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Abstract

This work describes the development of a biodegradable matrix, based on chitosan and starch, with the ability to form a porous struc-
ture in situ due to the attack by specific enzymes present in the human body (a-amylase and lysozyme). Scaffolds with three different
compositions were developed: chitosan (C100) and chitosan/starch (CS80-20, CS60-40). Compressive test results showed that these mate-
rials exhibit very promising mechanical properties, namely a high modulus in both the dry and wet states. The compressive modulus in
the dry state for C100 was 580 + 33 MPa, CS80-20 (402 + 62 MPa) and CS60-40 (337 4+ 78 MPa). Degradation studies were performed
using a-amylase and/or lysozyme at concentrations similar to those found in human serum, at 37 °C for up to 90 days. Scanning electron
micrographs showed that enzymatic degradation caused a porous structure to be formed, indicating the potential of this methodology to
obtain in situ forming scaffolds. In order to evaluate the biocompatibility of the scaffolds, extracts and direct contact tests were per-
formed. Results with the MTT test showed that the extracts of the materials were clearly non-toxic to 1.929 fibroblast cells. Analysis
of cell adhesion and morphology of seeded osteoblastic-like cells in direct contact tests showed that at day 7 the number of cells on
CS80-20 and CS60-40 was noticeably higher than that on C100, which suggests that starch containing materials may promote cell adhe-
sion and proliferation. This combination of properties seems to be a very promising approach to obtain scaffolds with gradual in vivo
pore forming capability for bone tissue engineering applications.
© 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Tissue engineering has recently emerged as a new inter-
disciplinary science to repair injured body parts and restore
their functions by using laboratory-grown tissues, materi-
als and artificial implants. An ideal scaffold to be used
for bone tissue engineering should possess characteristics
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of excellent biocompatibility, adequate pore size, controlla-
ble biodegradability and suitable mechanical properties [1—
3]. The choice of the appropriate fabrication technique is
critical because it can significantly influence the properties
of the implant and its degradation characteristics. There is,
therefore, an increasing need to look for new materials and
methodologies to produce scaffolds for bone tissue engi-
neering. One interesting possibility is to develop an
in vivo responsive scaffold the properties of which may be
regulated by the bone regeneration process, with gradual
formation of pores in situ and consequent resorption. This
hypothesis seems to be very promising due to the control of
degradation in situ and the consequent pore formation,
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which allows the scaffold to have the required mechanical
properties during the initial stage of implantation.

One of the present trends in implantable applications is
for materials that are derived from nature. Natural origin
materials have been demonstrated to promote healing at
a faster rate and are expected to exhibit greater compatibil-
ity with human tissues. The combination of chitosan with
other materials appears to be a common theme in various
reports [4,5]. Chitosan is a linear copolymer of N-acetyl-
D-glucosamine and D-glucosamine, and is a deacetylated
derivative of chitin. The degree of deacetylation (DD) rep-
resents the proportion of p-glucosamine units with respect
to the total number of units. DD is a structural parameter
which influences physicochemical properties [6] such as sol-
ubility, crystallinity, swelling behaviour and biological
properties [6], namely biodegradation by lysozyme [7,8],
wound healing properties [9] and the enhancement of
osteogenesis [10]. One interesting feature of chitosan is its
cationic nature, resulting from primary amine groups,
which allows it to form water—insoluble ionic complexes
with a variety of polyanionic substances. It is normally
insoluble in aqueous solution above pH 7. However, in
weak acids (pH < 6), the free amino groups are protonated
and the polymer becomes soluble. Chitosan has been used
to induce extracellular matrix formation in tissue regenera-
tive therapy [11]. The degradation of chitosan in the human
body has been reported to be carried out by lysozyme [7,8].
The degradation kinetics appears to be inversely related to
the degree of deacetylation [8,12]. Lysozyme, or murami-
dase, is an enzyme that catalyzes the hydrolysis of the pep-
tidoglycan layer of bacterial cell walls. Human lysozyme is
found in various body fluids in concentrations from 7 to
13mg 1! [13-15] in serum and from 450 to 1230 mg1~!
in tears [13,14], saliva [13,14] and other fluids, including
those surrounding cartilage [16]. Following implantation
of a biomaterial, neutrophils and monocyte-derived macro-
phages will be present around the foreign material in both
the acute and chronic phases of inflammation. A number of
enzymes, such as lysozyme, and reactive species will be
released from these cells.

