
Exact solution to the inverse Womersley problem for pulsatile flows in

cylindrical vessels, with application to magnetic particle targeting

L. C. Berselli

Department of Applied Mathematics “U. Dini”,
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An exact solution to the inverse Womersley problem was derived for the fully-developed,

laminar pulsatile flow of a viscous Newtonian fluid, within a cylindrical vessel with rigid walls.

In particular, given an arbitrary, time-periodic flow rate, the axisymmetric velocity profile

was obtained by means of two neat and computable maps relating the corresponding Fourier

coefficients. The solution of such an inverse problem represents a valuable tool/benchmark

for a variety of research branches, also encompassing biological fluid dynamics (including

targeted drug delivery) and biomedical engineering, since flow rate is the main physical

quantity which can be actually measured in many practical situations. The main advantage

of the proposed analytical solution, compared to fully numerical approaches, mainly resides

in computational efficiency; such an asset was demonstrated by considering both blood-like

flows in larger/smaller vessels and purely pulsatile flows, which can be of interest for the

development of in vitro test-benches. Moreover, the proposed solution was originally applied

in the context of magnetic particle targeting, to highlight some peculiar effects on particle

trajectories and capture efficiency due to pulsatility. Such a transport problem is increas-

ingly drawing the attention of an interdisciplinary community, ranging from physicians to

biomedical engineers, physicists and roboticists, thanks to its potential for targeted therapy,

up to remote guidance of intravascular devices. More in general, the proposed modeling

approach can be effectively exploited in a wide variety of interdisciplinary research lines.
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I. INTRODUCTION

Fully-developed, laminar flows in straight vessels have long been studied from both a theoretical

and an applicative viewpoint. A fundamental, analytical solution was firstly obtained in the 19th

century, independently by G.H.L. Hagen (German physicist and hydraulic engineer) and J.L.M.

Poiseuille (French physician and physiologist); it described the steady flow of a viscous, incompress-

ible fluid within a vessel having circular cross-section, and it is now well-known as Hagen-Poiseuille

solution [1]. An exact, unsteady solution was then obtained by Sexl in 1930 for the pulsatile flow

driven by a time-periodic pressure gradient [2]; such a solution was able to describe the so-called

“annular effect” previously observed by experimentalists for some oscillatory flows (i.e. axial ve-

locity can take a maximum near the vessel wall rather than at its center, contrarily to the case

of unidirectional steady flows). Interestingly, Sexl solution is classically associated with Womers-

ley [3], who independently re-discovered it, later in 1955. A major role in such an attribution could

have been played by the instructive analysis of the relative importance between viscous and inertial

effects on the resulting flow profile, as carried out by Womersley, which also led to the definition of

the homonymous non-dimensional number. Anyway, in the context of theoretical fluid mechanics,

a number of generalizations stemmed from Sexl work (possibly rehashed as in [4], so as to also con-

sider a constant component for the pressure gradient). In particular, more complex cross-sections

were studied, either simply connected (e.g. the elliptical one, as in [5]) or not (e.g. circular and

elliptical annuli, as in [6]). In addition, more complex constitutive relations were tackled, mainly by

numerical approaches [7]. Further developments along both the aforementioned research directions

have been continuously produced and they are still ongoing (see e.g. [8, 9]), together with extensive

investigations related to complementary aspects, like flow stability (not referenced here, because

they are out of the scope of the present work). As a matter of fact, Sexl/Womersley solution

nowadays represents a standard benchmark for analytical/numerical methods aimed at hemody-

namic investigations [10], as well as for the development of biomedical/bioengineering devices and

systems [11].

Sexl/Womersley approach determines the velocity profile along the vessel radius by assuming

a given, harmonic expansion for the pressure gradient. However, in most practical situations, e.g.

in hemodynamics, it is extremely difficult to measure the pressure gradient, while it is affordable

to measure flow rate (see e.g. [12, 13]). Consequently, it is of utmost interest to reconstruct

the velocity profile by starting from a given, time-periodic flow rate, i.e. to solve the so-called

inverse Womersley problem. Such a problem has been firstly addressed in [14], yet from a basic
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numerical viewpoint, while some analytical expressions for laminar pipe flows, reported in [15],

have been obtained by Laplace transform technique. Moreover, additional analytical relations

between the Fourier coefficients of velocity, flow rate, pressure gradient and wall shear stress have

been recently presented [16]. The latter work, in particular, addresses pipes and channels flows by

devoting special attention to flow reversal conditions, and it provides the aforementioned relations

in terms of rather involved maps also exploiting the Bessel functions. Corresponding derivations

were essentially based on the engineering approach introduced in [17], also including numerical and

experimental work.

The present work focuses on the inverse Womersley problem (which is also linked with one

of the nowadays classical Leray’s problems [18]) by starting from a more theoretical viewpoint.

Indeed, existence of a time-periodic solution for a fully-developed flow in a cylindrical vessel was

only recently proved by Beirão da Veiga [19], through the accurate study of the convergence of

the Fourier series defining the velocity. Moreover, a formal derivation for the map linking the

flow rate Fourier coefficients to those of pressure gradient was obtained in [20], by also exploiting

the results in [19] (kindly made available to the authors of [20] prior to formal publication of the

technical report). Combination of latter theoretical works thus provided a fundamental existence

result and constructive strategy for the inverse Womersley problem in a cylindrical vessel. In the

present work, concise analytical expressions are presented, which stem from the aforementioned

theoretical framework and which directly provide velocity in terms of the given flow rate. The

considered expressions invoke classical Bessel and regularized confluent hyper-geometric functions,

and they permit to explicitly and efficiently compute flow velocity. Such a remarkable asset is also

demonstrated in the present work, by assessing the proposed analytical solution against the one

obtained through a finite element analysis solver; in particular, it is associated with the very reduced

computational efforts enabled by analytic treatment. Moreover, the proposed solution is originally

applied in order to study some aspects of the motion of magnetoresponsive microcarriers through a

pulsating, blood-like fluid. Such a transport problem is catching the attention of an interdisciplinary

research community, including physicians, biomedical engineers, physicists and roboticists (see

e.g. [21–29]), thanks to its potential for targeted therapy. Nonetheless, previous investigations only

address transport in a steady flow: this is mainly due to the fact that magnetic drug targeting best

applies in smaller vessels, where mean flow speed is mild and unsteady effects play a minor role.

