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Abstract

Inorganic nanoparticles provide multipurpose platforms for a broad range of delivery applications. 

Intrinsic nanoscopic properties provide access to unique magnetic and optical properties. Equally 

importantly, the structural and functional diversity of gold, silica, iron oxide, and lanthanide-based 

nanocarriers provide unrivalled control of nanostructural properties for effective transport of 

therapeutic cargos, overcoming biobarriers on the cellular and organismal level. Taken together, 

inorganic nanoparticles provide a key addition to the arsenal of delivery vectors for fighting 

disease and improving human health.
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1. Introduction

Nanotechnology provides a potent tool for delivery and programmed release of therapeutics. 

Many therapeutics suffer from poor stability, inability to cross the cell membrane, and rapid 

clearance in vivo [1,2]. The biomimetic size and tunable properties of nanomaterials provide 

unique advantages for therapeutic delivery agents. [3,4,5]. A broad range of inorganic 

nanoparticles have been explored as carriers to deliver therapeutic cargos into living systems 

for the controlled, targeted management of diseases like cancer [6,7].

Today, three main classes of therapeutic are of central interest for the treatment of disease: 

small molecule drugs, nucleic acids, and recombinant proteins [8,9,10]. Small molecule 

drug delivery is a broad field that has been explored extensively for many applications, 

including inhibition of cellular processes [11,12], enhanced cell signaling [13,14], and 

targeted cytotoxicity [15]. Delivery and controlled release of these materials provides a 
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strong value-added proposition, with the potential to maximize efficacy and minimize off

target effects [16].

Many diseases are considered ‘undruggable’ using standard small molecule therapeutics 

[17]. Many of these challenges, however, can be addressed using biomacromolecular 

therapeutics [18]. Nucleic acid therapeutics are one broad class, and include plasmid DNA 

(pDNA) and messenger RNA (mRNA), which induce expression of proteins in the cell [19], 

as well as RNA interference (RNAi) techniques such as small interfering RNA (siRNA) [20] 

and micro RNA (miRNA) [21], which ‘knock down’ protein expression. Nucleic acids are 

highly charged, making them essentially impermeable to the cell membrane [22]. They are 

also relatively fragile, and benefit from nanocarrier-mediated protection against endogenous 

nucleases [23].

Proteins present a second family of biomacromolecular therapeutics [24]. Both native and 

engineered proteins can function directly in the cell and can induce or suppress specific 

biological processes [25]. Proteins are generally large and do not generally penetrate the cell 

membrane on their own. [26,27,28]. While peptide (e.g. cell-penetrating peptides) [29] and 

other bioconjugation strategies can enable delivery into cells, these strategies often result 

in endosmal entrapment and degradation [30]. Nanocarriers provide access to critically 

important tools for effecting delivery of large and highly charged nucleic acids and protein 

species across the otherwise impermeable cell membrane, as well as the benefits of targeting 

and controlled release.

The different delivery challenges presented by small molecules, nucleic acids and proteins 

necessitate distinct strategies for complexation/conjugation and delivery [27]. Nanomaterials 

derived from gold, iron, silica, and lanthanides feature a range of unique physio-chemical 

characteristics and structural capabilities distinct from the properties of their bulk materials 

that have made them promising carrier platforms for therapeutics (Fig. 1) [31,32,44]. Many 

of these attributes, such as high surface-volume ratio [33], long-term stability [34], and 

optical responsiveness [35], make these materials promising candidates for drug loading 

and targeted release [36,37]. Certain types of nanocarrier technology have also significantly 

enhanced delivery efficiency for all three classes of cargo through triggered or localized 

release [38].

In this review, we highlight the evolution of inorganic nanoparticles for delivery 

applications, from earlier landmarks to more recent clinical translation. We will also discuss 

challenges still faced with inorganic nanoparticles, and finally provide our perspective on 

the opportunities presented by this expansive and fertile field of research. The range of 

nanomaterials employed for delivery is vast. For this review we have focused on four major 

classes of materials: gold [39], silica [40], iron oxides [41], and lanthanides [42,43].

2. Gold Particles

AuNPs emerged in the late 1990s as attractive candidates for delivery of diverse payloads 

[38]. Gold has since proven a versatile and useful core material for delivery applications; it 

can be formed into monodisperse nanostructures [44] with a high degree of specificity, is 
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essentially chemically inert and nontoxic [45], and can be functionalized with a wide variety 

of ligand species and chemical moieties [46,47].

Gold can be directly conjugated using thiolated (-SH) molecules to form stable monolayer

protected particles (Fig. 2) in an interaction that is partially covalent (~35%) and mostly 

electrostatic (~65%) [48,49]. The monolayer stabilizes the core and can be tailored with 

a range of functionalities to provide effective cellular uptake, controlled payload release, 

and cell-specific targeting [50]. Direct covalent attachment to the gold core can be used 

to deliver thiolated fluorophores [51] or small molecule drugs into the cell and into tumor 

tissue [52] with improved efficacy over free drug [53]. These coverings are stable outside 

cells but labile intracellularly due to much higher glutathione levels inside cells than 

extracellularly, providing a mechanism for internal release [54]. The monolayer also allows 

for non-covalent loading with large amounts of pharmaceuticals, effectively rendering a 

‘drug reservoir’ for controlled and sustained release [55,56].

AuNPs are made through reduction of gold salts in the presence of an appropriate 

stabilizing agent, and can be synthesized with a highly controllable core size, ranging from 

ultrasmall (≤2 nm) to as large as 150 nm [39]. Size differences influence physio-chemical 

characteristics [57], pharmacokinetic behavior [58], and especially optical properties [59]; 

small AuNPs, including gold nanoclusters, typically have a high surface-to-volume ratio, 

and can exhibit photoemission (gold nanoclusters (AuNCs, typically < 2 nm), while larger 

particles show a characteristic surface plasmon resonance [60, 61, 62]. Numerous strategies 

utilize the advantageous physio-chemical properties of gold nanomaterials to provide robust 

platforms for intracellular delivery of everything from small molecule drugs [39] to large 

biomolecules like proteins [27] and pDNA [50].

2.1. Covalent AuNP cargo attachment

Small AuNCs and AuNPs can penetrate cells without disrupting the cell membrane structure 

[63,64]. Ultrasmall particles also benefit from a tunable biodistribution [65,66], as well as 

enhanced uptake into the nucleus [67,68] and into tumors [69,70], making them excellent 

candidates for drug delivery vehicles. Early work demonstrated intracellular delivery of a 

thiolated small molecule dye covalently bound to a 2 nm AuNP gold core [71]. AuNPs 

are efficient quenchers of fluorescence, providing the AuNP platform with a robust ‘turn

on’ fluorescence signal to monitor delivery (Fig. 3). Similar approaches using ultrasmall 

AuNPs enhance small molecule drug delivery for photodynamic therapy [72,73] as well 

as chemotherapy [74] and at the time of this writing are undergoing clinical trials for 

treatment of childhood brain cancer [75]. Covalent drug conjugation to a photocleavable 

head group is a versatile alternative approach to photo-regulated drug delivery [76,77]. 

‘Caging’ the anticancer drug 5-fluorouracil to the ligand through a photo-responsive o

nitrobenzyl linkage followed by UV-A radiation triggered photolytic cleavage and drug 

release, providing effective in vitro anticancer activity [78].

The optical behavior of gold nanoparticles ≥ 2 nm is based on plasmonic properties and 

gives AuNPs the ability to absorb and scatter light with extraordinary efficiency [79]. 

Plasmonic properties can be tuned to absorb specific wavelengths based on shape and aspect 

ratio [80]. AuNPs of mid-to-large core size differ from their ultrasmall counterparts in 
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several ways, one of the most notable being efficient light-to-heat conversion. This property 

of AuNPs was originally used to destroy cancerous tissue through conversion of NIR 

irradiation into heat for photothermal therapy [81,82]. AuNPs for photothermal therapy can 

be combined with other treatment strategies, providing opportunities for multimodal cancer 

treatment [83,84,85,86]. However, the high-power density of irradiation and poor selectivity 

remain challenges for this approach [87]. Today, the photothermal properties of AuNPs (in 

particular hollow nanoshells) are being investigated in the clinic as a treatment for prostate 

cancer [88].

