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BACKGROUND—No prospective cohort study of high-risk children has used rigorous exposure 

assessment and optimal diagnostic procedures to examine the perinatal antecedents of autism 

spectrum disorder (ASD), separately among those with and without cognitive impairment.

OBJECTIVE—To identify perinatal factors associated with increased risk for ASD with and 

without intellectual disability (ID: IQ < 70) in children born extremely preterm.

STUDY DESIGN—This prospective multi-center (14 institutions in 5 states) birth cohort study 

included children born at 23-27 weeks gestation in 2002-2004 who were evaluated for ASD and 

ID at age 10 years. Pregnancy information was obtained from medical records and by structured 

maternal interview. Cervical-vaginal ‘infection’ refers to maternal report of bacterial infection (n = 

4), bacterial vaginosis (n = 30), yeast infection (n = 62), mixed infection (n = 4) or other/

unspecified infection (n=43; e.g., chlamydia, trichomonas or herpes, etc.). We do not know the 

extent to which ‘infection’ per se was confirmed by microbial colonization. We use the terms ‘fetal 

growth restriction’ and ‘small for gestational age’ interchangeably in light of the ongoing 

challenge to discern pathologically from constitutionally small newborns. Severe fetal growth-

restriction was defined as a birth weight Z-score for gestational age at delivery < - 2 (i.e., 2 

standard deviations or more below the median birth weight in a referent sample that excluded 

pregnancies delivered for preeclampsia or fetal indications). Participants were classified into four 

groups based on whether or not they met rigorous diagnostic criteria for ASD and ID (ASD+/ID−, 

ASD+/ID+, ASD−/ID+ and ASD−/ID−). Temporally-ordered multinomial logistic regression 

models were used to examine the information conveyed by perinatal factors about increased risk 

for ASD and/or ID (ASD+/ID−, ASD+/ID+ and ASD−/ID+).

RESULTS—889 of 966 (92%) children recruited were assessed at age 10 years, of whom 857 

(96%) were assessed for ASD; of these, 840 (98%) children were assessed for ID. ASD+/ID− was 

diagnosed in 3.2% (27/840), ASD+/ID+ in 3.8% (32/840), and ASD−/ID+ in 8.5% (71/840). 

Maternal report of presumed cervical-vaginal ‘infection’ during pregnancy was associated with 

increased risk of ASD+/ID+ (odd ratio [OR], 2.7; 95% CI, 1.2-6.4). The lowest gestational age 

category (23-24 weeks) was associated with increased risk of ASD+/ID+ (OR, 2.9; 95% CI, 

1.3-6.6) and ASD+/ID− (OR, 4.4; 95% CI, 1.7-11). Severe fetal growth restriction was strongly 

associated with increased risk for ASD+/ID− (OR, 9.9; 95% CI, 3.3-30), whereas peripartum 

maternal fever was uniquely associated with increased risk of ASD−/ID+ (OR, 2.9; 95% CI, 

1.2-6.7).

CONCLUSION—Our study confirms that low gestational age is associated with increased risk 

for ASD irrespective of intellectual ability, whereas severe fetal growth restriction is strongly 

associated with ASD without ID. Maternal report of cervical-vaginal infection is associated with 

increased risk of ASD with ID, and peripartum maternal fever is associated with increased risk for 

ID without ASD.

INTRODUCTION

Meta-analyses and comprehensive reviews describe inconsistencies in research findings on 

the perinatal antecedents of ASD as likely reflecting study differences in ascertainment and 

diagnostic procedures, sample size, exposure assessment, and treatment of potential 

confounders.1-3 Nevertheless, mounting evidence suggests that a constellation of perinatal 

factors contribute to increased risk of ASD, including preterm birth,4-9 fetal growth 
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restriction (or lower than expected birth weight for gestational age10),4,6 and their correlates 

(e.g., placental insufficiency and preeclampsia).11

Risk factors for ASD apparently differ between children who have and who do not have co-

occurring intellectual impairment (ID).4,7,12 Yet, no prospective cohort study of high-risk 

children has used rigorous exposure assessment and optimal diagnostic procedures to 

examine the perinatal antecedents of ASD, taking into account co-occurring cognitive 

impairment. The large Extremely Low Gestational Age Newborn (ELGAN) Study cohort of 

infants born before the 28th week of gestation afforded us the opportunity to examine 

prospectively the antenatal and neonatal antecedents of ASD diagnosed at age 10 years, 

separately in children with and without co-occurring ID (IQ < 70).

