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Abstract
Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological
and medical applications. Its well characterized structure and role as an extracellular matrix
protein make it a highly relevant material for controlling cell function and mimicking tissue
properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified
protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from
a solubilized form, with an emphasis on in vitro studies in which collagen structure can be
controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is
described, with an emphasis on how structure is related to function across scales. Methods of
reconstituting collagen into hydrogel materials are presented, including molding of macroscopic
constructs, creation of microscale modules, and electrospinning of nanoscale fibers. The
modification of collagen biomaterials to achieve desired structures and functions is also addressed,
with particular emphasis on mechanical control of collagen structure, creation of collagen
composite materials, and crosslinking of collagenous matrices. Biomaterials scientists have made
remarkable progress in rationally designing collagen-based biomaterials and in applying them to
both the study of biology and for therapeutic benefit. This broad review illustrates recent examples
of techniques used to control collagen structure, and to thereby direct its biological and
mechanical functions.
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1.0 - Introduction: Collagen as a Biomaterial
The collagens comprise a superfamily of proteins that includes over 20 members of varying
abundance, functionality, and distributions within tissues. The topic of this review is the
fibrillar protein collagen type I, one of the most common structural elements in a variety of
tissues and a widely used protein in the field of biomaterials. Its unique properties and
relative abundance in living tissue have made it an appropriate choice in a variety of
restorative applications throughout medical history, and more recently it has been a key
material in tissue engineering and regenerative medicine.
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Two of the earliest papers to examine the structure of collagen focused on the spacing
between repeating modules of the crystalline polypeptide chains of connective tissues like
tendon, hair, and gut [1, 2]. Continuing studies of the basic crystalline structure of collagen
led to elucidation of the primary structure in the 1950s, which facilitated a more
fundamental understanding of the protein’s mechanical and chemical properties. In 1954,
Ramachandran described the hexagonal packing of the helical secondary structures in the
collagen molecule [3]. Over the next two years Rich and Crick [4] and Ramachandran [5]
revised and validated the proposed helical structure. A comprehensive history of the
evolution of our understanding of collagen structure is provided in Beriso et al [6].

The current model of the basic unit of collagen (the “tropocollagen” molecule) consists of a
helical quaternary structure called a Madras triple helix, which is composed of three left
handed alpha helices. In the collagen type I isoform, two of the chains are identical and the
third has a similar but distinct sequence. The alpha chains are composed of repeating motifs
of three amino acids that typically have of a glycine at every third interval. Glycine is the
smallest essential amino acid, and its presence in the chain allows the rotational freedom
needed to form a helical structure. Proline and hydroxyproline (and less frequently
hydroxylysine) are other important components of the helices that impart structural and
functional features. Inter-chain covalent and hydrogen bonding between the residues of
these amino acids imparts stability and rigidity to the molecule. The remaining cohort of
amino acids on the collagen type I molecule have a variety of residues that impart
biochemical and physical attributes important for cell attachment and other biological
functions.

An important characteristic of collagen type I is its well understood hierarchical structure
from the nanoscale to the macroscale, shown schematically in Figure 1. Cells internally
synthesize, modify, and assemble the alpha chains into a procollagen form, which is secreted
to the extracellular space and then partially cleaved by specific enzymes to form the
tropocollagen molecule. These nanoscale subunits (typically about 1.5 nm in diameter and
300 nm in length) further self-assemble into fibrils that consist of multiple tropocollagen
molecules, which can be tens to hundreds of nanometers in diameter and on the order of
microns in length. The tropocollagen molecules are covalently bound to each other in a
staggered manner, giving collagen fibrils a distinctive banded pattern when viewed at high
magnification. Fibrils can then assemble into larger and longer fibers and fiber bundles on
the order of microns to centimeters in scale, and such fibers are major structural components
of many tissues (Figure 2). The intricate and highly organized architecture of collagen
materials, from the level of alpha helices to fiber bundles, results in a stable extracellular
matrix protein with high tensile strength.

The well understood structure and the remarkable biochemical and physical properties of
collagen have made it a widely used biomaterial in a variety of applications. Collagen is an
excellent attachment substrate for cells, which can recognize and bind to the protein through
integrin receptors (reviewed in e.g. [7, 8]). Cells not only attach to collagen but can also
degrade it by secreting specific enzymes and can synthesize new collagen via intracellular
production and export to the extracellular space. In this way, cells remove, remodel, and
replace collagen, a process that is important in the homeostasis of many tissues and organs.
In addition to its biological relevance, a key advantage of this material is its abundance in
tissues across species. Collagen type I accounts for over 25% of the protein mass in
mammals, and it can be isolated in relatively large quantities using straightforward
biochemical methods. These cellular interactions and the natural abundance have been
exploited by biomaterials scientists to design, develop, and fabricate collagen-based
materials and engineered tissues.
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This review describes some of the strategies that have been used to create, control, and
modify the structure and function of three-dimensional collagen-based biomaterials. In
keeping with the theme of this special issue of Acta Biomaterialia, the emphasis is on how
our understanding of the key biochemical and physical properties of collagen has been used
in biomaterials design across length scales. Figure 1 schematically shows the structure of
collagen type I across length scales, as well as how these structural features relate to the
function, fabrication, and modification of collagen hydrogels. We examine strategies that
can be applied to control the fabrication and remodeling of collagen materials, and thereby
can affect their structure as well as biological and mechanical function. Due to the wide
range of work in this area that dates back over 40 years, this review cannot be an exhaustive
treatment of the subject. Rather, we highlight some relevant examples of how collagen
structure and function have been manipulated for the purposes of biomaterials science. We
attempt to cover some of the seminal contributions in this area, but concentrate on advances
that have been made over the last decade.