Peptide conjugation to particle surfaces can serve multiple purposes. First, peptide 

presentation on the particle surface can provide targeting elements for a specific cell type 

[89, 90, 91, 92]. Work by Russell utilized AuNPs conjugated with a phthalocyanine dye, 

polyethylene glycol (PEG) for stability, and HER-2 antibody to provide breast cancer cell 

targeting [93]. PEG conjugation is a common approach to increasing ‘stealth’ character 

of nanomaterials otherwise identified as foreign by the body [94,95,96,97]. These studies 

resulted in selective cancer cell death in cultured cells. Peptides with therapeutic activity 

can also be conjugated to the particle surface for intracellular delivery [98]. Recently, 

2 nm AuNPs bound to small antigenic peptides have been used in clinical trials as an 

immunotherapeutic treatment for type I diabetes, a promising step forward in medical 

nanotechnology [99,100].

Nucleic acid strands can be readily modified and bound to gold nanoparticle cores [101] in 

a selective and cooperative manner, most commonly through thiol moieties [102,103,104]. 

Mirkin synthesized a class of polyvalent nucleic acid AuNPs (13–15 nm core) with thiolated 

oligonucleotides. These particles exhibited optical properties governed by aggregate size 

and were initially used as a diagnostic method to detect DNA [105,106]. They also 

covalently conjugated 13 nm gold core AuNPs with thiolated antisense oligonucleotides 

as a gene interference strategy, first using the oligonucleotides themselves [107], and 

then using complementarily bound siRNA strands (Fig. 4) [108], demonstrating tunable 

gene knockdown using both approaches [109]. This conjugation strategy is not limited to 

DNA; thiolated siRNA for example, can also be stably conjugated directly to the gold 

core [110,111] or attached to polymer-modified gold cores [112,113]. This bioconjugation 

has notably been shown to be dependent on AuNP shape [114]. Mirkin and Paller 

demonstrated the capability of spherical nucleic acid-13 nm core AuNP conjugates dispersed 

in moisturizing ointment to penetrate the skin and down-regulate gene targets responsible 

for insulin resistance in diabetic mice [115,116]. Conboy and Murthy utilized covalent 

conjugation to 15 nm gold core for delivery of the CRISPR/Cas9 gene repair machinery with 

their ‘CRISPR-Gold’ platform [117]. Thiolated complementary olignonucleotides bound to 

the core held the ‘donor’ DNA needed for gene repair, while the Cas9/RNA complex was 

encapsulated by a cationic polymer. These studies demonstrated efficient genetic repair, with 

follow-up studies resulting in therapeutic gene correction of a murine muscular dystrophy 

model [118].
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2.2. Non-covalent AuNP cargo complexation

Non-covalent cargo encapsulation provides an alternative to covalent delivery strategies 

that avoids the challenges associated with covalent conjugation arising from modification 

of the cargo, and issues related to detachment [55,119,120]. Drug encapsulation within 

a hydrophobic pocket such as that present in PEG-conjugated (PEGylated) AuNPs can 

provide significant loading capacity. Burda reported 5 nm core PEGylated AuNPs with 

a phthalocyanine photosensitizer small molecule encapsulated within the PEG layer. 

Intravenous injection provided tumor localization to a much greater extent than free drug 

[121].

The AuNP ligand monolayer also provides opportunity to encapsulate and deliver drugs. 

Hydrophobic small molecule anticancer drugs can be loaded into the monolayer of 

2 nm core AuNPs for delivery to cancer cells [122]. In this work, AuNP ligands 

were comprised of hydrophobic alkanethiol chains with zwitterionic head groups, to 

prevent non-specific adhesion. Several hydrophobic anticancer drugs, including bodipy, 

tamoxifen, and β-lapachone were encapsulated and demonstrated in vitro anticancer activity 

significantly greater than free drug alone [123]. Monolayer encapsulation is a versatile 

strategy; biorthogonal catalysts, such as transition metal catalysts, have also been delivered. 

These cargos provide an alternative approach to delivery, through localized ‘prodrug’ 

activation, with the potential for selective intra/extracellular drug activation, based on ligand 

functionality [124,125,126,127].

Mixed-monolayer AuNPs have the ability to stabilize the interface between immiscible 

fluids, and form Pickering emulsions [128]. Self-assembled capsules have been 

demonstrated extensively for encapsulation and delivery, and benefit from the advantages 

of incorporated AuNPs [129]. Rotello reported 2 nm AuNP-stabilized capsules (NPSCs) 

with highly controllable physical properties that could encapsulate and deliver small 

molecule drugs [130]. Follow-up studies demonstrated these systems for delivery of siRNA 

[131,132,133] through a combination of encapsulation and lateral interaction at the NPSC 

surface. In this work, siRNA that silenced TNF-α expression was delivered to macrophages 

LPS-challenged mice. In vivo studies showed directed delivery of NPSCs to the spleen after 

intravenous administration, with 70% gene silencing, demonstrating NPSC platforms as 

efficient vectors for immunomodulation in treatment of inflammation (Fig. 5). Macrophages 

are the first line phagocytes of the innate immune system and are being investigated as 

therapeutic targets using AuNPs for treatment of several diseases, including inflammation 

and cancer [134,135,136].

The AuNP monolayer can be tailored to interact with a diverse range of targets, including 

large biomolecules through electrostatic interaction. One study prepared cationic 2 nm 

core AuNPs capable of electrostatic surface recognition of a large anionic protein, β

galactosidase. This recognition was used first for intracellular binding and inactivation of 

the protein [137], and later for intracellular delivery of the same protein [138]. However, this 

approach relied on inefficient endosomal uptake and escape pathways. In later work, Rotello 

reported direct cytosolic protein delivery using supramolecular protein-AuNP complexes. 

Electrostatic interaction between cationic AuNPs and poly(glutamic acid)-tagged proteins 

generated hierarchically-structured complexes that delivered protein cargo of various sizes 
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and isoelectric points (pI) into the cytosol of mammalian cells [139,140]. This highly 

effective cytosolic delivery system avoids the endosomal entrapment challenges faced by 

other strategies [141] and demonstrate the unique structural and dynamic properties that can 

be obtained using AuNPs [10,39]. This AuNP platform was notably used for intracellular 

delivery of the CRISPR/Cas9 gene editing machinery, providing efficient (30%) knockout 

of the PTEN gene in HeLa cells [142]. This approach was effective in vivo as well, as 

demonstrated by efficient (>8%) knockout of the PTEN gene in splenic macrophages, 

following systemic administration of the CRISPR/Cas9-AuNP assemblies in BALB/c mice 

(Fig. 6) [143].

Cationic small AuNPs can non-covalently bind nucleic acids through electrostatic 

interactions with the highly anionic phosphate backbone [144,145]. Early work 

demonstrated the ability of mixed monolayer AuNPs to complex [146] with pDNA and 

transfect mammalian cells with low toxicity [147]. Translation of these platforms to in vivo 
applications [148,149,150] has shown promising results, with potential advantages over viral 

carriers in terms of safety and efficacy [151,152,153].

Multilayer assembly is an encapsulation approach that electrostatically complexes cargo 

within complementarily charged coatings [154,155]. Tung employed multilayered 40 nm 

core AuNPs fabricated with poly-L-lysine and siRNA (up to 4 layers) in alternating coatings 

to provide a protease-degradable siRNA carrier [156]. The authors observed a gene knock

down effect correlated with the number of siRNA layers. Co-assembly with the organic 

transfection reagent polyethylene imine (PEI) is a commonly used approach to promote 

uptake of AuNPs for delivery of siRNA or miRNA [157]. Incorporation is often done 

through multilayering of PEI and RNA [158], but supramolecular complexation and delivery 

has also been demonstrated using AuNPs with dendritic ligands [145]. In recent work, Liang 

et al. developed self-assembled and crosslinked clusters based on 2 nm AuNPs, containing 

an anticancer oligonucleotide, into a sunflower-like superstructure that dissociated and 

enhanced cell uptake upon irradiation with near-IR (NIR) light [159]. This strategy notably 

utilized the uptake capabilities of small AuNPs as well as the photo-responsive properties of 

larger gold clusters to achieve targeted delivery in vivo [160].

The optical responsiveness of gold nanomaterials has garnered especial interest in gold 

nanorods (AuNRs), elongated Au-based nanoscale materials with optical properties that 

can be finely tuned through the aspect ratio of the rods [161,162,163]. Upon wavelength

specific irradiation, AuNRs generate heat, potentially providing for localized payload release 

[164,165,166]. AuNRs have been extensively explored for delivery applications [167], 

perhaps most notably of nucleic acids including DNA [168,169,170,171] and siRNA [172]. 