However, in order to effectively develop the envisaged intravascular miniature/micro devices [29],

it seems reasonable to also consider relatively larger vessels, where pulsation plays a role. Hence,

the exemplificative application considered in the present study takes a preliminary step towards
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the effective exploitation of analytical flow models for biomedical and microrobotic applications,

and further strengthens the interdisciplinary character of the addressed research topic.

The paper is structured as follows: the inverse Womersley problem is formulated and solved

in Sec. II A; Sec. IIB introduces the governing equations of the chosen application, namely mag-

netic particle targeting; the proposed exact solution is assessed against numerical, finite element

analysis results in Sec. IIIA; exemplificative magnetic targeting applications are then considered

in Sec. IIIB, with emphasis on relevant effects associated with flow pulsatility; concluding remarks

are finally introduced in Sec. IV. Additional details, relevant to the magnetic targeting problem,

are reported in the appendix.

II. THEORY

A. Fluid velocity profile

We consider a fully-developed, laminar, pulsatile fluid flow within a cylindrical vessel V :=

S ×H having circular cross-section S with radius R > 0 (cylinder length is irrelevant, hence it is

unnecessary to specify the corresponding non-empty interval H). More precisely, we assume that:

(i) the flow is governed by the incompressible Navier-Stokes equations, coupled with the classical

no-slip boundary condition [30]



















































∇ · v = 0 in V × T ,

∂tv+(v·∇)v−ν∆v+
1

ρ
∇p = 0 in V × T ,

v = 0 on ∂S×H×T ,

(1)

where v denotes fluid velocity, p is pressure, ρ > 0 and ν > 0 respectively represent fluid (constant)

density and kinematic viscosity, and T denotes a chosen time-interval; (ii) the volumetric flow rate

q(t) is assigned as a time-periodic function with period T ; (iii) in a Cartesian frame having the

z-axis aligned with the cylinder axis (so that x and y span S), v is directed along z and does not

depend on z, namely v = v(x, y, t) êz . Below we provide an explicit and computable expression

for v, depending on the adopted flow rate q (besides geometrical and physical data). It should

be noticed that assigning the flow rate makes the considered problem non-standard. Indeed, one

has to reconstruct v and p from q by solving an inverse problem [18, 20], differently from classical
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approaches where velocity and pressure are obtained from the initial data, through the solution of

an initial boundary value problem.

Thanks to circular symmetry, problem (1) is best reformulated by introducing the radial coor-

dinate r :=
√

x2 + y2 in place of x and y, such that S = {r < R} and v = v(r, t). Moreover, once

substituted the latter expression into the Navier-Stokes equations, it turns out that p does not

depend on r, and ∂zp does not depend on z; hence, it is possible to define σ(t) := −ρ−1∂zp(z, t).

In light of the above positions, v and σ are the solutions of the following problem in the vessel

cross-section S:






















∂tv(r, t) − ν∆v(r, t) = σ(t) in S×[0, T ],

v = 0 on ∂S×[0, T ],

(2)

further subjected to the following constraint:

2π

∫

S
v(r, t) r dr = q(t), t ∈ [0, T ]. (3)

The considered system of equations generalizes the classical problems studied by Hagen and

Poiseuille in the stationary case [31], and by Sexl/Womersley in the time-dependent case [2, 3].

Indeed, for a constant flow rate q(t) = q0 it is straightforward to recover the well-known, parabolic

Hagen-Poiseuille solution v(r, t) = v0(r), with

v0(r) :=
σ0R

2

4 ν

[

1 −
(

r

R

)2
]

, σ0 :=
8 ν q0
π R4

. (4)

Moreover, Sexl/Womersley solution can be recovered by neglecting the flow rate constraint in

Eq. (3), and by assuming that pressure gradient σ is assigned, of the form σ = σ̃ ejωt, where σ̃ is

a reference value, ω = 2π/T denotes the enforced flow pulsation and j is the imaginary unit (j2 =

−1). The solution at hand is more involved than Hagen-Poiseuille one, since it passes through the

solution of an ordinary differential equation of the type u′′(r)+u′(r)/r− jωu(r)/ν = −σ̃/ν (prime

denoting differentiation), which however can be explicitly obtained in terms of Bessel functions. A

major contribution due to Womersley was to show that resulting flow profile essentially depends

on the non-dimensional parameter

Wo := R

√

ω

ν
, (5)

thereafter called Womersley number.