We have focused this review on three-dimensional “reconstituted” collagen type I
hydrogels; that is, materials that are formed from isolated collagen that is solubilized and
then re-assembled under controlled conditions to generate desired three dimensional
architectures and functions. A key advantage of these materials is that cells can be
incorporated directly into the matrix at the time of fabrication, and therefore many of our
examples highlight cell-containing systems. Our focus is not intended to downplay the
importance of other forms of collagen materials such as foams, sponges, and dehydrated
scaffolds, or the variety of decellularized native matrices recently developed. On the
contrary, we recognize that these are among the most widely used biomaterials in
regenerative medicine, and refer the reader to recent reviews on these materials [9, 10, 11,
12, 13]. In addition, we have limited the large majority of our analysis to in vitro efforts,
because of the high variability and dynamic environment inherent in implantation of
collagen materials. Therefore, our goal is to provide an overview of strategies that
biomaterials scientists can use in the lab to direct the structure and function of cell-seeded
collagen type I hydrogels. We hope that this review provides a starting resource for those
interested in the topic, and the reader is encouraged to delve further into the cited primary
literature for details. For those already well versed in the applications of protein-based
hydrogels, we hope this review will provide a concise compilation of recent strategies for
controlling collagen structure and function.

2.0 - Isolation and Reconstitution of Collagen into Hydrogel Materials
The recognition that collagen is an abundant and critical component of the extracellular
matrix quickly led to an interest in its applications in biology and medicine. Collagenous
substrates were used in cell culture as early as the 1930s and were quite widely investigated
by the 1950s [14, 15, 16]. By the 1970s, the desire to mimic the extracellular matrix led to
the use of isolated collagen in three dimensional cultures [17].

A key feature of isolated collagen is that it can be reconstituted into solid-phase materials
and rehydrated to form robust hydrogels. For the purposes of this review, the hydrogel form
is of most interest, because collagen in this form has been used widely as a biomaterial to
emulate the extracellular matrix. A hydrogel is generally defined as a material that absorbs
large quantities of water yet behaves as a solid. The solid phase of the material represents
only a small fraction of the total mass and volume, but provides structure to the material in
an aqueous environment. In the case of reconstituted collagen, the formed fibrils sequester
water but resist swelling and dissolution of the material. The fibrils are physically enmeshed
and in some cases covalently linked, providing resistance against swelling-induced tensile
forces.
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The basic method for isolating collagen type I from collagen-rich tissues such as tendon and
dermis is straightforward, and involves breaking the tissue down via enzymatic digestion
and/or dissolution in acid. The preferred process depends on the intended application and the
desired characteristics of the collagen, and is different depending on the species [18, 19] and
type of tissue [20, 21]. In these processes, collagen-rich tissues are immersed in either
enzymatic or acidic solutions (or in some cases both) to degrade the tissue and release the
protein into a solvent. The procedure varies with enzyme and acid strength, though typically
several days are required to fully break down the tissue. The efficiency and results of the
isolation process are dependent on the structure of the collagen. In particular, highly
crosslinked tissues are more resistant to acid solubilization [22] and therefore enzymatic
degradation is useful in liberating the collagen protein [23]. Enzymatic action cleaves the
telopeptides on the ends of the collagen molecule that help stabilize the molecular structure,
and therefore increases the efficiency of dissolution [24]. However, the lack of telopeptides
on isolated collagen molecules has also been reported to alter its characteristics as a
biomaterial [25, 26].

The general process for reconstituting dissolved collagen and thereby creating collagen
hydrogel constructs has been used widely since the 1970s. Solubilized collagen is
maintained at low pH and low temperature to prevent annealing of the dissolved peptide
fragments. Raising the pH and temperature allows aggregation and covalent bonding of the
collagen fragments to reform fibrils and create a hydrogel structure. Typically, solubilized
collagen is poured into a mold and then exposed to a neutralizing agent, such as exposure to
ammonia vapor to initiate fibrillogenesis [27]. More recently, sodium hydroxide solutions
have been used for this purpose, and can be directly mixed with cold collagen solutions
immediately prior to introduction into a mold. Subsequently raising the temperature initiates
collagen fibrillogenesis and gelation of the construct. Importantly, these hydrogels can be
made at physiological pH and temperatures, which allows incorporation of other biological
components. Culture medium, serum, other protein constituents, and cells all have been
incorporated into collagen hydrogels in efforts to mimic key aspects of the physiological
environment. Varying the pH and temperature during gel formation has been shown to affect
the structure of collagen gels. Lower pH leads to more compliant materials with decreased
fibril diameter [28, 29], possibly due to protonation of the COOH groups and a consequent
reduction in interactions between the carboxyl and amino acid groups [30]. Higher
temperatures affect the structure of nascent collagen by providing energy to increase the rate
of fibrillogenesis and decrease both the diameter of the fibers [31] and the pore size in the
meshes [32], which can result in increased mechanical properties [33].

