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Abstract 

Tendon injuries represent a significant clinical burden on healthcare systems worldwide. As the 

human population ages and the life expectancy increases, tendon injuries will become more 

prevalent, especially among young individuals with long life ahead of them. Advancements in 

engineering, chemistry and biology have made available an array of three-dimensional scaffold-

based intervention strategies, natural or synthetic in origin. Further, functionalisation strategies, 

based on biophysical, biochemical and biological cues, offer control over cellular functions; 

localisation and sustained release of therapeutics / biologics; and the ability to positively interact 

with the host to promote repair and regeneration. Herein, we critically discuss current therapies and 

emerging technologies that aim to transform tendon treatments in the years to come. 
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1. Introduction 

Tendon injuries constitute an unmet clinical need for both human and equine patients. Over 30 

million human tendon-related procedures take place annually worldwide with an estimated 

healthcare expenditure in excess of €140 billion per year [1]. As the human population ages and life 

expectancy increases, it is estimated that 25% of all adults will suffer a tendon related condition that 

will put a further physical and financial strain on healthcare systems [2, 3]. Proportional is the 

situation with equine patients: 46% of the racehorses will suffer a tendon-related injury that will 

negatively impact the industry, which is valued at €400 billion worldwide [4, 5]. 

Subject to the severity of the injury, from a small sprain to a complete rupture, numerous 

therapeutic strategies of variable efficacy are currently available (Table 1). Unfortunately, 

preclinical and clinical data to-date indicate, regardless of injury severity, no current therapies have 

achieved complete pre-injury state recovery [6]. Further, severe injuries are often associated with 

compromised function, joint instability and long-term pain and disabilities, due to the inherent poor 

regeneration capacity of tendon [7]. 

These findings impose the need for the development of functional therapies for injured tendon 

tissues. However, for successful tissue engineered therapies, it is important to understand 

epidemiological data of the different injuries, the function of cellular and extracellular components 

in tendon physiology and healing, and pioneered technologies that have become available in recent 

years. Upon this knowledge, it is likely to revolutionise functional tendon treatments in the years to 

come.  
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2. Epidemiology and clinical description of human tendon injuries 

The most frequently injured tendons are the shoulder rotator cuff, the forearm extensor, the hand 

flexor, the Achilles, the tibialis posterior and the patellar [8, 9], while the anterior cruciate ligament 

(ACL) is one of the most painful and debilitating of knee injuries [8, 9]. Previously, the tendon 

research community recognised inflammation as the underlying cause of tendon injury, however, 

with advancements in imaging technologies and understanding of histopathology, it is widely 

accepted that tendon injuries are more degenerative in nature [10-14]. These degenerative 

conditions, referred to as tendinopathies, comprise of typical pathological changes, including 

islands of high cellularity and initial tissue disorganisation in mild degeneration, whilst in severe 

degeneration is accompanied by chondrocyte appearance [15]. Macroscopically, degenerative tissue 

appears to be yellow / brown due to mucoid degeneration and the loss of the highly organised 

appearance of collagen fibre bundles [14, 16]. Further, microscopic changes occur within the 

collagen structure itself and fibrosis and neovascularisation are evident [17-19]. In addition, current 

data suggest that the formation of additional blood vessels is responsible for the pain prevalent in 

tendinopathies [20, 21], and not inflammatory infiltration, as previously suspected [22, 23]. 

16% of the general population, 21% of elderly people and 80% of individuals older than 80 years 

sustain rotator cuff injuries [10], with full or partial tears affecting 27% and 37% of the general 

population respectively, with high recurrence rate, despite surgical repair [11, 12]. Rotator cuff tears 

impair shoulder function, cause pain and lead to degenerative changes in the glenohumeral joint. 

Partial tears are customarily treated through means of physiotherapy. Surgical treatments include 

arthroscopic cuff decompression and repair and, in severe cases, open surgery [13, 14]. 

Debridement is undertaken when <50% of the rotator cuff is torn; in cases where >50% of the 

tendon is torn, partial or complete repair, usually with substitutes and various tendon transfers, is 

utilised [15, 16]. Graft augmentation is employed for long-standing tears of medium to large extent 

[17, 18]. Unfortunately, graft augmentation is associated with high tear recurrence (94%), subject to 

the size of the initial tear, the degree of muscular atrophy, the fatty infiltration, the tendon quality 

and the post-surgical rehabilitation protocol [19-21]. 

Hand flexor tendon injuries are more frequently encountered in younger patients [22]. Clinical 

presentation is characterised by pain, tenderness, swelling and erythema of the affected tendons 

[23]. Surgery treatment strategies for the tendon and the sheath are based on suturing, followed by 

active motion post-surgery [24]. However, reoperation following flexor tendon repair is necessary 

in as high as 17% of cases [24-26], with unsatisfactory outcomes reported by up to 20% of patients 

[27]. It has also been reported that reoperation is required more often in older patients [28]. Rupture 

of the Achilles tendon is a common sport-related injury, with degeneration occurring in an 

estimated 11% of runners [29], with the highest incidence of rupture seen in 30- to 50- years old 
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males [25]. Clinical diagnosis is based on palpation of the gap and a positive Thompson test, with 

ultrasonography and/or magnetic resonance imaging (MRI) used to confirm the diagnosis [25, 26]. 

Surgical treatment is necessary in one-third of the patients [27] and includes minimally invasive, 

percutaneous or open repair strategies, subject to the extent of the injury. Unfortunately, future 

complications and treatment failures are common [28-30]. Injury of the tibialis posterior tendon 

occurs more commonly in middle-aged women, with clinical features including pain in the medial 

foot, loss of function and flatfoot deformity with no history of pre-existing trauma [31]. Therapeutic 

approaches include surgical tendon reconstruction (debridement of the tendon or tendon transfer), 

calcaneal osteotomy and arthrodesis [32]. Patellar tendon injury usually occurs in active adults 

younger than 40 years and jumping sport athletes. Clinical diagnosis is based on presence of pain, 

difficulty to stand and palpation of a subcutaneous depression at the region. X-ray, ultrasonography 

and/or MRI methods are used to confirm the diagnosis and are particularly useful in patients with 

long-standing, mild clinical signs [33]. Primary repair is the treatment of choice in recent years, 

whilst chronic injuries necessitate graft augmentation. ACL injury occurs predominantly in the male 

population due to increased exposure to physical tasks and involvement in sports; however females 

have been identified to be at higher risk of injury [30]. Patients experience joint instability and knee 

pain following non-surgical treatments [31-33] and risk further injury within the knee, when the 

ACL is working at insufficient functional capacity [34]. Reconstructive surgery is usually 

performed instead of partial repairs, due to the poor healing capability of the ligament [35]. The 

most successful reconstructions implement biological tissue grafts, due to joint integration and 

optimal remodelling [36]. However, preclinical studies have shown that the biomechanical 

properties, including load to failure and stiffness, of new ligaments are mechanically deficient 

compared to normal by up to a quarter within a year following surgery [37-39].  
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3. Epidemiology and clinical description of equine tendon injuries 

In sporting horses, energy-storing tendons often stretch close to failure strain limit, especially 

during jumping at high-speed locomotion, which explains why tendons, such as the superficial 

digital flexor, are more prone to strain injuries [40]. In contrast, tendons not subjected to such 

increased forces, such as the deep digital flexor, show a significantly smaller incidence of strain 

injuries [41]. Intrinsic (e.g. age, bodyweight, organ fatigue) and external (e.g. track surfaces) 

reasons have been described as predisposing factors [42]. Regardless of the cause, all equine tendon 

injuries heal slowly and improperly due to the formation of permanent disordered scar tissue [43]. 

Upon healing, the repaired tendon increases in size and becomes structurally strong with increased 

stiffness [44]. Restrictive adhesions develop within the synovial sheath of the tendon, leading to 

impaired functionality in daily activity and, ultimately, to reduced performance of the animal and 

increased risk for re-rupture [45]. 