METHODS

Participants

The ELGAN study is a multi-center observational study designed to identify characteristics 

and exposures associated with increased risk of structural and functional neurologic 

disorders in extremely preterm infants.13 During the years 2002-2004, women delivering 

before 28 weeks gestation at one of 14 participating institutions were asked to enroll in the 

study; 1249 mothers of 1506 infants consented to participate, and 1198 children survived to 

10 years [see Supplement Figure 1 for a flow diagram of study participants]. Of 966 children 

who were actively recruited for follow-up at age 10 years (because of the availability of 

blood samples from their first postnatal month), informed consent was obtained for the 

participation of 889 (92%). The institutional review boards of participating institutions 

approved the study procedures.

Demographic, pregnancy, delivery and newborn variables

Methods of data collection for demographic, pregnancy, delivery, and newborn variables are 

described elsewhere,13 and also in detail in eAppendix 1 in the Supplement. In brief, 

gestational age (GA) estimates were based on a hierarchy of the best information available 

as described in the Supplement (92% were based on fetal ultrasound; most prior to 14 

weeks). Cervical-vaginal ‘infection’ refers to maternal report of bacterial infection (n = 4), 

bacterial vaginosis (n = 30), yeast infection (n = 62), mixed infection (n = 4) or other/

unspecified infection (n=43; e.g., chlamydia, trichomonas or herpes, etc.). Previous research 

indicates that such information gained through self-report can be more accurate than that 

obtained from medical records or birth certificates,14-17 but we do not know the extent to 

which ‘infection’ per se was confirmed by microbial colonization. The terms ‘fetal growth 

restriction’ and ‘small for gestational age’ meet our needs equally, and we use them 

interchangeably since accurate differentiation of pathologically small from constitutionally 

small newborns (see18,19) is an ongoing challenge.20-22 Severe fetal growth restriction was 

defined by a birth weight Z-score < −2. Birth weight Z-score was calculated as the number 

of standard deviations each infant's birth weight was above or below the median birth weight 

in referent samples that excluded pregnancies delivered for preeclampsia or fetal 

indications.23,24 Physiology, laboratory and therapy data for the first 12 postnatal hours were 

collected to calculate a Score for Neonatal Acute Physiology–II25 (SNAP-II™).26 
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Additional data were collected on placenta microbiology and histology,27-31 mode of 

ventilation and respiratory care,32,33 bacteremia,34 patent ductus arteriosis (PDA),35 

illnesses and medications used in the first 28 days post-partum,36 necrotizing enterocolitis,37 

and retinopathy.38

Assessment at 10-years of age

The assessment procedures, and all relevant test scores for ASD and ID, are reported in a 

prior publication.39 Briefly, diagnostic assessment of ASD was conducted with three well-

validated measures, administered sequentially. First was the Social Communication 

Questionnaire (SCQ) with a screen-in score ≥ 11 to increase sensitivity relative to the 

standard criterion score of ≥ 15.40 Children who met the SCQ criterion were then assessed 

with the Autism Diagnostic Interview–Revised (ADI-R).41 All children who met ADI-R 

criteria for autism or ASD, 42 or who had a prior clinical diagnosis of ASD and/or exhibited 

symptoms of ASD during cognitive testing according to the site psychologist) were then 

assessed with the Autism Diagnostic Observation Schedule, Second Version (ADOS-2)43 -- 

the criterion measure of ASD in this study.

All ADOS-2 administrations were independently scored by a second rater with autism 

diagnostic and ADOS-2 expertise (R.M.J.) who did not have knowledge of the child's SCQ 

and ADI-R results or prior clinical history. In cases of scoring disagreements, consensus was 

reached between raters. Item-by-item inter-rater agreement for the 14 ADOS-2 diagnostic 

algorithm scores was on average .93 (SD = .12). Of 90 ADOS-2 assessments, inter-rater 

disagreement and consensus scoring resulted in 4 changes of classification, 3 from non-ASD 

to ASD and 1 from ASD to non-ASD, Cohen's K = .90.