2.1 – Molding of Macroscopic Constructs
The straightforward method for reconstituting collagen hydrogels from solutions of isolated
protein is an advantage when creating biomaterial constructs in a variety of shapes and sizes.
It allows three dimensional hydrogel constructs to be fabricated via reproducible and
flexible molding procedures in which the liquid collagen solution is introduced into a
preformed template of desired geometry. This method probably offers the most direct
approach to defining the macroscopic features of the biomaterial construct, and can be used
to create large scale samples for both experimental and therapeutic application. Figures 3A
[34] and 3B [9] show examples of macroscale constructs created in simple disk and tube
shapes via molding and gelation.

A useful application of hydrogel molding is creating collagen constructs in geometries that
facilitate application and/or measurement of macroscopic mechanical properties. For
example, hydrogel constructs can be shaped into the “dogbone” geometry that is
conventionally used for tensile properties measurement of a variety of materials [35, 36, 37].
This shape facilitates gripping of the material while also providing a consistent gauge
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section. However, gripping of hydrated collagen materials without tearing them is
challenging, and therefore collagen constructs can also be made as rings that can be
suspended between stirrups for mechanical testing [38, 39, 40]. Alternately, the ability to
“mold-in-place” can be used to create tight integration of collagen constructs with
mechanical grips or actuators, for example by gelling the collagen solution around porous
grips [41] or strategically placed posts (Fig 3C, D)[42]. Such a strategy can be used to
measure cell-generated forces in three dimensional collagen hydrogels using micromolded
cantilevers (Fig. 3E, F) [43]. In addition, geometries conducive to compressive testing are
also easily fabricated, and usually are in the form of disks or cylindrical samples.

The variety of construct geometries described above can be used to determine conventional
macroscopic sample and material properties such as stiffness, strength, and toughness, by
analyzing uniaxial or multiaxial stress-strain data. However, collagen hydrogels typically
exhibit viscoelastic properties due to their high water content and interaction between the
solid and liquid phases. The ability to mold collagen also facilitates the creation of samples
for viscoelastic testing. To this end, rheometric analysis has been performed to assess
collagen gelation behavior [44, 45] and differences between material formulations [46, 47,
48], as well varying construct geometries and architectures [49].

The inclusion of a cellular component embedded in collagen hydrogels at the time of
fabrication adds another means of control, as well as substantially more complexity, to the
molding and subsequent remodeling processes. One of the most well characterized processes
is the capability of embedded cells to exert forces on collagen fibers and to “compact” or
“contract” three dimensional collagen hydrogels, as shown in Figure 4 [50, 51]. A variety of
cell types exhibit this behavior, in which the volume of a three dimensional collagen gel is
reduced through matrix densification and expulsion of water. This process requires force
generation by the cells [52, 53], and often results in dramatic remodeling of the matrix. It is
at least partially mediated by the matrix metalloproteinase class of proteolytic enzymes,
since inhibition of these pathways has been shown to prevent gel compaction [54, 55, 56,
57]. Embedded cells also can remodel collagen to align the fibrils, typically in response to
mechanical forces. When collagen gels are constrained from compacting freely, tensile
stresses are generated as the cells pull on the fibrils. This effect has been explored by
comparing mechanically constrained cell-seeded gels to similarly prepared unconstrained
gels that have been completely released from the mold walls and allowed to compact freely
[50, 58, 59]. Constraining the hydrogels results in marked differences macroscopically, and
in cell and fiber alignment at the microscale. This phenomenon has been harnessed to create
patterned and aligned fibrillar matrices, using molds with strategically placed constraints
[60, 61] and posts [42, 51].

Control over the internal architecture of macroscopic collagen matrices can also be achieved
using other methods applied during gel formation. Micropatterned molds have been used to
create desired surface topographies and microstructures [62]. Microfluidic techniques have
been used to create collagen matrices containing perfusable channels [63, 64, 65], gradients
in collagen morphology [66], and to create stable interfaces within engineered tissues [67].
The degree of compaction of the matrix can also be externally influenced by applying plastic
compression during or after gel formation [68, 69]. Therefore, there are a number of
strategies that can be combined to define both the macroscale and microscale features of
collagen gels, and which involve relatively straightforward manipulation of the collagen
molding and gelation processes. While control over the matrix structure provides the ability
to vary the functional properties of the material, it remains a challenge to independently vary
structural properties. However molding of collagen hydrogels does provide facile control of
a richly functional extracellular matrix protein and therefore offers advantages in creating
biologically relevant biomaterials.
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2.2 – Modular Microtissues
While the ability to create large tissue structures using collagen is valuable in some
applications, there has been a growing trend to create smaller, modular microenvironments
that can then be assembled into larger architectures [70, 71, 72]. One advantage of this
approach is that modules may be made small enough to be injectable, providing the
possibility of assembling larger-scale components while still using minimally invasive
delivery. Another advantage is that multiple types of modules can be created separately, and
can then be assembled into larger multiphase constructs that consist of multiple module
types in defined architectures. Cells can be embedded within the modules at the time of
fabrication and/or can also be seeded on the surface of the modules. The properties and
composition of the modular units can be tailored to promote specific cell functions and
differentiation into desired tissue types, though determination of the mechanical properties
of micro-scale modules can be challenging.