The majority of equine mild strain injuries occur to the forelimb tendons, with the superficial digital 

flexor tendon being involved in up to 90% of incidents [46]. Such injuries usually occur at the mid-

metacarpal region, in the central part of the tendon. Mild injuries of the superficial digital flexor 

tendon are clinically manifested initially with severe lameness, which although may resolve rapidly, 

it will remain as an on-going problem. Careful palpation of the affected limb at the metacarpal area 

would elicit a pain response from the animal and reveal an oedematous region. Ultrasonography 

imaging is essential for confirmation of the clinical diagnosis, as well as for the identification of the 

exact location and the severity of the injury. Upon diagnosis, treatment should start immediately to 

avoid further damage [47]. Therapeutic options include a conservative approach (general rest, 

support bandaging and reduced activity over an extended period of time), as well as surgical 

proximal check desmotomy and/or tendon splitting. Transection of the proximal check ligament 

increases the elastic limit of the tendon by allowing the muscle to contribute to the overall elasticity; 

however this may be compromised by the formation of the scar tissue [48, 49]. Tendon splitting 

should be performed soon after the injury occurs, in order to minimise damage by proteolytic 

enzymes released [50]. Injuries of the deep digital flexor tendon are rare, affecting mainly the 

tendon within the digital sheath. Should it occur, brought about lameness is severe and persists for a 

long period of time, with oedematous appearance of the region and pain reaction present during 

clinical examination. Ultrasonography and MRI are used for confirmation of diagnosis [51]. 

Bursoscopy may also be used diagnostically, with the added advantage of facilitating surgical 

management of the lesions. Conservative treatment, such as box rest, can also be applied, but in 

general, prognosis for return to exercise is guarded [52]. 

Although tendon lacerations are usually the result of cuts by sharp objects, they can also occur 

during sporting events [47]. Careful examination of the limb conformation during weight bearing 
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and ambulation provides useful information regarding tendons involved. When the superficial 

digital flexor tendon is lacerated, a significant hyperextension of the metatarsophalangeal joint is 

evidenced. When the deep digital flexor tendon is compromised, the distal interphalangeal joint is 

hyperextended, resulting in the toe being elevated from the ground. Concurrent laceration of the 

above two tendons and the suspensory ligament result in the pastern resting on the ground and the 

toe being elevated [53]. Management of lacerations in non-sheathed zones of the tendon(s) aims to 

reduce gap and adhesion formation and preserve the intrinsic healing process. Tenorrhaphy is 

usually performed, preferably by the three-loop pulley technique [54]. When lacerations at the 

sheathed zone of the tendon have occurred, adhesions and septic tenosynovitis are common 

complications; tenorrhaphy within the sheathed zones is not recommended, as it cannot prevent gap 

creation between tendon ends or formation of adhesions [55, 56]. Lacerations of the digital extensor 

tendons are common, both in the fore- and hind- limbs. In such cases, lameness is minimal and 

treatment requires debridement of the wound. For these injuries, suturing of the tendon is usually 

not required [50]. Laceration of the long and lateral digital extensor tendons may not elicit any gait 

abnormalities, whereas transection may lead to abnormalities in protraction of the limb and 

knuckling of the toe. Tendon end suturing is performed only in recent, clean and sharp lacerations 

in the non-sheathed zones of the tendons; in all other cases, second intention healing (debridement, 

lavage, drainage) is preferred [57].  
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4. The cellular and extracellular composition of tendon tissue 

 

4.1 The cellular composition of tendon tissues 

Human and equine tendons are comprised of various cell populations (Figure 1 and Table 2), with 

similar characteristics between species [58, 59]. Around 90-95% of the cells present in tendon are 

elongated specialised fibroblasts, termed tenocytes (TC), and their precursor cells, termed 

tenoblasts. In embryonic and juvenile tendons, TCs are numerous and found within close proximity 

to the developing collagen fibres. In mature tendons, TCs reduce in number and flatten, with 

cytoplasmic processes shortening and diminishing in number [60]. They form a network of cellular 

protrusions, allowing them to react cohesively to external forces and enabling the tissue to react best 

to mechanical demands [61]. Tenoblasts vary in size and shape ranging from round, spherical or 

cuboid to spindle star like morphologies of between 20 and 70µm in length and 8 to 20µm in width 

and have been considered to be the major cell type responsible for tissue remodelling [62]. Upon 

maturation into TCs, they become elongated with up to 300µm length and less metabolically active 

[63], suggesting that they play different role in tendon physiology than tenoblasts. Commonly used 

markers include collagen type I, collagen type III, decorin, scleraxis, tenascin C, tenomodulin and 

thrombospondin 4. However, specific markers to distinguish tenoblasts from TCs are yet to be 

identified. 

The remaining 10% of cells present in tendon are a combination of progenitor cells (tendon stem 

cells; TSCs), chondrocytes (found towards the bone junction), vascular endothelial cells (found in 

surrounding vascular network), synovial cells (found in the tendon sheath) and smooth muscle cells 

(found toward the musculotendon junction) [58, 64]. TSCs are a recently discovered population of 

cells resident in tendon that have the capacity to differentiate into bone, cartilage and fat [65]. In 

addition to this multi-lineage potential, rabbit TSCs have been found to express the stem cells 

markers octamer-binding transcription factor 4 (Oct 4) and stage-specific embryonic antigen-4 

(SSEA-4) and to have significantly longer population doubling times to TCs isolated from the same 

tendon source [66]. The concentration of TSCs has been found to vary with age, position and 

species, with tendons from younger specimens containing higher numbers [67]. Perivascular cells 

are found in the walls of internal and external tendon capillaries and have been identified as cells 

that could have a regenerative capacity. They are expressing both mature tendon and stem cell 

related markers, after being isolated and cultured in vitro [68, 69]. Further small populations of 

mesenchymal stem cells (MSC) have also been identified to be present in both equine and human 

tendons, although they are generally not recognised as a site for potential stem cell source, due to 

their poor availability [70]. Fat pads not only aid tendon mechanical function [71], but also provide 

a source of adipose derived stem cells (ADSCs), with regenerative potential [72].  



10 

4.2. The extracellular composition of tendon tissues 

Collagens, elastin, glycosaminoglycans (GAGs) and proteoglycans (PGs) make up the load bearing 

structures of human and equine tendon tissues (Figure 1), with slight variations in their 

concentration between tendons found in different parts of the body. In tendon, collagen type I is the 

major constituent, making up around 80-90% of the tendon dry mass [58]. Collagen fibres perform 

several functions, including maintenance of tissue architecture, transmission and absorption loads 

and prevention against mechanical failure [73, 74]. The base unit of collagen I is a triple helical 

hetero-polymer consisting of two α1(I) chains and one α2(I) chain [75]. To form this structure, 

each left handed helical α-chain is staggered by one residue relative to each other to coil about a 

central axis, forming a right-handed super-helix [76, 77]. The helix is stabilised by hydrogen bonds 

between adjacent glycine domains and between the hydroxyl groups of hydroxyproline residues. If 

the positioning of these molecules is incorrect, or the molecules are not present, the collagen will 

degrade rapidly [78]. Collagen triple helices spontaneously self-assemble in the extracellular space, 

following or during secretion, to form quarter staggered fibrils with a characteristic 67nm 

periodicity (D banding) created by the alternating overlap and gap regions [79-81]. Subsequent 

cross-linking takes place that provides collagen fibrils with high degree of axial alignment and 

enhances tissue integrity and mechanical resilience. It has been proposed that intermolecular cross-

linking occurs in two ways; firstly longitudinal cross-linking of the end-overlapped molecules, and 

secondly by the interaction of these cross-links between two molecules in parallel [82]. 

Other, less abundant collagen molecules (e.g. collagen types III, V, XII, XIV) are particularly 

important when examining tendon aging and pathophysiologies [83, 84]. In healthy tendon, type III 

collagen is found predominantly in the endotenon and epitenon layers surrounding the collagen type 

I fibrils [85]. Aging and tissue damage reduces its content, resulting in reduction in tendon elasticity 

[86, 87]. Type V collagen is found at the centre of the collagen fibrils and mediates fibril 

development and diameter growth. This process ensures that a collection of many small collagen I 

fibres are formed, rather than one large structure [88, 89]. Collagens XII and XIV are also present in 

tendons in small quantities [90, 91]. These collagens act as supplementary molecules in the force 

transition process, aiding collagen I bundles to glide over each other when a force is applied by 

decreasing interactions between fibres and thus preventing potential tendon injury [92]. 