As above claimed, in the present study we consider an inverse problem where the flow rate q

is given, and the two unknowns are v and σ. More precisely, in order to study the considered
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time-periodic problem, we assume the following Fourier expansions












q(t)

σ(t)

v(r, t)













=
N

∑

n=−N













qn

σn

vn(r)













ejωnt, (6)

where qn, σn, vn ∈ C, N ∈ N is a chosen parameter and ωn := 2πn/T ; we hereafter introduce

computable expressions for the Fourier modes vn and σn in terms of qn. Our constructive strategy,

grounded on the basic existence result recently obtained in [19], works as follows: assuming a

given pressure gradient, we firstly evaluate vn in terms of some unknown σn as in [3]; we then

compute the flow rate associated with vn and impose it to be equal to qn. It is worth emphasizing

that: (i) subsequent calculations can be carried out in a completely explicit manner, at least in

terms of some special functions as in Eq. (7) and Eq. (11), still thanks to circular symmetry;

(ii) the proposed method can be also applied when considering an infinite expansion for the flow

rate q, since the problem is linear and the Fourier modes are decoupled. Nevertheless, in view of

practical applications, a finite expansion is considered here, because the flow rate is experimentally

recorded and it is typically decomposed into a finite number of Fourier modes; (iii) we can study

the relation amongst qn, σn and vn by assuming n > 0. Indeed, the case n = 0 is consistently

provided by Eq. (4). Moreover, since we are interested in real valued solutions, we directly impose

(q−n, σ−n, v−n) = (q⋆
n, σ

⋆
n, v

⋆
n), where star superscript denotes complex conjugation.

We firstly considered the qn 7→ σn map, which was formally studied in [20] for an arbitrary cross-

section, through the solution of two coupled Poisson problems (or a single fourth-order equation)

for each Fourier mode. We were able to explicitly solve the aforementioned Poisson problems for

the circular cross-section S considered in the present study, so as to obtain the following map:

qn
π R2

=



1 −
0F̃1

(

; 2; jWo2
R,n/4

)

0F̃1

(

; 1; jWo2
R,n/4

)





σn

jωn
, n > 0, (7)

where

0F̃1(; b;w) :=
∞
∑

k=0

wk

k! Γ(b+ k)
, b, w ∈ C, (8)

denotes the regularized confluent hyper-geometric (limit) function, Γ representing the Euler gamma

function given by

Γ(w) :=

∫

∞

0

τw−1 e−τ dτ, w ∈ C. (9)

Furthermore, once defined a sort of generalized Womersley number as follows:

Wor,n := r

√

ωn

ν
, (10)
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the non-dimensional parameter WoR,n in Eq. (7) is obtained by evaluating Wor,n in correspondence

of r = R. For the sake of completeness, we mention that in [20] the sought map was formally

obtained by considering a Fourier expansion with sines and cosines, yet conversion into complex

exponential form is straightforward (see also Sec. IIIA). The σn 7→ vn map was then obtained

by integrating over the vessel cross-section; once evaluated the integrals in polar coordinates, the

following relation was obtained

vn =







1 −
J0

[

(−1)3/4 Wor,n

]

J0

[

(−1)3/4 WoR,n
]







σn

jωn
, n > 0, (11)

where

Jk(w) :=
∞
∑

m=0

(−1)m (w/2)2m+k

m! Γ(m+ k + 1)
, k ∈ N, w ∈ C, (12)

denote the Bessel functions of the first kind, with Γ and Wor,n respectively defined in Eq. (9) and

Eq. (10). In particular, Eq. (11) is consistent with the ones reported in literature for the direct

Womersley problem.

In summary, the proposed model is constructed as follows: (i) the given flow rate q(t) is decom-

posed into Fourier modes (q−N , . . . , q−1, q0, q1, . . . , qN ); (ii) q0 directly provides σ0 and v0 through

Eq. (4); (iii) for n > 0, σn is obtained by inverting Eq. (7) and vn is subsequently obtained through

Eq. (11); (iv) σ−n and v−n (n = 1, . . . , N) are respectively obtained as complex conjugate of σn and

vn; (v) finally, σ(t) and v(t) are obtained by summation, as in Eq. (6). We conclude the present

section by remarking that theoretical results in [19, 20] were invoked to be sure that the solution to

the problem of finding vn given qn exists. Then, the elegant and explicit maps reported in Eq. (7)

and Eq. (11) were consistently derived; the former, in particular, originally appears in the present

work.

B. Magnetic particle targeting

By recalling the analytical model introduced in Sec. IIA, we address the effect of pulsation on

the capture of an isolated magnetoresponsive microcarrier by means of an external magnetic field.

Such a problem is well studied in literature, in the context of magnetic drug targeting, yet under

the simplifying assumption of steady flows within small diameter vessels (see e.g. [21–23, 25–28]).

In view of such a focused objective, we assume for simplicity that: (i) considered microcarrier

can be described as a spherical particle having radius Rp (particle and carrier are hereafter used

as synonyms); (ii) particle size is large enough for Brownian effects to be negligible (see e.g. [21]
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for relevant conditions), at the same time it is small enough not to affect the carrying flow; (iii)

magnetic force Fm and fluidic force Fd due to viscous drag are the only relevant forces acting on the

particle (i.e. inertial effects and other forces like gravity/buoyancy or lift due to velocity gradients

in the flow play a minor role, see e.g. [25] for relevant conditions). Based on these assumptions, we

describe the motion of an isolated magnetoresponsive particle by adopting a Newtonian approach,

for which equilibrium simply reads Fm + Fd = 0.

As regards fluidic force, we adopt the classical Stokes model Fd = −6πµRp (vp − v), where µ > 0

denotes fluid (dynamic) viscosity, while vp and v respectively represent particle and fluid velocity.

It is worth mentioning that, for practical applications, particle radius Rp should be replaced with

an effective hydrodynamic radius (possibly accounting for surface-bound material [24]), yet such

a refinement is here neglected for simplicity. The considered viscous drag model is consistent

with the fact that, for typical values of the involved parameters, particle Reynolds number is

Rep := 2Rp|vp − v|/ν ≪ 1 [21, 25].

