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Abstract 9 

Electrical stimulation for delivery of biochemical agents such as genes, proteins and RNA molecules 10 

amongst others, holds great potential for controlled therapeutic delivery and in promoting tissue 11 

regeneration. Electroactive biomaterials have the capability of delivering these agents in a localized, 12 

controlled, responsive and efficient manner. These systems have also been combined for the delivery 13 

of both physical and biochemical cues and can be programmed to achieve enhanced effects on healing 14 

by establishing control over the microenvironment. This review focuses on current state-of-the-art 15 

research in electroactive-based materials towards the delivery of drugs and other therapeutic 16 

signalling agents for wound care treatment. Future directions and current challenges for developing 17 

effective electroactive approach based therapies for wound care are discussed. 18 
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 40 

1. Introduction  41 

Wound healing is a coordinated process relying on precise spatiotemporal mechanisms of action. 42 

Significant progress has been made to identify specific signals (e.g. small molecules, cytokines, 43 

growth factors, RNA interface, genes, cell-based therapies) of therapeutic benefit [1,2]. To this end, 44 

there is great interest in applying these mechanisms to enhance and accelerate wound healing and 45 

enable tissue repair that otherwise could not occur naturally. However, despite the advances made in 46 

the field, wound regeneration continues to be a constant challenge for health-care professionals.  47 

Injuries to healthy tissues are known to give rise to localized electric fields that play a key role in the 48 

process of healing of these wounded tissues [3]. Both delivery of therapeutic drugs and electrical 49 

stimulation therapies have been identified as essential tools to enhance the process of wound healing 50 

[4–6]. Advances in the delivery systems of these therapeutics have been reviewed [7,8], however, 51 

establishing control over their release and stimulus is challenging. To this regard, electroactive 52 

biomaterials are gaining prominence and are the focus of the current review in the field of 53 

therapeutics for drug delivery and tissue regeneration.  54 

2. Electroactive biomaterials and their modes of action 55 

The family of electroactive biomaterials (Figure 1) is considered a new generation of smart materials 56 

that allow direct delivery of electrical signals by control over the electric potential. They have the 57 

advantage that they can be combinatorially active (i.e. stimulatory to the tissues as well as triggering 58 

controlled/responsive release of therapeutics). Such systems provide clinicians and scientists with an 59 

alternative delivery mechanism in wound care, facilitating in turn the development of new therapeutic 60 

approaches for patients.  61 

Electroactive biomaterials have the potential to have their chemical, electrical and physical properties 62 

tailored for the specific needs of their application. The family of electroactive biomaterials includes 63 

conductive polymers, piezoelectrics, photovoltaic materials, and electrets.  64 
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 65 

Figure 1 The family of electroactive materials and their applications 66 

2.1 Conductive polymers  67 

Conductive polymers (CP) are organic polymers that offer a compromise between the good electrical, 68 

magnetic and optical properties of metals and the ease of processing and mechanical properties 69 

associated with polymers [9–12]. Currently there are over 25 conductive polymer systems [9,10]. The 70 

most widely researched of these are polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT) 71 

and polyaniline (PANI) [9,10].  72 

CPs are electrically conductive due to the ease with which electrons jump within and between their 73 

polymer chains [13]. A key factor in this conductivity is the “dopant” [13–15]. Conductive polymers 74 

are synthesized in an oxidized state and require a negatively charged (anion) molecule - the dopant - 75 

to enter the polymer so that the polymer backbone can be stabilized [16]. This dopant is what 76 

introduces a charge carrier into this system by removing or adding electrons from/to the polymer 77 
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chain, creating polarons or bipolarons. Polarons and bipolarons are loosely held, localized electrons 78 

that are surrounded by a distortion in the crystal lattice. When an electrical potential is applied, the 79 

backbone is disrupted by the movement of the dopant molecules in or out of the polymer. This allows 80 

electrical charge to be passed through a polymer in the form of the above-mentioned polarons and 81 

bipolarons [13–15,17]. Many of the CPs have been shown to be cell friendly, supporting the growth of 82 

a large number of cell types and displaying good biocompatibility in animal models [13,18–22]. For 83 

example, PPy has been demonstrated to support the growth, adhesion and differentiation of neural 84 

[23,24], glial [25], endothelial [26,27] and bone cells [18,28], fibroblasts [29], keratinocytes [29] and 85 

mesenchymal stem cells [30]. Similarly, PEDOT has been demonstrated biocompatible with neural 86 

[31] and neuroblastoma cells [32], epithelial cells [13], and the L929 [33] and NIH3T3 fibroblasts cell 87 

lines [13]. 88 

2.2 Piezoelectric materials 89 

Since their discovery in 1880 by the Curie brothers, piezoelectric materials have found applications in 90 

different fields such as energy harvesting, biomedical instrumentation, tissue engineering and drug 91 

delivery [34–39]. These materials are capable of generating charges (i.e. electrical output) in response 92 

to applied mechanical deformations (i.e. direct effect) and also deform in response to applied electric 93 

fields (i.e. converse effect) [38]. This effect is attributed to their non-centrosymmetric 94 

crystal/chemical structure, which is deformed on application of a force resulting in formation of a net 95 

dipole leading to electric polarization [40]. Though these materials are inherently piezoelectric, the 96 

dipoles are randomly oriented in the bulk of the material and need to be rearranged to enhance their 97 

piezoelectric feature. The procedure used to carry out such rearrangement is termed poling and 98 

involves the application of a high electric field at a specific temperature followed by cooling the 99 

material under the same electric field [41]. A schematic of the poling procedures and representation of 100 

direct and converse piezoelectric effects is shown in Figure 2.  101 
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 102 

Figure 2 a) Direct and converse piezoelectric effect mechanisms and b) types of poling procedures to 103 

maximize piezoelectricity 104 

Piezoelectric materials can be based on synthetic polymers or ceramics, naturally occurring materials 105 

or hydrogel systems (a list of piezoelectric materials is shown in Table 1). These materials can be 106 

fabricated into macro-, micro or nano- level structures and consequently be used for efficient and 107 

controlled release of drugs and therapeutic agents. The potential applications of these materials in the 108 

field of medicine require considerable attention of the scientific community. 109 

Table 1 Piezoelectric materials and their classifications 110 

Polymers Ceramics Others 

Poly(L-Lactide) (PLLA) Hydroxyapatite (HA) Diphenylalanine 

Poly-(vinylidene fluoride) (PVDF) Barium titanate (BT) Collagen 
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Poly-(vinylidene fluoride-co-trifluro 

ethylene) (PVDF-TrFE) 

Lithium sodium potassium 

niobate (LNKN) 

Boron nitride nano tubes 

(BNNTs) 

Polyhydroxy-butyrate (PHB) Lithium niobate (LN) Silk 

 Lead zirconate titanate (PZT)  

 Zinc Oxide (ZO)  

 111 

2.3 Electrets 112 

Electrets are dielectric materials capable of retaining quasi permanent electrical charge or dipole 113 

polarisation which is not destroyed over time [42,43]. The process of fabricating electrets is similar to 114 

the poling process of piezoelectric materials by which the material is charged at a constant voltage. A 115 

dielectric material is sandwiched between electrodes, heated to softening temperature and a direct 116 

current electric field is applied and maintained while the material is cooled to room temperature [44]. 117 

Based on the type of charges developed on the surface of the electret, they can be classified into two 118 

types (i) homocharged and (ii) heterocharged [45]. The different types of electrets and the charges 119 

associated with their formation are shown in Figure 3. 120 
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 121 

Figure 3 Types of electrets: (a) heterocharged and (b) homocharged (*injected charges are those 122 

which get deposited on the material surface from the surrounding electrode); and (c) charge carriers 123 

involved during the formation of electrets 124 

2.4 Photovoltaic materials 125 

Photovoltaics (PV) is the process of converting light into electrical power by using semiconductor 126 

materials that are able to absorb and trap light while exciting a charge carrier to a higher energy state, 127 

creating an electron flow: light absorption creates electron-hole pairs, and electrons and holes 128 

respectively migrate to opposite electrodes [46] (Figure 4a).  129 

Essentially, a PV device (Figure 4a) consists of two regions, an n-type dope region and a p-type dope 130 

region, respectively featuring an excess of electrons and a deficit of electrons (i.e. holes), and the 131 

presence of contacts [47,48]. When both components come into contact, the excess of electrons flow 132 

from the n-type dope region into the p-type dope region, creating an electric field in between.  133 
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While PV devices can be found in many forms, these can be classified into three main types. The 134 

simplest PV device consists of an electron donor and an electron acceptor sandwiched together into a 135 

thin film (single or double layer) for the charge carrier to be allowed to diffuse through the junction 136 