Intellectual ability (IQ) was assessed with the School-Age Differential Ability Scales – II 

(DAS-II).44 Children with IQ [(Verbal + Nonverbal Reasoning scores)/2] < 70 were 

classified as having intellectual disability (ID). Because ASD cannot be validly diagnosed in 

children with significant visual and/or motor impairment accompanied by severe intellectual 

disability,45 children with these conditions were excluded from diagnostic consideration of 

ASD. (Supplement Figure S1) Severe gross motor dysfunction was defined as Level 5 (i.e., 

no self-mobility) on the Gross Motor Function Classification System (GMFCS).46 A child 

was considered to have severe visual impairment if the parent reported uncorrectable 

functional blindness in both eyes. No participant had a significant, uncorrected hearing 

impairment.

Data analyses

We evaluated the null hypothesis that ASD without ID (ASD+/ID−), ASD with ID (ASD

+/ID+), and ID without ASD (ASD−/ID+) are not associated with any maternal, pregnancy, 

delivery, or postnatal characteristic or exposure. We began by classifying children into four 

groups based on whether or not they met diagnostic criteria for ASD and ID at age 10 years. 

We then described the percent of children in each group whose mother had selected 

demographic and pregnancy characteristics or who themselves had perinatal and neonatal 

characteristics and exposures and who were diagnosed with ASD and/or ID at age 10 years.
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Because antepartum phenomena can influence postnatal phenomena, we tested our null 

hypothesis with temporally-oriented models.47 Primary exposures included inflammation-

related phenomena during pregnancy (e.g., maternal report of cervicalvaginal ‘infection’) 

and at delivery (e.g., intrapartum maternal fever), indicators of fetal growth restriction and 

its correlates (e.g., birth weight Z-score for gestational age < −2 and preeclampsia) and 

lowest gestational age category (i.e., 23-24 weeks). We considered variables as confounders 

if identified in the literature or if in our data they were associated with both the exposure and 

the outcome with probabilities ≤ .25.48 To construct the time-oriented models, we used a 

step-down procedure seeking a parsimonious solution without effect modification terms. 

First, we examined pregnancy information in a multinomial logistic regression model of risk 

for ASD and ID. Then we added factors measured around the time of delivery, adjusting for 

those variables with statistically significant associations in the pregnancy-stage model. 

Finally we added neonatal factors, adjusting for all variables selected in by the earlier 

models.

We present magnitudes of association as odds ratios (OR) with 95% confidence intervals 

(CI). Associations were statistically significant when the 95% confidence interval did not 

include the null estimate (i.e., OR 1.0). The primary outcomes ASD+/ID− and ASD+/ID+ 

affected 3-4% of our sample of ELGANs, giving us 80% power to detect associations with a 

minimal detectable odds ratio of 3.2, assuming an exposure prevalence of 0.3. We also 

describe the prevalence and antecedents of ID without ASD as a secondary outcome.

RESULTS

Of the 996 children recruited to participate at age 10 years, 889 (92%) were enrolled, of 

whom 840 (95%) were assessed both for ASD and for ID. [Supplement Figure 1] Of the 840 

children in our final sample, 7.0% (n = 59) met study criteria for ASD and 12.3% (n = 103) 

had ID (IQ < 70). ASD+/ID− was diagnosed in 3.2% (27/840), ASD+/ID+ in 3.8% (32/840), 

and ASD−/ID+ in 8.5% (71/840) of the final sample.

Descriptive univariate analyses

The results of univariate analyses are displayed visually using the same format in four 

figures, and in four supplement figures. A legend at the top of each figure names the four 

symbols used to describe each of the four mutually exclusive ASD/ID outcome groups. The 

horizontal axis labeled at the bottom of each figure indicates row percent (i.e., each row 

sums to 100%), and the characteristic that each row plotted percent describes is labeled on 

the left vertical axis. The top row of each figure displays 4 symbols to indicate the cohort 

prevalence of each of the four ASD/ID groups; dotted vertical lines proceeding downward 

from each symbol through the plot are provided to enable easy visual comparison between 