As regards magnetic force, we adopt an established point-dipole approach (see e.g. [21–25,

27]) according to which Fm = µ0(1 + χf )βmVpf(H)(H · ∇)H, where µ0 = 4 π· 10−7 Tm/A is

vacuum magnetic permeability, χf denotes fluid magnetic susceptibility, Vp = 4πR3
p/3 is particle

volume, and H represents the externally applied magnetic field at the particle center. Furthermore,

parameter βm ∈]0, 1] defines the fraction of the carrier volume Vp which effectively contributes to

the magnetic response, e.g. as in [23]. Moreover, demagnetization effects and particle saturation

are accounted for, through the function f(H) defined as follows:

f(H) :=























φp,f if M s
p/H > φp,f ,

M s
p/H if M s

p/H ≤ φp,f ,

(13)

where φp,f := 3 (χp − χf )/[(χp − χf ) + 3 (1 + χf )], while χp and M s
p denote particle magnetic

susceptibility and saturation magnetization, respectively.

In light of the aforementioned positions, particle trajectory is determined by integrating the

following ordinary differential equation:

vp = v + ζf(H)(H · ∇)H (14)

where ζ := 2µ0(1 + χf )βmR
2
p/(9µ), and starting from a suitable initial condition. Clearly, by

defining v through the analytical flow model introduced in Sec. IIA, it is possible to effectively

exploit the considered formulation for unsteady problems as well, so as to study magnetic targeting

in a more general context.
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TABLE I: Parameters of the test-cases introduced to assess the proposed analytical model for pulsatile

flows: vessel radius (R), speed associated with time-averaged flow rate (v̄), speed associated with oscillating

component of the flow rate (δv), number of Fourier modes (N), and corresponding Fourier coefficients (an,

bn, with n = 1, . . . , N).

Test-case R v̄ δv N (a1, . . . , aN ) · 10 (b1, . . . , bN) · 10

(mm) (cm/s) (cm/s)

TC-1a 8 10 5 2 (2,7) (1,4)

TC-1b 8 10 5 8 (2,0.7,0,0.6,-2,-2,1,1) (1,4,-0.5,1,0.4,0,-2,-1)

TC-2a 8 1 0.2 2 (-3,4) (0,6)

TC-2b 8 1 0.2 8 (0.2,0.7,-2,0,0.9,-1,-3,0.5) (1,0.4,-5,1,7,-0.1,0.4,0)

TC-3a 2 0.1 0.005 2 (4,1) (4,-4)

TC-3b 2 0.1 0.005 8 (0.3,0.1,-4,2,0.3,-1,-0.3,0) (2,0.1,-2,0.1,0.7,-1,4,3)

TC-4a 2 0 0.2 2 (1,4) (2,7)

TC-4b 2 0 0.2 8 (0.2,0.7,-0.1,3,1,0.4,-0.9,4) (0.7,0.4,-1,0.5,1,-0.4,2,1)

III. RESULTS

A. Fluid velocity profile

In this section we compare the results obtained by using the analytical model introduced in

Sec. IIA with those obtained by a commercially available finite element analysis (FEA) solver.

In particular, we compute the velocity profile in a circular cylindrical vessel, under several flow

conditions summarized in Table I. For all the considered test-cases the assumed flow period is T =

1 s. More in detail, we consider a given flow rate of the form

q(t) = q̄ + δq ·
N

∑

n=1

[an sin(ωnt) + bn cos(ωnt)] , (15)

where time-averaged flow rate and flow rate oscillating component are respectively given by

q̄ := v̄ πR2 and δq := δv πR2, with R, v̄ and δv assigned in Table I. It is evident that test-

cases TC-λa and TC-λb (λ ∈ {1, 2, 3, 4}) only differ from each other as for the oscillating har-

monics content. Relevant Fourier coefficients an, bn ∈ R are also listed in Table I; they can be

straightforwardly related to the complex ones in Eq. (6) as follows: q0 = q̄, qn = δq (bn − j an) /2,

q−n = δq (bn + j an) /2, for n = 1, . . . , N . Some parameters have been chosen as representative of

blood flows in humans. In particular, R = 8 mm is intended to be representative of larger arteries:

corresponding diameter is, for instance, in between the one of abdominal aorta (say 20 to 25 mm)

and that of carotid arteries (say 5 mm [32]). For the aforementioned arteries, mean flow speed is
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of the order of 10 cm/s, and the difference between peak and average blood speed is of the same

order of the average speed itself [12]. Hence, flow rate associated with test-case TC-1 (here and

below suffixes a and b are tacitly understood) can be regarded to as representative of physiological

conditions in human larger arteries. Test-case TC-2, instead, can describe non-physiological flow

conditions in larger vessels, since it involves the same vessel diameter as TC-1 and a reduced flow

rate. Conversely, flow reduction physiologically occurs in smaller vessels, where unsteady effects

due to pulsation also become negligible [33]. Test-case TC-3 consistently addresses a very-low

Reynolds number flow, while keeping some harmonics content (fully neglecting pulsation effects,

indeed, is not of interest in the present context). Finally, test-case TC-4 does not address physi-

ological flow conditions. It aims at assessing model ability to describe purely pulsatile flows (i.e.

with a null average flow rate), where also backflow (potentially occurring, at least locally, in the

previous test-cases) plays an important role. Nonetheless, such flow condition can be of interest

for developing in vitro test-benches.