(Figure 4b) [49]. However, the thinner the film the less amount of light it can entrap. The previous 137 

shortcoming can be addressed by mixing the electron donor and electron acceptor components into a 138 

blend (Figure 4b) [50], enhancing carrier diffusion. These PV devices generally consist of composite 139 

blends mixing semiconductor nanoparticles with conjugated polymers [51–54], where one functions 140 

as an electron donor and the other as an electron acceptor [52]. Blending semiconductor nanoparticles 141 

with conjugated polymers combines the easy processability and low cost of the polymer with the high 142 

charge mobility of the nanoparticle, which may include spherical, rod-like or branched organic and 143 

inorganic particles such as CdSe, ZnO, PbS, fullerene derivatives or single-walled nanotubes [55–57]. 144 

The performance of the composite can be enhanced in terms of light absorbance, charge separation or 145 

charge transport, which depends on the choice of the conjugated polymer and the processing condition 146 

[58,59]. However, the size and shape of the nanoparticle is also key: branched morphologies exhibit 147 

higher efficiencies compared to the use of nanorods or quantum dots [50], and small dimensions (i.e. 148 

large surface area to volume ratio) improve energy absorption and emission owning to high optical 149 

density [52]. An alternative to the PV blend device format is for a conjugated polymer to be inserted 150 

into a porous inorganic network as an ordered heterojunction-like structure (Figure 4b) [60]. Electron 151 

transport is facilitated this way as the interface between the polymer and the inorganic component is 152 

mainly governed by the dimension of the nanostructure particle, these interfaces can be chemically 153 

controlled to assist charge separation or block charge recombination across the donor-acceptor 154 

interface [60].  155 
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 156 

Figure 4 Photovoltaic mechanism: a) conventional photovoltaic cell where electron-hole pairs 157 

migrate to opposite electrodes upon photo stimulation and electric current is produced; b) photovoltaic 158 

cells depicting the schematics of a planar heterojunction, a blended bulk heterojunction and an 159 

ordered heterojunction; c) model of a conceptual nanoscopic photovoltaic device depicting realistic 160 

and optimal design dimensions 161 

3. Electroactive biomaterials as drug delivery systems 162 

3.1 Electrochemically controlled drug delivery based on CPs  163 

CPs have been investigated as potential candidates for drug delivery systems since as early as the 164 

1980s, when Zinger and Miller demonstrated that glutamate and ferrocyanide can be released from 165 

polypyrrole films through the application of an electric potential [61].    166 

3.1.1 Drug loading and release mechanisms for CPs 167 
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Drug delivery systems based on CPs exploit the polymers’ ability to be electrically switched between 168 

an oxidized and a reduced state, resulting in the uptake or expulsion of charged molecules from the 169 

bulk of the polymer [62–64]. A wide range of solutions have been developed based on this 170 

phenomenon for the loading and controlled delivery of both positively and negatively charged and 171 

neutral drug compounds [62,65–67]. Amongst others, dexamethasone [68], heparin [69], dopamine 172 

[70], naproxen [71], neutrophin-3 [72], and neural growth factor (NGF) [22,31] have all been 173 

successfully bound and released from conductive polymers. 174 

Loading of the drug compound can be performed in a number of ways depending on the type of the 175 

drug (Figure 5): small anionic compounds can be loaded through one-step immobilization (Figure 176 

5a), as dopants during the polymer synthesis process [65,73,74]. This is the simplest method; 177 

however, if the drug molecule interferes with the polymerization process, the created material will 178 

suffer from low conductivity and drug loading capacity, and unfavourable mechanical properties [65]. 179 

 180 

Figure 5 Mechanisms of drug loading and release in CPs: a) one-step loading of anionic drug; b) 181 

three-step loading of anionic drug; and c) loading of cationic drug 182 
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This limitation of the one-step methods can be overcome through the use of the more elaborate three-183 

step method [11,65,67,74]. The three-step method (Figure 5b) separates the synthesis and drug 184 

loading processes, allowing both to be carried out with optimal parameters. First, the polymer is 185 

synthesized using an ideal anionic “primary” dopant. Following synthesis, a reducing potential is 186 

applied flushing out the primary dopant. Afterwards, the desired medicinal compound can be 187 

incorporated into the polymer by reversing the potential. A great benefit of this method is its 188 

application to the loading of large anionic compounds. However, if the process of removing the 189 

dopant and incorporating the drug are inefficient, drug loading capacity will be limited [65].   190 

In a comparison of the one-step and three-step methods, post-synthesis loading has been shown to 191 

produce the highest loading for ciprofloxacin, while incorporation during synthesis provided the 192 

highest loading for quercetin [74]. This difference was due to quercetin crystallizing on the surface of 193 

the polymer when introduced post-synthesis and the subsequent matrix conditioning steps removing it 194 

[74]. Cationic drugs require a modified version (Figure 5c) of the three-step method [63,67,73–75]. 195 

Here, the polymer is synthesized with a large primary anionic dopant that, due to its size, is 196 

immobilized inside the polymer matrix during synthesis. Following this, the application of a reducing 197 

potential to the polymer results in the positively charged drug entering the material to maintain 198 

electroneutrality. This method was successfully applied to the loading and release of dopamine [70] 199 

and chlorpromazine [64], using poly(styrene-sulfonate) (PSS) and melanin as the dopant respectively. 200 

It has also been adapted to the loading of the neutral drug, N-methylphenothiazine, relying on the 201 

hydrophobic-hydrophilic interaction between the drug and an anionic “host” molecule, β-202 

cyclodextrins [76]. 203 

Anionic drugs can be released with the application of a reducing - negative – potential, while cations 204 

can be unbound by either the removal of a negative potential or the application of an oxidizing – 205 

positive – potential [67,77,78]. The required voltage, generally speaking, depends on the reduction 206 

potential of the polymer [79]. In published studies, reported applied values range between 0.6 and 2 V 207 
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[62,63,73,80–82].  A higher potential results in faster release [83–85]. For example, -2 V releases 208 

fluorescein from nanoporous PPy films 3-4 times faster than -1.5 V [81]. A similar trend was 209 

observed during the co-release of fluorescein and dexamethasone from PPy sponges, where -2 V 210 

produced a two-fold release rate compared to -0.5 V [82]. On the other hand, too high potentials can 211 

result in the destruction of the bound drug compound through oxidation or hydrolysis, as it was 212 

observed in the case of dopamine above -0.6 V [63], and neural growth factor above 3 V [86]. 213 

Switching to the opposite polarity can help maintain the drug inside the polymer matrix by 214 

counteracting diffusion [83,85,87,88]. However, this does not apply to every case as during the 215 

release of the cationic compound acetylcholine from PEDOT:PSS both +1 V and -1 V produced a the 216 

same release profile [73].   217 

The method of delivering the potential is also important: different drug release profiles have been 218 

observed depending on whether pulsed potential, pulsed current or cyclic voltammetry was applied 219 

[66]. In another study, potentiodynamic stimulation generated higher drug release efficiency than 220 

potentiostatic stimulation [65]. Cyclic voltammetry has been stated as the most efficient method for 221 

stimulation [11], also allowing greater control over release speed through the setting of different scan 222 

rates [89]. Beyond the applied electrical potential, stimulation time [86,90]; polymer film roughness, 223 

porosity, density and thickness [11,62,66,67,84,91]; the dopant [84,87]; and temperature [83,92] are 224 

known to affect and allow greater control over optimising the release profile. 225 

