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Abstract

In spite of significant advances in anti-retroviral (ARV) therapy, the elimination of human 

immunodeficiency virus (HIV) reservoirs from the periphery and the CNS remains a formidable 

task. The incapability of ARV to go across the blood-brain-barrier (BBB) after systemic 

administration makes the brain one of the dominant HIV reservoirs. Thus, screening, monitoring, 

and elimination of HIV reservoirs from the brain remain a clinically daunting and key task. The 

practice and investigation of nanomedicine possesses potentials for therapeutics against 

neuroAIDS. This review highlights the advancements in nanoscience and nanotechnology to 

design and develop specific sized therapeutic cargo for efficient navigation across BBB so as to 

recognize and eradicate HIV brain reservoirs. Different navigation and drug release strategies, 

their biocompatibility and efficacy with related challenges and future prospects are also discussed. 

This review would be an excellent platform to understand nano-enable multidisciplinary research 

to formulate efficient nanomedicine for the management of neuroAIDS.
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 Introduction

 1. Brain pathogenesis of HIV and neuroAIDS

Human immunodeficiency virus (HIV) neuroinvasion associated neurologic condition i.e. 
neuroAIDS prevails among acquired immune deficiency syndrome (AIDS) patients. The 

HIV presence in the brain jeopardizes the health and function of nerve cells resulting from 

inflammation mediated damage of the brain region and spinal cord involved in learning and 

information processing[1]. Nearly ~ 50% HIV patients demonstrate neuropathological signs 

or symptoms such as loss of sensation, cognitive impairment, seizures, behavioral changes 

[2], etc., and nearly 80% autopsies shows a range of neuropathology in AIDS patients [3]. 

AIDS associated neurologic condition is caused by HIV infection to the brain cells, by 

opportunistic infections via bacteria, fungi or other viruses, toxic effects of antiretroviral 

drugs or by HIV associated oncogenesis. Major neurological complications associated with 

AIDS are: HIV-associated dementia [4, 5] (HAD), central nervous system (CNS) 

lymphomas, chronic meningitis, peripheral neuropathies, neurosyphilis, vacuolar 

myelopathy, progressive multifocal leukoencephalopathy etc. [6]. Some neurological 

disorders of unknown origin has also been reported during HIV infection [7, 8]. 

Nonetheless, the onset of neuroAIDS condition in HIV infected patients remains debatable 

among scientific group due to multifaceted symptoms and pathologies and lack of specific 

diagnosis tools or protocols. Many studies suggest that neuroAIDS may develop as soon as 

HIV infects the brain. Contrary to initial belief, it has been proven that HIV infects the brain 

during early phase when HIV concentration is as high as the late infection stage. As such, 

HIV particles, its DNA and proteins can be detected in early during the infection. The HIV 

entry to the brain is mediated via mononuclear phagocytes (‘Trojan horse’ mechanism) i.e. 

monocytes and blood-borne macrophages in response to specific cytokines/chemokines (e.g. 

monocyte chemotactic protein-1)[6, 9]. Initial HIV infection in brain triggers production of 

factors that alter the integrity of the blood-brain-barrier (BBB) (e.g. matrix 

metalloproteinase) which induces movement of infected/non-infected leukocytes across 

BBB from peripheral circulation [1, 10]. This intensifies the HIV infection in various brain 

cells. While HIV infection of astrocytes and microglia has been established, the direct or 

indirect invasion mechanism executed by HIV in nerve cells remains debated among 

scientific group. It is believed that HIV in subpopulations of infected brain cells acquires 

latency and, in turn, escapes the deleterious effect of antiretroviral therapy (ART) and 

immune response. Latency can persist for years where no or little virus is produced due to 

low transcription of host-integrated HIV genome. An appropriate endogenous or exogenous 

stimulus can reactivate the latent cell causing production of fresh infectious virions [11]. 

Thus, latent cells are the primary cause of HIV persistence and are reservoirs of rebound 

viremia.
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The HIV virion and its neurotoxic proteins induce significant pathology across various brain 

cells (Figure 1) [11]. HIV-infected monocytes differentiation into macrophages activates 

astrocytes and resting microglia which elicits severe neuroinflammation and releases 

neuron-damaging products such as Tumor necrosis factor (TNF-α), Interleukin (IL-1β), 

reactive oxygen species (ROS), nitric oxide (NO), quinolinic acid, etc. The envelope protein 

gp-120/gp-41 activates neuronal chemokine receptors (CXCR4 or CCR5) and subsequent 

elevation of intracellular Ca2+ leads to apoptosis. In astrocytes, gp120 downregulates 

glutamate uptake to cause excitotoxicity and nitric oxide synthase production leading to cell 

death. In macrophages and microglia, gp120 elevates the level of proinflammatory factors 

such as IL-1β, TNF-α, β-chemokines, arachidonic acid, etc. The gp120 also inhibits 

proliferation and migration of neural progenitor cells (NPCs) and affect the component of 

BBB by inducing apoptosis in brain microvascular endothelial cells (BMVECs). The p-53 

pathway mediates the activation of apoptosis by gp120/gp41 occurring in all brain cells i.e., 

neurons, astrocytes, and macrophages/microglia. Similar to gp120, HIV-Tat protein induces 

multiple adverse effects on neurons: (i) induce N-methyl-D-aspartate (NMDA) receptors, (ii) 

decrease dopamine (iii) inhibits tyrosine hydroxylase, and (iv) activate nitrous oxide (NO) 

and Calcium (Ca)-release. All of these lead to neuronal death by apoptosis or other 

cytotoxicity means. HIV Tat mediated upregulation of MCP-1 and reductions of glutamate 

uptake are seen in astrocytes; in macrophages and microglia, the levels of proinflammatory 

factors such as TNF-α and IP-10 are elevated. Tat exposure also induces apoptosis in Brain 

microvascular endothelial cells (BMVECs) and inhibits neural progenitor cells (NPCs) 

neurogenesis. The HIV Vpr (Viral Protein-R) and Nef proteins induce apoptosis in neurons, 

astrocytes, and BMVECs. Furthermore, the Vpr modulates ion channels and H2O2 

upregulation in neurons. Vpr exposure to NPCs causes mitochondrial dysfunction and 

impaired neuron maturation. The Nef in neurons modulates [K+] channels and induces 

proinflammatory factors such as TNF-α, Macrophage inflammatory protein-1-alpha 

(MIP-1), IL-6, and elevates superoxide release in macrophages and microglia. In astrocytes, 

Nef upregulate complement factor C3, IP-10, monocyte chemotactic protein-1 (MCP-1), and 

Matrix metallopeptidase-9 (MMP-9) activity. Thus, HIV induced injury of brain cells is 

mediated via various cell-specific mechanisms [12]. These pathological mechanisms 

aggravate the neuroAIDS condition. Nonetheless, synaptodendritic injury by HIV is believed 

to be a primary cause of HIV-associated neurocognitive disorders (HAND) symptoms in 

HIV patients[13]. Recently we reported that HIV infection to the brain causes significant 

damage to synaptic plasticity. Atluri et al showed remarkable loss of spines, dendrite 

diameter, decreased spine density, and dendrite and spine area in HIV-1 clade B and clade C 

infected neuroblastoma cells [14, 15]. The inter-clade variation in density and morphology 

of spine and dendrite was seen where HIV clade C was found less injurious than Clade B. 

This inter-clade variation can be attributed to difference in potency of HIV neurotoxic 

peptides between both clades. Such as, Thangavel et al found that HIV Tat of clade B and C 

exert non-similar effect on morphology and spine density, with clade C Tat being less potent 

[16]. The change in synaptic plasticity was substantiated by the HIV clade and protein 

specific differential expression of Immediate-early genes (IEGs), long-term potentiation 

(LTP) genes, and long-term depression (LTD) genes. These are three major groups of genes 

that play a central role in synaptic plasticity regulations. Moreover, cell specific variations in 

the expression of synaptic plasticity genes are seen during HIV infection. This may reflect 
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infectivity and latency intensity where one cell type establishes persistence HIV infection 

while the other is active. The changes in these genes adversely affect synaptic connections. 

In fact, subjects with HIV associated neurological disorders exhibit decreased synaptic and 

dendritic density with atrophy of grey and white matter [17]. As such, ARV and anti-latency 

agents will not be sufficient to improve the neuroAIDS condition; neuro-protection or 

neuron-resuscitating therapeutics would be required.