In order to quantitatively label the above discussed test-cases, we introduce the following

Reynolds and Womersley numbers:

Re :=
(v̄ + δv) R

ν
, WoR,N = R

√

ωN

ν
, (16)

where WoR,N is derived from expression (10). Corresponding values are reported in Table II, as

obtained by assuming ν = 3.4 mm2/s. Such value is associated with human plasma at physiological

temperature (density is similar to water, dynamic viscosity is nearly 3.5 times larger than that of

water), and it is also representative for blood (with the exception of tiny vessels, having diameter

below 500 µm, where hematocrit concentration plays a role [21]). This choice is consistent, in

particular, with the flow conditions adopted for test-cases TC-1 to TC-3. It is worth remarking

that, by virtue of the considered values of Re, the flows at hand are expected to be laminar. Indeed,

the laminar/turbulent transition Reynolds number for steady pipe flows is around 2000 (may be

higher, based on flow quality); for pulsatile flows such a threshold also depends on pulsation

amplitude and frequency. However, adopting a pulsation amplitude such that maximum Reynolds

number in the vessel (which is roughly estimated by the above definition of Re) does not exceed

2000 would guarantee a laminar pulsatile flow [16].

Exemplificative results obtained by exploiting the proposed analytical model are reported in

Fig. 1–4, together with the corresponding results provided by the commercial FEA solver COMSOL

Multiphysics (CM) by Comsol Inc., available to the group. As regards CM simulations, once
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TABLE II: Reynolds number and Womersley number of the test-cases introduced in Table I.

Test-case Re WoR,N

TC-1a 351.43 15.35

TC-1b 351.43 30.69

TC-2a 28.11 15.35

TC-2b 28.11 30.69

TC-3a 0.61 3.84

TC-3b 0.61 7.67

TC-4a 1.17 3.84

TC-4b 1.17 7.67

assigned the relevant physical parameters, vessel radius was defined for each test-case based on

the values in Table I. Moreover, a finite-length domain was considered, yet length-to-radius ratio

was set large enough (namely 20 to 80) to damp inlet and outlet boundary effects, thus allowing

for a fully-developed flow at least in the central portion of the domain (such a condition was a

posteriori checked). Furthermore, the flow rate specified by Eq. (15) was imposed (by software

coding) at the inlet cross-section, the no-slip boundary condition was enforced at vessel wall, and a

reference pressure value was imposed at the outlet cross-section (such value is immaterial, due to the

incompressible formulation). Moreover, cylindrical symmetry was directly enforced by exploiting

the axisymmetric solver available within CM: this choice permitted to save computational time,

not only during the actual runs but also during the simulation set-up phase. Finally, as regards

simulation set-up, both space- and time-discretization were incrementally refined, up to obtain

discretization-independent results. Thirty pulsation periods were then simulated, so as to get time-

periodic numerical results after a certain transient (which took up to ten periods). All simulations

were run on a single core of a PC with the following characteristics: Intel Xeon E5420 2.50 GHz

CPU, 2x6 MB L2 cache, 8 GB RAM. Discrepancy between analytical and FEA velocity profiles

was measured by introducing a relative error ǫ, normalized through the characteristic speed v̄+ δv.

A very good matching was obtained: ǫ < 1.26% for TC-1 and ǫ < 0.13% for TC-2 to TC-4 (for all

values of r/R ∈ [0, 1] and t/T ∈ [0, 1]). Such an agreement is consistent with the fact that both

approaches are based on the same PDE problem. Nevertheless, it may be worth remarking that

the proposed model can also describe rather complex flows, e.g. involving considerable backflow as

in TC-4 (minor backflow also occurred for e.g. TC-1, close to the vessel wall). On the other hand,

the main strength of the proposed analytical approach resides in direct computability, leading in
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FIG. 1: (Color online) Flow velocity profile for test-case TC-1a, as obtained by the proposed analytical

method (solid curve) and by FEA (filled circles). Normalized profile v(r, t)/ (v̄ + δv) is plotted against

r/R ∈ [0, 1], for the following non-dimensional times t/T within a period: {0.1, 0.3, 0.5, 0.7, 0.9}.
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Test−caseTC−1b: time−varying velocity profile
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FIG. 2: (Color online) Flow velocity profile for test-case TC-1b, as obtained by the proposed analytical

method (solid curve) and by FEA (filled circles). Normalized profile v(r, t)/ (v̄ + δv) is plotted against

r/R ∈ [0, 1], for the following non-dimensional times t/T within a period: {0.1, 0.3, 0.5, 0.7, 0.9}.

particular to reduced computational times. Indeed, CPU time for the considered FEA simulations

ranged from roughly 3.5 h for TC-2 and TC-3, to 13.5 h for TC-1a, up to nearly 20 h for TC-1b.

Larger CPU times for TC1 were essentially due to the increased average flow speed, also requiring a

longer computational domain for a fully-developed flow to be obtained. Moreover, TC-1b required

an increased CPU time compared to TC-1a due to enhanced unsteady effects, associated with its

richer harmonics content. This aspect was even more pronounced for TC-4b versus TC-4a (please
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FIG. 3: (Color online) Flow velocity profile for test-case TC-4a, as obtained by the proposed analytical

method (solid curve) and by FEA (filled circles). Normalized profile v(r, t)/ (v̄ + δv) is plotted against

r/R ∈ [0, 1], for the following non-dimensional times t/T within a period: {0.1, 0.3, 0.5, 0.7, 0.9}. Moreover,

for ease of representation, the considered normalized velocity profile is also plotted against −r/R ∈ [−1, 0],

for the following non-dimensional times: {0.0, 0.2, 0.4, 0.6, 0.8}.
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FIG. 4: (Color online) Flow velocity profile for test-case TC-4b, as obtained by the proposed analytical

method (solid curve) and by FEA (filled circles) [34]. Normalized profile v(r, t)/ (v̄ + δv) is plotted against

r/R ∈ [0, 1], for the following non-dimensional times t/T within a period: {0.1, 0.3, 0.5, 0.7, 0.9}. Moreover,

for ease of representation, the considered normalized velocity profile is also plotted against −r/R ∈ [−1, 0],

for the following non-dimensional times: {0.0, 0.2, 0.4, 0.6, 0.8}.

notice the many and more pronounced extrema in Fig. 4 compared to Fig. 3): TC-4a took 3.5 h,

while TC-4b required 7.5 h. Furthermore, set-up time for a generic run (namely an estimate of the

time spent to firstly achieve a discretization-independent, periodic, fully-developed flow) was in



14

the order of 10 to 20 h. Conversely, it took less than 1 h to set-up the analytical approach within

Matlab rapid code prototyping environment and, most importantly, CPU time was in the order of

a few seconds for all the considered test-cases. Hence, computational efficiency (by no means to

be negotiated with accuracy) clearly represents a most remarkable asset of the proposed analytical

model.