The chemical environment can also have a profound effect. The release of insulin from PPy-gold 226 

nanoparticle composites has been observed to be pH-sensitive with the release slowing down at low 227 

pH [85]. The co-application of an electric potential further increased this sensitivity [85]. A strange 228 

relationship was noted between pH and the effect of the electric potential in the case of safranin 229 

release from PPy-poly-(acrylic acid) (PPy-PAA) hydrogel composites. At pH 6.4, a potential of +0.4 230 

V enhanced release, while -0.4 V helped block diffusion. On the other hand, at pH 3.8 the exact 231 

opposite was seen with -0.4 V promoting release, and +0.4 V preventing it [93]. In contrast to these 232 
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pH dependent responses, the release of aspirin from PPy-montmorillonite composites was insensitive 233 

to whether it was performed at pH 3.4, 7.4 or 11.4 [94]. Chemistry alone can be used to propagate the 234 

release of the drug compounds. Hydrazine and alkaline medium was able trigger the release of 235 

adenosine triphosphate (ATP) from PPy membranes, albeit to a lesser extent compared to an electrical 236 

potential [95]. 237 

3.1.2 Polypyrrole (PPy) and poly-(3,4-ethylenedioxythiophene) (PEDOT) 238 

PPy and PEDOT are members of the polyheterocycles family of conductive polymers, and have been 239 

almost predominantly the CP of choice for drug delivery applications [13,85,96,97].  PPy and PEDOT 240 

films have been used, for example, for the release of chlorpromazine [64], dexamethasone [68,79,98], 241 

neurotrophin-3 [66,99,100], risperidone [88,101,102], brain-derived neurotrophic factor (BDNF) 242 

[103], adenosine triphosphate (ATP) [95], dopamine [63], acetylcholine [73], methotrexate [83], 243 

betulin [104], quercetin and ciprofloxacin [74]. However, this section will focus on the more advanced 244 

drug delivery solutions that have been developed in recent years based on these two polymers.  245 

For many applications, simple CP films alone do not provide sufficient drug storage capacity [89]. 246 

The use of micro- and nanostructures can provide a solution to this by offering greater volume and 247 

surface area for drug binding. One such structure was created from PPy nanowires, where the micro- 248 

and nanogaps between the wires served as reservoirs for the binding of ATP and dexamethasone [89]. 249 

Micro- and nano-tubes consisting of a drug laden inner core of bacterial cellulose [80], PLLA or 250 

poly(lactide-co-glycolide) (PLGA) [105] and an outer shell of PEDOT have also been fabricated.   251 

Sponge-like structures can be created by polymerising PPy around sacrificial nano- or microbeads that 252 

are then later removed. Such nanostructures have been used for the release of rhodamine B [106], 253 

dexamethasone [82,107], fluoroscein [81,82], chlorpromazine [92], and risperidone [91]. The 254 

nanoporous PPy structure provided a capacity nine times greater compared to conventional PPy films 255 

in the case of fluorescein [81], and four times greater in case of risperidone [91]. Brush-like structures 256 

were generated by depositing PPy on top of aligned carbon nanotube surfaces for the delivery of 257 
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neurotrophin-3, possessing a surface area ten times higher than a film [108]. A similar approach was 258 

used for the enhanced binding and release of dexamethasone and penicillin [109]. A petal-like 259 

structure was achieved through polymerising PEDOT on top of single-wall carbon nanotubes 260 

immobilized on a gold surface [110]. Compared to neat PEDOT this material possessed improved 261 

conductivity, charge capacity and drug release rate [110]. Furthermore, it was able to resist three 262 

times longer the degradation effects (e.g. delimitation and cracking) of cycling the CP through its 263 

redox states during electrical stimulation [110]. Carbon nanotubes have been used in an alternative 264 

approach by Luo et al. as containers for drug molecules [111]: PPy was electropolymerized on the 265 

open ends of dexamethasone loaded carbon nanotubes, providing a seal on the ends of the nanotubes 266 

that could be opened with electrical stimulation [111]. 267 

Nanocomposites offer an additional solution to improving drug-loading capacity. Graphene oxide 268 

(GO) has been successfully combined with PPy to generate a composite material with twice greater 269 

dexamethasone binding capacity than PPy alone, a linear release profile up to 400 stimulations, and 270 

no passive drug diffusion [112]. GO has been used in combination with PEDOT to deliver 271 

dexamethasone in a smart coating for orthopaedic implants [113]. An interesting new approach in CP 272 

composites is the use of clay particles, such as palygorskite [114] and montmorillonite [94], that lend 273 

their large specific surface area to the composite material. 274 

PPy and PEDOT have been combined with hydrogels, that are themselves important drug delivery 275 

tools, made from PAA [93,115], poly(lactic-co-glycolic acid)-co-poly(ethylene glycol) (PLGA-PEG) 276 

[78], alginate [116], and xanthan [117]. These blends combine the high electrical conductivity and 277 

electrically and chemically switchable properties of CPs, with the high swelling ability, excellent 278 

small molecules diffusivity, and good biocompatibility of hydrogels [93,115].  279 

Ge et al. used microfabrication to construct a PPy based microchip with 36 independent electrodes. 280 

This novel device is able to supply multiple drugs at the same time or sequentially over multiple days, 281 

while offering greater control over doses then simple PPy films [77]. The same authors have also 282 
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created a very interesting self-activating system by turning the CP based drug release system into a 283 

galvanic cell. Magnesium was coated onto one side of a PPy coated porous cellulose film. 284 

Submerging the film into a NaCl solution resulted in the magnesium oxidizing, which in turn resulted 285 

in the reduction of the PPy, releasing the bound ATP [118]. This created a flexible, lightweight and 286 

partially-biodegradable device that does not require an external power source to operate [118]. Similar 287 

solutions have been developed by coating magnesium onto PPy nanowires containing ATP [119], and 288 

depositing PEDOT/GO onto biodegradable magnesium substrate [113]. 289 

In order to overcome limitations that might arise from limited drug loading capacity, the molecular 290 

weight of the medicinal compound, or the drug-dopant interference, a drug binding method based on 291 

biotin-streptavidin coupling has been proposed [86,120]. This technique was successfully used for the 292 

binding and release of molecules both directly attached to the polymer [86] or coated on the surface of 293 

intermediating gold nanoparticles [120]. 294 

 295 
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Figure 6  Examples of advanced CP based drug delivery solutions: a) nanowires [89]; b) microtubes 296 

[80]; c) nanoporous structures [106]; and d) nanoparticles [121] 297 

Nanoparticles have also been fabricated out of CPs (Figure 6). An encapsulation efficiency of 95% 298 

was achieved when loading ketoprofen inside PPy-iron oxide nanoparticles [122]. PPy nanoparticles 299 

with the capability to release both at acidic and basic pH have been engineered, enabling their use in a 300 

wide range of tissue environments, including the pH 1-3 of the stomach and the pH 7-8 of the colon 301 

[123]. These PPy nanoparticles have also been immobilized in a calcium alginate hydrogel for the 302 

sustained pH dependent release of the anti-inflammatory drug piroxicam [123]. In a recent study, a 303 

targeted nanocarrier system was developed for chemotherapy, where rapamycin was bound in a 304 

liposome wall formed around PPy nanoparticles. The liposome was coated with Herceptin® 305 

(trastuzumab) that binds specifically to the HER2/neu receptor expressed by breast cancer cells, 306 

enabling target cell specific cellular uptake. Exposing the target area/cells to an 808 nm laser heated 307 

up the particles, releasing rapamycin and triggering apoptosis [121]. 308 

A very different drug release mechanism was engineered by Jeon et al. [124], instead of the 309 

electrostatic binding and release, a delivery system exploiting the mechanical swelling and contraction 310 

of PPy was fabricated. PPy pores were polymerized on top of anodized aluminium oxide membranes 311 

[124]. The PPy pores could be opened and closed through the application of an electrical potential, 312 

releasing on demand the bovine serum albumin contained in a reservoir situated on one side of the 313 

membrane [124]. The created device possessed a very fast response time in the range of 10 s, and a 314 

capacity only limited by the reservoir behind the aluminium oxide membrane [124]. 315 