Several approaches have been taken to create modular collagen-based biomaterials. Pure
collagen modules have been generated using an extrusion process to create long collagen
threads, which can then be cut into modular cylindrical units (Fig. 5A, B) [73].
Incorporation of stromal cells in the collagen matrix and subsequent coating of these
microscale modules with endothelial cells has been shown to lead to assembly of larger
vascularized organoids when these preparations are cultured under flow in vitro [74].
Similar collagen-based modules have been used to promote neovascularization in vivo [75,
76, 77], for cardiac applications [71], and for pancreatic islet transplantation [75]. In an
alternate approach, pure collagen microspheres ranging from 1-3 mm in diameter have been
produced by creating neutral collagen droplets and allowing them to gelate on a non-
adhesive surface [78]. Pure collagen modules have also been used for cartilage tissue
engineering [79], and creation of layered skin [80], and these collagen modules have been
used to create multiphase tissue constructs containing different cell types [81]. A
microfluidic technique has also been used to create cell-laden collagen microspheres [82], as
well as acellular pure collagen microspheres, which were subsequently coated with cells and
used to demonstrate assembly of monoculture and co-culture aggregates [83]. Such collagen
modules have also been modified to enhance their desired properties, for example, by adding
hydroxyapatite or chitosan [84, 85, 86, 87]. The modular format of these constructs provides
a great deal of flexibility to create structures with defined architectures and multiple phases.

Collagen-based composites have also been used to create modular tissues. Emulsification of
solubilized collagen and agarose in a hydrophobic phase can be used to produce highly
spherical and uniform “microbeads” (100-300 μm in diameter) containing embedded cells
[88, 89]. The fabrication process is similar in principle to creating macroscopic collagen
constructs, and the composition of these microbeads can be altered to suit the application.
For orthopedic tissue engineering purposes, collagen-chitosan materials have shown promise
[90, 91, 92], and have also been used to create modular microbeads (Fig. 5C, D) [93]. This
formulation has been used to embed cells and to create cohesive, multiphase macroscopic
constructs composed of regions of aggregated microbeads in prescribed geometries (Fig. 5
E-G) [94]. Alginate has also been combined with collagen using an electrostatic dispersion
method to create cell-containing beads 200-3000 μm in diameter for cardiac regeneration
[95].

In an effort to achieve improved resolution and more precise control over construct
organization at the microscale, a variety of fabrication techniques have been developed.
Bioprinting and layering of collagen and cells has been investigated to create tissue
structures resembling skin [96, 97] and cartilage [98]. These methods can now be used with
materials of varying properties and are able to maintain cell viability [99]. Other

Walters and Stegemann Page 6

Acta Biomater. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mechanisms based on the molecular interactions of collagen molecules in solution also have
been applied to create ordered and well defined materials at the microscale [100, 101].

2.3 – Electrospinning of Collagen
The fibrillar nature of in vivo collagen has resulted in a variety of efforts to mimic this
element of its structure. Electrospinning is a technique that has been used for decades to
create polymer fibers, and which more recently has been applied to fabricating meshlike
biomaterials [102, 103]. The principle involves applying an electric field to draw out a fine
thread of charged polymer solution, such that the solvent evaporates and a solid fiber is
formed. Typically, the polymer solution is ejected from a syringe and is drawn toward a
charged collection plate or drum, where it is collected as a fine polymer strand often on the
order of tens to hundreds of nanometers in diameter. Whipping of the strand or spinning of
the collection drum allows collection of large quantities of the thread in a meshlike
configuration, as shown in Figure 6 [110, 118]. Controlled collection can be used to create
aligned or patterned meshes, and sheets of mesh can be layered to produce collagen
constructs with different phases and corresponding properties [104, 105].

Collagen has been used in electrospinning for over a decade [106, 107], but because of its
protein nature and susceptibility to denaturation, it has not been widely used in its pure form
in this application. Typically, volatile organic solvents are used for electrospinning, which
can alter the conformation of the dissolved collagen peptides [108] and prevent reassembly
into fibrils that exhibit the native staggered configuration and distinctive banding pattern.
Such malformed fibers are not stable in water and will dissolve over time [109, 112]. In
addition, the toxicity and high salt content of the solvents conventionally used in
electrospinning have hampered its use in cell-contacting situations. However, more recent
efforts have resulted in the ability to electrospin collagen from relatively benign solvents,
such as mixtures of ethanol and water [110], and crosslinking strategies have been
developed to enhance the stability of even very thin fibers [111, 112]. These resulting fiber
meshes are not hydrogels themselves, however, they are typically hydrated for use with
cells, and the resulting matrices resemble fibrillar hydrogels.