B. Magnetic particle targeting

In order to illustrate how the introduction of pulsatile flow profiles leads to a richer repertoire

of magnetic particle trajectories, we considered the magnetic targeting setup sketched in Fig. 5. In

FIG. 5: (Color online) Setup considered for magnetic particle targeting (schematic). Vessel axis perpendicu-

larly intersects the axis of an external, cylindrical magnet, so as to define a Cartesian frame. Velocity profile

is pictorially sketched (arrows) at inlet, together with the trajectories (dashed lines) of two particles (circles):

the one closer to the magnet is captured, while the other escapes from outlet. Symbols N and S respectively

denote north and south poles of the magnet. Plane yz is only sketched, for ease of representation.

the considered setup, the external magnetic field is produced by a permanent, axially magnetized

cylinder, whose axis perpendicularly intersects vessel axis so as to define the Cartesian frame shown

in the figure at hand. A relevant model for the considered magnetic field is recalled in the appendix,

for ease of presentation; relevant parameters for such model are cylinder radius rm, cylinder length

lm and saturation magnetization M s
m. Moreover, the distance between vessel axis and magnet

center is denoted by d in Fig. 5, while L denotes vessel half-length; the latter was chosen large

enough for magnetic force to be negligible at both inlet and outlet sections.

The following parameters were adopted: ρ = 1000 kg/m3, ν = 3.5 mm2/s (so that µ = 3.5 mPa

s), R = 3.5 mm, v̄ = 10 cm/s, χf = 0 and φp,f = 3 (since for water-/blood-like fluids and commonly

used magnetic materials like magnetite χf ≪ 1 ≪ χp), Rp = 1.5 µm, βm = 1 (for simplicity), M s
p =
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0.5 MA/m (as for magnetite), rm = 4 cm, lm = 8 cm, M s
m = 1 MA/m (as for common NdFeB

magnets), d = 4.5 cm. Some of the above parameters were directly adopted from [21, 25], in order

to also legitimate the assumptions introduced in Sec. IIB (and, consequently, to adopt Eq. (14)

as governing equation for particle trajectory). Finally, a pulsatile component with period T = 1 s

was added to the average flow introduced above, so as to consider the effect of unsteadiness on

particle targeting. More in detail, with reference to the definitions introduced in Sec. IIIA, the

following parameters were adopted: δv = 5 cm/s, N = 8, (a1, . . . , a8) · 10 = (4,6,0,4,2,0,0.7,0.1),

(b1, . . . , b8) · 10 = (5,-5,5,1,0.4,0,2,1).

Exemplificative magnetic particle trajectories are reported in Fig. 6 and Fig. 7. In particular,

particles considered in Fig. 6 were seeded at non-dimensional time t0/T = 0.5 (hereafter subscript 0

denotes initial conditions) on the symmetry plane shown in Fig. 5, namely at x0/R = 0, z0/L = −1

and by varying y0/R. Dashed lines - associated with empty markers - show the trajectories in the

steady case (defined by only considering the average speed v̄), while solid lines - associated with

filled markers - represent the corresponding unsteady trajectories (obtained by also considering

δv). It can be seen that there may exist a region where pulsation effects dramatically affect

trajectories: some of the particles captured (i.e. led to the vessel boundary) in the steady case

are allowed to escape in the unsteady one, and vice versa. Interestingly, the considered figure

also shows that, in the unsteady case, some particles may be captured even if others which were

seeded closer to the magnet cannot. This result substantially differs from the steady case, where

the efficacy of the magnetic link on capture is only determined by spatial factors (in particular,

it monotonically decreases when the seeding point is moved farther away from the magnet). In

particular, such a peculiar result seems to be associated with the annular effect, since flow velocity

is not monotonically decreasing towards the vessel walls.

Clearly, when considering pulsatile flow conditions, particle seeding time is expected to play a role

in magnetic targeting. This is confirmed, for instance, by Fig. 7, where particles were seeded (still at

x0/R = 0, z0/L = −1 and by varying y0/R) at two different non-dimensional times t0/T , namely

0.8 (solid lines, with filled markers) and 0.9 (dashed lines, with empty markers). Incidentally,

for the latter seeding time all considered particles can be captured (even the one starting from

y0/R = −0.4, which conversely escapes when seeded at t0/T = 0.5, according to Fig. 6).