Elastin is present in tendon in the form of elastic fibres and makes up between 1 and 2% of the total 

dry mass [58]. Elastin molecules are composed of alternating hydrophobic and lysine-rich cross-

linking domains, which are critical for molecular structural assembly and elastic function [93]. 

During structural assembly, the lysine side chains oxidise, via the enzyme lysyl oxidase, allowing 

the formation of covalent cross-links with neighbouring molecules [94, 95]. The elastic properties 

are created by the hydrophobic regions, which adopt a random coil configuration following 
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extension [96]. Overextension is prevented by covalent cross-links that provide tendon tissues with 

a high degree of flexibility, ensuring complete recovery of the wavy configuration of the 

surrounding attached collagen fibres, after muscle contraction and tendon stretch [97]. 

GAGs and PGs, although encountered in miniscule amounts in tissues, are involved in many 

physiological processes, including collagen fibril formation, growth factor interaction, cell-cell 

interactions and cell regulation [98, 99]. In addition, GAGs and PGs are highly polar molecules that 

attract water and therefore play key role as lubricants and shock absorbers. This water absorption 

capacity allows fibrils to slip over each other during mechanical deformation, preventing breakage. 

Further, GAGs and PGs provide several cell adhesion sites [100]. The PG composition of tendons 

depends on both its location and role in the body. Compression bearing tendons, such as the 

supraspinatus tendon found in the shoulder, have a significantly higher PG content than tension 

tendons, such as the biceps (3.5% versus 0.2% of total tendon dry weight) [101]. In highly active 

tendons, such as the equine super digital flexor tendon, PG content within the tendon can be much 

higher than in non-stressed tendons, with several studies concluding that PG content is directly 

related to the load bearing capacity of the tendon [102]. The most common encountered PGs in 

tendon are decorin, versican and aggrecan and can be grouped based on the nature of their GAG 

chains. Specifically, decorin is commonly associated with dermatan sulphate [103], aggrecan with a 

combination of dermatan sulphate and keratan sulphate [104] and versican with chondroitin 

sulphate [103]. In tendon, dermatan sulphate is thought to provide a mechanism of the limitation 

growth of collagen fibrils, preventing the diameter of individual fibrils becoming too large and 

maintaining the hierarchical structure seen in connective tissues, thus helping to maintain their 

physical properties, while chondroitin sulphate plays a vital role in maintaining the amount of water 

retained by the tissue and controlling the organisation of the collagen present, specifically void 

space and overall tissue stiffness [105]. The location of the tendon and the specific area of the 

tendon denominates which PG is most prevalent. Decorin, for example, is the major PG in the 

central load bearing tendon regions, whilst versican is identified in areas of bone insertion and 

where compressive forces are prevalent [106].  
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5. Tendon healing 

The wound healing process in tendons occurs in three overlapping phases (Figure 2), which are 

regulated by various growth factors, cytokines and cell types. In the first (inflammation) phase, 

inflammatory cells migrate into the injury site and phagocytise necrotic tissue and clot. In the 

second (repair) phase, fibroblasts proliferate in the injury site and synthesise and deposit 

extracellular matrix (ECM) components. In the third and final (remodelling) phase, the newly 

produced collagen fibres are aligned along the longitudinal axis of the tendon and eventually 

become capable of sustaining loads [107]. Over the years, two healing mechanisms have been 

proposed, subject to the cell populations participating. Intrinsic healing is predominantly controlled 

by resident TCs, whilst the extrinsic is controlled by cells migrating from the external surrounding 

tissues [108]. Due to the low activity / reparative capacity of the resident cells [1, 109-112], the 

extrinsic healing mechanism is activated. In reality, it is likely that a combination of both 

mechanisms occurs, with different injuries and injury sites determining which mechanism is the 

overriding one [113]. 

A by-product of the extrinsic healing process is that extensive amounts of disorganised collagen are 

deposited, resulting in scar tissue formation and adhesions between the neotissue formed and 

surrounding tissues. Scar tissue has reduced overall mechanical properties and is associated with an 

increased chance of re-rupture in later life [114]. Further, increased concentration of collagen type 

III, remained at the wound site during healing, could also lead to reduced mechanical properties 

[115]. The presence and arrangement of non-collagenous macromolecules is also altered during 

tendon healing, even after long periods of recovery [116] and has been found to be dependent on the 

healing stage. Biglycan expression, for example, is upregulated in the early phases of tendon 

regeneration, whilst decorin expression is increased during the remodelling phase [117]. The influx 

of extrinsic cells into a wound area results in increased number of cell populations (e.g. vascular 

endothelial cells, fibroblasts and stem cells) not usually seen in healthy tendons [107]. These cells 

could dominate endogenous TCs, especially with respect to cellular secretome, resulting in 

compromised functionality [118] and adhesion formation that are associated with pain and 

locomotion issues [119]. As a result of these changes, mechanical, structural, biochemical and 

biological properties of the healed tendon never match those of the tissue prior to injury [64]. Thus, 

it has been proposed that tendon therapies, based on injectable systems or implantable devices, 

should enhance the intrinsic and suppress the extrinsic healing mode, in order to better restore 

tendon function [120].  
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6. Minimally invasive strategies for small tendon injuries 

Injectable systems allow localisation of the cargo and its sustained release at the side of injury, 

increasing that way the effectiveness of the treatment. Among the natural biopolymers, collagen 

type I and fibrin are the most widely used [121, 122], although the use of hyaluronic acid (HA) has 

also been advocated as it allows tissue integration and prevents adhesions to surrounding tissues 

[123]. The attractiveness of collagen type I is based on the fact that constitutes the major component 

of tendon and is removed from the body through physiological enzymatic processes, as a function 

of the extent of cross-linking and functionalisation [105, 124-127]. Clinically, injectable collagen 

hydrogels have been utilised as carriers for biological and pharmaceutical agents [128]. Collagen 

peptides have also been used, with preclinical data demonstrating increased collagen synthesis 

[129], maintenance of homeostasis [130] and improved healing, as judged by mean average 

diameter, distribution of fibrils and GAG composition [131]. The utilisation of fibrin has been 

advocated based on its high cytocompatibility, biodegradability, controllable cross-linking, carrier 

capacity and presence of several ECM proteins, such as fibronectin, that enhance cell adhesion and 

proliferation [132-134]. Preclinical analysis revealed that fibrin glue around the suture site enabled 

rabbit flexor tendon healing with smooth gliding surface and without formation of adhesions [119]. 

In a rat supraspinatus tendon defect model, although fibrin clot improved collagen organisation and 

mechanical properties over time and reduced cellularity, the biomechanical properties did not reach 

the properties of the healthy tissue by week 12 post-implantation [135]. In a ruptured Achilles 

tendon model, biomechanical and histological analysis revealed comparable characteristics between 

fibrin- and suture-based repairs [136, 137]. Clinical data also advocate the use of fibrin; in an 

Achilles tendon repair situation, although complete restoration of healthy tendon properties was not 

achieved, functional and cosmetic results were significantly improved [138, 139]. To-date, 

injectable systems, loaded with pharmaceutical agents, biological molecules and viable cell 

populations are under intense research and development in the quest of recapitulating native tendon 

function following injury.  
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6.1 Delivery of pharmaceutical agents 

Anti-inflammatory molecules, such as slow acting anti-rheumatic drugs (SAARDs) or non-steroidal 

anti-inflammatory drugs (NSAIDs), are extensively used in tendinopathy [140]. Data to-date 

demonstrate reduction in inflammation observed during the early stages of tendinopathy and 

maintenance of tendon structural integrity and mechanical properties [141]. However, the effective 

window of SAARDs is limited to the very early stages (at most 2 years after degeneration has 

begun) of tendon damage [142]. Similarly, NSAIDs have a beneficial effect on injured tendons, 

should they injected soon after the injury occurs (a few days); however, patient response to the 

treatment varies widely, side effects associated with prolonged use and their detrimental effect on 

cell proliferation and PG synthesis further compromise their use [143-145]. The use of 

glucocorticoids, as inflammation suppressive drugs, has also been advocated in tendon field [59], 

however in vitro studies demonstrate suppression in PG production, which may hinder regenerative 

processes [146]. 