 2. State of the art for Current HIV/AIDS treatment

The present state-of-the-art treatment for HIV/AIDS is highly active antiretroviral therapy 

(HAART), which consist of combination or single formulation of different classes of ARV 

drugs. In spite of the significant success using the current HAART treatment, numerous 

challenges are still to be resolved. One of the main drawback in the successful eradication in 

HIV treatment is poor patient compliance with drug therapy [18]. Due to lifelong continuous 

medication, patients did not sticks to the treatment schedule and leads to ineffective drug 

concentration which promotes the ricochet of viral reproduction [19–21]. Despite the best 

efforts on the part of the healthcare professionals, non-adherence of patients with HAART 

remains very high. Clinical trial data on HIV drugs shows that missed doses of ARV drugs 

were occur due to forgetfulness and being away from home (43%), sleeping (36%), busyness 

to take the dose (22%), feeling sick (11%), and depression (9%) [22, 23]. Also, 

neurocognitive diseases in PLWH/A (people living with HIV/AIDS) can be greatly 

aggravated by concurrent intake of drugs abuse e.g. cocaine, methamphetamine etc., which 

decreases likelihood of adherence to HAART regimens [24]. No single intervention 

approach will likely improve the adherence; efforts to increase patient adherence will likely 

rest on set of key factors. Among all strategies, decreasing the frequency of medication 

administration may have the greatest potential to improve compliance and achieve better 

treatment outcomes [25, 26].

Moreover, the other issues with HAART are toxic side effects and virological resistance with 

high economic burden [27]. The key mechanism of ARV drug resistance is due to the great 

genetic diversity of HIV-1 and their constant mutation during infection. Resistant issue can 

be solved by developing personalized therapy, wherein the resistance testing can be 

performed to decide the right kind of therapy with respect each individual patients [28]. 

Once the body is infected with HIV, due to weak immune system, chances of other diseases 

progression increases e.g. heart disease, diabetes, neurodegeneration, and immunological 

disorders [19]. Main reason for above mentioned diseases could be due to the HIV infection 

in combination with other co-infection (e.g. hepatitis C) and cytotoxicity due to HAART 

[27]. The main perpetrator for the HIV cure is the presence of resilient viral reservoirs 

known as “latent reservoirs”. [19, 20]. Mainly these latent cells resides in explicit anatomical 

location (e.g. lymphoid tissue, testes, liver, kidney, gut and CNS) [29–32]. Along with the 

presence of latent reservoir in presence of HAART, additional cryptic viral sources also exist 

along with small amount of active virus replication that follows even during the therapy [33–

35]. Therefore, there is a great need to discover new approaches/methods/drugs for 

developing non-toxic, low-dosage treatment that provide more sustained dosing coverage 

and efficient eradication of the virus from the reservoirs, circumventing the need for life 

long treatments [21, 27]. Current HAART regimen is sufficient for complete eradication of 
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the virus from the body, therefore, understanding the HIV persistence mechanism and 

development of novel purging strategies of viral reservoirs should be the key areas of 

research center for complete HIV eradication.

 2.1 Constraint for CNS delivery—The available recommended drugs or therapeutics 

can be delivered to the body in general via several routes of administrations. (E.g. oral, 

intravenous, dermal, subcutaneous, inhalational or intraperitoneal). Drugs absorption process 

starts immediately once it interact with receptor or biological components and subsequently 

reaches to the target site in the body. By the time drug is administer and reached to the target 

site, it may or may not be actively modified or metabolized and due to this it may or may not 

be recognized by receptors to show its effects at target organs/cells [36]. The unique 

properties of each therapeutic agent may have desirable or undesirable properties at each of 

these steps and may affect the pharmacological activity. Throughout this expedition, (i.e. 

from the time of administration to the site of action/delivery), ARV drugs or 

nanoformulation (NF) may come across various biological “barriers” as shown in Fig. 2.

For the CNS drugs delivery, the key hindrance is the presence of the BBB tight junction [11, 

31, 32, 37–43]. The BBB is an active interface between the blood and the CNS, which 

rigorously controls the molecular and cellular traffic between the blood and the brain, thus 

maintains the proper homeostasis of neuronal function [44–47]. Scientists have explored 

many novel strategies to improve the permeability of ARVs across BBB and to study these 

parameters of drug transport various types of in-vitro BBB model have been developed [11, 

36, 48, 49]. To mimic the real in-vivo BBB scenario, various in-vitro models have been 

developed using various type of cell line of different origins and culture environments. To 

achieve more realistic situation, constantly new improvements have been done in the well 

characterized and established protocols by the scientists. For detailed information on BBB 

model developments, please read review by Wilhelm and Krizbai [50]. Based on their 

observation, we have summarized (Table-1) the list of most commonly used in-vitro BBB 

model to study the drug transport or nanoformulations (NF) for CNS delivery.

 2.2 Therapeutics approaches for HIV treatment—To achieve the effective 

treatment for an HIV-infected patient, all sources of virus replication must be abolished. To 

achieve this objective, we may need the amalgamation of diverse methods, to counter attack 

the replication of virus from active infection along with the supply from viral reservoirs [21, 

51, 52]. To overcome the limitations of the CNS delivery, a number of different strategies 

have been explored to increase the penetrability of ARVs through the BBB. Each of these 

strategies presents strengths and limitations for the CNS delivery [53]. At preclinical levels, 

ARVs delivery to the brain using nanotechnology has shown promising results so far [27, 31, 

32, 36, 38, 39, 49, 53–59]. Based on the delivery mechanism, the chemical modifications of 

ARVs may or may not be needed for effective delivery. The following sections discuss the 

strategies for enhanced brain delivery using different approaches.

 2.3 Approaches for ARV penetration across the BBB—Over the years, 

conventional and non-conventional approaches have been developed to overcome the BBB 

constraints to allow drug administration into the brain. The well-known techniques or 
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approaches that have been explored for BBB delivery of drugs or other therapeutic agent are 

described below.

 2.3.1. ATP-binding cassette (ABC) transporters blocking approach: Most of ARVs 

are large, high molecular weight lipophilic compounds. They seem probable candidates to be 

an ABC transporter substrate. Over the years, numerous new chemical entities (NCEs) 

capable of blocking specific ABC-transporters have been developed [60] and their efficacies 

have been tested at in-vivo level using different animal studies [61]. E.g., treatment with P-

gp inhibitor LY-335979 in mice have resulted in higher concentration for many Protease 

Inhibitors (PIS) (i.e., saquinavir, indinavir, amprenavir, and nelfinavir) in CNS [62]. Similar 

in-vivo results were also observed for Saquinavir using other class of agents i.e. GF120918 

(P-gp/ABCG2 blocker)and MK571 (MRP inhibitor) [63]. Another study conducted by 

Megard et al also proved that P-gp is the key player and plays an vital part in regulating the 

penetrability of PIs across the BBB [64]. Since, the abundant presence of ABC transporters, 

these blockers are not very CNS-specific and due to increase ARV delivery across BBB it 

may results in higher chances of drug toxicity/drug-drug interactions.

 2.3.2. The BBB opening approach for navigation of drug to the brain: The BBB 

functions to maintain a delicate homeostatic environment by regulating ion and 

neurotransmitter concentrations, while simultaneously preventing the access of toxins, 

immune cells and pathogens from the peripheral circulatory system [65]. The BBB regulates 

the transport of nutrients into the brain and assists with removing waste products. While 

these functions are necessary for maintaining the health of the brain, the BBB prevents the 

access of therapeutic agents when brain diseases develop, thus makes brain diseases 

treatment difficult. It has been estimated that the BBB prevents the access of over 98% of 

potential therapeutics from passing into the brain [66]. To overcome these issues, an 

alternate strategy known as hyper-osmotic opening of the BBB has been explored for 

transient opening. Mannitol and urea hypertonic solution have been extensively used for 

opening of BBB tight junction transitorily due to shrinkage of capillary endothelial cells 

which induces water efflux and successively paracellular transport of the drugs or 

nanoformulation materials across the BBB [67, 68]. This approach has been explored in-
vivo with some success due to the risky nature of this procedure, it is not well accepted in 

general. Most common side effects includes seizures and impulsive long-term neurological 

complications, thus restricts it application in day to day procedure. Another alternate 

strategy used for the transient BBB opening is the usage of cytotoxic agents, e.g. alkylating 