3.1.3 Other conductive polymers 316 

The field of CP based drug delivery is dominated by PPy and PEDOT. However, there are examples 317 

of other CPs being applied, including degradable electroactive copolymers synthesized from 318 

oligoaniline and PEG or poly(ε-caprolactone) (PCL) blocks. The resultant materials were found to be 319 

degradable in vitro, supported the adhesion of human dermal fibroblasts, and successfully delivered 320 
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dexamethasone with potential cycling between 0.7 V and − 0.5 V [125]. Oligoaniline has also been 321 

combined with oligoalanine to form electroactive supramolecular polymers for the delivery of 322 

dexamethasone phosphate [126]. Poly(N-methylpyrrolylium) poly(styrenesulfonate) was successfully 323 

used as a cation exchanger for the binding and the release of dopamine [70]. The conductive polymer 324 

poly(p-phenylenevinylene) (PPV) has been applied in combination with polyacrylamide (PAAM) to 325 

create a hydrogel with a tailorable release profile. The presence of PPV in the hydrogel delayed the 326 

release of salicylic acid in the first three hours, and this blocking effect could be extended to above 327 

fifteen hours with the application of a 0.1 V anodic potential. Release could be triggered with the 328 

application of a cathodic potential, the rate increasing with greater electric field strength. The release 329 

profile could be further optimised by varying the crosslinking density, and the size of the drug and the 330 

pores in the hydrogel [127]. 331 

3.2 Piezoelectrically active materials for drug delivery 332 

The piezoelectric principle of some materials has been researched in the field of drug delivery; for 333 

instance, in the fabrication of micropumps to treat diseases such as diabetes, with direct effects on 334 

tissue healing [128–132], or in the development of hybrid composite scaffolds made out of 335 

piezoelectrically active materials [133–135]. 336 

3.2.1 Drug release mechanism on piezoelectric based materials 337 

The use of the piezoelectric mechanism for driving micropumps for drug delivery is common due to 338 

various advantages such as low power consumption, wide range of frequency operation, a rapid signal 339 

response and the ability of piezo actuators to be integrated in microsystems with ease [136]. 340 

Micropumps are preferred drug delivery systems as they provide better control, precision, accuracy 341 

and reliability than other drug delivery methods such as oral, injectable, nanoparticle based delivery 342 

or others [137].  Primarily localized delivery of insulin in diabetic patients has been explored using 343 

micropumps alongside some other lesser researched fields [138]. A schematic of the working 344 

principle of different types of piezoelectric micropumps for drug delivery is shown in Figure 7.  345 
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 346 

Figure 7 Schematic of working principle of piezoelectric micropumps with or without valves, based 347 

on deformable piezoelectric based diaphragms that regulate drug suction and delivery 348 

PZT based actuators are the most commonly utilized piezomaterials over the past three decades to 349 

fabricate micropumps for controlled release of drugs [34,137,139]; piezoelectric micropumps with 350 

and without valves have been studied extensively [137,140]. In 2014, Wei et al. reported the design 351 

and fabrication of a valve-less piezoelectric micropump which was screen printed on a substrate using 352 

multiple layers of different materials [141]. These pumps printed on flexible substrates have possible 353 

applications in wearable smart fabric devices for drug/bactericide delivery. The absence of valves in 354 

the micropumps makes their design and fabrication process simpler and also, they are less prone to 355 

clogging and require lower voltages of operation [136,141]. A drive frequency of 3 kHz was used to 356 

achieve a maximum flow rate of 38 µL/min. Different designs reported for valve-less pumps have 357 

been well optimized for higher delivery rates (i.e. flow rates) and better reliability [136,142]. 358 
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However, successful operation of valve-less micropumps depends on the efficiency of the flow 359 

rectification process of the proposed design [140]. The presence of valves in micropumps ensure 360 

precise control over the flow rate, direction and stability, and makes them more reliable than valve-361 

less designs [143]. Modifications to different parts of the micropump such as vibrating mechanisms 362 

and valve design can be made to improve the performance [143–145]. Wang et al. proposed the use of 363 

a folding vibrator system in combination with check valves and compressible spaces [143]. A 364 

minimum stable flow rate of 160 µL/min was obtained using a low drive voltage. The study clearly 365 

suggests that highly efficient micropumps can be fabricated if proper design considerations are made. 366 

To ensure successful implantation of these micropumps, it is important to use biocompatible 367 

components to design them. However, the non-degradability of these pumps limits their use as 368 

invasive procedures may be required for implantation and removal of these pumps after the function 369 

has been served. 370 

Advances in microfluidics and nanofabrication technologies have enabled the miniaturisation of 371 

implantable drug delivery systems [146,147]. Piezoelectric based micropumps could be worn as 372 

dermal patches, smart wearables or implanted within the body with a power source to achieve 373 

delivery of desired drug profiles. This approach of administering drugs in a controlled manner is 374 

encouraging, with some of these implantable pumps commercially available. However, the use of 375 

drug-loaded implants/scaffolds is a more promising solution. Through the use of drug-loaded 376 

scaffolds, an efficient delivery of drugs can be ensured and the repair process enhanced due to the 377 

presence of localized electrical environments set up by the electroactive scaffolds [148,149]. 378 

However, controlling the adsorption and release behaviour of drugs through external stimuli has been 379 

explored [150].  380 

Piezoelectric materials have been used to develop hybrid composite scaffolds for the release of drugs 381 

and genes [133–135]. In 2010, Ciofani et al. reported the use of BTNPs dispersions in glycol-chitosan 382 

to form complexes with a widely used chemotherapy drug, doxorubicin, to enhance its delivery to 383 

cells and improve treatment efficiency [134]. Similar to this study, Suh et al. reported on increased 384 
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cellular uptake of BTNPs coated with polyethylenimine (PEI) [133]. Both studies highlight the use of 385 

BTNPs as vectors without any mentions of the role of the piezoelectric properties and their possible 386 

role in altering delivery of genes or drugs. On similar lines, a more recent study published in 2016 387 

highlights the use of BNNTs for delivery of fluorescent probes and drugs such as curcumin, a potent 388 

anti-inflammatory, anti-microbial and anti-oxidant wound-healing agent [135]. Curcumin was shown 389 

to be entrapped within the nanotubes through characterisation by transmission electron microscopy 390 

imaging [135]. In another study, He et al. reported loading of electrospun fibrous PVDF membranes 391 

with antibacterial drug enrofloxacin for treating dermal injuries [151]. The drug release profile 392 

observed was similar to that desired for wound healing processes [151]. In this study, it was 393 

mentioned that the enrofloxacin was present in large portions on the outer surface of the fibres and 394 

diffusion was the main driving mechanism of drug release [151]. However, the contribution of the 395 

piezoelectric effect towards drug loading and release was not studied in any of these works and 396 

remains to be explored.  397 

3.3 Electret mediated delivery of drugs 398 

Electrets for drug delivery mainly come in the form of patches and are mainly limited to transdermal 399 

delivery. They can carry different values of surface potentials depending on the amount of surface 400 

charges retained. These can subsequently give rise to electrostatic fields and microcurrents which can 401 

assist in the process of wound healing and transdermal drug delivery (i.e. TDD, a process of 402 

administrating drugs/therapeutic agents through intact skin) [152,153].  403 
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 404 

Figure 8 Transdermal drug delivery system based on electrets 405 

Research reported over the last two decades have shown that the electrical fields generated by 406 

electrets based on polytetrafluoroethylene (PTFE) and  polypropylene (PP) are capable of altering the 407 

permeability of skin and promote transdermal delivery of drugs [154–156] (Figure 8). Regulation of 408 

the electret state of the skin, arrangement and fluidity of lamellar lipids and structure of proteins in the 409 

stratum corneum (the outermost layer of skin considered to be the main barrier for TDD), leading to 410 

formation of wide gaps have been shown to be the key mechanisms for improvement of TDD 411 

[154,155,157–159]. Cui et al. performed several studies using PP electrets prepared by film casting 412 

technique, combined with different chemical enhancers (that promote TDD by altering skin structure) 413 

for different types of drug formulations [158,160,161]. In one of the studies, it was observed that 414 

electrets of various surface potentials alone enhanced the permeation of meloxicam, a low molecular 415 

weight drug (< 1 kDa), more than the chemical enhancer on its own [161]. However, in case of 416 

cyclosporine A, a drug with higher molecular weight (> 1 kDa), electrets alone of different surface 417 

potentials were not able to achieve similar levels of drug permeation as the chemical enhancer [160]. 418 