Given nitric oxide (NO) is normally expressed in healthy tendon, albeit at low levels, and is 

diminished in fibrous tendon scar tissue, its use following tendon injury and in tendinopathy has 

been advocated [147, 148]. Topical gels and slow release patches have been used as delivery 

vehicles [147, 149]. Clinical findings using topical gels show improved early stage healing and pain 

reduction, and long term improvements in functionality [150], however, natural tolerance can occur 

in long term treatments leading to reduced therapeutic benefit and side effects, such as headaches, 

have been reported in some cases, limiting the use of NO to specific tendon conditions [151]. 

HA has been utilised in tendon therapy for several years in both equine [152] and human patients 

[153]. Long term follow up studies on athletes with patellar tendon injuries demonstrated that HA 

injections directly into the tendon and surrounding areas have a beneficial effect on tendon healing, 

as assessed by scoring methods [154]. Further studies investigating repeated HA injections to hand 

damaged flexor tendons indicated reduction in adhesions with surrounding tissues [155]. Similar 

small animal model studies have identified reduction in adhesion formation as the primary mode of 

action of HA in tendon healing [156]. 

Intra-tissue injections are the preferred delivery mode of pharmaceuticals for both human and 

equine patients. The cost-benefit of pharmaceuticals to treat tendon injuries, especially the use of 

corticosteroid, is under severe scrutiny with respect to their efficacy and associated side effects 

[157-160]. Given there is currently no sufficiently effective pharmaceutical-based therapy, the use 

of more potent biological molecules was proposed as an alternative strategy.  
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6.2 Delivery of biological molecules – Growth factors 

Growth factors, natural functional molecules that stimulate cellular processes [161], have been 

extensively studied as means to recapitulate native tendon function following injury [162-164], 

given their role in tendon physiology and healing, through cell recruitment at the site of injury and 

stimulation of ECM synthesis [165-168]. For example, vascular endothelial growth factor (VEGF) 

increases revascularisation of repairing tendon tissue, improving overall healing [169]; platelet-

derived growth factor (PDGF) has beneficial effects on the functional repair of tendon tissue in the 

canine model, increasing tendon glide, but not mechanical properties, over a 42 day period [170]; 

basic fibroblast growth factor (bFGF) stimulates both MSC proliferation and differentiation towards 

tenogenic lineage, leading to increased expression of tendon specific ECM proteins and increased 

collagen production from cells [171]; bone morphogenic protein 12 (BMP-12), also referred to as 

growth differentiation factor 7 (GDF-7) induces both in vitro and in vivo tenogenesis of MSCs in 

both human and equine cells [172-174]; BMP-13 (GDF-6) induces an increase in the expression of 

tendon specific proteins in rat MSCs along with increasing the characteristic wave like pattern 

found in tendon histological samples after 14 days implantation in a rat Achilles defect model 

[175]; BMP-14 (GDF-5) reduces adhesion formation between tendons and surrounding tissues, 

improving overall function and recovery [176]; early growth response protein 1 (EGR1) directs 

tendon differentiation in rat MSCs and improve tendon healing in a rat Achilles tendon injury 

model [177]; and transforming growth factor-β (TGF-β) is highly influential in the recruitment and 

maintenance of TC progenitor cells during injury [178]. While these growth factors have 

demonstrated efficacy, as assessed by increased cellular migration, matrix production and matrix 

mechanical properties over a short period of time (up to around 8 weeks), little difference has been 

documented in long term tissue integration, matrix composition and overall tissue strength over 

control groups [177, 178]. To this end, the use of single growth factor injections [179] or cocktails 

of thereof [180] at different healing stages has been proposed [181]. However, single or 

combinatory growth factor injectable therapies have not reached clinical use. 

Despite the promising preliminary results achieved, the literally infinite number of growth factor 

combinations, dose regimes and injection time, makes the identification of a suitable therapy 

elusive. To this end, platelet rich plasma (PRP), a natural concentrate of many growth factors [182-

184], is under intense investigation. PRP has been proposed as a therapy for the treatment of equine 

tendon injuries, with data demonstrating development and maturation of a healing tendon tissue, 

based on improved metabolic activity, increased failure strength and elastic modulus of the 

repairing tissues and increased neovascularisation, over the saline injected counterparts in an equine 

superficial digital flexor tendon model [185-188]. In a clinical setting, PRP injections have been 

used under various identifying names for decades [189, 190]; however long-term, large and blinded 
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studies have yet to be reported, with current data contradicting each other. Pilot studies, for 

example, have demonstrated safety of either PRP alone or in conjunction with other therapies 

including surgical suturing techniques and physiotherapy [191-194]. On the other hand, the use of 

PRP injections is opposed based on data demonstrating no added value in patients received anterior 

cruciate ligament (ACL) allograft replacement and PRP injections [195] and on data revealing 

tendon thickening, pain and reduction in mechanical properties, following PRP injections [196-

198]. Primary limitations of this approach include the lack of standardisation for PRP potency, 

preparation and dosing. It is well recognised that PRP preparations used clinically depend upon 

their human source and preparation methods and that age, health indices and genetics comprise part 

of the complex matrix that determines PRP potency. Many of the inconsistencies and variables in 

the PRP literature result from a widely varying PRP product applied for healing purposes [182, 189, 

190, 194]. For example, it is necessary for PRP to be clotted for delivery to the target site, thus 

traditionally bovine thrombin is implemented; however, this adds the risk of coagulopathies due to 

the induction of the production of antibodies to clotting factors [199]. To this end, other clotting 

agents, such as fibrin and collagen I, have been studied [200, 201], which make comparison 

between studies even more complicated. It has been suggested that PRP products should be derived 

from the patient’s blood, given that platelet concentrations vary between individuals and even 

between samples taken from the same patient under different conditions [202], making 

commercialisation of such technology even more complicated.  
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6.3 Delivery of biological molecules – Genes 

Gene delivery systems, which utilise the action of transfecting mRNA sequences into cells to 

genetically alter their DNA and induce expression, upregulation or downregulation of proteins, have 

also been proposed as injectable tendon therapy systems [203]. Preclinical studies have 

demonstrated the potential for gene therapy in tendon and ligament repair. Collagen hydrogels 

loaded with TGF-β adenovirus have been shown to transduce invading endogenous cells in both in 

vitro and in vivo models over a 21 day period, with transduced cells found up to 6mm from the 

hydrogel / tissue junction, demonstrating its potential for use in the clinic [204]. TGF-β has been 

used to transduce rat muscle cells for use in the repair of induced tendon injuries, with gene-treated 

cell grafts leading to almost normal histological appearance, greater mechanical strength and higher 

presence of collagen I over an 8 week study period, again demonstrating its potential effectiveness 

for clinical use [205]. Fibromodulin plasmid with micro-bubbles were injected into the Achilles 

tendon of wild type and fibromodulin deficient mutant mice and burst in situ using high intensity 

ultrasound. High transfection efficiency was achieved up to 19 days and gene expression was 

detectable for over 100 days. Further, the collagen fibril diameter in mutant mice was comparable to 

that of wild type mice, demonstrating the method’s potential effectiveness for delivering gene 

therapies for degenerative tendon disease treatment [206]. However, mechanical analysis of 

recovered tendon was not performed to demonstrate therapeutic efficacy. Recent work investigating 

the use of injectable poly(lactic-co-glycolic acid) (PLGA) nanoparticles to transfect intrinsic cells in 

vivo with TGF-β in a chicken foot induced defect model demonstrated sustained delivery for over a 