agents (etoposide and cisplatin), they main works by disrupting the BBB tight junctions and 

generate small opening with in the endothelial cells [69]. Likewise, intra-arterial delivery of 

vasoactive agents (e.g. bradykinin, peptidase inhibitors and angiotensin-II) may also 

transitorily upsurges the BBB permeability [70–72]. The enhanced brain concentration of 

testing agents, therapeutic and drug nanoformulations has been detected after systemic 

delivery. But due to toxic nature of these compounds, this strategy is not recommended for 

the enhanced delivery of ARVs at the CNS. Another minimal invasive approach of focused 

ultrasound and microbubble (fine gas bubbles with diameter of > 50 μm) are also being 

explored for the BBB opening for therapeutic delivery [73–75]. Microbubbles on exposure 

to focused ultrasound, help the cavitation nuclei to focus and transduce the acoustic energy 
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into mechanical power and this force at the BBB interface induces the transitory opening of 

endothelial tight junctions [76–78]. Chen et al have used focused ultrasound transiently to 

allow the permeability of the BBB to increase as to allow more drug diffusion. They have 

used non-invasive external magnetic field for the improved localization of therapeutic agent 

immobilized on the magnetic nanoparticle. Results showed that this combinative approach 

significantly improved the in-vivo delivery of anti-cancer drug [BCNU: 1,3-bis(2-

chloroethyl)-1-nitrosourea] for the treatment of brain tumor [79]. Due to safety concerns, 

this strategy is also not suggested for long term application and to make this strategy works 

more standardization is required. In addition, the biggest challenge with the above technique 

is that the BBB opening is uncontrolled and may allow unwanted or other neuro damaging 

entities entry into the brain [75, 80, 81]. Especially in case of HIV infected patient, the 

passage of virus from periphery to CNS is unwanted.

 2.3.3. Prodrug based approaches: Presently, only two traditional prodrugs have been 

developed in HIV therapy, fosamprenavir and tenofovir disoproxil fumarate [82]. Recently, 

Tenofovir alafenamide fumarate ( TAF, before known as GS-7340), a new pro-drug of the 

widely used tenofovir (Nucleoside reverse transcriptase inhibitor-NRTI), have similar 

antiviral efficacy reaches and better penetration power in HIV harboring cells than the parent 

tenofovir disoproxil fumarate (TDF) molecule [83]. The prodrugs with the good lipophilic 

profile, once reaches to the endothelial cells can be hydrolyzed and releases the parent ARVs 

molecule and crosses the cell membrane of the endothelial cells by passive diffusion [84]. 

Although the BBB penetration is restricted, TDF dose is capable of passing the blood-CSF 

barrier of the choroid plexus gaining access to perivascular and meningeal macrophages 

[85]. Generally a prodrug is recognized as a separate chemical entity than the parent 

molecule, considerably more drug purification steps are needed along with the screening 

tests and clinical studies to prove the efficacy of the drugs are foreseen, which is generally 

not lucrative or possible to derive all pharmaceutical agents to prodrug states. Hence this 

technique may not be as effective as parent ARV molecule delivery approach.

 2.3.4. Nanomaterials based approach: There are numerous valid reasons for which nano 

based drug delivery systems (NDDS) are attractive option for the development of 

formulation towards the treatment of neuroAIDS. The most important reason is the 

increased availability of charged surface molecules on carriers with respect to the total 

number of drug molecules to design efficient nanoformulation systems. Due to the higher 

surface area of nanoparticles, it results in higher drug binding/adsorption and can also be 

used to carry for diverse kinds of compounds such as biological molecules (siRNA, gene or 

plasmids) and even large proteins. The nanomaterials/nanoformulations used for the CNS 

drug delivery should have following salient features

• Soluble, safe or non-toxic, and biocompatible

• Have good bioavailability and long circulation life

• Size of nanoparticle should not block blood vessel

• Protects or avoid the drug from enzymatic and hydrolytic degradation

• Can be used to deliver short half-life drugs in sustained or controlled manner
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• Increase or should not delay the dissolution rate of drug and onset of 

therapeutic action

• Helps in avoiding loss of drug through rapid RES clearance and its metabolism

Nanoscale drug delivery systems are available in variety of forms e.g. nanoparticles, 

liposomes, dendrimers, fullerene, nanotubes, quantum dots, nanocapsule, nanosphere, 

nanocrystals etc. are believed to have promises to transform drug delivery systems [Fig. 3]. 

Additionally nanomaterials also used for device or instruments development in variety of 

industries e.g. lab-on-chips, nano-robotics etc. Nanoparticle can be made using organic or 

inorganic materials have certain advantage and disadvantages, but can be used smartly to 

achieve desired therapeutic action. Thus, nanomaterials can be explored for the development 

of novel drug delivery systems and redeveloping the current drugs delivery techniques to 

enhancement the efficacy, patient-compliance, better safety of drugs and economic burden of 

health care system [86]. The next section discusses each type of nanomaterial explored for 

the ARV drug delivery to CNS and its state of the art with respect to neuroAIDS treatment.

 2.4 NanoART for neuroAIDS treatment—The ARVs can be efficiently delivered to 

the brain using drug loaded on nanocarriers (NCs) [11, 38, 53, 58]. Depending on the 

chemical/physical nature of NCs, chemical modifications of ARVs may or may not be 

essential for effective loading and its targeted delivery. There is an extensive variety of NCs 

are available (as shown in Fig. 3) that are in practice and being tested for the brain drug 

delivery applications to cure CNS diseases. Their versatility of tuning properties allows them 

to deliver ARVs across the BBB [49, 55, 58, 87, 88]. The following sections will discuss the 

application NCs for ARVs delivery to the brain in details.

 2.4.1 Magnetic nanoformulations for neuroAIDS treatment: The MNPs certainly 

possess advantage over other NCs because of its inherent super-paramagnetic property 

which allows the control over its magnetization i.e. movement/speed and, in turn, attached 

drug can be delivered to specific body locations by applying non-invasive magnetic force 

from exterior. Simultaneously, neuroimaging techniques such as magnetic resonance 

imaging (MRI) can be applied and based on quantification analysis of MNPs-associated 

drugs can lead to determine site-specific optimal or suboptimal dosing [38, 89–93]. 

Nonetheless, applications of the MNPs for the brain drug delivery has been explored a little. 

The release of loaded drugs from MNPs, in entirety, depends on cell or tissue based 

physiological phenomenon such as change in temperature, pH, intracellular Ca2+ level, etc., 

which cannot be manually controlled. Biomolecules such as proteins, enzymes, drugs, etc. 

can be tagged on MNPs and navigated magnetically to targeted sites including brain 

pathologies [94]. Recent improvement in synthesis techniques allow achieving super 

paramagnetic MNPs size of as small as 10 nm which can cross the BBB without affecting its 

integrity [95]. Moreover, MNPs encapsulations into liposomes i.e. “magnetoliposomes” can 

be excellent module to protect loaded drug from peripheral enzymatic decomposition and 

can reduce the entrapment by reticuloendothelial systems as well [38, 96]. Our group 

(Saiyed et al) already shown that magnetoliposomes used packed in monocytes/macrophage 

and used for the drugs delivery across BBB [58]. The movement/speed of these magnetized 

carriers can be operated in the same way as for naked MNPs. In recent years, our laboratory 
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has investigated on the transendothelial delivery of MNPs bound anti-retroviral drugs. 

Nanoformulation of 3′-azido-3′-deoxythymidine-5′-triphosphate (AZTTP) showed a 

comparable efficiency to the free drug in suppressing HIV replication. An AZTTP-

magnetoliposomes were developed which showed sustained AZTTP release for 14 days with 

intact anti-HIV potency [58]. Both, AZTTP-magnetic and AZTTP-magnetoliposomes 

resulted in nearly 3 fold increased in vitro BBB transmigration when compared to free 

AZTTP and did not affect the BBB integrity. Wen et al also have explored the magneto-

liposomal formulation [Magnetic-PLGA/lipid nanoparticles (MPLs)] for trans-activating 

transcriptor (Tat peptide) delivery across BBB. Therapeutic efficiency of the drug-loaded 

Tat-MPLs versus drug-loaded MPLs was compared in bEnd.3 cells (endothelial cell line). 