cohort prevalence and each plotted percent (i.e., prevalence among study groups formed 

according to pregnancy, birth and neonatal characteristics). The total number of children 

who had or were exposed to each characteristic is shown on the right vertical axis. We 

describe maternal demographic characteristics in Figure 1, maternal exposures, illnesses and 

medications in Figure 2, pregnancy characteristics and complications in Figure 3, and 

newborn characteristics in Figure 4. Supplementary Figures S2-S5 illustrate placenta 
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characteristics, early postnatal characteristics, newborn medications and therapies, and 

newborn diagnoses and dysfunctions. The accompanying legends provide brief descriptions 

of the distribution of ASD/ID study groups shown in each figure to represent the entire study 

population.

Analytic multivariable regression analyses

Time-ordered multinomial logistic regression models (Table 1) were used to examine the 

extent to which pregnancy, delivery, and neonatal factors are associated with increased risk 

for ASD+/ID−, ASD+/ID+ or ASD−/ID+, adjusting for potential confounders.

Children were at increased risk of ASD+/ID− if they were born in the lowest gestational age 

category (OR, 4.4; 95% CI, 1.7-11) and if they had severe fetal growth restriction (birth 

weight Z-score < −2) (OR, 9.9; 95% CI, 3.3-30). Maternal fever at delivery was associated 

with 3.6 times greater risk of ASD+/ID−, though the association was not quite statistically 

significant (OR, 3.6; 95% CI, 0.98-13). Mother's receipt of an antibiotic during the 

pregnancy was associated with reduced risk of ASD+/ID− (OR, 0.1; 95% CI, 0.01-0.7).

Children were at increased risk of ASD+/ID+ if the mother reported a cervical-vaginal 

‘infection’ during pregnancy (OR, 2.7; 95% CI, 1.2-6.4), if they were boys (OR, 2.9; 95% 

CI, 1.3-6.8), or if their gestational age was in the lowest category (23-24 weeks) (OR, 2.9; 

95% CI, 1.3-6.6).

Risk factors for ID unaccompanied by ASD included maternal fever at delivery (OR, 2.9; 

95% CI, 1.2-6.7), male sex (OR, 2.1; 95% CI, 1.2-3.6), and very low gestational age (OR,

1.8; 95% CI, 1.03-3.3).

DISCUSSION

In a large, prospectively followed cohort of children born before the 28th week of gestation, 

we found that low gestational age is a risk factor for rigorously diagnosed ASD irrespective 

of IQ < or ≥ 70, severe fetal growth restriction (i.e., birth weight Z-score < −2) is strongly 

associated with increased risk of ASD+/ID−, and maternal report of cervical-vaginal 

‘infection’ is strongly associated with increased risk of ASD+/ID+. In addition, prescription 

of an antibiotic is associated with lowered risk of ASD+/ID−, and peripartum maternal fever 

is associated with increased risk of ID not accompanied by ASD (ASD−/ID+).

Our study confirms previous observations that preterm birth is associated with increased risk 

of ASD,4,6,7 and that the risk increases as gestational age decreases,5 even among children 

born in the narrow window of 23 to 27 weeks of gestation. The only prior study of ASD risk 

specifically among extremely preterm children did not find an association between 

gestational age and ASD,8 perhaps because it was based on only 16 diagnosed children, and 

because of the relatively restricted range of gestational age (< 26 weeks) of the study 

sample.

Very low gestational age is associated with increased risk not only for ASD with ID, but also 

for ASD with relatively intact or normal cognitive function. Some of the increased risk 

might reflect vulnerability of cerebral maturation processes,49 paucity of neuroprotective 
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factors,50 postnatal physiologic instability,51 and/or inflammatory phenomena that appear to 

increase the risk of brain damage in very preterm newborns.52

Lower than expected birth weight for gestational age,4 and its correlates (i.e., preeclampsia, 

placental insufficiency, and cesarean delivery11) have also been associated with increased 

risk of ASD.10 We use the terms ‘fetal growth restriction’ and ‘small for gestational age’ 

interchangeably, since the accurate differentiation of pathologically small from 

constitutionally small newborns (see18,19) is an ongoing challenge.20-22 Our findings are 

novel in indicating that impaired fetal growth among extremely preterm newborns is the 

factor most strongly associated with ASD among children without cognitive impairment. 