4 week period, leading to a small, but significant reduction in adhesion formation. However a large 

significant reduction in tendon mechanical properties was recorded [207], demonstrating that while 

some aspects of tendon healing can be improved by using this method, further work is needed to 

enable overall therapeutic benefits. Although gene therapy has great potential in difficult to cure 

injuries and degenerative conditions (e.g. spinal cord injury, Alzheimer's disease, arthritis), gene 

transfer is associated with potent host inflammatory and immune responses [208, 209] and therefore 

its clinical potential for small, non-life threating tendon injuries (e.g. tennis elbow) is questionable 

[210].  
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6.4 Delivery of viable cell populations 

The limited regenerative capacity of tendons has been attributed to the low activity and low 

reparative potential of the resident cells [1, 109, 110, 112]. Further, permanently differentiated and 

stem cell populations act as a biological factory [1] of a spectrum of bioactive and biotrophic 

molecules that regulate several physiological processes [211-213]. Thus, delivery of cells is clearly 

more beneficial than any single or even dual biological molecule delivery strategy, which has little 

chance of commercialisation, given the complexity of the system. To this end, direct cell injections 

were pioneered, with positive results in equine patients [44, 214], even with low number of cells 

[215-217]. However, direct cell injections have failed to deliver in a consistent manner in humans 

due to poor cell localisation [218-221], triggering an extensive investigation into the optimal cell 

carrier for tendon repair [1]. The ideal carrier system should prevent cell membrane rupture during 

the injection process; create increased tissue integration through fast in situ self-assembly; facilitate 

long-term cell survival and functionality maintenance; and allow spatiotemporal release of the cargo 

[222-231]. Preclinical data using either collagen [232] or fibrin [233] hydrogels have demonstrated 

improved mechanical properties, histological scores, tissue integration and restored functionality 

using TCs and various stem cell populations [234, 235], however clinical use of injectable 

cell/hydrogel systems is still to be realised. 

Biologically informed advancements in chemistry have made available stimuli responsive polymers 

that can controllably react to environmental stimuli, such as temperature, pH, enzymes, affinity 

ligands, oxidative stress, magnetic / electric fields, mechanical loading [236, 237] and release their 

cargo. Matrix metalloproteinase (MMP) [238-240] or mechanical stimuli [241] responsive polymers 

are expected to pioneer tendon therapies in the years to come due to their sensitivity / specificity to 

the local tissue microenvironment. For example, MMP activity is increased in tendon rupture and 

overuse [242-244] and therefore can be used as a trigger for the stimuli-responsive carrier to release 

its cargo.  
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7. Surgical approaches for large tendon injuries 

When tendon injuries are associated with large defects, implantable devices with sufficient 

mechanical resilience are required to bridge the gap. To this end, tissue grafts and three-dimensional 

natural or synthetic in origin scaffolds, that closely imitate native tendon architecture, are at the 

forefront of scientific and technological research and development. Before though we are in 

position to develop a suitable implantable device with adequate mechanical properties, it is essential 

to understand the mechanical properties of the native tissue. 

 

7.1 Mechanical properties of tendon tissue 

The primary function of tendons is linking and transmitting forces generated by muscle to bone, in 

order to mobilise and stabilise the joints that they cross. Tendons exhibit viscoelastic and plastic 

properties, both essential in transmitting muscle-contraction-induced tensile strains into movements, 

whilst maintaining structural integrity [245-247]. The collagenous network is considered to be the 

main load-bearing structure, through intra- and inter- molecular cross-links between the adjacent 

helical molecules [248-252]. Non-collagenous macromolecules are also important, but to a lesser 

extent [253, 254]. For example, the viscoelastic properties of elastin and presence of proteoglycans 

allow tendons withstanding compressive and tensile forces [255, 256]. 

The deformation mechanism of tendons is similar to those of crystalline polymers that yield and 

undergo plastic flow [257-265]. The yielding mechanism involves some form of flow, such as inter-

fibrillar slippage, which is crucial in the tensile deformation of tendons [266, 267]. During loading 

of collagen molecules, fibrils, and fibril bundles deform and finally fail by a process termed 

defibrillation. Up to a strain of 2% (toe region), stretching of the triple helix is the predominant 

mechanism of deformation [268-271] and corresponds to the gradual removal of a macroscopic 

crimp in the collagen fibrils [272-281]. This macroscopic crimp has been characterised as the shock 

absorber of tendons that permits non-damaging longitudinal elongation of fibrils within the tissue 

[261, 282]. At strains beyond 2% strain, the low modulus of the toe region gives rise to the non-

linear heel region, during which reorientation and un-crimping of the collagen fibrils and stretching 

of the triple helix, the non-helical ends and the cross-links takes place [269, 271, 283]. When 

collagen is stretched beyond the heel region, no further extension is possible [259, 270, 284, 285], 

the wavy pattern is now straightened and cross-links and fibrils start breaking [261]. To-date, 

advances in chemistry and engineering have made available numerous polymers, cross-linking 

systems and scaffold fabrication technologies that closely imitate the biomechanical properties of 

native tendons (Table 3).  
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7.2 Tissue grafts – The top-down approach for tendon repair 

The current gold standard in clinical practice for large tendon defects is autologous, allogeneic or 

xenogeneic in nature tissue grafts [2, 3]. The choice of the site from which an autograft will be 

harvested depends on tissue accessibility and availability; on the physical dimensions and 

mechanical properties of the donor tissue; and on the extent of site morbidity that will be induced 

[286, 287]. The use of autografts in clinical setting has been strongly supported by superior 

functional results [288, 289]. Nonetheless, availability issues and the unavoidable site morbidity 

that will only partially improve the properties of the originally injured tendon tissue [290-293] 

pushed the field towards allogeneic [294-298] alternatives. Clinical data indicated no functional 

difference between autograft and allograft intervention in ACL repair [299-301]; however MRI 

analysis favoured the autograft, as allograft intervention brought about a less mature neotissue 

[302]. The use of autografts in ACL reconstruction has been further reinforced with recent data 

indicating that allografts are almost 6.7 times more likely to fail, when compared to autografts 

[303]. Further, it has been suggested that mismatch in age, activity and body weight between donor 

and recipient may be crucial factors in the failure of allografts for ACL reconstruction [304]. In 

addition, the use of allografts is further limited by their higher overall surgical costs; approximately 

US$ 1,000 extra per clinical case [305, 306]. For these reasons, the use of xenografts took off, with 

numerous products currently available [307, 308]. Although positive functional scores and 

improved movement as early as 6 months post-operation have been reported [309], many studies 

have demonstrated high failure rates and tearing incidents [310-313], which may be attributed to 

processing conditions (e.g. decellularisation, cross-linking, sterilisation) employed to battle immune 

rejection, which remains the major obstacle for both allogeneic [314, 315] and xenogeneic [316] 

approaches. 

Significant advancements in chemistry and biology, combined with the inherent capacity of tissue 

grafts to closely imitate the native tissue composition and architecture, it is likely to yield a 

functional therapy in years to come. For example, in a canine model, HA functionalised allografts 

demonstrated significant reduction in adhesions, without any negative effect in cellularity and 

mechanical properties [317, 318], whilst HA pre-treatment in a rabbit ACL model demonstrated 

mechanical integrity maintenance and improved healing [319]. Separate studies investigating the 

effect of the addition of HA molecules to the surface of allografts in canine models found that 

adhesions to surrounding tissue, were reduced when HA was used 6 weeks post-surgery, and that 

HA had no effect on the cellularity of tissues after removal or overall tissue mechanical properties 

[317, 318]. This has been confirmed in the rabbit model [319]. Gene delivery has also been 

investigated using GDF-5 (BMP-14) loaded freeze dried allograft tissues, finding that adhesions can 
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be reduced and fibril alignment improved in a murine Achilles model over control tendon grafts 

[320], however gene functionalised grafts have not been translated to the clinic as yet. 

Functionalisation of allografts with autologous cells has also reached preclinical assessment. In 

vitro studies demonstrate that tendon grafts support the growth of human ADSCs for up to 14 days 

in culture, resulting in increased tensile strength and collagen density [297]. Further studies 

demonstrated that mechanical stimulation of TC recellularised rabbit flexor tendons resulted in 

increased ultimate tensile strength and elastic modulus of the graft tissues after 4 weeks in vivo 

[321]. Sectioned canine decellularised tendons stacked into layers and loaded with bone marrow 

stem cells (BMSCs) increased expression of tendon specific markers [322]. However the 

mechanical properties of these structures were not influenced by the addition of cells, possibly due 

to the static conditions the graft composites were cultured in. 