Results showed dose and time dependent accumulation of higher concentration of Tat-MPLs 

than MPLs in bEnd.3 cells and proves that Tat-conjugated MPLs may serve as an effective 

drug delivery approach that crosses the BBB [97].

Furthermore, to address the issue of non-adherence in HIV infected subjects, it is necessary 

to develop long-term release of drug from formulation to achieve better patient compliance 

and therapy adherence. Our group (Jayant et al) have recently explored this aspect and 

investigated a novel ARV loaded magnetic nanoformulation for sustained release by 

assembling layer-by-layer (LbL) of polymer molecules (dextran sulphate) and ARV drug 

(Tenofovir) on MNPs [55, 98]. The sustained release of tenofovir showed 2.8 times higher 

drug loading with 30-fold increase in the drug release period. Also, nanoformulation showed 

a higher BBB transmigration ability (37.95%±1.5%) and improved in vitro antiviral efficacy 

(~33% reduction of p24 level) over a period of 5 days after HIV infection in primary human 

astrocytes compared to free tenofovir. Also our group (Raymond et al) have explored MNP 

based delivery of Nef peptides containing the Nef myrisolation site across an in vitro BBB, 

which results in reduced nef-transfected microglia release of Nef exosomes and prevented 

the loss of BBB integrity and permeability. This study shows the preliminary evidence of the 

role of exNef in HIV neuroimmune pathogenesis and the possibility of a nanomedicine-

based therapeutics targeting exNef to treat HIV-associated neuropathogenesis [99]. Recently, 

Fiandra et al investigated amphiphilic polymer (MYTS) to improve the permeation of a 

high-weighted ARV drug [Enfuvirtide-Enf)] across the BBB both in in-vitro and in-vivo 
models. Results showed good efficacy and trans-BBB permeation of nanoformulation across 

BBB in mice model [100]. The advantage of MYTS coating on nanoparticles is that it help 

in loading of multiple drugs of different classes. Notably, cell viability of all aforementioned 

magnetic nanoformulations has been > 95%, making them very promising therapeutic 

agents. To overcome this constraint of uncontrolled release of drug from the MNPs, our 

group have discovered a novel magneto–electric nanoparticle (MENPs). MENP exhibits dual 

effect (magnetic and electronic) and therefore possesses both ferroelectric and ferromagnetic 

parameters in a single Nanocarrier. The biggest advantage of MENPs is that there is no heat 

dissipation on application alternate current (a.c.) field and thus leads to unprecedented high 

release efficacy of the drug without any side effects or toxic effect to target or neighboring 

cells. Our group have explored this novel dual property (Magnetic and electrical property) 

nanomaterial for the delivery of ARV drug i.e., AZTTP across in-vitro BBB model for the 

potential application of neuroAIDS treatment [49]. MENPs under the influence of external 

ac trigger allows on-demand drug release via disturbing the original symmetry of ionic 
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bonding (charge distribution) between drugs molecules and MENPs as shown in Fig. 4. The 

salient features of MENPs to prove it as a potential CNS drug delivery agent were explained 

by Kaushik et al. [39]. MENP-AZTTP nanoformulation showed 100% drug release at low 

alternating current (44 Oe at 100 HZ) without losing the drug integrity due to ME (magneto-

electro) effect and showed excellent HIV-p24 inhibition at in vitro level with very good 

transendothelial BBB transmigration efficiency [49].

The results are encouraging but at the moment this novel technique needs more validation at 

in-vivo levels to prove its future clinical application. Currently we are testing these MENP 

nanoformulation at in vivo levels (both at rodent and non-primate levels) to prove it clinical 

efficacy for the treatment of neuroAIDS. While these anti-retroviral magnetic 

nanoformulations certainly show tremendous promise in reducing or eliminating HIV load 

from the brain, still lot of process optimization and technique validation at in-vivo level is 

required before it can be adapted in clinical settings.

 2.4.2 Polymeric NCs for ARV delivery: Polymers are the important and well-explored 

NCs utilized for drug delivery system. Most of (>90%) controlled and sustained drug 

delivery systems basically contain polymers as important formulation constituent. Due to 

versatile tunable features such as safety profiles, biodegradability, high encapsulation/

entrapment efficiency, anticipated physical properties e.g. controlled rate of disassociation, 

permeability, degradation rate along with targeting capabilities and easy modulation of 

release kinetics polymeric NCs (synthetic or natural) have been explored for ARV drug 

delivery across the BBB [11, 21, 53, 101, 102]. Polymers like Poly (butyl cyanoacryalate) 

(PBCA) and methylmethacrylate-sulfopropylmethacrylate (MMA-SPM) have been explored 

for Zidovudine, Lamivudine and stavudine delivery at in-vitro and in-vivo levels. Kau et al 

reported delivery of stavudine, zidovudine and lamivudine using MMA-SPM polymer 

nanoformulation leads to increase in ARV permeability (8–20 folds) across in-vitro BBB 

model [103]. Same group also studied SLNs (tripalmitin and cocoa butter mixture) as 

carriers for stavudine, delavirdine and saquinavir delivery across the in-vitro BBB model and 

showed enhanced permeability of the ARV compared to free forms [104]. Poly- D-L-lactide-

co-glycolide (PLGA) and polylactide (PLA) nanoparticle formulations also have been 

explored for various ARVs (e.g. zidovudine (AZT), lamivudine) delivery across mice brain 

[105]. Mainardes et al showed higher bioavailability (2.7 times) AZT in PLA-PEG 

nanoparticle compared to AZT-loaded PLA nanoparticle and 1.3 times higher relative to free 

drug solution, thereby showing PLA-PEG blend NPs as potential carrier of drug to delivery 

drugs across BBB and also suggested intranasal route as a better route of delivery as a 

potential therapeutic approach for HIV-1 infection treatment [106]. Table. 2 summarized all 

type of polymeric nanotherapeutics that have been explored for the CNS delivery of ARV 

drug for the treatment of HIV-1.

 2.4.3 Dendrimer based BBB ARV delivery: Dendrimers have been used as carriers of 

antiretroviral peptides and genes for HIV inhibition and more astonishingly, many recent 

studies indicated that they themselves can be used as antiretroviral agents [107–109]. 

Mannose-capped [poly (propyleneimine)-PPI] and polyamidoamine [PAMAM] dendrimers 

loaded with lamivudine were evaluated in-vitro for antiviral activity in HIV-1 infected MT-2 
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cells. Lamivudine loaded dendrimer NCs showed 21-fold increase in cellular uptake and 2.6-

fold reduction in the viral p24 levels when compared to the group treated with free drug 

solution [110], again proving the importance of nanoformulation for BBB delivery. Dutta et 

al also have prepared efavirenz loaded tufstin conjugated 5th generation poly 

(propyleneimine) dendrimers (TuPPI). Tuftsin [natural macrophage activator tetrapeptide 

(Thr-Lys-Pro-Arg)] bind specifically to mononuclear phagocytic cells and enhance their 

phagocytic activity. They reported that the dendrimer were able to extend the in vitro drug 

release up to 144 hr in comparison to 24h of the PPI polymer. Furthermore, a 34.5 times 

higher cellular uptake and reduced viral load by 99% at a concentration of 0.625 ng/ml was 

also reported; this activity was more significant in HIV infected macrophages than 

uninfected cells. In a similar study the same group prepared t-Boc-glycine conjugated PPI 

dendrimer (TPPI) and mannose conjugated dendrimer [111]. The mannose conjugated 

dendrimer exhibited a higher (12 times) cellular uptake of efavirenz by monocyte/

macrophage cells compared to free drug solution. Regardless of these promising results, 

unpredictable drug release kinetics and long-term safety issues hampers their wide use in 

BBB delivery like other polymers (e.g. PLGA). More modification in the parent molecule 

are needed to further authenticate the use of dendrimeric nano-systems for ARVs delivery to 

the CNS.