The difficulty in electrospinning pure collagen has resulted in the use of composite materials
that contain both collagen and a supporting material to produce biomimetic fibers.
Polyethylene oxide (PEO) has been shown to facilitate electrospinning of natural materials,
and has been used as an additive to collagen [106]. Composites of collagen and other
extracellular matrix components including elastin [113, 114] and hyaluronan [115] have also
been electrospun, though in these cases the resulting material is a blend of the components,
rather than a mix of fiber types. Other naturally-derived materials such as silk [116, 117],
chitosan [118, 119] and hydroxyapatite [120, 121] also have been combined with collagen
for electrospinning. Similarly, synthetic polymers have been used to stabilize composite
fibers containing collagen, though in this case organic solvents are typically required. A
range of polymers have been used in this capacity, including polycaprolactone [122],
polylactide-polyglycolide [123], polyurethanes [124], as well as blends of these materials
[125]. Electrospun fibers containing significant fractions of collagen or other proteins
typically also require crosslinking to maintain their stability [111, 126, 127]. While the
fibrillar structures formed by electrospinning of pure and composite collagen materials have
been shown to generally be better substrates for cell adhesion than purely synthetic
materials, they typically lack the full functionality of native collagen.

3.0 - Modifying the Properties of Collagen Biomaterials
In addition to specifying the structure of collagen-based biomaterials at multiple scales via
controlled fabrication, their properties can be affected by other strategies that directly target
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the composition and morphology of the material. These treatments can be application-
specific in that the collagen is modified or augmented to exhibit key features of specific
tissue types.

3.1 - Mechanical Control of Collagen Structure
The mechanical environment in load-bearing tissues is complex and dynamic, and
collagen’s role as an important structural element in many of these tissues suggests a link
between mechanical forces and collagen structure. Cells are not only the site of biochemical
synthesis of the collagen molecule, but are also physically involved in guiding fibril
formation and the development of larger structures [128, 129, 130, 131]. The response to
mechanical strain of both the collagen matrix, as well as cells embedded in such matrices,
has been exploited to enhance the structure and function of collagen biomaterials.

Tensile strain has been used widely to direct collagen assembly and remodeling (Fig. 7A)
[41]. Uniaxial strain has been shown to induce alignment of cells and matrix parallel to the
direction of tensile force (Fig. 7B, C) [41, 132]. Similarly, cyclic circumferential stretch of
smooth muscle cell-seeded tubular collagen hydrogels has the effect of aligning both the cell
and matrix components in a direction to resist the stress, and thereby increases the
mechanical properties of the constructs [38, 133]. These effects are presumed to be cell-
mediated, since cells sense forces through their binding interactions with the collagen
molecule, and it has been observed that physiological levels of strain do not induce fiber
alignment in acellular gels [134]. However, application of high levels of strain (30-50%) has
been used to align acellular collagen constructs, with concomitant decreases in fibril
diameter and increases in the tensile mechanical properties of the constructs [135].

Compression of cell-seeded collagen hydrogels also has impact on collagen architecture and
subsequent function. Sustained compression compacts the gel and leads to structures with
higher density [136], increased fiber diameter, and decreased pore size [137]. In this
plastically compressed system, the cellular component is not required to achieve fiber
reorganization and the resultant increases in mechanical properties [138]. Efforts to model
these interactions and their effects have provided insight into both the mechanism of
alignment [139, 140] and their effects on construct mechanical properties [141]. The
interplay between applied mechanical forces, cellular responses, and the resulting
remodeling of three dimensional collagen matrices is complex, but offers a powerful toolbox
of techniques to modulate structure.

Fluid flow and the shear stresses it produces can also be used to direct the formation and
remodeling of collagen matrices. Fibroblasts in three dimensional collagen gels respond to
low (interstitial) flow rates by aligning perpendicular to the flow direction, and the matrix is
subsequently realigned in the same direction [142]. The aligning effect of flow is also seen
to a smaller extent in acellular collagen gels, suggesting that matrix-mediated contact
guidance is also the mechanism for flow-induced cellular alignment [143]. Flow and
mechanical strain have been combined in three dimensional collagen hydrogels [144] and
can have both distinct and interacting effects on an embedded cellular component [145].

Microfluidic approaches offer excellent spatial control over creation of collagen
architectures, and have been used to make graded and multiphase collagen constructs.
Guided in situ collagen fiber assembly can be harnessed to create stable interfaces between
distinct collagen gel phases [67]. A similar method has been applied to create local
variations in collagen fiber size and density by taking advantage of the effects of
temperature and protein concentration on collagen matrix assembly. This approach has used
to fabricate graded multiphase engineered tissues [66]. Gradients in mechanical properties
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also have been created in collagen hydrogels by carefully controlling the infusion of
crosslinking agent using microfluidic techniques [146].