Studies assessing the recellularisation potential of BMSCs, ADSCs, TCs and sheath fibroblasts 

indicated that prolonged culture time (6 weeks) was required for recellularisation of tissue grafts 

[323]. Indeed, harsh cross-linking methods, employed to control the immunogenicity of the device, 

create a compact structure and are often associated with foreign body response, compromising 

healing. Thus, biomaterial-based approaches are under investigation, as they provide the 

opportunity to treat tendon injuries, whilst avoiding morbidity and availability issues encountered 

with autografts and potential disease transmission associated with allografts and xenografts.  



22 

7.3 Sutures and screws 

Absorbable sutures are too weak to provide sufficient mechanical resilience [324]; thus non-

absorbable suture are the primary surgical repair option for tendon repair [325] and are the only 

option in cases involving the flexor tendons of the hand [326]. To-date, numerous suture techniques 

have been adopted for tendon repair, including lateral trap, end-wave, locking, grasping, Bunnell, 

Mason-Allen and modified Kessler [324, 326, 327], with the modified Kessler being the most 

popular. Commonly used materials for suturing tendons include stainless steel, catgut, 

polypropylene, polyethylene, polyesters, nylon, silicone, silk and collagen coated versions of some 

of them. These materials are produced either in mono- or multi-filament versions and may or may 

not be braided [326]. Traditional sutures involve end-to-end repair to bridge the gap at rupture 

[327]. Multi-strand (primarily four-strand [328]) locking configuration are extensively used in 

clinical practice. Although locking loops prevent sutures from pulling, they are often associated 

with suture breakage and tendon rupture due to pulling of the suture at the sutured site [329]. Given 

that knots adversely affect gliding and locking configurations negatively impact on vascularity, 

barbed sutures have gained more attention as they ensure equal distribution of load throughout the 

intratendinous suture length [330-334]. Despite the significant work in the field, there is still no 

gold standard. 

Suitable tendon healing will not occur for gaps greater that 5 mm [335, 336]. To this end, 

improvements in the fixation methods are at the forefront of clinical research to reduce the bone 

tunnel enlargement for tendon [337, 338] and ligament [339, 340]. Interferential screws, 

bioabsorbable or metalling in origin [341], are considered as the gold standard for tendon-to-bone 

fixation and for ligament reconstruction [342-344]. However, recent data demonstrate viscoelastic 

deformation, which causes widening of the bone tunnel into which the tendon is inserted, resulting 

in slippage of the tendon [345]. Primary fixation is employed to act as an interlock between the 

screw and the graft [346]. Recent data demonstrate improved strength fixation by as much as 30% 

by simply ensuring that the screw is shorter than the graft [337, 347]. Nonetheless, numerous 

complications and adverse effects have been reported in clinical setting (e.g. intra-operative 

fracture, intra-articular complications, extra-articular abscesses) [348], clearly indicating that further 

research is necessary to elucidate the underlying mechanisms of tendon-to-bone healing and to 

translate safe and therapeutic interventions [349].  
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7.4 Bottom-up approached for tendon repair based on natural in origin scaffolds 

To-date, numerous biopolymers have been assessed for tendon repair, with variable degree of 

efficacy. Among them, collagen-based devices, in many physical forms (e.g. sponges, films, fibres), 

appear to be the favourite raw material [124, 127]. Advancements in engineering, chemistry and 

biology have made available numerous technologies that allow fabrication of hierarchical three-

dimensional scaffolds that closely imitate native tendon architectural features and mechanical 

properties, whilst enabling localised and sustained delivery of therapeutics [350]. Collagen sponges, 

for example, with or without aligned tracks and loaded with GAGs, growth factors and various cell 

populations have demonstrated enhanced cell motility and phenotype maintenance in vitro and 

increased collagen expression levels in small animal models [351-355]. However, such scaffold 

conformations cannot provide adequate mechanical resistance, in such a high mechanical demand 

environment [356]. Using a wet extrusion system, micro-scale collagen fibres (Figure 3) were first 

produced in late 1970’s and since then numerous papers have demonstrated that this process gives 

rise to fibres with ultrastructure characteristics, physical and mechanical properties similar to native 

tendon [257, 259, 357-359]. Further in vitro analysis demonstrated that such materials, largely 

attributed to their surface features, not only facilitate bidirectional cell alignment, but also maintain 

tenogenic phenotype in vitro [360]. Further, preclinical experimentation in peripheral nerve repair 

and in tendon small and large animal models enhanced the clinical potential of these fibres, as 

judged by improved structural alignment and biomechanics [361-363]. Using an isoelectric focusing 

setup, aligned collagen fibres have been produced with ultrastructural characteristics and physical 

properties similar to native tendon [364, 365]. Of significant importance are in vitro data that have 

been obtained using these materials. When their potential for spinal cord injuries was assessed, it 

became apparent that such materials not only promote directional neurite guidance, but also 

overcome inhibition by myelin associated glycoprotein [366]. In a tendon setting, these collagen 

fibres have been shown to promote bidirectional alignment and migration of tendon derived cells 

and to differentiate human BMSCs towards tenogenic lineage, even in the absence of biological 

signals [367, 368]. Combinations of fibrous scaffolds that offer mechanical resilience and hydrogels 

systems that offer cell retention capacity have demonstrated improved biomechanics and 

functionality in preclinical models [369, 370]. Whether such systems will reach the clinic, remains 

to be seen, given the notable lack of extensive in vivo data. Further, appropriate regulatory 

framework should be implemented to allow such systems to enter the clinic. 

Silk-based sutures have been extensively used to treat ruptured tendon due to their high mechanical 

properties and excellent biodegradability [371-375]. In vitro data have demonstrated that silk-based 

scaffolds support adherence, expansion and differentiation of human BMSCs towards tenogenic 

lineage, as assessed by the expression levels of collagen types I and III and tenascin-C [376]. Silk 
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fibres functionalised with peptide moieties [377], HA [378] and chondroitin sulphate / collagen 

[379] have been shown to maintain tendon function in vitro, to increase blood vessel formation and 

cellular infiltration, to promote formation for dense collagen fibres and to encourage overall tendon 

healing over control counterparts in a canine patellar tendon defect model and to a rabbit cruciate 

ligament defect model. Mechanical loading of aligned silk scaffolds loaded with BMSCs resulted in 

increased production of collagen type I, collagen type III and tenascin C, when compared to not 

aligned and not mechanically stimulated counterparts [380]. Further large animal model studies 

have demonstrated that silk / BMSCs composites induced functional ACL replacement, with silk 

degrading in a similar rate as the neotissue was formed [381]. However, complete replacement 

based on silk did not yield a functional therapy [382], which, in addition to the concerns of allergic 

reaction, have restricted its use in regenerative medicine [373]. To a smaller extent, chitosan / 

alginate composites have been assessed for tendon repair, with in vitro data demonstrating 

adherence of rabbit tendon fibroblast and increased collagen type I expression and mechanical 

properties [383]. Preclinical data of chitosan and chitosan / HA scaffolds have demonstrated 

enhanced tissue-specific ECM production and improved mechanical strength, as compared to the 

control treatments [384-387]. Polyhydroxyalkanoates, natural polymers produced by bacteria, have 

also shown great potential in tissue engineering [388]. Specifically to tendon repair, such materials 

have shown improved mechanical properties, improved functionality and minimal inflammatory 

response in small animal studies over 40 days implantation in an Achilles defect model [389]. The 

batch-to-batch variability of natural biomaterials and their susceptibility to various sterilisation 

methods [390] have triggered investigation into the potential of synthetic biomaterials for tendon 

repair and regeneration.  
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7.5 Bottom-up approached for tendon repair based on synthetic in origin scaffolds 