 2.4.4 Micelle-based NCs and ARV delivery: Due to unique properties of smaller size 

and higher drug solubilization make micelles a promising candidate for drug and protein 

delivery across BBB. Amongst all the dendrimers, Pluronic micelles have shown very good 

promise in the BBB drug transport across in-vitro and in-vivo model [11, 60, 112]. The 

influence of Pluronic P85 on the permeability of a broad range of structurally unrelated ARV 

compounds was examined by Kabanov’s group in vitro using bovine brain microvascular 

endothelial cell (BMVECs) model [113]. Results showed 19-fold increases in the drug 

permeability in in-vitro BBB model compared to free drug solution. Most remarkable 

permeability results were obtained for PI class of drugs e.g. ritonavir due to strong bond 

formation with P85. Batrakova and co-workers investigated the co-administration of ARV 

drugs such as zidovudine, nelfinavir, and lamivudine with P85 and reported an improvement 

of the drugs permeability in-vitro in BMVECs and macrophages [113]. At in vivo levels, 

Pluronics have shown increased ARV delivery to the brain of wild-type mice, but results 

were opposite in mdr1a/b knockout mice, showing that the drug permeability effect by 

Pluronics is facilitated in part by P-gp inhibition at the BBB [112]. The enhancement of the 

drug’s efficacy upon co-administration with P85 was also confirmed in-vivo in SCID mouse 

model of HIV-1 encephalitis [114]. Along with so many promising advantaged, micelles 

biological stability and their slower rate of drug dissociation, long drug retention time limits 

their clinical use for CNS drug delivery.

 2.4.5 Lipid-based NCs for the brain Delivery: Lipid-based NCs have shown strong 

potential for delivery of ARVs drugs to the CNS or other target specific delivery. There are a 

wide range of biological lipids and phospholipids accessible for lipid NCs development 

{please refer these reviews for more details [115–118]}. Liposomes are vesicles made of 

phospholipids bilayers, biocompatible in nature and have very good biodegradable profile. 

Due to unique lipophilic nature they possess the natural affinity to target the BBB and thus 
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presents the usefulness for CNS delivery of ARVs [118]. Lipid based NCs exists in many 

forms including liposomes, microemulsion, nanoemulsion and solid lipid nanoparticles 

(SLN). The unique and advantageous property of liposomes lies in their recognition as a 

foreign body by the cells of the mononuclear phagocytic system (MPS) e.g. monocytes/

macrophages [119, 120]. Since HIV largely exist in the macrophages and MPS, the liposome 

based nanoformulations of ARV drugs helps in decreasing cytotoxicity associated with free 

drug solution both at in-vitro and in-vivo levels. Largely, there are four types of the 

liposomes (cationic, anionic, sterically stabilized and immune-liposomes) largely explored 

for the anti-HIV/AIDS drug delivery so far [101]. Liposomes have been mostly used for the 

delivery of hydrophobic anti-HIV drugs like ddCTP, zidovudine, didanosine and zalcitabine, 

which is not possible with magnetic or other polymeric nanoparticle. In one of the study, 

liposomal foscarnet (antiviral used as a rescue therapy for late-stage HIV patients with 

multidrug resistance) nanoformulation helps in increasing the drug level in rat brains by 13-

fold when compared to the free foscarnet solution [121]. Study on encapsulated 2′,3′-

dideoxycytidine-5′-triphosphate (ddCTP) in liposomes and compared its antiviral effect with 

the dideoxycytidine and dideoxycytidine-triphosphate in cultured human monocyte-

macrophages (M/M) infected with HIV-1 by Szebeni et al [122] showed better drug stability 

and cell uptake compared to free drug, thus suggest the ability of liposomal formulation for 

targeting drugs to macrophages in-vivo and can be a better choice to increase the therapeutic 

index of ARV drugs. AZT-loaded liposomes was also studied by Phillips et al [123] for the 

antiviral effect and bone marrow toxicity of in C57BL/6 mice, results showed improved 

antiviral activity for liposomal nanoformulation when compared with free drug solution in 

the HIV infected mice. Also, Mannosylated anggalactosylated liposomes were also 

investigated for the delivery of stavudine in order to improve the stability of liposomes, 

which is an intrinsic limitation for these carriers [124, 125]. Makabi-Panzu et al. have 

investigated the cellular accumulation, tissue distribution, and antiviral efficacy of liposomal 

and free zalcitabine in RAW264.7 and U937 cell lines and reported a considerably higher 

drug uptake of the liposomal formulation compared to free drug in both the cell lines [126, 

127]. Ramana et al developed have nepiravine (NVP) loaded liposomal formulation and 

studied its different parameters with respect drug loading, release kinetic and BBB 

transmigration [128]. The in-vitro results showed an efficient targeted delivery of the NVP to 

the selected compartments with reduced systemic toxic effects. All the studies support the 

encapsulating ARV drugs in liposomes is more effective approach for delivering drugs 

across BBB for the treatment of HIV-associated CNS complications. Vyas et al evaluated 

oral formulation of flaxseed oil-based nanoemulsion of saquinavir for CNS delivery. Results 

showed 3 folds increase in the drug concentration in the systemic circulation and 5-fold 

increase in the area-under-the curve (AUC) values and maximum drug concentration in the 

brain for saquinavir nanoemulsion when compared with free drug solution in male balb/c 

mice, respectively. Results indicates due to small size of the nanoemulsion formulation, it 

has better BBB permeability and may also help in bypassing gastrointestinal tract barriers 

when administered orally [129]. The SLN are another relatively new class of lipid-based 

NCs. As per one of the study, SLN showed better profiles drug release profile and showed 

less non-specific cell toxicity when compared to PLGA nanoparticles formulation [130], 

which is FDA approved and more standard biomaterial. Chattopadhyay et al have examined 

role of SLN for atazanavir delivery using a human brain microvessel endothelial cell line in-
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vitro BBB model. Results showed significant improvement in the accumulation of SLN-

[3H]-atazanavir when compared with free drug [131]. Thus suggest that SLN clearly have 

strong potential as nanocarrier for brain delivery of ARVs, especially for highly lipid soluble 

compound e.g. PIs. In table 2, we have complied the most recent strategies for the HIV-1 

nanotherapeutics for BBB delivery and treatment of neuroAIDS. Other than the HIV-1 

nanotherapeutics discussed above, different types of therapeutics (genes, proteins, peptide, 

DNA vaccine etc.,) and modifications of carriers [cyclodextrins (CDs), carbon nanotubes 

(CNT) etc.,] are being investigated for the treatment of HIV-1 in CNS. However, we are not 

discussing them here as they falls outside the scope of present review manuscript, but the 

related references and the strategies for the CNS delivery have been cited in Table 2 for the 

benefit of readers. For more details about the advantage, disadvantages and BBB 

transmigration potentials and suggested improvement all type of NCs systems, their physico-

chemical properties, cytotoxicity and immunologic responses to other neighboring cell/

organs have been described in details in our previously published review by Sagar et al [11].

 3. Monitoring and management of NeuroAIDS

Effective prevention of HIV/AIDS needs timely diagnosis, introduction of therapy, and 

routine plasma viral load monitoring of the infected patient; viral rebound rate assessment 

by precise and sensitive assays is desirable to increase HIV prevention [159]. Hence, more 

reasonable and user-friendly technologies capable of providing continuous monitoring and 

early diagnosis is very much needed. In the past few years, we have seen massive scientific 

and technical developments to achieve simple, cost-effective, and rapid diagnostic tests for 

HIV detection. HIV/AIDS has quickly risen and thus there is a high demand globally to find 

improved and simplified diagnostic tools while maintaining good patient care. In this 

regards, the monitoring of HIV-1 at CNS is crucial to manage early diagnosis and treatment 

strategy for neuroAIDS treatment [39, 160, 161]. Qualitative and quantitative strategies have 

been used for the diagnostics of HIV-1, staging of HIV-1, progression and selection of ARV 

therapy [162, 163]. Point-of-care (POC) technologies and other novel detection assays are 

increasing access to HIV monitoring services in developing countries. These technologies 

are endurable, portable, easy to use, and provide adequate accuracy in ARV therapy. This 

section highlights the recent advancements and potentials to combat HIV using POC, image 

guided HIV therapy, smart optical and electrical assay based on nanotechnology.

 3.1 Biomarkers for HIV-1 in CNS for disease detection and its progression—
Currently biomarkers of CNS diseases are being used to study the progression of HIV as the 

brain and spinal cord cannot be assessed due to its inaccessibility. Unfortunately, biomarkers 

with high accuracy and quantifiable assessments have not been found. Due to these 

limitations, a combination of different markers or multi-marker assay or technique is needed 

to predict the HIV-1 disease progression [164, 165]. CD4+ cell count (CD4) and RNA viral 

loads (RNA) are the two most frequently used as analytical markers in the clinical 

assessment of HIV infection progression [166, 167].