In 2008, Murphy encapsulated a model hydrophobic small molecule in the surfactant bilayer 

bound to the nanorods, demonstrating their high drug loading capacity [166]. More recently 

they have been explored as delivery vehicles for nucleic acids. Wei demonstrated the 

electrostatic adsorption of dithiocarbamate-modified siRNA duplexes to a AuNR surface, 

minimizing premature siRNA desorption and release [173]. These carriers released their 

cargo upon NIR irradiation and demonstrated significant knockdown of a target gene related 

to metastatic ovarian cancer. AuNRs provide for efficient non-covalent cargo loading and 

benefit from their photo-responsiveness, however they also tend to suffer from aggregation, 
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and sufficient purification from surfactants and other chemicals used in their fabrication can 

be a challenge [174].

2.3. Gold nanoclusters

Gold nanoclusters (AuNCs) are smaller gold-based nanomaterials consisting of tens to 

hundreds of gold atoms. The properties of AuNCs bridge the gap between nanoparticles 

and atoms, as they possess unique properties distinct from their bulk counterparts [175]. 

Unlike AuNPs, AuNCs are mixed-valence species that have discrete energy levels and show 

multiple absorption bands. These photophysical properties can allow for fluorescence in the 

NIR region [176] and for other unique photodynamic properties [177] that position AuNCs 

as potential vehicles for delivery.

Cui et al reported a facile method of assembling monodisperse and stable self-assembled 

nanoparticles (NPs) in water using chlorin e6 (Ce6) molecules to cross-link AuNCs. These 

GNCs-Ce6 NPs were conjugated with CD3 antibody to create a cell-specific drug delivery 

system for cytokine-induced killer cells (CIK). This system exhibited high tumor-targeting 

efficiency and excellent therapeutic efficacy toward MGC-803 tumor-bearing mice [178]. 

Antibody-based tumor targeting can be extended to include multiple targeting elements 

[179,180,181]. Chen developed a AuNC platform for doxorubicin (dox) delivery to tumors, 

using a dual-targeting strategy. AuNCs were covalently conjugated with both a peptide 

specific for integrins on the surface of tumor tissues (cRGD) and an aptamer with high 

affinity to nucleolin overexpressed in the cytoplasm of tumor cells (Apt), for extra- and 

intracellular tumor targeting, respectively (Fig. 7) [182]. dox was immobilized onto the dual 

targeting platform and was shown to release and trigger tumor cell death in both cultured 

cell models and in vivo, with enhanced accumulation in the tumor.

Like AuNPs, cationic AuNCs can electrostatically complex nucleic acids to enhance 

cellular delivery. In a recent study, Jiang [183] complexed siRNA targeted at NGF (a 

tumor-associated gene) with < 3 nm cationic AuNCs. The authors demonstrated enhanced 

siRNA stability in serum, enhanced cellular uptake and gene silencing in cells, and tumor 

accumulation in vivo. Notably, AuNCs with cores < 3 nm often exhibit robust fluorescence, 

enabling imaging applications. Wang [184] demonstrated carborane NCs that provide 

accurate tumor imaging and long-term accumulation in tumor sites by the EPR effect.

AuNPs and AuNCs are both versatile platforms that benefit from their stability and tunable 

surface functionalization. AuNP-based delivery platforms are also among the few that have 

reported for direct cytosolic delivery, critical for future development of efficient therapeutic 

delivery systems for biologics [139,142]. Gold is inherently inert and has even been called 

the ‘noblest’ of metals [185]. Work by Xu [186] demonstrated that even direct incubation 

of gold nanoparticles with zebrafish embryos had minimal effect on development. Despite 

being mostly accumulated in the liver and spleen of animal models, gold nanomaterials did 

not induce any hepatic or renal toxicity [187]. Although some uncertainty in regards to the 

biological fate of the gold nanomaterials is to be considered, there are ways to overcome 

this limitation by controlling the surface properties such as surface charge [66] which will be 

critical to the future advancement of gold-based delivery platforms. [143,188].
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3. Silica Nanoparticles

Silica-based nanocarriers offer many advantages in terms of loading capacity and can be 

easily functionalized for a variety of applications [189,190,191]. Silica nanomaterials and 

especially porous nanoparticles have gained interest as delivery platforms for their potential 

to address key therapeutic issues including drug solubility and extended drug release rate 

[192,193]. Mesoporous silica nanoparticles (MSNPs) are nanoscale silica particles with 

a honeycomb-like structure featuring hollow channels and are the most commonly used 

silica-based delivery vehicles [31,194]. The generation of MSNP structures was advanced 

considerably in the early 1990s by with scientists at Mobil Oil working to develop a new 

family of molecular sieves [195]. MSNPs have since become attractive delivery vehicles due 

to their chemical inertness, thermal stability, extended cargo loading, and tunable structure 

[196,197,198]. The synthesis of MSNPs generally relies on a cationic surfactant to provide 

a template for the base-catalyzed sol-gel process (Fig. 8) [199]. The process itself and 

choice of template are highly controllable, so resulting MSNPs can be finely tuned for 

particle size, pore quantity, and pore radius [200,201]. MSNPs generally encapsulate cargo 

within their pores through non-covalent binding, but delivery strategies can also benefit from 

rationally designed covalent surface modifications to provide targeted or controlled cargo 

release [197].

3.1. Non-covalent cargo encapsulation by MSNPs

Pore size and surface functionalization play crucial roles in the drug loading capacity and 

tunable release rate of MSNPs [202]. Typically, cargo molecules are loaded in MSNPs 

through weak non-covalent interactions, such as hydrogen bonding, physical adsorption, 

electrostatic interaction, or aromatic stacking [203]. Altering pore characteristics can 

significantly influence charge density and steric effects within the pore, modulating weak 

electrostatic interactions, and impacting cargo release [204,205]. MSNPs with small pores 

can provide tunable release rate for small molecule drugs: in early studies, Pérez-Pariente 

reported that by employing different pore sizes, release of pore-loaded ibuprofen could be 

tuned from burst release to long-term sustained release [206]. In later work by Tian, MSNPs 

with pore sizes ranging from 3 nm to 10 nm were loaded with the chemotherapeutic drug 

paclitaxel [207]. The release rate of paclitaxel loaded MSNPs was measured in solution and 

in cultured cells, and it was found that larger pores provided higher loading capacity, faster 

release rate, and greater in vitro anticancer activity. Later however, Yin’s in vivo antitumor 

experiments added complexity to these conclusions by demonstrating that MSNs with a pore 

size of ~5 nm induced the most apoptosis and showed best tumor reduction in H22 tumor 

bearing mice [208].

Recently the ability of MSNPs with small pores to isolate encapsulated materials from the 

environment has been used for biorthogonal applications [209,210,211]. Mascareñas and 

coworkers reported a hollow ‘nanoreactor’ consisting of 3 nm pore MSNPs as a nano-shell, 

doped with an inner layer of palladium nanoparticles [212]. These nanoreactors facilitated 

palladium-catalyzed in situ de-caging reactions and Suzuki-Miyaura intermolecular cross

couplings in living systems, providing a promising platform for biorthogonal prodrug 

activation [213,214].
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Biomolecules such as proteins and nucleic acids are multi-nanometer scale, and thus 

require larger pore sizes. Lin used MSNPs with a large average pore diameter (5.4 nm) 

to deliver cell membrane-impermeable protein cytochrome c into mammalian cells through 

endocytosis [215]. The authors observed that enzymes adsorbed and released from MSNPs 

retained their catalytic activity, suggesting that loading did not impact protein structure. 

As mentioned above, pore size can be used to regulate release of proteins. Shi prepared a 

series of MSNPs with varying average pore size (ranging from 2.7 to 4.6 nm) to evaluate 

encapsulation of cytochrome c [216]. The authors observed increased loading capacity up to 

4.6 nm pore size, indicating the importance of pore size in efficient loading of protein cargo.

Small nucleic acids can be loaded into MSNP pores using hydrogen bonding, but only if 

the repulsive negative charges of the nucleic acids and the MSNP surface are shielded from 

each other [217]. In early studies, Zink and Tamanoi [218] developed PEI-coated 100 nm 

MSNPs with ~2.5 nm pores to encapsulate and deliver functional siRNA to knock-down 

enhanced green fluorescent protein (eGFP) and functional genes related to signaling in 

cultured PANC-1 human cancer cells. Gu and Xia similarly packaged functional siRNA 

into MSNPs featuring ~3.7 nm pores and then mixed them with PEI to form a polymer 

layer on the external surface [219]. Delivery to reporter cell lines demonstrated efficient 

knockdown of target genes eGFP and Bcl-2. MSNP pore sizes can also be expanded to tens 

of nanometers to accommodate larger nucleic acids. Min reported that compared to smaller 

pore sizes, ‘ultralarge’ pore size (> 15 nm) provided higher pDNA loading capacity and was 

able to protect luciferase pDNA (4.8 kbp) from degradation (Fig. 9) [220].