Tropocollagen is a dipolar molecule and its property of self-assembly results in a fibril with
a permanent dipole moment. This physicochemical feature of collagen has been harnessed to
magnetically align nascent fibrils perpendicular to the magnetic field direction as they are
forming [147]. Magnetic alignment also has been used to orient the fibers in three
dimensional collagen gels for the purpose of providing guidance cues to cells [148] and it
has been demonstrated that the extent of alignment corresponds to the length of exposure
(Fig. 7D, E) [149]. Magnetic collagen alignment increases the mechanical properties of the
materials, however the field strength required to obtain oriented gels is high, generally above
6 T. Magnetic beads have also been incorporated into collagen solutions, so that they have a
physical action on the gel during fibrillogenesis. In this case, simple bar magnets placed
adjacent to the forming gels can induce alignment of the protein fibers [150, 151].

3.2 - Composite Collagen Hydrogels
The rationale behind creating composite materials is to combine two or more distinct
materials to yield a new material with enhanced properties and function. This strategy has
been applied to collagen type I in a variety of ways. This section focuses on the creation of
“mixed” composites, which consist of materials that are homogeneous at the macroscale but
which may have separate phases at the microscale (Figure 8) [92, 114, 152], as opposed to
“laminar” composites that are created by combining macroscopic layers of separate
materials. Collagen hydrogels are amenable to this approach because other materials can be
added during gel fabrication and become an integral part of the matrix. Such composites can
be designed to mimic desired elements of native tissue function, since all tissues can
essentially be viewed as composite hydrogels.

An intuitive approach to collagen-based composite design is to augment the matrix with
other extracellular matrix components that are also found in native tissues. Elastin has been
used in this way [153, 154] to modulate the mechanical properties and recoil properties of
the matrix [155, 156, 157]. Hyaluronan is an important component of many mammalian
tissues, and similarly has been incorporated into collagen hydrogel materials [158, 159, 160]
to enhance the sequestration of water and to provide compressive resistance. Other
extracellular matrix proteins also have been used to augment collagen, including fibronectin
[161], laminin [162, 163], Matrigel® [164, 165] (a mixture of basement membrane
proteins), and other isoforms of collagen [166].

The clotting protein fibrin has been used in combination with collagen [167, 168], and is of
particular interest as a biomaterial because of its relative abundance, as well as its
remarkable biochemical and mechanical properties [169, 170]. While collagen type I is
reconstituted using a pH and temperature-dependent mechanism, the insoluble fibrin protein
is formed from its soluble precursor, fibrinogen, through enzymatic cleavage. This allows
collagen and fibrin fibrils to be formed separately, creating interpenetrating fibrillar
networks that result in robust hydrogels, either with or without an added cellular component.
Varying the concentration and ratio of collagen:fibrin, as well as the type and concentration
of enzyme used to initiate fibrillogenesis has been shown to modulate the microstructure
[171, 172], macrostructure [39], and mechanical properties [40, 172] of collagen-fibrin
composite matrices. In addition, the presence of fibrin in collagen biomaterials affects cell
signaling and gene expression [173, 174], and therefore careful design of these and similar
matrices can be used to promote desired tissue-specific functions.

Composites of collagen with synthetic polymers have also been investigated. Polyethylene
glycol (PEG) can be used in hydrogel form, and has been combined with collagen to
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produce composites either by physical entanglement [36] or by covalent bonding of
polymers [175, 176]. Such materials have been shown to have enhanced interactions with
cells, relative to PEG alone [177]. Degradable polyesters such as polylactic acid [178],
polyglycolic acid [179], and polycaprolactone [180] are used widely as biomaterials,
particularly in the area of regenerative medicine. However they do not form true hydrogels
and their use in conjunction with collagen typically involves enhancing the surface or filling
scaffold pores with protein to create a more cell-adhesive environment, or they are used as
raw materials for electrospinning as described above. Another approach has been to create
collagen-mimetic peptides that have defined sequence to promote self assembly, cell-
adhesion, or other desired characteristics [181, 182]. These peptides have been immobilized
to biomaterial surfaces [183] and have been conjugated to synthetic polymers to create
hydrogels [184, 185, 186].

Addition of particulates to collagen materials to create composites has been widely explored
to add strength and functionality to the matrix. For orthopaedic applications, calcium
phosphate particles are a logical additive because of the mineralized nature of bone.
Hydroxyapatite or tricalcium phosphate in micro- or nano-particulate form are often used in
this application because they mimic the specific inorganic component of bone tissue. These
additives are used less commonly in hydrogels but are widely used to augment freeze dried
or electrospun collagen scaffolds (reviewed in Holzwarth et al. [187]). Hydrogel composites
containing hydroxyapatite have shown enhanced cell adhesion and proliferation and
collagen-hydroxyapatite formulations injectable through a syringe have been developed
[188, 189]. Collagen has been shown to serve as the nucleation site for hydroxyapatite [190],
and collagen matrices have been mineralized by immersion in simulated body fluid with
high calcium and phosphate concentrations[188, 191]. Mineralization has also been
potentiated by adding additional nucleation centers, including bioactive glass particles [192]
and polymer spheres [193].