Absorbable and not absorbable synthetic materials are used extensively in tendon repair, as they can 

be produced reproducibly with structural, physical and mechanical properties similar to the tissue to 

be replaced [391]. Unfortunately, non-degradable devices have failed to deliver functional repair. A 

polyester-based device, for example, although it has been used extensively in clinical practice, 

clinical data demonstrate inferior to tissue grafts repair that is often associated with laxity in joints, 

engraftment tunnel enlarging and, in some cases, complete rupture [392-394]. Similarly, although 

polypropylene-based devices have demonstrated superior mechanical properties to control 

treatments, histological evaluation revealed poor tissue integration, evidenced by the formation of a 

disordered fibrous capsule [395]. Dacron (polyethylene terephthalate) prosthesis, although it has 

demonstrated acceptable mechanical properties, functional regeneration and neotissue formation 

was not achieved [396, 397]; however HA / chitosan coating demonstrated good histological scores 

in a rabbit articular tendon model [398]. Carbon fibres have exhibited clinically acceptable 

mechanical and structural properties, promoted extrinsic and intrinsic cellular activity and 

ultimately a functional neotissue formation, leading to long-term tissue integration and healing 

[399, 400]. However, the potential side effects of carbon have limited their further development 

[401-403]. These results gave rise to degradable-based substitutes for tendon repair. 

Among the manifold polymers, PLGA based scaffolds have been extensively assessed in tendon 

repair. With respect to fabrication methods, electro-spinning (Figure 4) appears to be the method of 

choice, as aligned nano- to micro-fibrous scaffolds can be produced with mechanical and structural 

features similar to the tissue to be replaced and with ability to control permanently differentiated 

and stem cell fate in vitro; to locally deliver in a controlled manner pharmacological agents, 

biological molecules and cells at the side of injury; and to enhance directional neotissue formation 

[404-409]. Although electro-spun collagen scaffolds have demonstrated improved neotissue 

alignment and mechanical properties, over control counterparts in a rabbit Achilles tendon model 

[410] the realisation that the use of fluoro-alcohols denatures the triple helical confirmation of 

collagen [411, 412] has reduced further investigations. 

Although tendon-like tissues have been generated in vitro using TCs grown on PLGA electro-spun 

fibres, the de novo formed tissue was found to be significantly thinner and weaker than a natural 

tendon control [413]. However, mechanical stimulation of human foetal extensor tendon TCs 

loaded on electro-spun PLGA fibres promoted collagen alignment, produced a more mature 

collagen structure and created a stronger de novo tissue [414], suggesting that mechanical 

stimulation might be an optimal in vitro niche for engineering functional tendon equivalents ex vivo. 

Porcine dermal fibroblasts and TCs loaded on PLGA electro-spun fibres have been shown to 

promote tenogenic function in vitro and improved healing, as evidenced by improved gross 
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morphology, histological analysis and biomechanical properties, in vivo [413-416]. In conjugation 

with BMSCs, electro-spun PLGA scaffolds have demonstrated suppression of lymphocytes in vitro 

and improved biomechanical properties and acceptable integration into the native tendon tissue 

[417]. GDF-5 loaded PLGA electro-spun scaffolds supported growth and promoted tenogenic 

differentiation of rat ADSCs [418]. Further in vitro studies using bFGF loaded PLGA electro-spun 

scaffolds have demonstrated enhanced BMSC proliferation and tendon differentiation, as evidenced 

by increased expression collagen type I and tenascin-C [419], whilst in vivo studies have shown 

greater vascularisation, higher histological scores and superior mechanical properties to naturally 

healed and non-functionalised counterparts [420]. A more complex approach based on PLGA 

electro-spun scaffold and a fibrin gel loaded with ADSCs and PDGF-ββ demonstrated improved 

healing over standard controls [421]. Electro-spun poly-ε-caprolactone (PCL) scaffolds coated with 

tendon-derived ECM promoted ADSC attachment, homogeneous distribution within the scaffolds 

and expression of tendon specific markers [422]. Functionalisation using HA has enabled 

integration of PCL electro-spun scaffolds into a chicken foot tendon model, whilst preventing post-

surgical adhesions [423]. 

Lithography-based technologies have also been used as means to produce anisotropic substrates for 

tendon repair (Figure 5). Such micro-grooved substrates have been shown to maintain TC 

phenotype in vitro, as indicated by collagen type I and tenomodulin expression; most importantly, 

these micro-grooved substrates were shown to recapitulate the lost tenogenic phenotype of TCs 

[424]. Given the literally unlimited number of possible topographies, a recent study developed 

imprinted substrates using tendon slices as template; the produced substrates, following collagen 

type I coating, supported tenogenic differentiation of BMSCs [425]. To-date, there is no in vivo 

work of such substrates in a tendon model. 

Despite the huge progress that has been achieved to-date, synthetic materials are yet to meet the 

requirements for functional tendon tissue remodelling [426]. The use of PLGA and PCL has been 

problematic, with in vitro data showing poor tendon cell adhesion, reduced proliferation rate and 

phenotypic drift [360, 427]; with preclinical in vivo data showing poor cellular infiltration and 

mechanical properties compared to controls [428]; and with clinical evaluations showing problems 

with cell lysis, anchor failure, macrophage stimulation and allergic responses [429, 430]. This high 

failure rate has been attributed to their hydrophobic nature and their lack of cell recognition signals 

that prevents cell attachment [391, 431-434]. To this end, scaffold-free therapies based on the 

principles of tissue engineering by self-assembly / cell-sheet technology are slowly, but surely, 

gaining more scientific and technological interest.  



27 

7.6 Tissue engineering by self-assembly therapies 

Tissue engineering by self-assembly or cell-sheet tissue engineering has been extensively studied 

over the years for various clinical targets [435-439]. The rationale of this approach is based on the 

fact that cells can create their own tissue-specific ECM, bypassing the need for artificial devices and 

their shortfalls. The first in vitro study demonstrated that such cellular assemblies resemble the 

nonlinear behaviour of immature tendons [440]. Using rat TSCs, a neotendon tissue was formed 

that after eight weeks in a rat patellar tendon defect model showed marked improvement in 

histological scores, tissue alignment and mechanical properties, as compared to naturally healed 

control [441]. Unfortunately, such technologies require prolonged culture time to develop an 

implantable device with sufficient strength, which is often associated with phenotypic drift and 

cellular senescence [442]. To this end, the use of cell-sheets combined with biodegradable meshes 

[443] or tissue grafts [444] has been advocated as means to create a mechanically stable implantable 

device, with the latter showing better results than the graft or the cells alone intervention in a rabbit 

model. An alternative strategy that bypasses the use of the carrier systems and their limitations is 

based on the principles of macromolecular crowding [445-448]. Indeed, the addition of negatively 

charged macromolecules in the culture media (Figure 6), by imitating the naturally crowded in vivo 

context, dramatically accelerates the conversion of procollagen to collagen, resulting in a 30- to 80- 

fold increase in tissue-specific ECM deposition. Using human TCs, a rich in ECM and cohesive 

cell-sheet was produced with intact cell-cell and cell-ECM junctions as early as 6 days in culture, 

without any negative effects in TC functions [449]. Despite these advancements, a complete three-

dimensional tendon-equivalent has yet to be developed.  
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8. Conclusions 

It is undeniable that recent advancements in engineering, chemistry and biology have made 

available numerous technologies that can be utilised for tendon repair and regeneration. Two- and 

three-dimensional fabrication technologies have realised tissue facsimiles that closely imitate the 

properties of native tendon tissue, control cellular fate in vitro and promote directional neotissue 

formation in vivo. Improved processing, decellularisation and recellularisation strategies reinstate 

the potential of allogeneic and xenogeneic tissue grafts. Novel chemistries allow for localised and 

sustained delivery of pharmaceuticals, biologics and cells at the side of injury. 

However, none of the current therapies restores tendon function to the state prior to injury, as every 

single therapy has its distinct failure modes, and all fail to closely match the native tendon 

biomechanics over prolonged period of time in vivo. Further, knot improving and stress relieving 

mounting strategies should be developed to enhance functional regeneration. Strategies that provide 

continuous and sufficient mechanical properties and gradients of stress distributions from bone 

attachment surfaces, seen in native ligaments, will likely offer decreased failure rates. 