However, these markers have variable predictive values that depend on which stage the 

disease is in and cannot explain all discrepancies of disease progression. As a result, further 

studies investigating markers of immune activation has occurred. Additionally, other types of 
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HIV progression markers exist e.g. p24 antigen, CD8+ cell count, platelet concentration, 

anti-HIV antibodies, erythrocyte sedimentation rate (ESR) and (Hb) hemoglobin 

concentration that can be used to along with main markers to predict the diagnosis. In 

addition to all these markers, the serum concentrations of beta-2-microglobulin [168], IgA, 

interleukin-2 receptors and p24 antigen (as shown in Fig. 5) have also been utilized. Cellular 

activation and inflammation, in conjunction with the discovery of the above markers, have 

been used to assess HIV infection progression; consequently, focus has been turned to these 

markers and their function in the CNS. In order to monitor progress, which is thought to 

serve as the substrate for neuropathology in HAND, soluble CSF markers of macrophage 

activation (neopterin), chemokines stimulators of macrophages and lymphocytes across the 

BBB (CCL2/MCP1 and CXCL10/IP10), and molecules involved at various phases in the 

pathways for cell turnover and activation within the CNS compartment are used. Brew et al 

observed that progression to HAD can be predicted with the monitoring of CSF neopterin, 

CD4 cell count and cerebrospinal fluid concentrations of β-2-microglobulin [169]. However, 

immune activation for HIV infection lacks specificity and so although moderately high 

levels of the previous markers have been correlated to disease activity, they have not been 

clinically used for diagnosis or monitoring of NeuroAIDS. Next section deals with 

techniques and assays that have been used for detection of HIV in laboratory setting for 

disease detection and its progression.

 3.2 Techniques and technology used HIV-1 diagnosis and monitoring—HIV/

AIDS diagnosis can be categorized into three different stages/test: (i) tests to enable 

preliminary diagnosis, (ii) tests to stage the patient, and (iii) tests to monitor the patient 

(before and after commencement of ART) [159]. Currently, delivering therapeutics across 

the BBB for treatment of CNS disorders signifies the most challenging and emergent field in 

neuro-pharmaceuticals. The image-guided therapy in combination with nanotechnology is 

emerging as a novel tool for HIV-1 detection, monitoring and treatment (theranostics) for 

CNS diseases, but this type of therapy has not been implemented with the management of 

neuroAIDS. We believe that the combination of personalized nanomedicine with non-

invasive imaging techniques (anatomical imaging modalities) e.g. magnetic resonance 

imaging (MRI), positron emission tomography (PET), ultrasound (US), single-photon 

emission computed tomography (SPECT), fluorescence molecular tomography (FMT-based 

on fluorescence), optical and thermal imaging, X-ray computed tomography (CT), and NIR 

(Near infrared) [89, 160, 170]. Comprehension and treatment of CNS diseases has been 

further advanced due to drug and diagnostic molecules that can be delivered to the brain 

across the BBB as personalized nanomedicine with the help of highly specific and 

multifunctional NPs using drug delivery images. Recently, to cure neuroAIDS, drug delivery 

across the BBB is being developed with NFs consisting of MNP, imaging agents and 

optimized ratio of therapeutic agent [56]. This efficient therapeutic approach can be coupled 

with a suitable imaging technique to monitor HIV progression, drug efficacy and 

neurobehavioral changes. For example, magnetic NCs and anti-HIV drug based NFs have 

demonstrated HIV eradication across BBB [55, 171]. Such investigated NFs can be 

navigated cross to BBB in mice by applying external magnetic field and ultrasound. An MRI 

technique can be coupled with such systems to monitor stimuli responsive targeted drug 

release and its efficacy [56, 172]. This brain imaging research technology has potential for 
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real time tracking of therapeutic cargo and therapeutic mechanism. However, wide 

application is sometimes limited because these methods possess neuronal alteration (CT) 

and low penetration (NIR based imaging); furthermore, they require high expertise, and a 

laboratory set-up of sophisticated equipment such as cryogenic, cyclotron, sensitive probes. 

Fig. 6 explains the advantages and disadvantages of image guided and nano-enabling POC 

devices for neuroAIDS monitoring and management.

Diagnostics assays such as flow cytometry, western blot (WB), polymerase chain reaction 

(PCR), and enzyme-linked immunosorbent assay (ELISA) are being used to detect and 

monitor HIV progression in spite of high costs. Shafiee et al have summarized potential 

emergent technologies for Point-of-care (POC) management of HIV infection and proposed 

standards of ASSURED (affordable, sensitive, specific, user-friendly, rapid, robust, 

equipment-free and deliverable) to patients and clinics [162]. This ASSURES criteria should 

be a minimum landmark to technologist for developing advanced analytical devices for HIV 

management. Exploring POC detection system for HIV monitoring do not need expensive 

laboratory set-up, multi-step detection protocol, complicated operational parameters, and 

high expertise [162, 163]. Thus, developing such devices for POC will facilitate the 

gathering of on-site bioinformatics to decide timely treatment. The POC detection of HIV is 

performed via estimation of CD+ T lymphocytes count, viral load detection, and drug 

resistance measurements. Various tools have been utilized for detection of physiological 

range and to generate enough informatics to manage and cure HIV [162]. Details of state-of-

the-art of the technologies involved in HIV screening and its detection is summarized in 

Table-3.

In consideration with the aims of this review, we are summarizing the performance of recent 

advancements in selected technologies that are capable of detecting HIV at an early stage. 

To begin with, flow cytometry, a conventional reliable technique to detect and quantify CD+ 

T lymphocytes has been well explored [173]. The captured CD+ T lymphocytes from whole 

blood (3μL) [174] is detected using specific antibody that binds with cell surface markers 

and is quantified by using a bright field or fluorescent image processing method integrated 

with a microfluidic system [175–177]. A sensitive (97%) and selective (80%) ELISA 

integrated with an automated reader was also developed for CD4+ T lymphocytes count up 

to 350 cell/μL using whole blood as real sample within 40 min [178]. ELISA was used to 

estimate viral load < 200 RNA copies/mL [179]. This ELISA system needs a high volume of 

real sample i.e., 1 mL of plasma, and a long assay time of 48 hours to perform a test [180]. 

These issues limit this tool to be used at POC application. The nucleic acid based PCR 

approach extracts HIV-RNA from blood and amplifies RNA detection at 100–200 copies/mL 

in the case of HIV-1 and HIV-2 category [181]. This PCR system coupled with microfluidic 

system for precise and accurate RNA extraction from real sample (100μL) can detect DNA 

at 5,000 copies/mL, which seems suitable for diagnosing HIV at a mature stage [182]. Thus 

investigating novel tools for rapid selective screening and monitoring of HIV at CNS would 

be of use for timely diagnostics to optimize cure. According to ASSURED landmark, nano-

enabled biosensors emerged as a potential analytical device to detect HIV-viral load. The 

nano-plasmonic resonance based sensing method was able to quantify (~100 copies/mL-

HIV-1 subtype D) with a smaller volume (100 μL) of whole blood and plasma [183]. 

Meanwhile, Nanostructure photonic crystals based biosensors have been found suitable for 
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label free optical detection (104 to 106 copies/mL) and capturing of HIV-1 in blood plasma 

[184]. Both bio-sensing methods do not need pre-processing of sample and can be integrated 

in a POC system. Miniaturized nano-enable electro-chemical biosensor surfaced recently as 

a potential approach to detect CD+ T lymphocytes and viral load in real samples [185]. Lab-

on-chip (LOC) based on highly sensitive electrochemical biosensor on MEMS integration 

are capable of capturing cells to quantify and detect CD+ lymphocytes [186]. These 

microchips exhibited a detection limit of 9 cells/μL and a detection range from 100 to 700 

cells/μL [187]. LOC functionalized with specific antibodies demonstrate viral lysate 

detection in an automated manner [188].

Moreover, paper-based sensors based on microfluidic principle or Microelectromechanical 

systems (MEMS) are made of a disposable sensing chip that has been integrated to detect 

early stage HIV-1 infection at POC application. Regrettably, accuracy and sensitivity limit 

paper-based sensors; nevertheless, future advances in the improvement of analytical 

techniques can develop more state-of-the-art technology based on these sensors. Figure 7 

summarizes the commercially available diagnostics kit/tools that are used commonly for the 

detection and monitoring of HIV-1 in rural and urban clinical settings. However, there is 

always a considerable scope to explore engineered novel sensing strategies and the 

integration of miniaturized portable sensing devices of reduced form factor to detect all 

possible biomarkers related with HIV progression before and after therapeutics. The 

outcomes of such devices that satisfy ASSURED criteria would be valuable bioinformatics, 

which will be of use for complete HIV management.