Surface modification provides an avenue for stimuli-responsive delivery, using ‘gatekeeper’ 

moieties. Gatekeeper molecules are generally bound to the outside of the pore, and sterically 

block cargo release until they are detached. Joo and Ryu [221] developed a gatekeeping 

strategy by capping drug-loaded MSNP pores with disulfide cross-linkable polymers that 

would degrade in the cytosol, triggering drug release. The authors reported high loading 

capacity of dox and cisplatin, with a varied cytotoxic response upon intracellular release. 

Tan and Zhao [222] developed similar MSNP platforms for targeted delivery of dox to 

MDA-MB-231 xenograft model breast cancer in vivo models. MSNPs loaded with dox 

were gated with amino-β-cyclodextrin bridged by cleavable disulfide bonds and grafted 

with folate tumor targeting moieties. The drug cargo was released after delivery by the 

decrease in intracellular pH in endosomes and increased intracellular glutathione levels. 

After intravenous injection, significant decrease in tumor growth was seen in treated mice 

over 30 days without decrease in body weight (Fig. 10).

A variety of non-covalent and covalent gatekeeping strategies have been developed for 

triggered cargo release, more of which will be highlighted in the following section [223].

3.2. Covalent surface modification of MSNPs

Covalent modification of the MSNP surface can greatly influence cargo loading, protein 

adsorption, and rate of release [224,225]. MSNP surfaces are typically negatively charged 

but can be covalently modified to have cationic surfaces. These modified cationic MSNPs 

can bind with highly negatively charged cargos, generating complexes with potential 

for delivery. Shi used MSNPs covalently grafted with cationic rhodamine B to enhance 
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encapsulation of the negatively charged cardiovascular drug salvianolic acid B [226]. The 

authors reported protection of encapsulated drug from degradation, a sustained rate of 

release, and increased uptake over free drug in LX-2 hepatic cells. Similar approaches 

to modify MSNP surfaces for adsorption and delivery of nucleic acids have included a 

variety of other cationic macromolecules as modifiers, including PEI [227,228], dendrimers 

[229], and lipids [230]. Work by Cristini and Brinker [231] examined the biological fate of 

MSNPs with varied sizes, surface chemistries and routes of administration through single 

photon emission computed tomography integrated with computed tomography (SPECT/CT) 

imaging, with tandem mathematical modeling used to interpret the results. These studies 

revealed cationic MSNPs with surface exposed amines (PEI) are rapidly sequestered into the 

liver and spleen but show less total excretion than MSNPs with surface-shielded amines.

Covalently bound gatekeeper moieties can provide carrier stability, and potentially stimuli

responsive release. Stimuli-responsive gatekeepers provide a method for targeted delivery 

at a desired locale through endogenous or exogenous stimuli [232,233]. Several families 

of covalent gatekeepers have been used for controlled release, including cyclodextrins 

[234], azobenzenes [235,236], and complementary DNA [237]. In a notable study, Zhu 

developed dox-loaded MSNPs gated with a DNA hybrid complementary to miR-21 miRNA 

[238]. Upon binding miR-21, conformational changes in the DNA hybrid released dox and 

effectively killed HeLa cells. Interestingly the DNA hybrid also provided miR-21 silencing, 

inducing apoptosis and providing complementary chemotherapeutic mechanism.

Stimuli-responsive polymers provide versatile gatekeepers for release of payloads under 

disease-relevant environmental conditions like the low pH found in tumors [239] and 

bacterial biofilms [240]. Chu and coworkers [241] developed a pH-responsive release 

system for delivery of the anticancer cytokine protein TNF-α. Hollow MSNPs loaded with 

TNF-α were conjugated with pH-sensitive chitosan for controlled release in the acidic 

tumor microenvironment (Fig. 11). Chitosan was further conjugated with ErbB 2 antibody 

to provide enhanced breast cancer cell targeting. Under acidic conditions, the chitosan 

amino groups were protonated, stretching the polymers and triggering TNF-α release. These 

platforms eliminated 70% of MCF-7 cells in vitro, and upon intraperitoneal administration 

to mice with implanted MCF-7 tumors, reduced tumor weight by 50% in vivo.

Conformational changes in engineered gatekeeping polymers can be triggered by exogenous 

stimuli including ultrasound waves and light [242]. Vallet-Regi [243] designed thermally 

responsive co-polymer-grafted MSNPs for ultrasound-triggered small molecule delivery. 

Thermally triggered conformational changes in the polymer allowed the MSNP pores to be 

loaded with small molecule therapeutic cargo at 4°C and to encapsulate their cargo at 37 

°C. Triggered by ultrasound waves, conformational changes in polymer tetrahydropyranyl 

moieties on the surface of the MSNP increased hydrophilicity and concomitantly the 

exposure of carboxylates, resulting in payload release (Fig. 12). dox-loaded MSNP hybrids 

showed significant efficacy relative to free drug in prostate adenocarcinoma (LNCaP) cells. 

Recent work by Zink [244] has applied ultrasound-stimulation for MRI-guided MSNP 

platforms capable of triggered spatiotemporal small molecule release. These vectors were 

demonstrated for delivery of an MRI contrast agent in a proof-of-concept study but provide 

opportunity for future image-guided theragnostic applications. Related work by Jokerst 
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[245] examined MRI-guided MSNPs for delivery of the pro-survival protein insulin-like 

growth factor (IGF) in cultured cells.

Ultrasound has been used for targeted disruption of microbubbles for delivery. Zhang and 

coworkers [246] adopted this strategy for delivery of MSNP-loaded cargo. A small molecule 

chemotherapeutic (Tanshinone IIA) was encapsulated in folate-conjugated MSNPs that were 

then incorporated within microbubble surfaces. These microbubbles protected the MSNPs 

from non-specific release of drug and enhanced circulation time. Ultrasound disrupted the 

microbubble structure and provided drug release from the MSNP at the desired locale, 

providing ~30% tumor growth suppression in vivo after intravenous administration to H22

tumor bearing mice.

Photoisomeric moieties such as azobenzene are useful gatekeeper moieties that undergo 

isomerization upon exposure to specific wavelengths of light [247,248]. In recent work, Fu 

[249] developed dox-loaded MSNPs capable of triggered release by both acidic pH and 

exposure to UV light. dox-loaded MSNPs were covalently conjugated with supramolecular 

switches consisting of hydrazone-based bonds, azobenzene moieties, and α-cyclodextrins 

to sterically block drug release from the pores. Trans-azobenzene has a strong host-guest 

interaction with cyclodextrin, while the cis-state inhibits interaction due to changes in 

polarity and steric hindrance. Acidic pH led to rapid hydrolysis of the hydrazone-based 

bonds, while exposure to UV light (365 nm) triggered cis-trans isomerization of the 

azobenzene moiety. The authors demonstrated that either stimulus alone was sufficient to 

trigger cargo release, and demonstrated delivery through phagocytosis, and efficient killing 

of MCF-7 human breast cancer cells.

UV-triggered delivery strategies are of course limited by the poor tissue penetration of 

UV light compared with longer wavelength radiation (e.g. NIR) [250]. Several NIR light

responsive platforms have been developed including MSNPs embedded with upconversion 

nanoparticles (such as lanthanide nanoparticles) [251] or iron oxide nanoparticles 

[252,253,254,255]. These platforms will be further discussed in later sections.

A major challenge facing clinical translation of MSNPs is the surface-exposed silanol 

groups on the particle surface. Silanol moieties interact with surface phospholipids on 

red blood cells, potentially causing hemolysis [256]. MSNPs have also been implicated 

in promoting the growth of malignant melanoma through altered ROS production in vivo 
[257]. Coupled with this is the concern of accumulation in the body; much recent research 

has focused on understanding the biodegradability of silica-based nanocarriers [258,259], 

even as a tumor-specific delivery strategy [260]. Notable work by Maggini and De Cola 

[261] explored ‘breakable’ MSNPs held together by disulfide linkages that degraded in 

the cytosol, providing a biodegradable carrier vehicle. This vehicle was also shown to 

be capable of a functional protein, cytochrome c to cultured cells [262]. Despite these 

challenges the advantages of porous silica nanocarriers have positioned them as competitive 

platforms for delivery of both small molecules and biologics.
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4. Iron Oxide Nanoparticles

Iron oxide nanoparticles feature inherent magnetic properties coupled with tunable size 

and functionality that provide excellent potential for therapeutic applications [263]. The 

two predominant forms of iron oxide nanoparticles used for biomedical applications are 

maghemite (γ-Fe2O3) and magnetite (Fe3O4), due to their relative colloidal stability [264–

268]. Magnetite has a ferromagnetic structure arising from alternating lattices of Fe(II) 

and Fe(III) [269]. Nanoparticles composed only of magnetite with a mesoporous structure 

have been demonstrated for encapsulation and delivery of small molecule drugs [270,271]. 