It is also imperative to understand the in vivo milieu prior to injury and the biological events that 

take place thereafter. Only then we will be in position to develop clinically relevant carrier systems 

loaded with efficacious pharmaceuticals / biologics and sufficient density of suitable viable cells 

that will effectively interact with the host and promote functional tendon repair, remodelling and 

regeneration, avoiding scar and foreign body responses are also likely to succeed. 

Overall, systems that will provide sufficient mechanical integrity, biological / biochemical cues and 

suitable cell types will continue to be at the forefront of academic, industrial and clinical research, 

promising to deliver functional regeneration through rehabilitation in the years to come.  
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10. Tables 

Table 1: Common injuries presented in human and equine subjects, provided along with current treatment strategies and respective limitations. 

Species Tendon Injury Treatment Limitation Ref 

Human 

Hand extensor / 

flexor tendon 

Immobilisation (splint) 
Scar tissue leads to loss / reduction of 

motion. Joint stiffness is often experienced. 

[28, 450, 451] Steroid injection Serious doubts over effectiveness. 

Open Surgery: Kessler stitch 
Re-rupture rate following surgery is as high 

as 4 to 18% worldwide. 

Achilles tendon 

(rupture) 

Cast immobilisation 
Susceptible to re-rupture at a rate of about 

11%. 

[23, 452, 453] 

Functional cast 
Low re-rupture rate of 1-2%, but high 

complication rate of 12.5%. 

Open Surgery: Kessler stitch 
High re-rupture rate of 8% and nerve injury 

of 13%. 

Tissue grafts Failures seen at tissue intersect points. 

Biomaterial repair 
Inadequate mechanical strength and foreign 

body response. 

Rotator cuff (tear) Steroid injection Up to 40% failure rates have been reported. [2, 454-458] 
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Open surgery: Decompression 

and debridement 

Often associated with deltoid dysfunction 

and postoperative pain. 

Biomaterial repair 
Inadequate mechanical strength and foreign 

body response. 

Patellar tendon (tear) 
End-to-end suture 10 out of the 13 repairs are effective. 

[459] 

Tissue grafts Limited availability, pain at donor site. 

ACL (rupture) Tissue grafts Up to 13% re-rupture rate. [460] 

Equine 

Superficial digital 

flexor tendon injury 

Cold therapy & compression 

bandaging 

23 to 67% will re-injure their tendons within 

2 years of the original injury. 
[43, 46] 

Immobilisation (splint) Associated with stiffness and fibrosis. 

Autologous cell therapy Questionable cell survival / localisation. [44, 461, 462] 

Deep digital flexor 

tendon injury 

Conservative treatment (rest 

and reduced activity) 
Return to exercise is not recommended. [51, 52] 

Digital extensor 

tendon laceration 

Three-loop pulley 

tenorrhaphy technique 

Adhesions and septic tenosynovitis are 

common complications. 
[54] 

Suspensory ligament 
Conservative treatment (rest 

and reduced activity) 

Return to exercise is not recommended for 

several months. 
[463, 464] 
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Shock wave therapy 
Evidence of disorganised tissue. 

Not suitable in severe cases. 
[465, 466] 

PRP treatment No standardised treatment protocol. [467-469] 

  



33 

Table 2: Cellular composition and characteristics of tendon tissue. 

Healing 

Mechanism 
Cell Population Location Morphology Dimensions (µm) Ref 

Intrinsic 

Healing 

Tenocytes 
Throughout tendon, surrounding 

collagen fibrils 
Elongated, spindle shape 

Width: 8 – 20 

Length: < 300 
[470] 

Tenoblasts 
Throughout tendon, surrounding 

collagen fibrils 
Polygonal 

Width: 8 – 20 

Length: 20 – 70 
[62] 

Tendon stem cells Throughout tendon 

Species, tendon, development 

stage dependent morphology 

(e.g. cobblestone, square, 

round, spindle) 

Width: 20 – 30 

Length: 20 – 30  
[65, 66, 471] 

Extrinsic 

Healing 

Chondrocytes Close to bone junction Polygonal 
Width: 10 – 15 

Length: 10 – 15 
[472] 

Vascular endothelial 

cells 
Surrounding vascular network Cobblestone / square 

Width: 8 – 12 

Length: 8 – 12 
[473] 

Synovial cells Tendon sheath 
Elongated, with extended 

cytoplasmic projections 

Width: 10 – 50 

Length: ≤ 200 
[474, 475] 

Smooth muscle cells 
Musculotendon junction, internal 

and external tendon capillaries 
Cobblestone / square 

Width: 20 – 30 

Length: 20 – 30 
[64, 476] 

Perivascular cells 
In the walls of internal and 

external tendon capillaries 
Elongated, spindle shape 

Width: ≤ 50 

Length: ≤ 300 
[68, 69] 

Mesenchymal stem Migrate from surrounding tissues, Elongated, spindle shape Width: 10 – 20  [70, 477] 
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cells especially bone marrow Length: 100 – 300 

Adipose derived stem 

cells 
Surrounding fat pads Elongated, spindle shape 

Width: 10 – 20 

Length: 100 – 300 
[72] 
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Table 3: Mechanical properties of native tendon tissues and tendon substitutes 

Tissue / Biomaterial Stress (MPa) Strain (%) Modulus (MPa) Reference 

Equine digital flexor / extensor 65 – 160 12 – 22 613 – 1220 [478-480] 

Human Achilles 29 – 86 4 – 22 1.9 – 822 [481-483] 

Human rotator 14 – 45 1 – 11 14 – 629 [484-486] 

Human patellar 5 – 65 5 – 15 1500 – 1800 [487, 488] 

Human Achilles graft 16 1 201 [489] 

Human patellar graft 26 – 95 13 – 31 191 – 660 [490] 

Human tibialis graft 81 – 105 13 – 40 1 – 905 [491-493] 

Collagen-based materials 1 – 355 1 – 60 3 – 4272 [257, 359, 494-497] 

Silk-based materials 500 – 972 4 – 20  [373] 

Synthetic micro-fibres 435 – 840 22 – 45  [498] 

Synthetic nano-fibres 1 – 474 1 – 11 2 – 14 [171, 410, 422, 499-502] 
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11. Figures 

Graphical Abstract: Injectable systems, anisotropic materials and tissue engineering by self-assembly therapies for human and equine injuries. 
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Figure 1: Spatial distribution of cellular and matrix components in tendons. 
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Figure 2: The three phases of tendon healing (inflammation, repair, remodelling) and associated events, as a function of time, and the respective 

functional performance of the tendon. The repaired tendon will never achieve complete recovery to the state prior to injury. 

 
  



39 

Figure 3: Transmission electron microscopy revealed that extruded collagen fibres exhibit the characteristic quarter-staggered periodicity of collagen, 

in addition to a high order axial alignment, parallel to the fibre axis (a). This axial alignment is responsible for undulation and crevices that run parallel 

to the longitudinal axis of the fibre (b). These surface characteristics induce parallel to the fibre axis tenocyte elongation as early as 24h in culture (c). 

A fibre bundle, suitable for tendon repair, is formed, when several fibres are put together (d). 
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Figure 4: Using a rotating collector, aligned electro-spun fibres can be produced (a). This anisotropic topography maintains the physiological 

elongated tenocyte morphology in culture (b). Such materials can be used as tendon sheaths (c) or, when rolled, as a full tendon replacement device. 
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Figure 5: Using imprinting technologies, substrates with precise topographical features, ranging from nano- to micro level, can be created (a and b). 

Among them, anisotropic substrates (c) have been shown to maintain physiological TC morphology (d). 
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Figure 6: Macromolecular crowding, the addition of inert macromolecules in the culture media, dramatically accelerates the conversion of procollagen 

to collagen and the production of a rich in ECM cell layer (a). In tenocyte culture, among others, significant increase in collagen type I (c) and collagen 

type III (e) deposition has been observed, as compared to the non-crowded counterparts (b and d respectively). 
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