randomization techniques 
 
Both social (i.e., attraction/avoidance of particular individuals) and gregarious (i.e., 
attraction/avoidance of individuals to other animals in general) behavior can contribute 
to observed association patterns; as can sampling. To understand the importance of 
social behavior in the observed association data, it is necessary to disentangle the 
contributions of social preferences, gregariousness, and sampling to the observed 
association indices. For example, clustering in animal society is an important measure 
for defining the openness of associations. Flack et al. (Flack et al., 2006) showed that in 
pigtailed macaques (Macaca nemestrina) the presence of policing individuals influenced 
the clustering coefficient of the society, promoting openness in interactions (a weaker 
average clustering coefficient than when policers were absent). Clustering coefficients 
can inform us about the likelihood that individuals associate with associates of their 
associates and therefore measure clustering. However, without having an 
understanding of what level of clustering we could expect given the gregariousness of a 
population, it is not possible to assess whether individuals do prefer to associate with 
the associates of their associates. While the Doubtful Sound bottlenose dolphin social 
network appear highly clustered, as there are many links (Fig. 3), much of this could 
relate to gregarious behavior since the small population lives in large schools (on 
average 17 dolphins in a school (Lusseau et al., 2003)). 

We can compare real data to that produced by making associations “random” to 
find out whether individuals do prefer to cluster in this population. However, randomizing 
networks is not as trivial as first thought (Amaral & Guimera, 2006). Erdös-Rényi 
random networks (in which links are laid down randomly) are often used but they may 
not always be appropriate because they do not account for the sampling structure of the 
data (Colizza et al., 2006). We used a modified version of the Bejder-Manly method, 
which is used to randomize association data, to obtain null random networks which 
control for the sampling structure and gregariousness of individuals (Manly, 1997; 
Bejder et al., 1998; Whitehead et al., 2005). The original method (Bejder et al. 1998) 
permutes group membership so that group size and the number of groups in which 
each individual was identified are both the same as in the original dataset. It does this 
by a series of flips in which randomly chosen records of individual A in group G and 
individual B in group H, are flipped to A in H and B in G (Manly, 1997). 

We compared the real weighted social network for the Doubtful Sound dolphin 
population to randomized counterpart networks produced using the Bejder-Manly 
technique to test whether social behavior, individual preferences, explained some of the 
observed clustering. We performed 1000 permutations with 100 flips per permutation 
(see (Whitehead et al., 2005) for more details), resulting in 1000 random networks. For 
the real network, and each of the random networks, we calculated the average 
clustering coefficient. We found that while the overall average clustering coefficient of 
the network did not differ from random (creal = 0.446, crandom = 0.446, p = 0.562), 
individuals from social unit 1 (white nodes in Fig. 3) did cluster a little more than 
expected by chance (creal = 0.450, crandom = 0.448, p = 0.013), while individuals from 
social unit 2 (black nodes in Fig. 3) clustered a little less than expected by chance (creal 
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= 0.440, crandom = 0.443, p = 0.001). Individuals belonging to different social units seem 
therefore to behave a little differently in the way they associate socially. Importantly, this 
analysis shows that aggregation explains most of the observed clustering. Since both 
social units occupy the same spatial range (Lusseau et al., 2003) and have similar age 
and sex class composition (Lusseau & Newman, 2004), this difference may only be 
explained by differences in behavioral preferences. Bottlenose dolphins can exhibit a 
range of diverse association behavior within and between populations (Connor et al., 
1992; Lusseau et al., 2003). This analysis shows that clustering coefficient preferences 
can vary between social units within a population. 
 
 

Conclusions 
These newly developed methods of analyzing weighted networks have considerable 
promise for the study of social networks, especially non-human societies, and in many 
ways complement traditional techniques. Weighted statistics provide a more realistic 
view of animal social networks. They also emphasize the diversity in relationships  
present in real data, which has proven extremely valuable in the study of human social 
networks (Onnela et al., 2007). Bootstrap and randomization techniques allow us to 
assess uncertainty relating to data structure and sampling in network statistics, at the 
level of the individual as well as the entire network. It is important to stress though that 
these techniques cannot substitute for insufficient data. They will assess the degree of 
confidence with which observed variation can be treated. Our results also emphasize 
the contributions of various factors to observed association rates that need to be 
considered when assessing the social relevance of network statistics.  
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