Maghemite has the same lattice structure as magnetite and exhibits similar ferromagnetic 

properties, however all iron atoms are in Fe(III) oxidation state. Fe(III) ions are commonly 

found in the human body, and are less toxic than Fe(II) that can effect Fenton chemistry, 

making maghemite a favorable core material [272].

Iron oxide nanoparticle delivery vectors typically consist of a magnetic core, an outer 

coating (often a polymer or metal) to provide a surface for grafting, and finally surface 

functionality (Fig. 13). Cargo may be bound to surface moieties, or alternatively can be 

encapsulated either inside the particle shell or within co-embedded mesoporous particles. 

Stimuli-responsive elements for encapsulation can provide triggered cargo release, for 

synergistic combination with the hyperthermic properties of the iron oxide [273,274].

Superparamagnetic iron oxide nanoparticles (SPIONs) are a special class of iron oxide 

particles that display superparamagnetic properties, i.e. the ability to strongly magnetize 

when the material is exposed to an alternating magnetic field (AMF) no residual 

magnetization when the magnetic field is removed. Notably, this is an effect of size; 

superparamagnetism usually arises only in small (< 30 nm) ferromagnetic particles or 

larger particles with nanodomains [275,276]. SPIONs have been explored extensively in 

the past decade for their ability to penetrate and kill biofilms, as well as their utility in 

magnetic resonance imaging (MRI) [277]. Biological fate, labelling efficiency, and magnetic 

characteristics heavily affect the efficiency of SPION-based MRI contrast agents, as notably 

reported by Lévy [278].

One of the main applications of iron oxide nanoparticles historically has been in magnetic 

hyperthermia. Upon excitation with an alternating current magnetic field, iron oxide 

nanoparticles generate localized heat due to Néel [279] and Brown [280] relaxation 

pathways. First proposed by therapeutically by Gilchrist [281] in the 1950s, iron oxide 

nanoparticles provide localized heat sources for destroying diseased tissue [282] or dispersal 

of biofilms [283,284]. SPIONs in particular generate a significant amount of heat under an 

applied magnetic field (42–45 °C) [285] and have been used for cancer treatment through 

magnetic hyperthermia [286–290]. Taratula [291] recently developed magnetic nanoclusters 

composed of cobalt- and manganese-doped hexagonal iron oxide nanoparticles encapsulated 

in PEG-based polymer nanocarriers for hyperthermia treatment of ovarian cancer (Fig. 14). 

The authors reported accumulation at the tumor site after intravenous injection and increased 

local temperature at the tumor up to 44 °C, resulting in inhibited tumor growth. Magnetic 

nanoparticles have also been utilized by several groups for cancer detection and ablation 
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through tandem MRI and hyperthermic treatment after localization at the tumor site [292–

298]. Today these properties are used synergistically with therapeutics, as discussed here.

Widder and Senyi first demonstrated the use of magnetic fields to manipulate nanoparticles 

for drug delivery in the late 1970s [299,300]. Magnetic targeting involves the attachment of 

therapeutic cargo to magnetic nanomaterials, followed by injection and guidance of these 

particles to the site of interest, providing localized drug delivery at a controllable rate 

[301,302,303]. This directed motion can provide targeting to regions that are traditionally 

difficult to deliver to, such as the brain [304]. Work by Polyak [305] demonstrated 

that small magnetic nanoparticles could be localized to brain tumor tissue in murine 

glioma models, while larger particles (1 μm) could not. Iron oxide nanoparticles can be 

magnetically directed to a disease site, tracked via contrast imaging, heated at the effected 

sites, and provide triggered drug release [306,307,308]. Several strategies have been taken 

for attachment of therapeutic cargo to these nanoparticles, to provide enhanced stability, 

targeting, and in some cases, controlled release.

4.1. Functionalization of Magnetic Nanomaterials by Covalent Conjugation

Covalent linkages can be used for conjugation of small molecules and biologics to iron 

oxide particles. Alexiou [309] used a covalent strategy for delivery of cisplatin, developing 

4.5 nm magnetite SPIONs coated with cisplatin-bound hyaluronic acid. The authors 

observed two-stage drug release in vitro, with burst release in the first 30 minutes, followed 

by slow release for a 48-hour time span. The Kim group [310,311] utilized thermally 

crosslinked magnetite SPIONs featuring PEG and carboxylic acid moieties to engineer 

a co-delivery system for a protein and the small molecule chemotherapeutic paclitaxel. 

Magnetically responsive host-guest complexes were generated between a polymerized β

cyclodextrin conjugate (pCD) and paclitaxel, with enhanced anticancer activity in CT26 

tumor-bearing mice relative to the free drug (Fig. 15).

Covalent modification has also been utilized for delivery of biologics including DNA 

[312]. Licandro recently reported the covalent conjugation of SPIONs with peptide nucleic 

acids (PNAs), synthetic polyamide mimics of natural DNA and RNA [313]. PNAs were 

functionalized with terminal maleimide moieties, allowing conjugation with SPION surface

exposed thiol groups through Michael addition. These particles exhibited hyperthermic and 

superparamagnetic properties, making them promising carriers for delivery.

In recent years, iron oxide technologies have been commercialized for tumor-targeted 

delivery of chemotherapeutic delivery with hyperthermic tumor ablation. Chemicell GmbH 

developed TargetMAG nanoparticles that feature a multidomain magnetite core and a 

crosslinked starch matrix with terminal cations, that can be loaded with dox [314] or 

cisplatin. Hilger [315] demonstrated that bound cisplatin would desorb in PBS with 

hyperthermal (42 °C) or thermal ablative (60 °C) temperatures used for therapeutic 

approaches. A 20–40 nm iron oxide nanoparticle (MagNaGel) hydrogel featuring different 

targeting ligands is also produced by Alnis Biosciences for loading and delivery of 

chemotherapeutic agents [316]. In conjunction with MRI and inductive heating, these 

platforms provide multimodal treatment for cancer.
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4.2. Non-Covalent Conjugation

Electrostatic attachment is useful for iron oxide nanoparticle-mediated delivery of biologics, 

particularly nucleic acids. Many of these approaches rely on surface-engineered cationic 

iron oxide nanoparticles that can electrostatically interact with anionic nucleic acid cargos. 

Scherer [317] demonstrated non-viral gene delivery to cultured cells using PEI-coated 

SPIONs with sizes ranging from 400–1000 nm. Application of a magnetic field in vitro 
provided an increase in efficiency and speed of transfection over several commercial 

reagents. This method, known as magnetofection, was adapted by several groups following 

Scherer’s initial report as a simple method to deliver DNA [318], antisense oligonucleotides 

[319] and siRNA to cultured cells, with applicability for ex vivo applications.

PEI-modified iron oxide particles have been used for delivery in vivo. Dou [320] recently 

utilized PEI-coated SPIONs modified with galactose for the siRNA-mediated treatment 

of hepatocellular carcinoma. Intravenous tail vein injection to C57BL/6 murine luciferin

expressing hepatic tumor models demonstrated efficient hepatic tumor localization, with 

fluorescence knockdown using luciferin-silencing siRNA, and inhibiting tumor growth 

through silencing of the c-Met gene. Addition of a permanent magnet placed on the 

skin above the tumor for 2 hours post-injection did not significantly affect efficiency. 

Delivery of pDNA in vivo has also been approached using similar methods. Zhang [321] 

reported high gene expression levels in a C6 xenograft mouse model following intravenous 

injection of pDNA-conjugated SPIONs. These SPION particles were surface-grafted with 

PEG-PEI for biocompatibility and bound with chitosan to allow for pDNA condensation. 

Transfection of eGFP-encoded pDNA in vivo revealed high expression levels in tumor 

sites after 48 hours, as confirmed by MRI imaging. Later work by Sersa [322] aimed 

at adenocarcinoma treatment in BALB/c (TS/A tumors) and C57Bl/6 (B16F1 tumors) 

murine models through cancer immuno-gene therapy and SPION-mediated gene delivery. 

SPIONs modified with PEI and endosomolytic polyacrylic acid (PAA) were injected 

intratumorally, and magnetically stimulated to deliver to cells in a process considered in 
vivo magnetofection. These studies revealed high expression levels first of GFP in a model 

study, and then immunostimulatory cytokine interleukin 12 (IL-12) in experimental work. 