Similar results were obtained in a study by Murthy et al. which showed that Teflon electrets were 419 

unable to enhance delivery of high molecular weight drugs [162]. To this regard, a novel approach has 420 

been suggested by Tu et al. to address the issue of delivering high molecular weight drugs [158]. The 421 

study shows that using drug loaded N- trimethyl chitosan nanoparticles (TMC NPs) in combination 422 
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with PP electret films enhances transdermal delivery of protein drugs, thanks in part to the 423 

mucoadhesive ability of chitosan to be absorbed across mucosa epithelia. The results obtained in the 424 

studies are promising, showing that the skin permeation to protein drugs and nanoparticles is 425 

increased with the increase of surface voltage of positively charged electrets, and gradually decreases 426 

with an increase of surface voltage of negatively charged electrets. However, there are factors that 427 

require optimization for success of such systems. In particular, the nature, sign and magnitude of the 428 

surface potential of the electret, the type of drugs and the type of nanoparticles are all equally 429 

important to be analysed [158]. Also, it is important to assure that the surface charge of the electrets is 430 

not shielded by moisture or other contaminants [162].   431 

3.4 Targeted drug delivery using photovoltaic materials 432 

One of the main goals of drug delivery systems is to minimize the exposure of the drug to healthy 433 

tissues while achieving an appropriate therapeutic dosage concentration in the wound site. 434 

Photovoltaic materials have recently started to gain attention in therapeutic applications as a way to 435 

control the release of specific drugs when the charge intensity or polarity of the material changes upon 436 

external light stimulation (i.e. near infrared or laser source, 650 - 900 nm wavelength). This is known 437 

as photovoltaic therapy (PVT), where positively and negatively charged drugs can be loaded onto the 438 

surface of a PV device (either on n-type or p-type doped regions) by means of electrical attraction (i.e. 439 

negative or positive) and be released to target sites via electrical repulsion upon light initiation 440 

(Figure 9).  441 

To date, PV devices have not been extensively research for drug delivery applications and scarce 442 

examples are found in the literature. The proof of concept dates back to 2013 when Bhuyan et al. 443 

demonstrated that negatively charged bovine serum albumin and positively charged poly-L-lysine, 444 

attached to the positive and negative sides of a PV cell respectively, were released upon external 445 

photo stimulation [163].  446 
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 447 

Figure 9 Photovoltaic devices used as drug delivery carriers: a) PV device coated with positively 448 

charged drugs, which are released upon stimulation and attracted back again in a retractable-wise 449 

manner; b) PV device coated with positively and negatively charged drugs that are attracted to 450 

opposite sites upon stimulation of the device instead of being repelled towards the environment 451 

As long as the principle of photovoltaics is maintained, PV devices can be manufactured from a wide 452 

range of micro/nano mesoporous materials such as silica [164,165], with tuneable pore sizes, shapes 453 

and morphologies, which also provide for high drug loading capacity and manipulative surface in 454 

terms of cell-material interactions. For instance, micro-size PV cells from silica have already been 455 

manufactured, being more effective at dissipating heat when they range below the millimetre size 456 

[163]. However, the move is now focused towards developing nanoscale devices in formats other than 457 

films that could further facilitate drug delivery.  For instance, photovoltaic based nanoparticle cells 458 

(NPVDs) have already been envisioned with designs theoretically functional [166], and have been 459 

produced from silica, gold and silver materials [167]. However, it is important to target the 460 
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sequestration of these NPVDs as drug carriers to the wound site (Table 2), and an optimal size of 461 

around 6 nm (n-type thickness of 3 nm, p-type thickness of 2 nm and contact thickness of 2 nm) is 462 

required for them to be successfully used as delivery carriers to ensure maximum renal filtration. 463 

Based on the current technology, the realistic achievable NPVD size is 9 nm (n-type thickness of 5 464 

nm, p-type thickness of 3 nm and contact thickness of 1 nm), though, with an 8 nm glomerular pore 465 

size [166] (Figure 4c). The activation of these NPVDs remains in the near infrared, and any drug can 466 

theoretically be transported.  467 

Table 2 Size dimensions of nanoparticles regarding their target site and route of excretion 468 

Target tissue Size particle Excretion route 

Any 3 – 10 nm Renal filtration [168] 

Liver and brain tissue 10 – 30 nm Phagocyte system [169] 

Lung and inflamed tissues 30 – 80 nm Phagocyte system [170] 

Liver and spleen >  80 nm Hepatobiliary excretion [169] 

 469 

3.4.1 Drug loading and release on photovoltaic based materials  470 

Two hypothetical mechanisms of action have been proposed regarding PVT, mainly drug 471 

retractability and contact to p-type region. In the drug retractability mechanism [166] (Figure 9a), a 472 

PV device in neutral state is coated with a positively charged drug on the p-type region. Upon 473 

stimulation, positive and negative charges form in the p-type and n-type regions respectively, and the 474 

presence of a contact in the p-type region allows positive charges to interact with the environment and 475 

repel the positively charged drug in the material. When stimulation ceases, both the p-type and n-type 476 

regions return to their neutral state attracting the drug and any other charged molecules from the 477 

environment, thus, controlling timing and duration of the drug-environment interactions in a back and 478 

forth of neutral and charging cycles and reducing the impact of any side effects. In the contact to p-479 

type region mechanism [166], contacts are only applied on the p-type region of the device. While 480 

contacts can be applied to both the p-type and n-type regions for higher drug capacity (i.e. positively 481 
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charge drugs adsorbed onto the p-type and negatively charged drugs adsorbed onto the n-type 482 

regions), there is a chance that upon stimulation of the device the negatively and positively charged 483 

drugs will be attracted to opposite regions upon initial repulsion (Figure 9b). This limits drug 484 

interaction at the desired site of action, but can be easily solved by removing the contact from the n-485 

type region so that negative charges do not interact with the environment. In this sense, higher drug 486 

delivery efficacy is achieved at the expense of a reduced drug capacity. 487 

3.4.2 Metal organic frameworks as photovoltaic devices in wound care  488 

Metal organic frameworks (MOFs) are highly porous network materials consisting of metal ions 489 

linked together by organic bridging ligands [171,172]. MOFs were first proposed as an alternative 490 

new controlled drug delivery system back in 2004 [173] due to their combined high pore volume, 491 

regular porosity, and tuneable organic groups within the framework that allow easy modulation of the 492 

pore size and makes them more competitive as therapeutic containers [174–178] than conventional 493 

pore materials (Figure 10). Since then, several studies on the use of MOFs as delivery vehicles of 494 

molecular therapeutics (i.e. antimicrobial metal ions [179] or homeostasis regulators such as copper 495 

[180]) and gaseous therapeutics (i.e. nitric oxide [181]) for skin wound treatment have emerged in the 496 

form of hydrogel systems [182–184].  497 

 498 

Figure 10 Schematic representation of a metal organic framework (MOF) structure used as a delivery 499 

carrier 500 
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Although MOFs are mainly non-conductive, the use of structural doping or short inorganic and 501 

conjugated organic bridging ligands in their structures can extend their potential to be used as PV 502 

devices [185–187]. PV-based MOF systems have been thoroughly reviewed by Kaur et al. [188]. In 503 

this sense, there is growing interest in combining the capabilities of MOFs with the PV effect for 504 

these devices to be used as therapeutic delivery carriers to promote and enhance skin regeneration. 505 

4. The stimulatory response of electroactive materials in wound healing 506 

Electrical stimulation (ES) alone has been shown beneficial for the treatment of wounds and injuries. 507 

ES has been shown to aid the re-epithelisation of skin and corneal wounds; to enhance angiogenesis; 508 

and to promote the migration of fibroblasts, keratynocytes and epithelial cells [189–195]. ES’s ability 509 

to induce re-innervation [196,197] and increase skin blood flow [198] aids in the healing of wounds.  510 