Other additives have also been investigated for augmenting the properties of collagen
materials. In addition to mineral nanoparticles, collagen matrices have been doped with
carbon [194], silver [195] and gold [196] nanoparticles. Carbon nanotubes are of particular
interest because they are on the same size scale as collagen fibrils, with diameters on the
order of nanometers and lengths on the order of microns. Hydrogel composites of collagen
type I and carbon nanotubes can be fabricated by dispersing the nanotubes in dissolved
collagen at the time of molding [197]. However, proper dispersion of relatively hydrophobic
nanotubes can be problematic, and a range of functionalization and wrapping strategies have
been used to promote interactions of nanotubes with water and proteins [198, 199].
Integration of carbon nanotubes into collagen hydrogels has been shown to increase the
mechanical properties [200] and electrical conductivity of these composite materials [41,
201]. While synthetic nanoparticles offer the potential to impart new functionality to
collagen materials, a better understanding of the physicochemical and biological properties
of this very broad class of materials is needed in order to rationally design improved
biomaterials. Cellular, tissue, and systemic toxicity of nanoparticules is a vibrant area of
study and promises to illuminate the appropriate uses of nanoparticles in biological and
medical applications [202, 203].

3.3 - Crosslinking Collagen Matrices
Native collagen contains both intramolecular and intermolecular crosslinks that play an
important role in its structure and stability. In native tissues, these bonds form primarily
through the action of the enzyme lysyl oxidase, which creates covalent links between lysine
and hydroxylysine residues. Reconstituted collagen is stable in aqueous media, but the
hydrogel form typically lacks the mechanical properties of native collagenous tissues due to
both a reduced protein density and incomplete molecular crosslinking. Lysyl oxidase-
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mediated crosslinking has therefore been applied ex vivo to increase the mechanical strength
of collagen gels [204]. Non-enzymatic glycosylation, also called glycation, is the process by
which collagen crosslinks are initiated by sugars. While formation of unwanted or excessive
crosslinks is a hallmark of aging and certain pathologies, the crosslinking process can be
harnessed to modulate the properties of collagen matrices. To this end, induced glycation
has also been used to improve the mechanical properties of collagen hydrogel materials
[205, 206].

Carbodiimides have been used extensively to crosslink collagen materials and to immobilize
other proteins to the matrix. In particular, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride (EDC) is frequently used as a water-soluble crosslinker that forms zero-length
bonds directly between collagen molecules. EDC crosslinking increases the mechanical
properties of collagen hydrogels [152, 207, 208] and also increases their resistance to both
hydrolytic [209] and enzymatic [210] degradation. Application of a braided architecture and
EDC crosslinking has resulted in collagen scaffolds with mechanical properties similar to
native ligament tissue [211]. EDC-treated collagen materials have been used extensively in
the presence of cells [212, 213], and a variety of studies have suggested that residual toxicity
is not a concern. Control over the degree of EDC crosslinking can be provided by
modulating the time of exposure as well as by adding ethanol to the reaction [214].

Glutaraldehyde is a widely used crosslinker for biological tissues because it can react with
several functional groups on proteins, and it has been applied as a stabilizer to collagen-
based materials [215, 216, 217, 218]. Although gluteraldehyde is used in collagen-based
bioprosthetic implants, it has has been associated with residual cytotoxity in vitro [219] and
calcification in vivo [220]. Glyoxal is a much smaller aldehyde that can also crosslink
collagen. It is a metabolite in the glycation process of proteins and is therefore found in low
levels physiologically, but has not been investigated widely to modify biomaterials.
Importantly, when used at low concentrations and limited times, glyoxal crosslinking of
collagen materials can be accomplished in the presence of cells [92]. The plant-derived
molecule genipin has also been used to crosslink collagen gels. Like other crosslinkers, the
degree of crosslinking can be varied by controlling the duration, concentration, and pH of
incubation [221, 222]. These treated constructs exhibit increased mechanical properties [90,
146] and have been reported to exhibit lower residual cytoxicity and inflammatory response
than glutaraldehyde-treated materials [223, 224]. However, it has also been reported that
crosslinking with genipin changes collagen matrix structure, including decreasing porosity
[90], and altering fiber structure and alignment [225, 226].

Exposure to radiant energy can be used to physically crosslink collagen materials.
Photochemical crosslinking is achieved by shining visible or ultraviolet light through a
sample in the presence of a photoinitiator, and has been shown to stabilize collagen gels and
improve their mechanical properties and resistance to degradation [215, 227]. Gamma
radiation also has been used for this purpose, with similar effects [228]. Crosslinking using
external radiation has the advantage that the dose and time of exposure can easily be
modulated, and the effect on collagen properties can be greater than achieved by chemical
crosslinking [229]. Application of heat and resulting drying of collagen hydrogels, which is
referred to as dehydrothermal crosslinking, is another technique used to create physical
crosslinks. This method also alters the mechanical properties of the collagen materials [230,
231], though in this case cells cannot be included in the matrix at the time of fabrication.

4.0 - Summary and Perspectives
The role of collagen type I as a ubiquitous extracellular matrix protein and key structural
element in native tissues has translated to broad and intense interest in its use as a
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biomaterial. The protein’s elegant and well understood hierarchical structure provides the
blueprint from which new material architectures can be created. Biomaterials scientists have
capitalized on our knowledge of collagen’s composition and biological role to create a wide
variety of material systems for examining biological questions, as well as for developing
next-generation therapies.