A figure of merit for therapeutic applications of particle targeting is capture efficiency. Given

nin particles uniformly seeded at the inlet section, nout of which also escape from the outlet, capture

efficiency is defined as follows: η := (nin − nout) /nin. In the steady case, the ratio Mnp := Fm0/Fd0

between the intensities of magnetic force Fm0 and drag force Fd0 = 6πµRp(2v̄) for a steady particle
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FIG. 6: (Color online) Exemplificative trajectories of magnetic particles seeded at t0/T = 0.5 [35]. Pulsatile

flow conditions (solid lines with filled markers) are compared to steady ones (dashed lines with empty

markers). Steady flow conditions are marked by symbol S in the legend.
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FIG. 7: (Color online) Exemplificative trajectories of magnetic particles seeded in pulsatile flow at t0/T =

0.8 (solid lines with filled markers) and 0.9 (dashed lines with empty markers). Non-dimensional seeding

time is reported, in parentheses, in the legend.

located at frame origin was identified as a key parameter affecting capture efficiency [25]. For the

above choice of parameters, Mnp = 0.005 and, according to the scaling law obtained in [25], η ≈
0.27; however, this figure should not be considered as a tight reference, since the magnetic source

model used in [25] is slightly different from the one adopted in the present study. Capture efficiency

was also assessed under the considered unsteady flow conditions, in particular by seeding 31397
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particles at the inlet section (x0/R)2 + (y0/R)2 < 1, z0/L = −1 (in practice, half-section was only

considered, thanks to symmetry). Clearly, in the unsteady case the fraction of captured particles

η varies in general with the seeding time t0, i.e. η = η(t0), and a period-averaged efficiency should

be introduced, namely η̄ := T−1
∫ T
0
η (t0) dt0. However, in light of the fact that the present work

mainly addresses fluidic modeling while using magnetic targeting as a valuable application field, we

only evaluated η for t0/T = k/10, with k = 0, 1, . . . , 9; corresponding mean efficiency is 0.40, with

standard deviation 0.005. Despite the low variability of η for the considered example, it is worth

emphasizing the effect of unsteadiness. For instance, the inlet portion associated with magnetic

particle capture is shadowed in Fig. 8, for given seeding times t0/T . Time-variability of the curve

separating capture/escape regions (which may be named “capture horizon” for magnetic targeting)

should be noticed. Moreover, the occurrence of capture regions which are not simply connected

domains (as for e.g. t0/T = 0.2) is a peculiar effect of unsteady targeting (this effect also occurs for

t0/T = 0.5, consistently with the resulting trajectories in Fig. 6). Such an effect is trivially due to

the fact that, for unsteady conditions, trajectories (i.e. pathlines) do not coincide with streaklines,

so that two particles passing through a certain point of the fluid domain yet at different times are

endowed, in general, with different velocities.
The aforementioned results regarding magnetic targeting do not make any claims of generality:

they mainly serve to show the potential for effective applicability of the proposed analytical model

for pulsatile flows. Indeed, by exploiting an accurate and efficient fluidic model it is possible to

tackle complex, unsteady problems at an affordable cost, thus enabling a variety of further and

deeper studies.

IV. CONCLUSIONS

An exact solution to the inverse Womersley problem was derived for the fully-developed, laminar

pulsatile flow of a viscous Newtonian fluid, within a cylindrical vessel with rigid walls. In partic-

ular, given a time-periodic flow rate, the axisymmetric velocity profile was obtained by means of

two neat and computable maps relating the corresponding Fourier coefficients. Such maps were

derived by solving the Poisson problems formulated in [20], provided that the considered problem

admits solution as recently proved in [19]. As discussed in Sec. I, despite some degree of intrin-

sic simplification, fully developed flows represent a sort of natural test-case for both theoretical

and experimental investigations, and their properties in the pulsatile case are object of ongoing

research. In this context, the solution of the inverse problem deserves a special mention, since

flow rate can be actually measured in many practical situations (contrarily to pressure gradient).
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FIG. 8: (Color online) Exemplificative capture regions (shadowed) of the inlet cross-section, for the following

non-dimensional seeding times t0/T : {0.2, 0.4, 0.6, 0.8}. Half-region is represented, due to symmetry with

respect to the yz plane [36].

Hence, solution to the inverse Womersley problem represents a valuable tool/benchmark for a va-

riety of research branches, also encompassing biological fluid dynamics (including targeted drug

delivery) and biomedical engineering at large (e.g. for development of peristaltic pumps or biomed-

ical intravascular devices for the human cardiovascular system). The main advantage of such an

analytical solution compared to fully numerical approaches mainly resides in computational effi-

ciency. Indeed, a generic finite element commercial solver may get to the same flow field solution

by roughly taking a thousand times as long as a high-level code implementation of the provided

maps. Such an asset was demonstrated in the present work, by considering both blood-like flows

in larger/smaller human vessels and purely pulsatile flows, which can be of interest for the de-

velopment of in vitro test-benches. Moreover, thanks to the aforementioned asset, the proposed

solution was originally applied in the context of magnetic particle targeting, so as to highlight
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some peculiar effects due to pulsatility on particle trajectories and capture efficiency. Such a trans-

port problem is increasingly drawing the attention of an interdisciplinary community, ranging from

physicians to biomedical engineers, physicists and roboticists, thanks to its potential for targeted

therapy. However, current approaches are essentially based on steady flows, which suitably applies

to microvessels only. Nevertheless, short-/mid-term development of miniaturized interventional

tools to be magnetically guided within body vessels [29] makes it necessary to also address larger

flow domains, where pulsation plays a role. In such a context, by exploiting a classical magnetic

force model also accounting for demagnetization effects and particle saturation, it was shown the

relevance on targeting of particle seeding time (besides position in the cross-sectional plane), as

well as the occurrence of not simply connected capture regions at vessel inlet, completely lacking

in the steady case.

