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Machine Learning (ML) plays an increasingly important role in the discovery and design of new
materials. In this paper, we demonstrate the potential of ML for materials research using hard-
magnetic phases as an illustrative case. We build kernel-based ML models to predict optimal
chemical compositions for new permanent magnets, which are key components in many green-energy
technologies. The magnetic-property data used for training and testing the ML models are obtained
from a combinatorial high-throughput screening based on density-functional theory calculations.
Our straightforward choice of describing the different configurations enables the subsequent use of
the ML models for compositional optimization and thereby the prediction of promising substitutes
of state-of-the-art magnetic materials like Nd2Fe14B with similar intrinsic hard-magnetic properties
but a lower amount of critical rare-earth elements.

1. INTRODUCTION

Machine Learning (ML) is currently establishing itself
as an important tool in materials research. ML models
have been successfully used for predicting grain bound-
ary energies [1, 2] and mobilities [3] in pure metals, fer-
roelectric Curie temperatures and classes of perovskites
[4–6], and electronic [7, 8] as well as magnetic proper-
ties [9–11]. The main applications of ML have, however,
been limited to learning properties that are directly re-
lated to total/atomic energies or atomic forces [12–26].
We believe that this limitation originates mainly from
the availability of high-accuracy density-functional the-
ory (DFT) data for the energies of millions of struc-
tures and compositions in internet databases, such as
the Materials Project [27], the Open Quantum Materi-
als Database (OQMD) [28, 29], or the Novel Materials
Discovery (NOMAD) repository [30]. The potential of
ML to accurately predict and to optimize other materi-
als properties, which are less well documented in internet
databases, needs thus to be further explored.

The search for new hard-magnetic phases is an ideal
application case for demonstrating the benefits of ML
in materials research. On the one hand, many hard-
magnetic materials are intermetallic phases that contain
a multitude of atoms per unit cell. The unit cell of
the prominent Nd2Fe14B phase, for instance, contains 68
atoms. This makes it infeasible even for combinatorial
high-throughput screening (HTS) to cover the entire vari-
ety of possible phase compositions. For a reasonable vari-
ety of screened elements, the number of possible composi-
tions and atomic arrangements within the unit cell easily
adds up to billions or even trillions. ML overcomes this
limitation by building a continuous model for the learned
properties based on the training data. This enables a
reliable interpolation between the training data and an
accurate prediction of properties for unknown compo-
sitions. Today’s best hard-magnetic materials, which
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are key components in many green-energy technologies,
contain substantial amounts of supply-critical rare-earth
(Re) elements, such as Dy, Nd, or Sm. There is thus
a considerable industrial demand for new materials with
good hard-magnetic properties but less Re contents.

The objective of this paper is therefore to construct
ML models for hard-magnetic properties and to subse-
quently use them for compositional optimization in order
to identify those chemical compositions that exhibit good
magnetic properties, but contain only few Re elements.
For training the ML models, we select the ThMn12-
type crystal structure [31] from our materials database
of hard-magnetic phases [32] as a promising substitute
for the Re-rich state-of-the-art materials Nd2Fe14B and
SmCo5. Instead of using all the data in our database for
training, we use a subset with equally-distributed and
equally-spaced supporting points where only one alloy-
ing element (besides Fe) is considered. We believe that
such a scenario where one holds a data set with not much
more than 200 different configurations is representative
for a typical systematic density-functional-theory (DFT)
study of a certain non-standard property (which in our
case is the magneto-crystalline anisotropy).

The paper is organized as follows: In section 2 we de-
scribe our computational approach, i.e., how we train the
ML models to the hard-magnetic properties of the inter-
metallic phases in our database. In section 3 we present
the results for validating, testing, and optimizing the ML
models. These results are discussed in section 4 with fo-
cus on the accuracy and reliability of the ML predictions
and on the potential of the optimized compositions. The
discussion also includes comments on the achievements
and limitations of our approach, on possible pathways
for future extensions, and on discrepancies between the
DFT training data and experimental results. The paper
is summarized in section 5.

ar
X

iv
:1

80
3.

03
07

3v
2 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  3
 O

ct
 2

01
8

mailto:johannes.moeller@iwm.fraunhofer.de


2

2. METHODOLOGY

2.1. Machine Learning

The list of machine-learning (ML) models that have
been used for predicting properties and behaviors of ma-
terials includes a variety of methods such as artificial neu-
ral networks [34–37], genetic algorithms [33, 34], Gaus-
sian processes [17, 37], decision-tree and random-forest
models [5, 36], and kernel-based methods [13, 14, 26, 36].
Which of the different methods is best suited for a certain
analysis usually depends on the type (e.g., scalar values
or images) and amount (hundreds, thousands or millions
of samples) of the available training data and the targeted
application of the ML model (value prediction/regression
or classification).

In this work, we make use of the kernel-based Support
Vector Regression (SVR) method to construct numeri-
cal ML models for K1, µ0M and Ef (together denoted
as target properties y in the following). SVR is a non-
linear regression analysis that makes use of the so-called
kernel trick. In kernelized ML methods, the kernel func-
tion maps the input space, in which the target property
y is usually not a linear function of the feature vector
x, into a higher dimensional space where such a linear
relationship may exist. SVR is based on the concept of
Support Vector Machines (SVMs), which were originally
developed in the 1960s [38] for classification purposes. In
SVR models, the predicted value ym (superscript ’m’ for
model) for a feature vector x is determined as

ym(x) =
∑
i

wik(xi,x) + b, (1)

where wi are the individual weights for each training vec-
tor xi, k(xi,x) is the kernel function, and b is the constant
intercept (’b’ stands for bias).