At the nanoscale, collagen’s primary structure results in helical self assembly of
tropocollagen subunits to create robust molecular building blocks, which are further
assembled into the microscale fibrils that are a fundamental component of the extracellular
matrix of many tissues. The production of these fibrils can be controlled to regulate their
diameter, length, density, and orientation. The degree of crosslinking within and between
fibrils is also variable and can be used to further regulate the biological and mechanical
properties of collagen materials. In both native and engineered tissues, association of
collagen with other proteins and extracellular matrix components is another important
determinant of the structure and function of the matrix. At the macroscale, the organization
of collagen fibrils into larger fibers and fiber bundles is a key feature of the structure of
many tissues. Taken together, these elements of collagen self assembly and organization
offer a rich set of variables that can be manipulated to create biomaterials with desired
architectures.

Biomaterials scientists have applied a range of biological, chemical, electromagnetic, and
mechanical techniques to modify collagen structure and function. At the macroscale,
molding of constructs and mechanical stimulation of matrix remodeling offer potent and
relatively straightforward control over the shape and organization of bulk collagen
hydrogels. The ability to create large protein constructs with biologically relevant
architecture is a key advantage of using collagen as a biomaterial. Recent efforts to create
modular microscale constructs made from collagen and composites with other materials
have led to approaches to fabricate multiphase tissues that recreate more complex tissue
architectures. Electrospinning and exogenous crosslinking of collagenous matrices offer
nanoscale-level control over matrix dimensions and protein interactions. The ability to
design and fabricate collagen structure at multiple scales makes it a versatile and effective
biomaterial for obtaining desired biological and mechanical functions.

Collagen matrices are one of the oldest and most well understood classes of biomaterials.
Early efforts to simply harness isolated extracellular matrix as a substrate for culturing cells
have expanded into a wide range of techniques to capitalize on the protein’s unique
properties to create biomimetic hydrogels with well defined properties. Collagen materials
are now used widely to study cell-matrix interactions and to create 3D microenvironments
for the culture and directed differentiation of many cell types. Advanced techniques for
controlling collagen architectures have made it possible to carry out experiments that
illuminate cell function in tissues. They also have contributed to new rationally designed
materials targeted at specific applications. These materials and the knowledge they generate
are enabling the development of new cell- and matrix-based therapies that will overcome the
limitations of less biologically relevant biomaterials.
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Figure 1.
The hierarchical structure of collagen type I leads to specific biological functions and
characteristics across length scales. Fabrication of collagen hydrogel architectures can
further be modified for particular applications.
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Figure 2.
Transmission electron micrographs showing the organized and hierarchical structure of the
collagen molecule at the level of (A) collagen fibers, (B) collagen fibrils, and (C) the
tropocollagen molecule. Scale bars are approximate. Adapted from [232].
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Figure 3.
Examples of molded collagen constructs. A) and B) show disk- and tube-shaped macroscale
constructs, respectively, containing smooth muscle cells. C) and D) show cardiomyocyte-
seeded constructs shaped around posts at day 0 and 13, respectively. E) and F) show
fibroblast-seeded collagen constructs molded around cantilevers for force measurement.
Cells in panel F are stained to show ECM and cellular components. Scale bars are
approximate. Adapted from A) [34], B) [9], C and D) [42], E and F) [43]. Used with
permission.
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Figure 4.
Examples of gel compaction in A) constrained and unconstrained collagen hydrogels
containing cardiac fibroblasts, and B) in a skeletal myoblast-seeded collagen hydrogel over
time in culture. Scale bars are approximate. Adapted from A) [50], B) [51]. Used with
permission.
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Figure 5.
Examples of modular collagen microtissues. A) and B) show collagen tissue modules with
seeded endothelial cells. C) shows a light micrograph of collagen-fibrin microbeads stained
blue to show protein content, and D) shows mesenchymal stem cells embedded in collagen-
chitosan microbeads and stained green to show viability. E), F) and G) show larger scale
constructs produced by assembling collagen-chitosan microbead preparations (microbeads
stained blue and yellow for contrast). Scale bars are approximate. Adapted from A) and B)
[73], C) [188], D) [93], E-G) [94]. Used with permission.
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Figure 6.
SEM images of examples of electrospun collagen-based fibers. A) and B) show meshlike
and aligned pure collagen fibers, respectively. C) shows a 50-50 collagen-chitosan fiber
mesh. Scale bars are approximate. Adapted from A and B) [110], C) [118]. Used with
permission.
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Figure 7.
A) Schematic and image of apparatus used for uniaxial cyclic strain to a fibroblast-seeded
collagen construct. B) and C) show SEM images of unstrained and strained collagen
matrices, respectively. D) and E) show collagen matrices that have been aligned by exposure
to a 12T magnetic field for 0.5 and 3 h, respectively. Scale bars are approximate. Adapted
from A-C) [41], D and E) [149]. Used with permission.
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Figure 8.
SEM images of examples of collagen composite materials. A) shows electrospun 50-50
collagen-elastin fibers. B) shows a 50-50 collagen-chitosan molded material. C) shows an
80-20 silk fibroin-collagen molded material. Scale bars are approximate. Adapted from A)
[114], B) [92], C) [152]. Used with permission.
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