Biodegradable starch-based polymeric biomaterials
have been studied and proposed for a wide range of bio-
medical applications. Starch is one of the most abundant
naturally occurring polymers, presenting a combination
of properties that is steadily increasing its use in several
technologies. Starch is a natural polymer that presents
excellent characteristics for applications in the biomaterials
field, primarily low toxicity [17,18], biodegradability [19]
and biocompability [20,21]. It is inexpensive and, above
all, reusable. The main enzymes involved in starch degra-
dation are o~ and B-amylase, glucosidase and other debran-
ching enzymes. Starch is hydrolyzed to glucose, maltose
and dextrin. It is well known that salivary amylase is
involved in the gastric and intestinal digestion of starch
in food components. Amylase can also be found in human
serum.

The aim of this work was to develop a biodegradable
matrix, based in chitosan and native starch, that will form
a porous structure in vivo by the preferential attack of the
matrix by specific enzymes present in the human body
(namely the a-amylase and lysozyme). The inclusion of
an enzymatically degradable phase in biomaterials may
constitute an interesting approach to obtain scaffolds with
adequate mechanical properties and with a gradual in situ
pore forming ability. Using this innovative methodology,
the developed scaffolds can exhibit very promising mechan-
ical properties, due to the absence of macroporosity during
the initial stage of implantation. The porosity is developed
in situ by enzymes present in human body.

In this work, chitosan/starch scaffolds were developed
using a precipitation method. These systems were analyzed
in terms of morphology, degradation behaviour and
mechanical properties. This study also addressed the effect
of leachables from developed scaffolds on the viability of
mouse fibroblasts and the influence of the construct’s sur-
face on the morphology, adhesion and spreading of fibro-
blast and human osteoblasts.

2. Materials and methods
2.1. Materials

Chitosan with medium molecular weight and DD of
92% (determined by the titration method, as described in
Ref. [22]) and native corn starch were purchased from
Sigma (St. Louis, USA). Sodium hydroxide (NaOH) and
sodium sulphate (Na,SO4) were supplied from Panreac
(Barcelona, Spain). a-Amylase from Bacillus amylolique-
faciens was obtained by Genencor International, Inc.
(Rochester, NY, USA) and egg white lysozyme was from
Sigma (St. Louis, USA).

2.2. Scaffolds preparation

Finely ground chitosan powder was dissolved in acetic
acid 1% (v/v) to obtain a 5% (w/v) clear solution (C100)
without any particulate material. Because of the relatively
high concentration, these solutions are quite viscous and
consequently can be stirred only slightly. However, flow
is still observed and it is still possible to inject such viscous
solutions to fill out the moulds. Then, using the same pro-
cedure, other formulations were prepared with the follow-
ing ratios: 80/20 chitosan/starch scaffolds (CS80-20) and
60/40 chitosan/starch scaffolds (CS60-40). The solutions
were casted into moulds and frozen (—18 °C) overnight.
To produce chitosan and chitosan/starch scaffolds, the
solutions were immersed in a precipitation solution with
containing 0.25 M NaOH and 0.375 M of Na,SO,4 adapted
from Tuzlakoglu et al. [23]. After precipitation, the samples
were washed repeatedly with distilled water to remove
excess of salts, dried at 37 °C and followed by successive
washings for 5 days until no pH changes were detected.
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2.3. Degradation studies

Degradation studies were carried out by incubating the
scaffolds in phosphate buffered saline (PBS) solution (pH
7.4) containing a-amylase (150 U 17! [15,24]) and/or lyso-
zyme (13 mg1~' [13-15]) at concentrations similar to the
ones found in human serum, at 37 °C up to 90 days. A con-
trol was also performed by incubating the samples in buffer
alone. At the end of the degradation period, the samples
were removed and immediately weighed for determination
of water uptake, washed thoroughly with distilled water
and dried for later calculation of weight loss. Degradation
solutions were also analyzed to measure the concentration
of reducing sugars, released into the solution as a result of
starch hydrolysis by a-amylase, using the dinitrosalicylic
acid method.