Tumor IL-12 expression resulted in a significant decrease in tumor growth over a course of 

20 days (Fig. 16).

Micellar lipid coatings have been used to adsorb and layer nucleic acids. Anderson reported 

a technique for iron oxide nanoparticle coating using nucleic acid-loaded lipidoids [323]. 

These 50–100 nm particles encapsulated siRNA and plasmid DNA with high efficiency, and 

demonstrated efficient in vitro transfection, with future potential for magnetically guided 

treatment and magnetic hyperthermia in vivo. Later work by Chertok [324] demonstrated 

lymph node targeting using size-controlled lipidoid-iron oxide nanoparticles, suggesting a 

promising route for design of theranostic platforms.

Iron oxide nanoparticles have been utilized to some extent for recombinant protein delivery 

as well, however the relatively large size and complex surfaces of proteins makes interfacial 

recognition with iron oxide particles challenging. Silica-embedded iron oxide particles have 

been demonstrated in the past as enhanced MRI contrast agents [325]. Khashab [326] 

utilized mesoporous silica nanoparticles to overcome this issue, using biodegradable silica
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iron oxide propylamine nanohybrids featuring ultra large pores capable of protecting and 

delivering a large protein (mTFP-Ferritin, ~530 kDa) to cancer cells (Fig. 17). These large 

proteins were electrostatically immobilized into mesoporous cavities of the particles and 

were released under acidic pH or magnetic stimuli in HeLa cells.

Hyperthermic applications are challenging due to natural thermoregulatory processes 

make it difficult to locally increase temperature in the body, and hyperthermic heating 

is dependent on particle concentration at the target site [327]. At the time of writing, 

the only clinically available AMF system, NanoActivator® (MagForce AG, Germany) is 

capable of operating frequency up to 100 kHz [328]. Limited data is available regarding 

clinically tolerable AMF dosage [329,330], and future studies must critically evaluate tumor 

temperature. Magnetic field depth is another important consideration, and several studies 

have implanted internal magnets using minimally invasive surgery [331,332]. Finally, the 

degradation of iron oxide particles in the body, and the potential accumulation of magnetic 

nanoparticles and their by-products in tissues and organs [333] has elicited concerns over 

toxicity [334]. Dissociated iron oxide particles promote the formation of reactive oxygen 

species and hydroxyl radicals, and as a result may lead to cytotoxicity as well as impaired 

cell metabolism and an increase in apoptosis [335]. Despite the several advantages that iron 

oxide nanoparticles offer, it is important to consider ways to overcome iron ion-induced 

toxicity. Toxicity of these nanomaterials to a large extent is concentration as well as 

exposure time dependent [336]. in mouse models that at lower concentrations these particles 

can be cleared from the body without significant toxicity [337]. Therefore, iron oxide 

nanoparticles have a potential for nanomedical applications if we understand and mitigate 

potential risks.

5. Lanthanide Upconversion Particles

As discussed above, light-triggered drug delivery is a promising strategy to spatiotemporally 

control the drug release in vivo, boosting local effective drug accumulation while 

minimizing side effects [32]. However, most light-triggered drug carriers require short 

wavelength UV/visible light, resulting in high phototoxicity with limited penetration depth 

in vivo [338,339]. Lanthanide upconversion nanoparticles (UCNPs) are a unique class of 

optical nanomaterials that absorb and convert low-energy near-infrared (NIR) photons into 

high-energy UV/visible light through a nonlinear anti-Stokes process [340,341] Multiple 

lanthanide-doped UCNPs have been studied, and today ytterbium (Yb3+), erbium (Er3+), 

thulium (Tm3+), and holmium (Ho3+) are the most widely used lanthanide dopants [341]. 

UNCPs offer several advantages such as low toxicity and deep light penetration in tissues, 

making them excellent candidates for controlling in situ drug release via photochemical 

processes [342,343].

Three common approaches have been developed to load photosensitive compounds onto 

UCNPs for drug delivery, with perhaps the most common being encapsulation within 

a mesoporous silica shell [344]. Compound loading has also been accomplished using 

covalent conjugation [345,346,347] and non-covalent adsorption [348,349,350] to the 

particle. Drug release can then be controlled by three mechanisms, namely i) bond cleavage 

between the molecule and the carrier; ii) destruction of the carrier, or iii) photoisomerization.
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5.1. Covalent UCNP cargo attachment

UCNPs have been employed as a NIR-triggered delivery vehicle by covalently binding drug 

molecules onto the nanoparticle surface to control the drug release [351–353]. O-nitrobenzyl 

(ONB) esters are the most commonly used photosensitive compounds for modification as 

they will undergo irreversible deformation when triggered by UV/visible light [354]. Krull 

[355] conjugated a chemotherapeutic agent 5-fluorouracil (5-FU) to core-shell UCNPs (~20 

nm) via an ONB photolabile linker. Upconverted UV and blue light from the UCNPs 

matches the absorption profile of caged 5-FU and cleaves the drug-UCNPs linker using 

a NIR laser (Fig. 18). In a similar manner, the Hartman group [356] developed a photo

responsive drug delivery system by attaching dox directly onto the surface exposed UCNPs 

(LiYF4:Tm3+/Yb3+) through a nitrobenzyl derivative. The authors observed ~40% drug 

release after exposure to NIR irradiation.

In a theranostic approach, the Lin group [357] conjugated dox to the surface of 

UCNPs (NaYF4: Yb/Tm) by acid-labile hydrazone-based bonds (~25 nm) to generate a 

luminescence-monitored drug delivery system. In the design, the spectral overlap between 

emission of donor UCNPs (452 nm and 477 nm) and the broad absorbance of acceptor 

dox (480 nm) enabled luminescence resonance energy transfer (LRET) to quench the 

upconversion luminescence of UCNPs under NIR irradiation. This quenching effect was 

used as a probe to confirm the dox conjugation and monitor drug release in vitro. More 

recently, this group attached dox onto BaGdF5: Yb/Tm-UCNPs using the same hydrazone 

linker to develop a multifunctional nanoplatform (sub-10nm) for simultaneous diagnosis 

and therapy [358]. This UCNP exhibited strong upconversion fluorescence after delivery 

to cultured cells under NIR irradiation and can be used as well for T1-weighted magnetic 

resonance and X-ray computed tomography imaging. Peptide conjugation to the UCNP 

surface was used in the targeted delivery of siRNA to cancer cells. Ye [359] functionalized 

the silica coated UCNPs (NaYF4: Yb/Tm) with an Anti-Her2 antibody by reaction of 

its terminal amino group via carbodiimide chemistry (~30 nm). Under NIR irradiation, 

UCNPs enabled the real-time tracking of siRNA due to their superior optical properties. The 

silencing effect of siRNA on luciferase gene was studied in vitro and ~50% down-regulation 

was observed. Recently, covalent conjugation strategies for UCNPs have included quantum 

dots [360], fluorescent proteins [361], and fluorophores [362] and focusing largely on 

photodynamic therapy, theragnostics [363] and imaging [364].

5.2. Non-covalent cargo attachment to UCNPs

By incorporating appropriate photosensitive moieties into polymer structure, photochemical 

reactions such bond cleavage can result in disassembly of the carrier due to photoinduced 

structural and/or property changes [365]. UCNPs can be encapsulated into polymer micelles 

to act as internal UV/visible light sources upon NIR irradiation, with the upconverted light 

activating photoreactions to trigger micelle disruption and release co-loaded hydrophobic 

drugs [366]. Almutairi [367] utilized cresol monomers functionalized with ONB groups to 

fabricate micelles (ranging in size from 0.3 μm to 1 μm) that can degrade through a cascade 

of cyclization and rearrangement reactions in response to upconverted UV light by UCNPs 

(Fig. 19). Cleavage of ONB moieties triggered by upconverted UV light rapidly increased 

water permeability and facilitated cargo release.
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Zhao’s group [368] developed a photosensitive micelle composed of hydrophilic 

polyethylene oxide and a hydrophobic polymethacrylate modified with ONB groups. 

The upconverted UV light photocleaved the ONB groups and thus released the drug 

by destabilization of micelles. In follow-up work, this group developed a hybrid UCNP

hydrogel system which allows the use of NIR light to induce gel-sol transition and release 

large, inactive biomacromolecules on demand, after which bioactivity could be recovered 

[368]. In a proof-of-concept study, they entrapped the enzyme trypsin and UCNPs into 

the hydrogel which has a crosslinked hybrid polyacrylamide-poly(ethylene-glycol) structure 

held together by photosensitive ONB groups and observed an immediate release of protein 

upon exposure to NIR light.