Such an exemplificative application does not make any claims of generality; however, it takes a

preliminary step towards the effective exploitation of analytical, easily computable and physically

relevant flow models for biomedical and microrobotic applications. In this spirit, physically-based

values were assigned to all relevant parameters involved in the magnetic targeting problem, thus

allowing for the description of a wide variety of real-life biomedical applications [25]. Moreover,

with the modeling framework introduced in the present paper it is possible to tackle more refined

targeting studies, for instance: (i) derivation of scaling laws for the capture efficiency in the un-

steady case (in [25] such a study was carried out with respect to the non-dimensional parameter

Mnp; other parameters like WoR,N are expected to play a role for unsteady flow conditions); (ii)

identification of relevant non-dimensional parameters for more complete targeting problems involv-

ing extravasation (thus extending, for instance, the analysis carried out in [27]; also in this case

WoR,N is expected to come into play). More in general, the proposed modeling approach is credited

to hold potential for improving many current approaches dealing with pulsatile flows in cylindrical

vessels, either focused on essentially fluidic effects or considering active transport/guidance of in-

terventional agents within the pulsating fluid. In both cases, in fact, current approaches commonly

determine the velocity field by scaling the (steady) parabolic solution by a factor accounting for

flow rate variability (see e.g. [37, 38] for two-dimensional examples), thus introducing an approxi-

mation of the flow field which may be difficult to assess. Nevertheless, further generalizations of the

proposed analytical approach can be envisaged. On regard, the basic hypothesis of fully-developed

flow strongly supports analytical treatment and thus it may be relaxed at the cost of more involved

derivations. Moreover, incorporation of non-Newtonian constitutive laws might be justified also

in larger vessels (where pulsatility effects cannot be neglected), provided that higher shear-rates
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occur in some flow regions, e.g. due to partial obstructions. Both the aforementioned issues have

been partly tackled in [39] for specific instances of the direct Womersley problem, thus supporting

the potential interest in the inverse one as well. Furthermore, while considering a fully-developed

flow of a Newtonian fluid, it may be of interest to extend the proposed approach to more generic

cross-sections, starting from the elliptic one. A first step towards such an extension has been taken

in [40]; corresponding analytic burden seems to be considerably increased with respect to the

case of the circular cross-section. The aforementioned applications, as well as the many research

lines envisaged for direct incorporation of the proposed analytical approach, further strengthen its

potential for effective exploitation in an interdisciplinary context.

Appendix: Magnetic field submodel

Premise: without affecting consistency, in the present section we tolerate some abuse of notation

with respect to the rest of the paper, for ease of presentation.

The magnetic field H of an axial, cylindrical permanent magnet having radius rm and length lm

is classically modeled by exploiting the equivalent currents method (see e.g. [41]). Here we recall

such model in order to provide readers with useful expressions, in view of practical applications

(indeed, the considered expressions are prone to typos/misprints, even within very sound papers like

e.g. [24]). Moreover, due to symmetry, we represent H in a cylindrical coordinate system (êρ, êθ, êz)

having origin in the center of a cylinder base surface, with êz pointing outwards (conversion e.g.

to the frame introduced in Sec. IIIB is straightforward). In such a frame, cylinder magnetization

is assumed to be M s
mêz, where M s

m represents magnet saturation magnetization.

The considered magnetic field H = H (ρ, z) reads:

H=
M s

m

2π

∫ lm

ξ=0

[hρ(ρ, z+ξ) êρ + hz(ρ, z+ξ) êz] dξ, (A.1)

with

hρ (ρ, z) :=
1√
Q

z

ρ

[

2 − k2

2 (1 − k2)
E(k) −K(k)

]

, (A.2)

hz (ρ, z) :=
1√
Q

[

P

Q

1

1 − k2
E(k) +K(k)

]

, (A.3)

where Q := (rm + ρ)2 + z2, k2 := 4rm ρ/Q and P := r2m −ρ2 − z2. Moreover, K and E respectively

denote the (classical) complete elliptic integrals of the first and second kind, defined as follows:

K(k) :=

∫ π/2

α=0

dα

ψk(α)
, E(k) :=

∫ π/2

α=0

ψk(α)dα, (A.4)
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where ψk(α) :=
√

1 − k2 sin2(α). Furthermore, by recalling the fact that k dK/dk = E/
(

1 − k2
)

−
K and k dE/dk = E −K, expressions (A.2) and (A.3) can be straightforwardly differentiated so

as to obtain:

β
∂hρ(ρ, z)

∂ρ
= σ1γ + σ4hρ + σ7

hρ

ρ
, (A.5)

β
∂hρ(ρ, z)

∂z
= β

∂hz(ρ, z)

∂ρ
= σ2γ + σ5hρ + σ8

hρ

z
, (A.6)

β
∂hz(ρ, z)

∂z
= σ3γ + σ6hz, (A.7)

where σ1 := 3z
(

r2m − ρ2 + z2
)

, σ2 := −6ρz2, σ3 := −2z
(

2r2m − 2ρ2 + z2
)

, σ4 :=

ρ
(

3r2m − 2ρ2 − 3z2
)

, σ5 := z
(

r2m + ρ2
)

, σ6 := zP , σ7 := −
(

r2m + z2
)2

, σ8 :=
(

r2m − ρ2
)2

,

β := Q2
(

1 − k2
)

and γ := 2r2mE(k)/
[

Q3/2
(

1 − k2
)

]

. The above introduced expressions permit

to analytically compute ∇H, as needed for computing the magnetic force model introduced in

Sec. IIB.

Finally, it is worth remarking that, by recalling the asymptotic expansion of K and E for k → 0,

it is easy to circumvent the representation singularities associated with ρ = 0 in the expressions

(A.2), (A.5) and (A.6). Indeed, for ρ→ 0 (i.e. k2 → 0), K = π/2
(

1 + k2/4 + 9k4/64
)

+O(k6) and

E = π/2
(

1 − k2/4 − 3k4/64
)

+ O(k6), so that hρ ≈ µ(z)ρ, with µ(z) :=
(

3πr2m/2
)

z/
(

r2m + z2
)5/2

,

and hρ/ρ ≈ µ(z). These relations prove to be useful for the numerical implementation of the

magnetic field model at hand, namely when computing H at points having ρ < ρ̄, where ρ̄ is a

predefined threshold (a practical alternative may consist in chopping the radial coordinate below

such a threshold).
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