2.4. Analysis of sample morphology by scanning electron
microscopy

The cross-sections morphology, before and after degra-
dation, was observed by scanning electron microscopy
(SEM) in a Leica Cambridge S360. All samples were previ-
ously coated with a gold layer (Fisons Instruments, Sputter
Coater SC502, UK).

2.5. Mechanical properties — compression tests

The mechanical properties of the materials were evalu-
ated on compression tests carried out in the dry and wet state
in an Instron 4505 universal mechanical testing machine at a
controlled environment (23 °C and 55% RH). The cross-
head speed was 2 mm min~" until 1% strain.

2.6. Cell lines used for biocompatibility testing

For biocompatibility assessment of the different formu-
lations of the developed scaffolds two different cell types
were used: 1929 (ECACC, European Collection of Cell
Cultures), a mouse fibroblast cell line, and SAOS-2
(ATCC, American Type Culture Collection), a cell line
derived from human osteosarcoma. L.929 is a cell line com-
monly used in cytotoxicity testing and osteoblast-like
SAOS-2 cells were chosen because they are a model of a rel-
evant cell type for the medical application of the implant.
Both cell lines were cultured in Dulbecco’s modified Eagle’s
medium (Sigma, St. Louis, USA), supplemented with 10%
fetal bovine serum (Biochrome) and 1% antibiotic/antimi-
cotic solution (Sigma, St. Louis, USA). In all the experi-
ments cells were kept in an incubator at constant
temperature (37 °C) and CO, concentration (5%).

2.7. Biocompatibility evaluation: extracts and cell adhesion
studies

In the scope of biocompatibility assessment, and accord-
ing to ISO norms, two categories of in vitro cytotoxicity

assays were performed: extract and direct contact tests.
The scaffolds, previously sterilized by ethylene oxide, were
extracted in complete culture medium for 24 h at constant
temperature (37 °C) and agitation (60 rpm). L929 cells were
seeded in 96-well cell culture plates (10,000 cells cm~?), in
order to reach 80% confluence in 24 h. The extracts were
filtered and placed in contact with the monolayer of L929
cells for 72 h. A control, with cells grown in the presence
of complete culture medium, was included. Afterwards,
the viability test MTT was performed. Briefly, the culture
medium was replaced by a solution of MTT and the cells
were incubated for 4 h. The viable cells, those with func-
tional mitochondrial dehydrogenase, were able to reduce
the yellow MTT into a purple formazan product. The
end product was quantified by spectroscopy and the results
expressed as percentage of cell viability.

In direct contact test, the developed scaffolds were
seeded with 1929 cells (8 x 10*/50 ul) and with osteo-
blast-like cells (5 x 10° cellsml™") for 3 and 7 days. Prior
to cell seeding, the chitosan/starch scaffolds were immersed
in culture medium overnight. This step is intended to
reduce culture medium uptake by the highly hydrophilic
materials. After each time point, the samples were fixed
with glutaraldehyde, dehydrated, critical point dried and
gold sputtered for SEM observation.

3. Results and discussion
3.1. Characterization of the scaffolds morphology

In this work, degradable scaffolds based on chitosan and
native corn starch were developed for use in bone tissue
engineering applications. Three different compositions
were prepared and tested. Fig. 1 shows the interior mor-
phology of the obtained scaffolds. C100 material exhibits
a smooth surface (Fig. 1A), whereas in the micrographs
of CS80-20 and CS60-40 scaffolds (Fig. 1B and C) it is pos-
sible to observe that the starch granules are distributed
homogeneously along the chitosan matrix, as well as incor-
porated into the matrix. Starch granules have dimensions
ranging from 0.5 to 175 pm [25], which are mainly depen-
dent upon their origin. SEM micrographs (Fig. 1B and
C) show that starch granules from native corn starch have
dimensions ranging from 5 to 10 pm. The proposed pro-
cessing technique is based on precipitation from a solution.
This technique was used with the aim of promoting the
ionic complexation. This precipitation method does not
allow a macroporous structure to be obtained (Fig. 1).
The macroporosity will be formed in situ by enzymes pres-
ent in human serum.