Incorporating UCNPs into mesoporous silica nanoparticles (MSNPs) is a common approach 

to non-covalent drug loading. Wu [369] employed the previously mentioned MSNP 

gatekeeping strategy using blue-light-cleavable ruthenium (Ru) complex to control drug 

release. UCNPs were first coated with porous silica and then loaded with dox. A Ru

based complex was covalently grafted onto UCNPs, encapsulating dox within the pores. 

that was released after 5h exposure to NIR irradiation. Cell culture studies showed a 

significant inhibition to the growth of HeLa cells after incubation for 3–6 h followed by 

NIR irradiation. Lanthanide-doped UCNPs coated with MSNPs were also used to deliver 

siRNA. Ju [370] loaded siRNA and photosensitizer hypocrellin A (HA) into MSNP pores 

and then wrapped the obtained complexes with PEG polymer ‘tape’ using an ONB-based 

photocleavable linker (Fig. 17c). Under NIR irradiation, the UV light emitted by UCNPs 

broke photocleavable linkers to release siRNA and activate HA to generate reactive oxygen 

species (ROS), disrupting the endosomal membrane. This combination of two photosensitive 

moieties led to a significant enhancement in gene silencing.

As discussed previously [235,236], photoisomerizable molecules such as azobenzene 

undergo spatial conformation changes reversibly under UV/visible illumination [371]. 

Changing between the two isomers can be used as a switch to control drug release [372]. 

In 2013, Shi [373] reported NIR-induced drug delivery using UCNPs coated with an 

azobenzene-modified mesoporous silica shell (Fig. 20) (~54 nm). Since the azobenzene 

molecular impeller is only activated under upconverted UV light, the amount of the 

released drug could be controlled through tuning the intensity and/or time duration of NIR 

light. Studies in vitro confirmed that the dox released in cytoplasm could migrate into 

nucleoplasm to kill the cancer cells.

The trans-cis transformation of azobenzene was later adapted for UCNP-mediated siRNA 

delivery by Gong [374]. In this study, siRNA strands tagged with azobenzene were 

complexed onto UCNPs modified with cyclodextrin via a host-guest interaction. This NIR

activated UCNPs core emitted UV light which efficiently isomerized azobenzene to the cis 

state, thus releasing siRNA as a result of unmatched host-guest pairs. This group further 

conjugated GE11 and TH peptides onto the carrier surface to facilitate the cellular uptake 

and endosomal/lysosomal escape of the nanoparticles. The amount of released siRNA was 

controlled by adjusting NIR irradiation time, demonstrating 85% siRNA release within 

20min.
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A major challenge of delivery with NIR-absorbing UCNPs is the strong absorption 

of water molecules at 980 nm. UCNPs have a limited number of available excitation 

wavelengths, with 980 nm being one of the most common. Irradiation at this wavelength 

will cause the surrounding solution to heat, potentially causing a complication for in vivo 
applications [375]. However, studies have shown an appreciable lack of toxicity from in vivo 
administration of UCNPs, encouraging their biomedical use [376]. The versatile chemical 

nature and low toxicity of UCNPs lends them great promise for future delivery applications.

6. Conclusions and perspective

Inorganic nanoparticles offer a versatile, multimodal approach to the intracellular delivery of 

therapeutic molecules. With a vast diversity of therapeutic targets comes a similar diversity 

of therapeutic cargo- from small molecule drugs to large multimeric proteins, effective 

treatment of disease requires a wide range of delivery vehicles featuring a broad spectrum of 

structure and activity properties. Inorganic nanoparticles in their many forms offer structural 

versatility that can accommodate these different cargos. Each class of inorganic nanoparticle 

offers unique structural properties, each with their own potential advantages such as stimuli

responsive release, favorable biodistribution, and photothermal reactivity [377]. Table 1 

summarizes the notable advantages and challenges of each inorganic material in the context 

of therapeutics delivery, with focus on clinical translatability.

Challenges remain to the development of clinically translatable delivery vehicles, partly 

because hurdles exist in clinical applications that are overlooked in fundamental research 

[378]. One of these is entry into the cytosol [379,380]. Many delivery platforms enter 

the cell through endosomal uptake. Recent studies have shown that <10% of carriers 

escape from degradative endo/lysosomal pathways, making endosomal delivery and escape 

an extremely inefficient process [381,382]. Another challenge remaining in delivery is 

localization at the disease site in vivo. Nanocarriers in general exhibit a degree of colloidal 

stability in circulation [383] due to their small size. Specific delivery to a cell type or organ 

remains challenging, however. Particles above a certain size will invariably accumulate 

in the major clearance organs of the mononuclear phagocyte system, such as liver and 

spleen [384,385,386]. Moreover cellular uptake has been shown to decrease with increasing 

particle size, but increase significantly with increased cationic surface charge [387]. Surface 

functionalization with specific chemical moieties or recognition elements can promote cell 

type-specific delivery, but proteins in the blood bind nanoparticle surfaces electrostatically, 

potentially skewing biodistribution and masking surface-exposed recognition elements 

[388,389].

Nanomaterial shape also dictates organ-level biodistribution, tissue penetration, and cellular 

uptake. The shape and aspect ratio of MSNPs have been shown to significantly effect 

tissue residence time and cell internalization rate [390,391] with small, spherical particles 

exhibiting the most favorable trends of circulation and tissue residence. Similar results 

have been demonstrated with PEGylated polystyrene-core nanoparticles [392], and gold 

nanoparticles of various sizes and shapes [393,394]. Importantly, particle shape has been 

shown to directly relate to uptake in macrophage cells, suggesting critical implications 

in terms of clearance from the body [393]. While small, spherical particles generally 
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exhibit enhanced uptake and greater circulation time, this can prove a challenging target 

for nanocarrier development. Furthermore, rationally designed surface functionality may 

provide benefits to localized delivery beyond what can be achieved by relying on size alone.

Stimuli-responsive materials provide a promising avenue for localized delivery and 

have demonstrated promising results in numerous inorganic nanoparticle-based platforms, 

especially using NIR light-triggered release or assisted accumulation through magnetism. 

Notably however several reported systems took advantage of the enhanced permeability and 

retention, or EPR effect for increased particle accumulation in tumor tissue in vivo. This 

effect has been observed in murine models and may not directly apply to humans [395]. 

Finally, although many inorganic nanoparticle platforms exhibit low toxicity on a cellular 

level, accumulation in vivo can exacerbate toxic effects, making degradability and clearance 

critical safety measures in carrier design [396].

The approaches highlighted herein demonstrate the immense progress made toward 

development of efficacious delivery platforms in the past decade alone. Inorganic 

nanomaterials provide versatile scaffolds with high surface-to-volume ratio for cargo 

loading, generally low toxicity, and highly tunable structural properties. From proof-of

concept to systems with real clinical relevance, gold, silica, iron oxide, and UCNP delivery 

platforms have been advanced significantly to overcome the challenges faced in therapeutics 

delivery. Inorganic nanoparticle-based platforms remain a front-line approach for delivery 

and with continued advancement will doubtlessly see extensive clinical application in the 

future.
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Fig. 1. 
Gold, silica, iron oxide, and upconversion nanoparticle (UCNP)-based platforms provide 

diverse structural features for covalent or non-covalent conjugation with therapeutic cargo, 

as shown through representative modalities.
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Fig. 2. 
(a) Mixed monolayer-protected gold nanoparticles can be loaded with dyes or small 

molecule drugs, like thioalkylated FITC or Doxorubicin (Dox). (b) Cellular uptake and 

FITC-SH release by thiol-mediated replacement reactions within the cell. Particle uptake is 

dictated by surface functionality. (Adapted from ref. 52).
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Fig. 3. 
(a) Schematic depiction of AuNP carrier and glutathione-mediated surface monolayer 

exchange reaction to release the dye. (b) Schematic representation and fluorescence images 

using glutathione (GSH-OEt) as an external stimulus to trigger release of HSBDP from 

AuNPs. GSH-OEt concentrations were varied from 0, 5, and 20 mM in panels 1, 2, and 3, 

respectively (Adapted from ref. 71).
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Fig. 4. 
(a) Schematic depiction of the synthesis of polyvalent RNA-AuNP conjugates. (b) 

Knockdown of luciferase expression in HeLa cells over 4 days using polyvalent RNA–

AuNP conjugates (3 nmol/L nanoparticle (NP) concentration, ~100 nmol/l RNA duplex 

concentration) or double-stranded (ds) RNA (100 nmol/l). (c) Stability of RNA–AuNPs. 