ES can show significant antibacterial effects, for example, it has been demonstrated to reduce the 511 

number of methicillin-resistant Staphylococcus aureus colonies by over 87% both in vitro and in vivo 512 

[199]. Furthermore, ES has been successfully used in the treatment of diabetic ulcers [200]; and nerve 513 

damage in sciatic nerve [201] and spinal cord injury models [202]; and as an osteoinductive tool in 514 

treating normal and non-union fractures, osteoporosis and osteoarthrosis [203–207]. ES’s ability to 515 

manage pain is also an important consideration [208,209]. Transcutaneous ES has been shown as to 516 

be a non-invasive, drug-free alternative in managing acute and chronic pain [208], in one example 517 

reducing pain scores by 38% and drug consumption by 25% [209]. 518 

4.1 Stimulatory response of CPs in tissue repair 519 

The use of CPs in the treatment of injuries ranges from conduits [210] and injectable particles [211] 520 

for the repair of nerve damage, to tissue engineered solutions [212] and biosensing devices [213]. 521 

Most of the wound healing techniques developed from CPs utilize their antibacterial properties [214–522 

218]. Wound covering fabrics produced from PPy and PANI have been shown to decimate 523 

populations of E. coli, E. agglomerans, B. subtilis and S. aureus [214,217,218]. The antibacterial 524 

effect of CPs have been attributed to the excessive positive charge and oxidizing potential of the 525 
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polycationic backbone of the polymer disrupting the cell wall and interfering with bacterial 526 

respiration; and to the electron donor–acceptor character of CPs hindering bacterial adhesion and 527 

blocking biofilm formation [214,216,217]. The effect has also been demonstrated to be a result of the 528 

polymer itself, and not due to the oxidising agent or dopant used during the synthesis of the CP [216]. 529 

Their already strong bactericidal effect has been enhanced through the binding and release of silver 530 

nanoparticles [215] and the antibacterial drug ciprofloxacin hydrochloride [87].  531 

When used synergistically, ES and CPs have been shown to activate dermal fibroblasts and promote 532 

the expression of TGFβ1 and other key factors that drive cell proliferation, differentiation, 533 

inflammation response, keratinocyte migration and extra-cellular matrix production [219]. Human 534 

dermal fibroblasts cultured on PPy-PDLLA composite membranes displayed enhanced proliferation 535 

when stimulated with a direct current [220]. Comparably, ES delivered through nanofibres of PANI 536 

blended with PLLA-co-PCL was observed to increase the growth and adhesion of NIH-3T3 537 

fibroblasts [221]. Stimulating human skin fibroblasts on PPy/PLLA membranes resulted in greater 538 

viability and mitochondrial activity [222]. A tenfold increase in the secretion of interleukin-6 and 539 

interleukin-8, two cytokines important for wound repair and the growth of new blood vessels, was 540 

reported when exposing skin fibroblasts on conductive PPy and degradable PLLA composite 541 

scaffolds to an electrical stimulus [223]. The delivery of ES through conductive polymers can be 542 

useful for the formation of new blood vessels: human umbilical vein endothelial cells stimulated with 543 

200-400 mV/cm on PANI-coated PCL fibres exhibited highly enhanced viability and adhesion [224]. 544 

Subjecting PC12 nerve cells to ES through PPy scaffolds resulted in the formation of greater numbers 545 

of longer neurites [225,226]. Nerve stem cells displayed a similar behaviour, extending more neurites 546 

when stimulated on a PLLA/PANI scaffold [226], and enhanced proliferation and neurite outgrowth 547 

on PANI-PCL/gelatin substrates [227]. ES and conductive scaffolds have been combined with stem 548 

cell based therapies: the pre-stimulation of human neural progenitor cells on PPy scaffolds before 549 

transplantation improved functional outcomes in rat stroke models [228]. Bone formation was 550 

successfully promoted by stimulating rat bone marrow stromal cells on PPy films; resulting in the up-551 
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regulation of osteogenic markers, accelerated cell differentiation, and improved calcium deposition 552 

and matrix mineralization [229]. The delivery of 200 μA of direct current for 4 hours for 21 days 553 

increased the calcium deposition by 100% in human adipose-derived mesenchymal stem cells 554 

cultured on PPy-PCL substrates [230]. Similarly, marrow stromal cells and MC3T3-E1 pre-osteoblast 555 

cells displayed significantly increased mineralisation when stimulated on self-doped sulfonated 556 

polyaniline (SPAN)-based electrodes [231].  557 

4.2 The piezoelectric mechanism in tissue regeneration 558 

As previously stated, ES therapy has been well established as an important cue for enhancing the 559 

process of wound healing in different tissues [232,233] by governing cellular behaviour and tissue 560 

response. Piezoelectric materials in the form of scaffolds and NPs (Figure 11) have been used to 561 

administer this cue efficiently to cells with great therapeutic potential in treating cancer, bone injures 562 

and neural disorders [37,40,234–239]. 563 

 564 
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Figure 11 Examples of different piezoelectric based scaffolds  565 

Piezoelectric polymers as nerve guidance channels were reported by Aebischer et al. in the late 20th 566 

century [240–242]. Compelling in vivo results obtained by use of PVDF and its copolymers in these 567 

studies affirmed the role of electrical charges in the process of nerve repair. However, research in the 568 

following years was more focussed on deciphering the mechanisms through which electrical 569 

stimulation influences nerve cell behaviour [243,244]. The field has gathered growing interest of the 570 

scientific community in the last few years. To this regard, BN, ZO and BT piezoelectric nanomaterials 571 

that have been fabricated in various forms including: nanotubes, nanowires and nanospheres, 572 

providing greater surface area to volume ratio for better cell-material interactions [245,246]. BNNTs 573 

and BTNPs have shown promising results for wireless neuronal stimulation. For instance, Ciofani et 574 

al. used BNNTs and BTNPs in two different studies using different neuronal like cell lines [237,247]. 575 

The piezoelectric nanomaterials stimulated by ultrasound generated potentials in the range of 0.07 to 576 

0.19 mV [247] that contributed to greater neurite sprouts by a 30-fold increase compared to the 577 

controls after treatment [237]. Other than piezoelectric nanoparticle systems, scaffolds based on 578 

piezoelectric materials have been explored for nerve regeneration [238,247–252]. In a series of studies 579 

by Lee et al., electrospun piezoelectric membranes of PVDF-TrFE were fabricated and different cell 580 

lines were tested for neuroregenration capability [250,253,254]. The effect of fibre alignment and 581 

piezoelectricity on neurite extension of dorsal root ganglion neurons was assessed, and it was reported 582 

that cell growth and neurite extension was well-supported by annealed and aligned fibres that also 583 

exhibited the greatest piezoelectric effect [250]. These results were confirmed by another study which 584 

reported that PVDF electrospun scaffolds with controlled alignment and physical properties were best 585 

suited for survival and differentiation of monkey neural stem cells [252]. Both in vivo and in vitro 586 

results obtained were supportive of the use of piezoelectric conduits for repairing nerve injuries 587 

[250,253,254]. Unlike these studies in which the initiation of the piezoelectric mechanism of the 588 

scaffold relies on the cellular interactions and natural animal movements, several studies have 589 

reported on externally simulating the effect using ultrasound or vibrating waves [248,249,255]. 590 
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Piezoelectric electrospun PVDF and BTNPs nanocomposite membranes with and without external 591 

mechanical stimulation have also been studied in recent years for nerve tissue engineering 592 

applications [251,256]. 593 

Similar studies conducted by Ciofani et al. with BNNTs and BTNPs enhanced gene expression and 594 

cytokine production by stimulating osteoblasts, myoblasts and fibroblasts in comparison to controls 595 