3.2. Degradation behaviour

The main aim of the degradation studies, using o-amy-
lase and lysozyme with similar concentrations to the ones
found in human serum, is to simulate the physiological
conditions and subsequent pore formation. It is expected
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Fig. 1. SEM micrographs of the developed scaffolds (cross-sections) before degradation: (A) C100, (B) CS80-20 and (C) CS60-40. The scale bar is 50 um

and applies to all images.

that this innovative methodology will induce the formation
of pores. The pore size and its distribution in the scaffold
can be controlled by the location of the “sacrifice” phase
(native starch) that will also control the water uptake
behaviour due to the different hydrophilic nature of the
materials. The hypothesis for this work is related to the for-
mation of pores due to the degradation induced by specific
enzymes present in the human body. After implantation, it
is expected that a porous structure will be formed in situ,
allowing the penetration of the cells deep within these
scaffolds.

Concerning the water uptake in PBS, the C100 scaf-
folds present the highest degree of hydration, of about
140% (Fig. 2). The ability of a material to retain water
and its water permeability are important parameters to
be studied, since they will influence the absorption of
body fluids and the transfer of cell nutrients and metabo-
lites through the materials. The diffusity of nutrients is a
very important parameter since, in an in vivo situation,
a porous structure will be formed, created by the activity
of enzymes present in the human body, allowing the pen-
etration of cells deep into the scaffolds. As expected, the
water uptake of both CS80-20 and CS60-40 is lower than
that of C100, due to the presence of starch, which is less
hydrophilic than chitosan (Fig. 2). The weight loss in PBS
was not significant (data not shown). The greatest weight
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Fig. 2. Water uptake of the scaffolds as a function of immersion time in
PBS (pH 7.4, T=37°C).

loss was observed in CS60-40. This finding can be
explained by the presence of starch granules distributed
in the scaffolds. These results suggest that different per-
centages of starch influence the degradation rate.

All scaffolds were sectioned to observe the interior mor-
phology and formation of pores induced by enzymatic
attack at similar concentrations to those found in human
serum. By SEM observation, as expected, the native starch
phase (of CS80-20 and CS60-40; Fig. 3C and D) was seen
to be attacked in the presence of a-amylase. It was also
observed that a-amylase induced the formation of pores
in C100 material (Fig. 3A and B). It was also reported by
Muzzarelli et al. [26] that a-amylase was able to attack
the chitosan material.

In the presence of lysozyme, it was possible to detect
the preferential attack of C100 (Fig. 3E) since this enzyme
is able to hydrolyze chitosan in some extent. It is expected
that, when the scaffolds are implanted in the body, the
chitosan will be degraded gradually by lysozyme and then
reabsorbed. Lysozyme is known to be ubiquitous in the
body [13,27]. The main advantage of biodegradable over
non-biodegradable materials is the disappearance of
implanted foreign material, which could elicit foreign
body reactions from the host’s defence system during
their long-term contact with a living structure. Since lyso-
zyme is present in cellular lysosomes and lysosomal rup-
ture is associated with inflammation, it has been
assumed that the source of the increased lysozyme activity
is the release of enzyme from the lysosomes of phagocytic
cells [28]. When any material is implanted, an acute
inflammatory response will occur, with the consequent
pH decrease and secretion of increased levels of lysozyme.
Furthermore, it has been demonstrated that the initial
degradation rate of chitosan at pH 4.5 is about five times
higher than the rate at pH 7.0 [14]. The results obtained in
this work showed the attack of C100 by lysozyme with the
consequent formation of pores.

In order to investigate the effect of an enzyme cocktail,
containing a-amylase and lysozyme, on the overall degra-
dation rate of the materials, as well as on the type of poros-
ity obtained, the materials were also simultaneously
incubated with these enzymes. Analyzing the results pre-
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Fig. 3. SEM micrographs showing the morphology of chitosan-based scaffolds after 14 days in PBS with a-amylase solution (A, C100; C, CS80-20; D,
CS60-40); after 30 days in same solution (B, C100); after 14 days in PBS with lysozyme solution (E, C100; F, CS80-20); and in the same period in PBS with

a-amylase and lysozyme solution (G, C100; H, CS60-40).

sented in Fig. 4, it is possible to observe that CS60-40
showed the highest weight loss compared with CS80-20
and C100. The greater susceptibility of CS60-40 to enzy-
matic degradation may be related to the presence of a
higher surface area for preferential attack, due to the inter-
face between the two components. SEM micrographs
(Fig. 3G and H) show that enzymatic degradation caused
a porous structure is formed. Some studies showed that
pore sizes less than 15-50 um result in fibrovascular
ingrowth, pore sizes of 50-150 um encourage osteoid for-

mation, and pore sizes greater than 150 um encourage the
ingrowth of mineralized bone [29].