The co-occurrence of severe growth restriction with very preterm birth might result in 

“double jeopardy”,53 placing children with both characteristics at especially high risk of 

developmental disability, perhaps due to the tendency of such children to have a more 

intense systemic inflammatory response compared to their peers who are not growth 

restricted.54 The strong association of fetal growth restriction with ASD might also reflect 

epigenetic phenomena. Not only is fetal growth restriction strongly associated with 

developmental programming that has been attributed to DNA methylation55,56 and histone 

acetylation,57 ASD has also been associated with epigenetic changes.58-60 Here, too, 

“double jeopardy” might come into play because epigenetic phenomena have also been 

associated with inflammation.61-64

Our finding that maternal report of cervical-vaginal ‘infection’ in pregnancy and peripartum 

maternal fever are associated with ID with and without ASD adds further support to the role 

of immune responses in the genesis of perinatal brain disorders.24,65,66 We do not know the 

extent to which maternal reported cervical-vaginal infections involved a documented 

immune response to microbial colonization (i.e., true infection). Previous research indicates 

that information gained through self-report during maternal interview can be more accurate 

than that obtained from medical records or birth certificates,14-17 though modest reliability 

has also been reported for some obstetric morbidity surveys.67,68 In the ELGAN Study, 

newborns whose mother reported a genitourinary infection during pregnancy were more 

frequently exposed to inflammation of the chorionic plate, chorion, decidua, fetal stem 

vessels, and umbilical cord than were those whose mother did not.69 These children also had 

higher neonatal blood concentrations of inflammation-associated proteins than other 

newborns.70 Likewise, prior studies suggest that children with ASD diagnoses or autistic 

mannerisms are more frequently exposed to certain viruses and higher titers of antibodies to 

these viruses,71,72 have elevated peripheral blood or dried newborn blood spot 

concentrations of some inflammation-related proteins,73 and have higher rates of immune-

mediated conditions than other children.74 Preclinical evidence additionally supports the 

view that perinatal inflammation-initiating conditions make the brain more vulnerable to 

subsequent insults, and that the timing of an inflammatory exposure might alter the course of 

subsequent brain injury.66

Very preterm delivery for maternal or fetal indications is associated with a higher risk of 

ASD+/ID+ than is delivery for spontaneous indications. Because women who deliver for 

maternal or fetal indications are less likely to receive antibiotics than women who deliver for 

spontaneous indications,75 it is possible that the variable for receipt of antibiotics conveys 
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information about spontaneous preterm deliveries, which were at reduced risk of ASD 

without ID. Thus, the receipt of antibiotics may merely be an indicator or correlate of 

reduced risk that is not involved in lowering risk.

Strengths and limitations

Strengths of our study include the large, prospectively followed cohort of infants enrolled on 

the basis of gestational age rather than birth weight,76 and confirmation of the diagnosis of 

ASD at age 10 years with rigorous diagnostic procedures. As with all observational studies, 

we were limited in our ability to infer causation from associations. While ASD was more 

prevalent in our sample of ELGANs than in the general population, only 3.8% of our sample 

had ASD with ID, and 3.2% had ASD without ID. As a consequence, our analyses had 

adequate statistical power to detect only relatively strong underlying associations. 

Nonetheless, we did identify a number of antecedents associated with both of these 

outcomes.

Conclusions and relevance

Among children born before the 28th week of gestation, those who were in the lowest 

gestational age category were at increased risk of ASD irrespective of cooccurring ID, 

whereas severe fetal growth restriction was strongly associated with increased risk of ASD 

without ID, and cervical-vaginal infection was specifically associated with increased risk of 

ASD with ID. Peripartum maternal fever was uniquely associated with increased risk of 

cognitive impairment not accompanied by ASD. These findings support other evidence that 

immaturity, epigenetic phenomena, and inflammation contribute to the occurrence of ASD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Percent of women who had selected demographic characteristics whose children were 
classified at age 10 years as ASD+/ID−, ASD+/ID+, ASD−/ID+ or ASD−/ID−
[Women who identified as Black, did not graduate from high school, and/or were eligible for 

government-provided healthcare (public) insurance gave birth to children who later had 