[235,236,239,257]. However, such non-invasive techniques using piezoelectric nanoparticles to 596 

deliver the electrical therapy to wounds and injuries is relatively new and requires extensive research 597 

before clinical applications are approved [238].  598 

Piezoelectric scaffolds have been used as wound patches for dermal injuries to electrically stimulate 599 

the injury site ensuring enhanced recovery through improved cellular response. The presence of piezo 600 

receptors on cells and their role in controlling cell behaviour to enhance wound healing corroborates 601 

the use of piezoelectrics to stimulate cell response [258,259]. The piezo receptors on cells are 602 

activated when cells undergo mechanical deformation in response to an injury or otherwise, this 603 

deformation activates ionic channels consequently leading to generation of electrical signals which 604 

assist in intracellular signalling and hold great physiological importance [258,259]. A study by Ying 605 

et al. focused on exploiting the piezoelectric property of PVDF electrospun scaffolds blended with 606 

polyurethane (PU) for treatment of skin wounds [260]. These were deformed in a controlled manner, 607 

and enhanced migration (to the scratched area of scaffolds in a wound healing assay) and adhesion of 608 

fibroblasts were observed when compared to non-deformed samples [260]. A more recent study 609 

published in 2017 by Bhang et al. reported ZO based piezoelectric dermal patches [261]. The study 610 

included in vitro and in vivo results supporting the promotion of wound healing through generation of 611 

optimum levels of electric potentials ranging from 300-900 mV. These electric potentials enhanced 612 

dermal fibroblast activity and lead to the upregulation of biochemical factors such as CD68 protein 613 

and vascular endothelial growth factor contributing towards improved wound healing [261]. Tan et al. 614 

observed that potassium sodium niobate (KNN) based piezo ceramics show surface selective 615 

antibacterial activity [262]. They observed that reactive oxygen species (ROS) were formed around 616 
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the piezoelectric ceramic surfaces as a result of microelectrolytic activity. The formation of ROS 617 

around the cathode surface was higher and led to significant antibacterial activity, while the ROS 618 

levels generated remaining safe for mammalian cells. This study suggests that inherently antibacterial 619 

scaffolds can also be manufactured using piezoelectric materials. 620 

The most prominent use of piezoelectric materials as scaffolds has been found in the field of bone 621 

tissue engineering [36,37]. Use of piezoelectric materials for bone repair application ensures that the 622 

electrical stimulation therapy is delivered to the injury area effectively. Piezoelectric materials are 623 

capable of restoring the electrical microenvironment around the injury site and can generate electrical 624 

signals which can alter cellular behaviour [263,264]. Piezoelectric polymers such as PVDF, PVDF-625 

TrFE, PLLA, PHB alongside piezoelectric ceramics including BT, LN, LNKN, HA have been 626 

assessed for their osteogenic capability [36,37,148]. In particular, the last two years have seen a rise in 627 

the number of publications in this area and the promising results obtained point towards a clinical 628 

solution to the problem of orthopaedic regeneration [148,234,264–269]. 629 

Control over the amount of electrical stimulation delivered by nanoparticles or scaffolds has been 630 

established by controlling the uptake of NPs by cells (specific amount of NPs), or a material with 631 

optimized piezoelectric characteristics to generate physiological levels of potentials in response to 632 

deformation. To mechanically stimulate the piezoelectric materials in vitro and consequently study the 633 

effect of piezo characteristics on drug release, different strategies such as deformable cell culture 634 

plates or ultrasound should be utilized, while in the case of scaffolds implanted in vivo, the same can 635 

achieved through the natural movement of the animal. It must be noted that different stimulation 636 

mechanisms such as ultrasound, bending and others are capable of inducing different responses and 637 

the choice of methodology should depend on the type of application desired. 638 

4.3 Electrets as exogenous stimulators for wound healing  639 

Other than the use of electrets as transdermal delivery of drugs, electrets have been found useful as 640 

exogenous electrical stimulators in terms of wound healing in several tissues such as bone and skin 641 
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[270]. The first studies on the use of electrets for healing of dermal wounds dates back to the 1990s 642 

[152]. In an in vivo study conducted in pigs, it was found that the treatment of skin wounds using 643 

PTFE electrets enhanced the growth of epithelial cells and accelerated the process of wound healing 644 

[152]. Though the results obtained in this study were compelling, there has not been considerable 645 

amount of research for fabricating electret based wound dressings. On the other hand, HA based 646 

electrets have gathered significant attention in the past decade, not only for skin but also for bone 647 

tissue engineering [270–273]. Nakamura et al. fabricated wound dressings based on silk fibroin and 648 

HA electrets and tested their dermal healing capability in vitro and in vivo [274,275]. It was observed 649 

that cellular migration and angiogenesis was promoted by the presence of charged HA in wound 650 

dressings. Chitosan and HA based electret membranes have also been reported for bone healing 651 

applications [272,276]. While chitosan electrets show stable surface charges [277,278], HA electrets 652 

have exhibited accelerated bone bonding rate and osteogenic gene expression in vivo [279–281]. In 653 

this regard, Qu et al. showed that heat treated chitosan electrets showed superior charge storage 654 

stability, with in vivo studies exhibiting their enhanced osteogenic potential as guided bone 655 

regeneration membranes [276]. In a similar study by the same group, the relatively poor mechanical 656 

properties of chitosan was enhanced with negatively charged HA into a composite electret membrane 657 

[272]. Their results showed that electret composite membranes based on chitosan and HA could 658 

promote osteoblast proliferation and differentiation in vitro, with potential clinical applications as a 659 

new strategy for such electret based scaffolds. The nerve healing potential of electrically charged 660 

electrets have also been reported on poled PVDF [241,282], PTFE [283] and PLGA [284] polymers in 661 

the form of film conduit scaffolds, suggesting the potential of electret guides prepared by electrical 662 

poling for peripheral nerve regeneration. 663 

4.4 Photovoltaic mediated tissue response 664 

Strategies are emerging for the use of photovoltaic-based materials as carriers of electrical stimuli for 665 

tissue regeneration. For instance, in 2015 Lorach et al. demonstrated that subretinal array implants 666 

with 70 μm-wide photovoltaic pixels were able to provide highly localized stimulation to retinal 667 
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neurons in rats, and that the electrical receptive fields recorded were similar in size to the natural 668 

visual receptive ones [285]. This opens up the possibility to using photovoltaic arrays as functional 669 

restoration wireless devices that can safely elicit and modulate cellular responses, not only on the 670 

retina [286–288] but on other tissues as well [289]. A similar strategy can be envisioned to facilitate 671 

wound healing rates [290,291], which may serve as a promising modality for controlling and treating 672 

various skin diseases and disorders. To this regard, the usefulness of delivering specific electrical 673 

signals for enhanced wound healing is demonstrated by its ability to induce re-epithelization of skin 674 

wounds by enhancing angiogenesis, blocking edema formation or promoting migration and 675 

proliferation of various skin cells (i.e. fibroblasts, keratinocytes and epithelial cells) [189–191]. 676 

Photovoltaic based materials such as poly(3-hexylthiophene)-phenyl-C61-butyric acid methyl ester 677 

(P3HT-PCBM) have also been proposed as optical modulators of cellular activity based on their 678 

photothermal effect upon light stimulation [292]. Light absorption generates different photo-excited 679 

states in the material that release thermal energy into the living cells of the environment, and such 680 

photoexcitation could be useful into developing new platforms for cell control by light to promote 681 

wound healing [293–295]. To this regard, electrospun photovoltaic based P3HT/PCL fibres were 682 

shown to significantly increased proliferation, extracellular matrix secretion and favour cell 683 

morphology of fibroblasts into the characteristic spindle shape upon light stimulation in vitro using 684 

white light-emitting diodes within the range of visible light (390–750 nm) [296].  685 

5. Future perspectives on the use of electroactive biomaterials in drug 686 

delivery and tissue regeneration 687 

Future CP-based drug delivery systems will see the use of biodegradable variants of CPs [125,126] 688 

that degrade at the end of their useful lifetime and clear from the patient’s body without the need for 689 

removal surgery. Such polymers have already been developed by combining polypyrrole-thiophene 690 