Since the formation of pores in the presence of lysozyme
was not so pronounced compared to those obtained with o-
amylase or the two enzymes together (a-amylase and lyso-
zyme), it may be necessary to look for alternative strategies
to enhance the scaffold degradation. One possible alterna-
tive could be the incorporation of lysozyme in higher con-
centrations at the surface of these materials. This could be
achieved by incorporation of the enzyme into biomimetic
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Fig. 4. Weight loss of chitosan/starch scaffolds as function of time in PBS
with a-amylase (150 U 17') and lysozyme (13 mg17') (pH 7.4, T = 37 °C).

calcium phosphate (CaP) coatings that are generated at
physiological conditions. By using this system it may be
possible to enhance the in vivo performance of the scaffolds
by conferring osteoconductive properties to the material.
Several papers report the incorporation of enzymes or bio-
active agents into CaP coatings in order to promote their
degradation and/or their osteoconductive/osteoinductive
potential [30-32]. It is also expected that in an in vivo situ-
ation the pore formation will occur more rapidly due to the
inflammatory response, which will induce a pH decrease
and cause increased levels of lysozyme to be released by
several groups of cells, such as neutrophils, monocytes
and macrophages.

After enzymatic degradation a porous structure was
observed to have been formed, indicating the potential of
this methodology to obtain in vivo scaffolds with pore
forming ability for bone tissue engineering applications.

The formation of pores in vitro in the presence of
enzymes at a similar concentration to those found in
human plasma is evident, although pore formation is
expected to occur more rapidly in vivo, due to the presence
of other enzymes and cells.

3.3. Mechanical properties

A hard material, with a high initial mechanical strength
and an adequate degradation rate, is normally required for
bone tissue engineering applications. The results of the
compressive tests showed that these materials exhibit very
interesting mechanical properties in the dry and even in
the wet state. The highest compressive modulus was
observed for C100 (580 &+ 33 MPa) in the dry state. For
CS80-20 and CS60-40, the compressive moduli in the dry
state were 402+ 62 and 337 + 78 MPa, respectively
(Fig. 5). The values found are higher than the typical values
presented for chitosan-based materials. The modulus
decreased with increasing amounts of starch present in
the scaffolds. This could be due to the poor adhesion
between the phases, since it is a physical mixture, i.e. the
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Fig. 5. Results of the compression tests: modulus in dry and wet state.

“sacrifice” phase is acting as nucleation site for fracture
propagation. In the wet state, the same tendency was
observed, but the values were lower, as expected (C100,
107£15 MPa; CS80-20, 53+3 MPa; CS60-40, 31+1 MPa;
Fig. 5). The mechanical properties exhibited by the scaf-
folds in the wet state fall within the normal ranges of
strength and modulus for trabecular bone, which are about
0.02-0.5 GPa [1,3] for the compressive modulus and 2-
12 MPa [1,3] for strength.

3.4. Cytotoxic assessment of the extracts

In order to evaluate the cytotoxicity of the substances
that leach out of the developed scaffolds, a viability assay
(the MTT test) was performed. This test is based on mito-
chondrial viability, as only functional mitochondria can
oxidize the MTT solution, giving a typical blue-violet
end product. Fig. 6 shows that for CS80-20 and CS60-40
the percentage of viable cells was around 100%, thus com-
parable to the control. On the other hand, the value of via-
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Fig. 6. Percentage of 1929 viable cells determined by the MTT assay in
the presence of extracts derived from the developed scaffolds. The
percentage of viable cells was determined relating the optical density
from the control, which is considered to have 100% viability.
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ble 1929 cells in contact with C100 leachables was lower
(75%). The MTT assay suggested that the extracts from
the developed scaffolds, produced by the precipitation
method, were non-toxic towards mouse fibroblasts.

3.5. Cell morphology evaluation

The absence of cytotoxicity does not confer any infor-
mation about the biocompatibility of a biomaterial [33].