 4. Challenges and Future prospects

As a proof-of-concept, varieties of nanoformulations consist of therapeutics agents and 

nanocarriers (NCs) have been navigated across BBB for eradication of HIV. Unfortunately, 

mostly such investigated nanoformulations (NFs) and approached are limited to only in-vitro 
model. The potential of NCs for developing personalized nanomedicine to achieve targeted 

or on-demand release of therapeutics without depending on the physiological conditions has 

been demonstrated. The natural integrity of BBB found as a major obstacle to achieve the 

CNS delivery of nanomedicine due to BBB permeability size constraints, technically NFs of 

size > 150 nm has less chances to cross BBB. Thus scientists are exploring surface 

bioengineering and formulation strategies to develop nanomedicine with size limitation (< 

120–150 nm) for higher efficacy. To achieve this, efforts are being made to fine tune the 

particles size, surface engineering, toxicity profiles, and BBB transmigration ability of NCs 

for effective brain delivery without loss of drug payload. These NCs can be promoted to 

develop non-invasive deep brain stimulation for the treatment of neurological disorders such 

as Parkinson’s, Alzheimer’s, dementia, etc. Beside this, few transient BBB opening 

approaches as discussed above have been demonstrated for the CNS delivery of therapeutics 

(ARVs) cargo. To overcome related issues with transient BBB opening, efforts are being 

made to explore novel CNS navigation methods which can delivery NFs to the brain non-

invasively and without generating side effect. For, example, our group extensively working 

on magnetically guided CNS delivery of magnetic NFs can be used as a potential alternate 

delivery strategy to achieve combat against HIV infection at CNS. Recent investigation of 

on-demand drug release of therapeutic agent in the CNS has also shown significance step 
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towards the eradication and cure of neuroAIDS treatment. MENPs based NFs for 

magnetically responsive, MNP-LBL based NFs approach to sustained release, and optical 

responsive based NFs have demonstrated site-specific on-demand drug release for the 

eradication of HIV. However, execution of these approaches using animal model is not yet 

well established. Another challenge in the CNS nanotechnology is the optimization of 

toxicity associated with the NCs and or its NFs for in-vivo application. A low dose of NCs 

such as metal, metal oxides, polymers, and composites are generally non-toxic but 

continuous delivery such agent may lead to long term accumulation and its related toxic 

effects. Thus, more comprehensive studies are required to assess the short and long term 

toxicity using in-vivo models (small animals to non-human primates). Advantage of such 

type of studies will be that they will help in understanding the organ specific toxicity and 

also alteration in neuro-behavioral to access changes in motor coordination and associated 

factors. The outcomes of these finding will helps in confirming the clinical application the 

developed NF and safety for human subjects. Due to the limitation of ARV in penetrating 

into the latent reservoirs, an alternate strategy would be to deliver latency reactivating agents 

(LRAs) along with ARV therapy. This dual agent delivery will be helpful in complete 

eradiation of HIV-1 from the CNS reservoir as shown by us previously [55]. Also prolong 

delivery of multiple ARV agents to the brain may cause neurotoxicity and may lead to 

neuroinflammation. To avoid these challenge with ARV therapy, recently efforts are being 

made to investigate a single therapeutic agent which is capable of recognition and 

eradication of HIV-1 from the CNS reservoirs. One of such recent discovery was the 

advancement of clustered regulatory interspaced short palindromic repeat [CRISPR], a 

powerful type of genome editing technology appears promising. A Cas9/gRNA system has 

been designed to target highly specific sequences within the HIV-1 LTR U3 region that were 

proficiently modified by Cas9/gRNA [189–191]. However, delivery of this powerful Cas9/

gRNA complex across the BBB is limited and an effective delivery and release will be high 

significance in eliminate the HIV-1 from the latent and active reservoir in the brain with any 

neuroinflammatory side effects. With the help of nanotechnology, the delivery of CAS9/

gRNA to the brain could be possible and may be a novel future research direction. We 

believe that targeting latent virus and permanent elimination of integrated DNA proviral 

copies of HIV-1 in brain is possible using our newly invented [MENP+Cas9/gRNA] on-

demand release technology. Additionally, considerable efforts are being to develop novel 

sensing technologies, novel signaling transduction, and imaging pathways to monitor HIV 

infection progression and mechanism of HIV eradication. Nano-enable sensing 

immunoassays and biosensor have been used for screening and detection HIV markers at pM 

(picomolar) level. At clinical level, such investigated nano-enabling sensing systems 

technologies on integrated with drug delivery systems can be promoted for the management 

of neuroAIDS. We proposed that a multidisciplinary nano-engineered approaches must be 

investigated to develop site-specific targeted delivery of NFs to brain to combat against HIV. 

Thus, highly specific on-demand drug release and HIV progression monitoring devices 

would be a 3-D diagnostics approach towards developing a personalized nanomedicine 

approach for the treatment and management of neuroAIDS.
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 5. Conclusions

This review has summarized some of the significant progresses and prospects of 

nanomedicine to investigate an effective therapeutics to screen, recognize and eradicate 

HIV-1 infection from the CNS. State-of-the-art of HIV eradication using nanotechnology 

suggested that developing a nanomedicine for site-specific controlled targeted drug delivery 

to CNS and smart assaying to assess or monitor HIV progression is in high demand for 

neuroAIDS management. Thus, significant efforts should be made to accelerate fundamental 

and applied nanoscience research to investigate smart biocompatible NCs, site-specific 

navigation approaches, stimuli responsive release of desired drug without side-effects to 

combat against neuroAIDS. On the other hand, high-quality diagnostics are also crucial to 

fight against HIV and to diminish its transmission and its management. Currently available 

diagnostic needs more advancement in without increasing the cost of treatment and its 

availability at underdeveloped countries. Hence, timely advancement of proposed delivery 

systems/testing strategies will be important to move into a new era of HIV free world. In 

summary, getting medicine in to the brain seems possible on exploring and optimizing nano-

enable compartmentalization based personalized nanomedicine along with suitable 

monitoring technologies for the management of neuroAIDS. Once well characterized and 

validated, an optimized NFs strategy will be developed, it may be explored to cure CNS 

diseases/neurological disorders other than neuroAIDS e.g. Huntington’s disease, 

Amyotrophic lateral sclerosis, Parkinson’s disease and Alzheimer’s disease, wherein site-

specific drug delivery is the key to manage diagnosis and treatment.
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Figure 1. Mechanisms of neurodegeneration and neuroprotection in AIDS [6]
a) Infected perivascular macrophages and microglia are responsible for producing HIV but 

might also release viral proteins that can be deleterious to the central nervous system. The 

HIV-envelope protein gp120 (glycoprotein 120), Tat (transcriptional transactivator) and Vpr 

(viral protein R) have all been shown to be toxic in vitro to neurons and/or astrocytes, 

although their relevance in vivo is unknown. Infected and activated cells also produce other 

factors — such as cytokines (including tumour-necrosis factor, TNF), quinolinic and 

arachidonic acid, platelet-activating factor (PAF) and nitric oxide-which are known to have 

neurotoxic effects; b)Importantly, they promote the further activation (and to some extent, 

proliferation) of macrophages and/or microglia, as well as the proliferation and activation of 

astrocytes; c) Activated astrocytes modify the permeability of the blood–brain barrier and 

promote the migration of more monocytes into the brain; d) In addition, through increases in 

release of intracellular Ca2+ and glutamate and through decreases in glutamate uptake, the 

brain concentration of glutamate and other neurotoxins increases and results in excitotoxic 

death of neurons; e) Activation of macrophages and/or microglia, and TNF-mediated 

activation of astrocytes, also results in the release of beta-chemokines, CX3C-chemokine 

ligand 1 (CX3CL1) and growth factors, all of which are known to regulate Ca2+ 

homeostasis in neurons, to promote anti-apoptotic signaling pathways and to decrease 

gp120-mediated and excitotoxic neuronal cell death, thereby promoting neuronal survival. 