ASD−/ID+ or ASD+/ID+ more frequently than other women. *Infants may be in more than 

one category]
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Figure 2. Percent of women who had selected pregnancy characteristics or exposures whose 
children were classified at age 10 years as ASD+/ID−, ASD+/ID+, ASD−/ID+ or ASD−/ID−
[Children whose mother reported a vaginal/cervical infection, and/or a periodontal infection 

during this pregnancy, had ASD+/ID+ more frequently than children of other women. By 

contrast, children of women who consumed antibiotics less frequently received a diagnosis 

of ASD+/ID− compared to the children of other women, whereas ASD−/ID+ occurred more 

frequently among children born to women who reported fever during this pregnancy than in 

children of other women.]
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Figure 3. Percent of women who had selected pregnancy complications whose children were 
classified at age 10 years as ASD+/ID−, ASD+/ID+, ASD−/ID+ or ASD−/ID−
[Irrespective of their IQ, children whose mother had preeclampsia and/or received 

magnesium sulfate for seizure prophylaxis developed ASD more frequently than children of 

other mothers. Children born to women who had placental abruption, and those whose 

mother had fever within 48 hours before or after delivery, more frequently developed ASD 

unaccompanied by ID (ASD+/ID−) than children of other mothers.]
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Figure 4. Percent of newborns with selected characteristics who were classified at age 10 years as 
ASD+/ID−, ASD+/ID+, ASD−/ID+ or ASD−/ID−
[Boys had ASD+/ID+ and ASD+/ID− twice as frequently as girls. The prevalence of ASD 

increased with decreasing gestational age and, to a lesser extent, with decreasing birth 

weight, regardless of IQ. Children who had birth head circumference Z-score < −2 also 

received ASD diagnoses more frequently than other children, irrespective of IQ. Children 

with the most severe fetal growth restriction (i.e., birth weight Z-score < −2) had the highest 

percent of ASD+/ID− diagnoses. Antecedents of ID unaccompanied by ASD (ASD−/ID+) 
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included male sex, low gestational age, and fetal growth restriction (including 

microcephaly).]
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Table 1

Odds ratios and 95% confidence intervals for the association of ASD+/ID−, ASD+/ID+, ASD−/ID+ and ASD

−/ID− with the antecedents listed on the left calculated using a time-oriented multinomial logistic regression 

model that added variables sequentially as they were identified. Earlier occurring variables that were 

significantly associated could not be displaced in later models.

ASD+/ID− ASD+/ID+ ASD−/ID+ ASD−/ID−

(n = 27) (n = 32) (n = 71) (n = 710)

Pregnancy epoch
*

Cervical-vaginal infection 0.9 (0.2, 4.1) 2.7 (1.2, 6.4) 0.7 (0.3, 1.6) 1.0

Receipt of antibiotic 0.1 (0.01, 0.7) 0.8 (0.4, 1.9) 1.3 (0.9, 2.3) 1.0

Delivery epoch
**

Fever at delivery 3.6 (0.98, 13) 0.6 (0.1, 4.4) 2.9 (1.2, 6.7) 1.0

Newborn epoch
***

Male 2.1 (0.9, 5.0) 2.9 (1.3, 6.8) 2.1 (1.2, 3.6) 1.0

GA 23-24 weeks 4.4 (1.7, 11) 2.9 (1.3, 6.6) 1.8 (1.03, 3.3) 1.0

BW Z-score < −2 9.9 (3.3, 30) 2.1 (0.5, 9.9) 2.0 (0.7, 5.3) 1.0

odds ratios above 1.0 are interpreted as indicating increased risk of the outcome listed at the top of the column for women or children who were 
exposed to what is described on the left, whereas odds ratios below 1.0 indicate decreased risk, and confidence intervals that do not include 1.0 
indicate statistically significant associations (indicated by bold font).

*
Both fixed effects (independent variables) were included in the same multinomial logistic regression model

**
Adjusted for fixed effects that were significantly associated with ASD−/ID+ risk in the pregnancy epoch model

***
Adjusted for fixed effects that were significantly associated with ASD−/ID+ risk in the pregnancy and delivery epoch models
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