In order to verify whether the developed scaffolds support
the functions shared by many cell types, such as membrane
integrity, adhesion to surfaces and replication, adhesion
studies with the cell line L929 were performed. At the
end of 7 days, regardless of the scaffold formulation, all
constructs were covered with a monolayer of cells
(Fig. 7). The fibroblasts had a typical spindle-shaped mor-
phology and exhibited cytoplasmatic projections strongly
attached to the scaffolds. Only in CS80-20 were rounded

Fig. 7. SEM micrographs showing the surface the developed scaffolds: C100 (A,D), CS80-20 (B,E) and CS60-40 (C,F), before cell culture (A—C) and after

7 days of culture with 1929 cells (D-F).

Fig. 8. SEM micrographs of C100 (A,D), CS80-20 (B,E) and CS60-40 (C,F) scaffolds cultured with osteoblast-like cells after 3 (A-C) and 7 days (D-F).

The scale bar is 200 um and applies to all images.
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cells seen, denoting that they were in an earlier adhesion
step (Fig. 7B). 1929 cells were able to adhere, spread filo-
podia and stretch over the surface of the developed scaf-
folds. The slight toxicity of the C100 extracts detected in
the MTT assay did not have any negative effect on the abil-
ity of 1929 cells to adhere to and spread on the surface of
the construct.

Cellular attachment and migration of osteoblast cells
over the bone-substituting material surface are essential
to obtain effective wound filling and bone tissue adaptation
[34]. For that, osteoblast-like cells were seeded on C100,
CS80-20 and CS60-40 and the adhesion profile, as well as
the cell morphology, was documented by SEM. On day 3
of culture, SEM examination revealed osteoblasts aggre-
gates sparsely distributed over the surface of CI100
(Fig. 8A). At the same time point, the amount of cells
attached to the surface of CS80-20 was greater, although
cells did not cover the entire surface of the scaffold
(Fig. 8B). Fig. 8C shows the surface of CS60-40 covered
by a compact monolayer of osteoblasts after just 3 days
of culture. At this time point it can be seen that the adhe-
sion profile of the osteoblasts differs between chitosan scaf-
folds (C100) and chitosan/starch scaffolds (CS80-20 and
CS60-40), the growth being more homogeneous in the pres-
ence of starch. The same trend was observed at the end of 7
days. On the C100 scaffold the growth was limited to a
number of discrete areas, which were probably the result
of the expansion of the cellular aggregates seen after 3 days
(Fig. 8D). On the other hand, the surface of chitosan/
starch scaffolds (CS80-20 and CS60-40) was homoge-
neously covered by a multilayer of osteoblast-like cells
(Fig. 8E and F).Cell adhesion and spreading are influenced
by the physicochemical characteristics of the underlaying
solid surface [35]. CS80-20 and CS60-40 supported to the
same extent the adhesion of fibroblasts and osteoblasts.
However, SAOS-2 behaved in a different way on the sur-
face of C100 scaffold. The poorer spreading on C100 may
be related with the higher chitosan content, which renders
the surface more hydrophilic. This impairs the adsorption
of serum proteins and consequently cell adhesion [35].
Another explanation for the difference between the
starch-blended scaffolds and chitosan scaffold could be
the difference in topography. A higher level of roughness
appears to enhance osteoblast adhesion, and subsequent
proliferation and differentiation [36]. The starch granules
present in CS80-20 and CS60-40 increase the roughness
of the surface and therefore improve cell growth and
attachment (Fig. 8E and F).

4. Conclusions

Scaffolds based on chitosan and starch were developed
and characterised for use in bone tissue engineering appli-
cations. The results of the compressive tests showed that
these materials exhibit very good mechanical properties
in the dry and wet states. Enzymatic degradation caused
the formation of a porous structure, indicating the poten-

tial of this methodology to obtain scaffolds with in situ pore
formation. These scaffolds, with in situ pore forming capa-
bility and interesting mechanical properties, seem to be
advantageous when compared with other conventional
materials. Biocompatibility studies showed the extracts of
the developed scaffolds to be non-toxic, and CS80-20 and
CS60-40 showed better osteoblast attachment than the
C100 substratum. These results indicate that the incorpora-
tion of starch has a favourable effect on the interaction
with osteoblasts.

The combination of properties suggests that this is a
very promising way to obtain scaffolds with gradual
in situ pore forming ability for bone tissue engineering
applications.
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