Grey arrows indicate neuroprotective pathways. (Reproduce with permission from authors- 

González-Scarano and Martín-García - Nature Reviews Immunology, 2005).
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Figure 2. 
Different types of biological barriers for ARV drugs for CNS drug delivery
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Figure 3. Illustration of various nanocarriers (NCs) exploited for CNS drug delivery
A) Polymeric nanoparticle (PLGA, PLA PBCA); B) Liposomes; C) Polymeric micelle; D) 

Dendrimers; E) Lipid micro & nanoemulsion; F) Solid lipid nanoparticle and G) Inorganic 

NCs including: (i) Metal & metal oxide nanoparticles; (ii) Carbon nanotubes; (iii) Quantum 

dots; (iv) Magnetic nanoparticles (MNP) and (v) Core-shell nanoparticles (MENP)
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Figure 4. 
A simplified (one directional) illustration of the concept of on-demand drug release by 

MENPs stimulated by a uniform a.c. magnetic field in X direction. (a) At zero field, only the 

ionic charge is present in the MEN shell. (b) An additional dipole moment (proportional to 

the magnetic field) breaks the original symmetry of the charge distribution in the shell. (c) 

As the field is increased above the threshold value (σionic~σME), the bond on one side is 

broken. (d,e) The field is reversed to break the bond on the opposite side of the nanoparticle. 

The red arrows show the electric dipole due to the ME effect. In practice, owing to the 

random configurations of nanoformulations with respect to the field, the effect is present 

along every central bond orientation. (Reproduce with author permission, Nair et al, Nature 

Communication, [49])
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Fig. 5. 
Types for biomarkers used to detect and monitor HIV-1 progression
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Figure 6. 
Comparative analysis of images guided and nano-enabled techniques for neuroAIDS 

monitoring and management
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Fig. 7. 
Summary of marketed available diagnostic test or tools for HIV-1 detection &monitoring
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Table 1

ypes of in-vitro BBB models for drugs/nanoformulation transport. [50]

Model Type Advantages Disadvantage

Epithelial cells overexpressing 
Transporters models

• Economical

• Easy to standardize

• Differences between 
epithelial and endothelial 
cells

• Non-physiologically high 
levels of transporter

Transwell monoculture models

• Cerebral endothelial cells 
on microporous 
membranes

• Uses brain endothelial cells

• Economical

• Effect of other cellular 
components of the 
neurovascular unit (NVU-
astrocytes, pericytes) is 
ignored

• No shear stress

Co-cultures models

• Co- culture of cerebral 
Microvascular endothelial 
cells with astrocytes

• Co-culture models using 
pericytes

• Triple Cell Co-culture 
models (Astrocytes, 
Endothelial and Pericytes)

• Co-culture of brain 
endothelial cells with 
neuronal precursors.

• Consider the effect of other 
essentials of the 
neurovascular unit (NVU)

• Moderately expensive and 
laborious

• No shear stress

Dynamic in-vitro (DIV) models • Simulates real in-vivo 
condition of co-cultures

• Expensive

• No chance to monitor cells 
optically

• Special skills prerequisite

Microfluidic models • Mimics in-vivo situation 
possibility of co-culture

• Not well established 
models

• Very Expensive

• Laborious
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Table 2

Summary of preclinical NCs/Nanomaterials based CNS delivery of ARV drugs or other therapeutic 

compounds for prevention/treatment of HIV-1

Type of Therapy Therapeutic agents Nanomaterials/Nanocarriers References

Antiretroviral therapy (ART)

ddCTP, Zidovudine, 
Stavudine, Didanosine, 
Zalcitabine, Foscarnet & 
Indinavir

Liposome [104, 121, 122, 124, 
132, 133]

Stavudine Liposome-laden macrophages [124, 125]

Zidovudine Mannose- and galactose-targeted liposome
Mannose-targeted liposome

[27, 134]

Lamivudine Mannose-targeted dendrimer [111, 135]

Efavirenz Tuftsin dendrimers [111, 136]

Ritonavir, lopinavir, 
zidovudine & Stavudine

PLGA nanoparticles [105, 106, 137]

Nevirapine Ritonavir & 
Efavirenz

Tat-conjugated nanoparticle [53, 97, 138, 139]

Ritonavir, Darunavir & 
Atazanavir

Poly(ε-caprolactone) nanoparticles [140, 141]

Dapivirine & Saquinavir RMP-7/MMA-SPM nanoparticles [132]

Saquinavir, Stavudine, 
delavirdine & Atazanavir

Solid lipid nanoparticles (SLN) [104, 131]

Tenofovir, Enfuvirtide & 
AZTTP

Magnetic nanoparticle [55, 58, 100]

AZTTP Magneto-electric nanoparticle [49]

Efavirenz, Lamivudine Cyclodextrins [113, 142]

Rilpivirine Poloxamer 338/TPGS 1000 116

Zidovudine, Lamivudine, 
Efavirenz, Nelfinavir & 
Ritonavir

Micelles P85 [112–114]

Zidovudine, Lamivudine, 
Efavirenz, Indinavir, Ritonavir 
& Atazanavir

Monocyte-derived macrophages-nanoparticle [111, 139, 143–145]

Stavudine, Zidovudine, 
lamivudine & Delavirdine

PBCA, MMA-SPM [103, 104, 132, 146]

Ampenavir & Saquinavir Transferrin (Tf)-conjugated QD [138, 147]

Lamivudine CNT 122

HIV gene therapy (RNA- and 
DNA-based therapies)

Antisense RNAs, aptamers, 
siRNA therapeutics to HIV 
infected cells

PLGA nanoparticles
CNT; Dendrimers

[27, 138, 148–153]

Protein or peptide vaccine 
(Immunotherapy)

Gp-41, 120, 160, p24 protein, 
Env, Gag, Tat

PLGA nanoparticles [153–155]

DNA Vaccine Env, rev, gag, tat, ODN Liposomes, nanoemulsion, PLA nanoparticles [154–158]

PBCA-Poly(butylcyanoacryalate); MMA_SPM-Methylmethacrylatesulfopropylmethacrylate; PLA-Polylactide; PLGA-Poly (D,L-lactide-co-
glycolide); Tf-Transferrin; ddCTP- 2′,3′-Dideoxycytidine-5′-Triphosphate; AZTTP -3′-Azido-2′,3′-dideoxy thymidine-5′-Triphosphate; RMP-7: 
Bradykinin agonist; Tat- Transactivator of transcription; TPGS- D-α-Tocopherol polyethylene glycol succinate; P85- Pluronics; CNT- Carbon 
Nanotubes; QD- Quantum dots; RNA- Ribonucleic acid; DNA- Deoxyribonucleic acid; siRNA- Small interfering RNA; gp-HIV envelope proteins 
e.g. gp 41, 120, 160; p24- HIV-1 viral protein; ODN- CpG oligodeoxynucleotides; rev- transactivating protein HIV-1; Env- HIV-1 envelope; gag- 
Protein of HIV-1
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Table 3

Summary of various HIV detection techniques useful for HIV management

Techniques CD+ T Lymphocytes Counting Viral Load Estimation Remarks

Flow Cytometry Conventional well-established for both • Assay time: 8–40 min

• Sample volume: 10 μL of blood

• Laboratory set-up

• Not suitable for POC

Image Processing Bright field or fluorescent image 
of CD+ T lymphocytes

• Assay time: 20–30 min

• Sample volume: 30 mL of whole 
blood

• Power: AC/battery

• Only qualitative

• Not suitable for POC

ELISA Centrifuged based approach Nano-enabled ELISA • Assay time: 40 min for CD+ and 
48 hrs for viral load

• Sample volume: 30 μL of blood 
and 1 mL of plasma

• Power: DC/battery

RT-PCR DNA based Virus capture 
based

• Assay time: 35 to 90 min

• Sample volume: 150 μL of blood, 
75 μl of fingerstic blood, and 1mL 
of plasma

• Power: AC/DC/battery

Electrical Sensing Best suitable for HIV detection and monitoring • Sensing time: 15–30 min

• Sample volume: 10 μL

• Power: AC/battery/solar

• Sensitive and selective

• Suitable for detection and 
monitoring

• Suitable for POC application

ELISA-Enzyme-linked immunosorbent assay; RT-PCR- Reverse transcription polymerase chain reaction; CD- Cluster of differentiation; POC- 
Point-of-care; AC-Alternate current; min-minutes; μL-microliters; mL- milliliters.
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