(PPy–PTh) [297] or quaterthiophene [298] with degradable ester linkages. New CP materials will be 691 

created to become more resilient to the structural damage and conductivity loss caused by repeated 692 

redox switching. A good example of one such promising material is poly(3,4-alkylenedioxypyrrole) 693 
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(PXDOP) [299]. Novel approaches based on the co-delivery of multiple medicinal compounds, 694 

injectable CP microcapsules, or micro- and nano-porous structures are currently of great interest and 695 

will see wider application [14,300,301]. Also of great interest are CP based drug delivery systems that 696 

are self-regulating, i.e. release drug compounds in response to changes in mechanical, biological 697 

chemical and/or electrical conditions in their vicinity, without the need for an external power source, 698 

and will likely be developed in the future [14,67]. 699 

The area of piezoelectric polymers and ceramics for tissue engineering applications has been 700 

researched extensively in the last decade [37], and they have shown great potential for use in the field 701 

of controlled therapeutics. The capabilities of these materials for delivery of electric cues and essential 702 

drugs to the damaged wound have been studied independently. However, the correlation between the 703 

two processes and the mechanism through which the release of drugs can be affected due to the 704 

piezoelectric characteristics (varying surface charge and potential of the material) remains to be 705 

explored. While significant progress has been made towards improving wound healing, the current 706 

research in the area is focused on the use of synthetic polymers or ceramics, and there is recent 707 

interest in developing piezoelectric hydrogels and controlled (bio)degradable piezoelectrics [302–708 

304]. There is a need for developing strategies for loading piezoelectric materials with different 709 

hydrophobic and hydrophilic drugs and studying their release kinetics in vitro and in vivo. The 710 

challenge is to fabricate a smart bio-active scaffold with combined capability. A drug-loaded 711 

piezoelectric scaffold with tuneable release of drug or composites based on piezomaterials might be 712 

utilized for this purpose. Emerging strategies are focused on developing bioreactors to mimic in vivo 713 

conditions and explore the mechanical stimulation of the material to provide suitable electric cues and 714 

drug profile release before these therapies can be translated from the bench to the market. A new 715 

generation of bioreactors is needed to achieve a deep knowledge of the transduction effects of these 716 

materials on specific cells. Indeed, piezoelectric characteristics of different biological systems and 717 

biomaterials have been studied using piezoresponse force microscopy (PFM) [305,306], a technique 718 

to study the material characteristics at the nanoscale and obtain a better understanding of the 719 
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mechanisms by which the physiological processes are affected [307]. Nevertheless, as discussed in 720 

this review, piezoelectric materials have independently been used for delivery of drugs or electrical 721 

stimulation of cells and tissues, and amalgamating these two approaches is promising. 722 

There is limited literature on the use of electrets for dermal, bone and neural healing applications, and 723 

considerable amount of research is still required to confirm their usage for TDD or wound dressings. 724 

Though these materials have been found useful for TDD, there has been little mention of how the 725 

release behaviour of specific drugs can be controlled. Some electrets also possess piezo properties 726 

[308], however, their combined role on release behaviour of drugs is still to be explored. Combining 727 

their capability for TDD and altering cellular behaviour is a promising area of research. Electrets also 728 

present unique capability of being used for fabrication of smart electronic skins [309], and while the 729 

typical format is in the form of films, there is significant research scope for developing novel electret 730 

hydrogel dressings. However, the ability to permanently store charges on these other formats might 731 

pose challenging. 732 

PV-based devices present significant challenge in preparing assemblies of particles that result in 733 

continuous but separate conduction paths for electrons and holes [310], and further formulation 734 

optimization is required to improve efficiency of light entrapment in these devices. For instance, 735 

surface plasmon resonance, metal-particle scattering and surface structuring techniques have been 736 

studied as new alternatives to enhance light trapping in PV devices [311–313]. On the other hand, 737 

most PV systems to date come in the format of films [54], which is useful for wound dressings. PV 738 

systems in the form of gels and hydrogels have been developed as well [314]. However, these systems 739 

should also be developed towards other formats such as porous sponges, fibres, rods or spherical 740 

structures [50,315] for the purpose of facilitating drug delivery at the wound site. To this regard, 741 

Labastide et al. have envisioned organizing n-type and p-type moieties into separate spherical 742 

nanoparticles and arranging them into stable superlattices whose structure is defined by the 743 

nanoparticle radii [310]. Further research on PV-based MOFs should be carried out; existing systems 744 
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have proven poor performances and their capability as photovoltaic based delivery carriers for wound 745 

healing has not been tested yet. Extensive research towards attaching and releasing drugs or other 746 

therapeutics from PV cells in the most efficient way is needed both in vitro and in vivo clinical 747 

applications before this technology can be translated from the bench to the market. Another issue to 748 

bear in mind is degradability and cytotoxicity of the existing PV materials. In this sense, surface 749 

modification is a factor to take into account for enhanced delivery efficiency, and pharmacokinetics of 750 

the therapeutic loaded PV based device is an important step that demands full investigation to 751 

estimate their actual performance. Although important improvements need to be taken care of before 752 

clinical applications are a reality, there might be a bright future in their application as delivery 753 

systems for wound treatment. 754 

6. Conclusions 755 

Controlled delivery of drugs and electrical stimulation are promising approaches for enhanced wound 756 

healing of damaged tissues, which are well demonstrated by conductive polymers, electrets, 757 

piezoelectric and photovoltaic based materials. The capability of conductive polymers and 758 

piezoelectrics as multi-tasking scaffolds is well supported by the encouraging results presented, while 759 

electrets and photovoltaics are still new to the field of research. Electroactive biomaterials have been 760 

found useful for treating injuries to tissues such as skin, bone and nerve. However, clinical translation 761 

for wound healing is achievable after thorough attempts are made to overcome the limitations 762 

presented by individual systems. There is a need to amalgamate different electroactive systems, such 763 

as piezoelectrics and CPs to eliminate the need of an external stimulation device to attain desired 764 

outcomes.  765 

The field of electroactive biomaterials for release of therapeutic agents is growing. There are 766 

challenges and limitations in the translation of these new therapeutic approaches that remain to be 767 

answered, such as safety, cost, and efficacy of treatment and degradability of the material. It is safe to 768 

predict that as our understanding of electroactive materials improves along with technological 769 
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advancements in scaffold fabrication, therapeutic encapsulation and drug release, the near future will 770 

see electroactive based techniques become a standard practice for wound regeneration. 771 
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Target tissue Size particle Excretion route 

Any 3 – 10 nm Renal filtration [165] 

Liver and brain tissue 10 – 30 nm Phagocyte system [166] 

Lung and inflamed tissues 30 – 80 nm Phagocyte system [167] 

Liver and spleen >  80 nm Hepatobiliary excretion [166] 
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Figure legends 

Figure 1 The family of electroactive materials and their applications 

Figure 2 a) Direct and converse piezoelectric effect mechanisms and b) types of poling procedures to 

maximize piezoelectricity  

Figure 3 Types of electrets: (a) heterocharged and (b) homocharged (*injected charges are those 

which get deposited on the material surface from the surrounding electrode); and (c) charge carriers 

involved during the formation of electrets 

Figure 4 Photovoltaic mechanism: a) conventional photovoltaic cell where electron-hole pairs 

migrate to opposite electrodes upon photo stimulation and electric current is produced; b) photovoltaic 

cells depicting the schematics of a planar heterojunction, a blended bulk heterojunction and an 

ordered heterojunction; c) model of a conceptual nanoscopic photovoltaic device depicting realistic 

and optimal design dimensions 

Figure 5 Mechanisms of drug loading and release in CPs: a) one-step loading of anionic drug; b) 

three-step loading of anionic drug; and c) loading of cationic drug 

Figure 6 Examples of advanced CP based drug delivery solutions: a) nanowires [89]; b) microtubes 

[80]; c) nanoporous structure [106]; and d) nanoparticle [121] 

Figure 7 Schematic of working principle of piezoelectric micropumps with or without valves, based 

on deformable piezoelectric based diaphragms that regulate drug suction and delivery 

Figure 8 Transdermal drug delivery system based on electrets 

Figure 9 Photovoltaic devices used as drug delivery carriers: a) PV device coated with positively 

charged drugs, which are released upon stimulation and attracted back again in a retractable-wise 

manner; b) PV device coated with positively and negatively charged drugs that are attracted to 

opposite sites upon stimulation of the device instead of being repelled towards the environment 

Figure 10 Schematic representation of a metal organic framework (MOF) structure used as a delivery 

carrier 

Figure 11 Examples of different piezoelectric based scaffolds 
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