Comparison of the stability of cyanine 5-labeled double-stranded (ds)RNA (red) and RNA–

AuNPs (blue) in 10% serum. The increase in fluorescence intensity demonstrates the 

distance-dependent release of the fluorophore from the gold core, which is an efficient 

quencher of the fluorescence. (Adapted from ref. 107).
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Figure 5. 
(a) Schematic of NPSC/siRNA-mediated in vivo TNF-α silencing in LPS-induced 

inflammation. The anti-inflammatory NPSC was prepared by assembling TNF-α targeted 

siRNA with arginine functionalized AuNPs, with the ensemble self -assembled onto the 

surface of fatty acid nanodroplets to form a NPSC/siRNA nanocomplex. (b) in vivo delivery 

of NPSC/si_TNF-α decreased serum TNF-α production from LPS-induced inflammation. 

(Adapted from ref. 132)
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Fig. 6. 
(a) Schematic depiction of E-tagged Cas9 (Cas9E20) protein construct and arginine

functionalized AuNPs (ArgNPs). (b) Cas9E20 was pre-assembled with single guide RNA 

(sgRNA) to form ribonucleoprotein (RNP) complexes. Cas9E20 RNPs self-assembled with 

ArgNPs to escalate particle protein nanoassemblies. (c) AuNP-protein nanoassemblies 

associated with the cell membrane and delivered protein through a membrane fusion-type 

mechanism in cultured HeLa cells. Gene edited was evaluated by T7 endonuclease I (T7E1) 

assay in experimental samples (1), with no editing observed in controls with no ArgNPs 

(2) and cell only (3). (d) Nanoassemblies administered to the tail vein of BALB/c mice 

exhibited gene editing in the spleen and liver, as determined by T7E1 assay and Interference 

of CRISPR Edits (ICE) sequencing analysis. (Adapted from refs. 142 and 143).
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Fig. 7. 
(a) Schematic structure of dox-loaded antibody/aptamer (cRGD/Apt)-conjugated AuNC. 

(b) ex vivo fluorescence images of isolated organs from tumor-bearing mice at 8 h post

injection. (c) Fluorescence intensity of isolated organs at 8 h post-injection with different 

sample formulations (Adapted from ref. 182).
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Fig. 8. 
General synthetic scheme for preparation of MSNPs. (Adapted from ref 202).
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Fig. 9. 
Monodisperse MSNPs with large pores provide higher loading capacity for pDNA and better 

protection from nucleases compared to those with small pores. (Adapted from ref. 220).
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Figure 10. 
(a) Schematic representation of the cargo-loaded PEG-MSNPs-SS-CD prior to folate 

conjugation. (b) Tumor volume changes from different treatment groups. (c) Body weight 

changes of MDA-MB-231 tumor-bearing mice.
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Fig. 11. 
(a) Schematic diagram illustrating the formation of nanocarriers (MSNP-chitosan-TNF-a 

conjugated with antibody) and the drug release behavior at different pH values. This 

structure blocks and restricts drugs release from the hollow interior. (b) Photos of tumors 

collected from mice in Nano group; nanocarriers composed of CS-SiO2,HNPs, TNF-a and 

antibody were injected into the mice (top); PBS (pH 7.4) only was injected into the mice 

(bottom). (Adapted from ref.241).
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Fig. 12. 
Scheme of polymeric ultrasound sensitive “nano-gate” on MSNPs. Loading was achieved at 

lower temperature. Ultrasound waves triggered cargo release at physiological temperature. 

(Adapted from ref 243).
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Fig. 13. 
Schematic representation of typical magnetic iron oxide nanoparticle structure, with 

potential applications for delivery, theragnostics, and imaging.
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Fig. 14. 
(top) Schematic depiction of hexagonal cobalt- and manganese-doped iron oxide 

nanoparticles encapsulated within polymeric nanocarriers. (bottom) (a) Representative 

intratumoral temperature profiles during AMF (420 kHz, 26.9 kA/m) exposure of mice 

injected with a single dose of 5% dextrose (AMF), cobalt and manganese-doped iron 

oxide nanoclusters (Co-Mn-IONP), and IONP nanoclusters. The navy curve shows the 

intratumoral temperature during the fourth cycle in a mouse that was treated with CoMn

IONP nanoclusters (6 mg Fe/kg) and AMF once a week for 4 weeks. (b) Tumor growth 

profiles of mice with ES-2 xenografts after four cycles of the following treatments; *p < 

0.05 when compared with nontreated animals. (c) Tumor growth profiles of mice with ES-2 

xenografts after treatment with AMF for 10 min. or 40 min. (Adapted from ref. 291).
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Fig. 15. 
(a) Schematic illustration of polymerized β-cyclodextrin and paclitaxel conjugated to 

SPIONs. Delivery complexes were magnetically guided to the tumor site. (b) CT26 tumor 

growth profile for different treatment groups. Data represent mean ± S.E.M. from n=4 

(*P<0.05; **P<0.01; ***P<0.001). Each arrow represents the time of intravenous injection 

of samples. (Adapted from ref. 311).

Luther et al. Page 55

Adv Drug Deliv Rev. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 16. 
Magnetofection of tumors with pDNAGFP or pDNAIL-12 using SPIONs-PAA-PEI: (a) 

Micrographs of frozen murine melanoma B16F1 and mammary adenocarcinoma TS/A 

tumor sections under phase contrast (PC) and epi-fluorescence illumination (FL) after 

transfection with pDNAGFP using (A) magnetofection, (B) SPIONs-PAA-PEI in the 

absence of magnetic field, (C) electrotransfer. Scale bar, 50 mm. (b) Antitumor effect 

of intratumoral administration of pDNAIL-12 on TS/A mammary adenocarcinoma tumors 

after magnetofection with SPIONs-PAA-PEI and electrotransfer. Blue arrows represent three 

consecutive treatments with pDNAIL-12. Tumor growth delay was calculated on the 10th 

day. (Adapted from ref. 304).
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Fig. 17. 
Schematic illustration of silica-iron oxide propylamine nanocomposites, with (a) proposed 

loading interactions for large proteins with the particles and (b) representation of pH-driven 

intracellular delivery. (Adapted from ref. 326).
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Fig. 18. 
NIR excitation (980 nm) of the UCNPs resulted in upconverted UV emission at 364 nm used 

for photocleavage subsequent release of 5-fluorouracil from the UCNP surface. (Adapted 

from ref. 355).
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Fig. 19. 
Schematic representation: (a) upconverted luminescence triggers degradation and release 

from light-sensitive nanoparticles; (b) spectral overlap between the UV emission profile of 

NaYF 4 :Yb.Tm core-shell UCNPs (black trace) and the absorption spectrum (shaded blue) 

of ONB triggering groups; (c) photochemical mechanism of light-triggered degradation. 

(Adapted from ref. 367).
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Fig. 20. 
Schematic illustration of NIR light-triggered dox release by making use of the upconversion 

properties of UPNCs and trans–cis photoisomerization of azobenzene molecules grafted on a 

mesoporous silica layer. (Adapted from ref. 373).
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Table 1.
Comparison of inorganic materials for delivery purposes.

Summarized advantages and potential issues of gold, silica, iron oxide, and UCNP platforms for in vivo 
delivery of therapeutics, with key references for delivery of each form of therapeutic cargo.

Material Advantages Challenges References

Gold tunable size and shape, optical 
reactivity, flexible monolayer design, 
inherently non-toxic

uncertain biological fate, 
nuanced synthetic process

Small molecule
71–78, 81–86, 88, 122–127, 130–136, 165
Protein
93, 99, 100, 138–140, 142, 143
Nucleic acid
105–118, 146–153, 156, 159, 160, 173

Silica high loading capacity, controllable 
release rate, flexible platforms for 
triggered release

toxicity from surface-exposed 
silanol groups, increased ROS 
production

Small molecule
225, 242, 243, 245, 248, 205–213, 220, 221
Protein
230, 240, 244, 214, 215
Nucleic acid
237, 217–219

Iron Oxide hyperthermic properties, potential 
for contrast imaging or magnetic 
localization

particle accumulation/
degradation in vivo produces 
toxic byproducts

Small molecule
308, 309, 313–315
Protein
310, 325
Nucleic acid
311, 312, 316–323

Lanthanide 
Upconversion 
Particles

NIR-triggered release for localized 
drug release, low toxicity

limited available excitation 
wavelengths, need for silica 
components

Small molecule
348–355, 363, 364, 365, 367, 371
Protein
366
Nucleic acid
356, 368, 372

NIR: Near-infrared radiation

ROS: Reactive oxygen species
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