The kernel k(xi,x) is typically of linear, polynomial or
Gaussian (radial basis function, ’rbf’) type [39]:

klinear(xi,x) = xi · x, (2)

kpoly(xi,x) = [γ(xi · x)]
d
, (3)

krbf(xi,x) = exp
[
−γ‖xi − x‖22

]
. (4)

Here, the subscript ’2’ indicates the Euclidean (L2) dis-
tance and ’·’ the inner product, d is the degree of the
polynomial kernel, and γ represents the width of the re-
spective kernel function.

SVR uses an ε-insensitive loss function [40, 41], which
means that optimizing a SVR model involves minimizing
the weights wi. This procedure leads to a flat evolution
of y(x) and inherently reduces the risk of over-fitting [42]
by simultaneously allowing for some larger deviations (up
to a value of ε) between y and ym for individual samples
(’outliers’). In this paper, we use ε = 0.1 T, 1.0 MJ/m3,
and 0.01 eV/atom for the ML models for µ0M , K1, and
Ef, respectively. This choice can be considered as the
targeted accuracy of the constructed models.

Besides the choice of the kernel function (and its width
γ), SVR models have an additional regularization param-
eter C, which determines the trade-off between the flat-
ness of ym(x) and the amount up to which deviations
larger than ε are tolerated [41] (a higher C allows higher
possible values for the weights wi). As mentioned before,
γ determines the width of the kernel and therefore the
contribution of neighboring feature vectors to the pre-
diction (a smaller γ resulting in a higher contribution of
samples close by). For a given kernel function, both hy-
perparameters control the complexity of the model and
need to be optimized in order to prevent under- and over-
fitting. To yield a model that is as universal as possible,
both C and γ should be as small as possible. Note that
γ has no meaning for a linear kernel.

Extensive descriptions of the SVR method are given
in Refs. [40, 41]. The SVR algorithm is used in its im-
plementations in the Python ML package scikit-learn
[39, 43]. To assess the potential benefit of ML over classi-
cal fitting methods, we also parameterized linear regres-
sion (LR) functions (ym =

∑
j wjxj+b, j = 0 . . . Nfeatures)

for our data. Note that in this case, contrary to the SVR
method described above, the weights wj are determined
for each component of x, i.e., for the feature xj, not for
each training sample xi.

2.2. Material Database

The material database used for training and validat-
ing the ML models originates from our previous study on
rare-earth-lean intermetallic ReA12X compounds [32].
Here, Re is either Ce or Nd, and A can be one of the
magnetic transition-metal elements Mn, Fe, Co, and Ni,
the non-magnetic elements Ti, V, Cr, Cu, Zn, Al, Si,
and P, or a mixture of them. The element X is one of the
small interstitial elements B, C, or N.

The ReA12X structure is based on the ThMn12 type,
which was first reported by de Mooij et al. [31]. The
symmetry-equivalent Wyckoff sites of this body-centered
tetragonal structure (space group #139, I4/mmm sym-
metry) are the 2a (occupied by Re elements), 8i, 8j, 8f
(occupied by A elements), and 2b (occupied by X el-
ements, if any), see Fig. 1 for illustration. Note that
the number of atoms per formula unit (14) is only half
of all atoms per conventional tetragonal unit cell (28).
The tetragonal lattice parameters a = 8.566 Å and
c = 4.802 Å, as well as the crystal coordinates of the
Wyckoff sites were taken from the work of Isnard et al.
[44].

To create the magnetic-properties database, we em-
ploy a HTS approach with DFT calculations using
the tight-binding linear-muffin-tin-orbital atomic-sphere-
approximation method (TB-LMTO-ASA) [45] based on
the work of Fähnle et al. [46, 47]. The several thousand
phases were calculated with the HTS setup described by
Drebov et al. [48] which allows a fully automated genera-
tion of new phases by combinatorial substitution of sets of
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RE(2a)

A(8i)A(8f)

A(8j)

X(2b)

REA12X

FIG. 1. Crystal structure of the ReA12X structure with in-
dicated Wyckoff positions. The bonds between symmetry-
equivalent A atoms are drawn for better visualization.

atoms sitting on specific positions. In this study, for each
combination of Re and X, all A positions (see Fig. 1) are
initially occupied with Fe atoms. All Fe atoms sitting on
a specific Wyckoff site are then substituted by other al-
loying elements A and this substitution is carried out for
all combinations of Wyckoff sites. To indicate this sub-
stitution schema, we refer to the generated compounds
as Re(Fe,A)12X in the following. Moreover, we have gen-
erated a substantial number of configurations where two
alloying elements A and A’ are considered and also allow
for partial substitution on Wyckoff sites.

By means of DFT calculations, we determine (among
other properties) the magnetization µ0M , the local
magnetic moments, the uniaxial magneto-crystalline
anisotropy constant K1, and the relative phase-stability
energy Ef. Here, the latter is evaluated by comparing
the total energy of a compound to the total energies of
the elemental constituents (and not with all competing
binary or ternary phases). Thereby, its computation is
compatible with the approach of a high-throughput anal-
ysis and it serves as a valuable first-order estimate for the
expectable thermodynamic stability.

The technologically interesting figures of merit of hard-
magnetic materials, i.e., the maximal energy product
(BH)max and the the anisotropy field Ha are estimated
from µ0M and K1 as follows [49]:

(BH)EST
max =

(0.9µ0M)2

4µ0
, (5)

Ha =
2K1

µ0M
. (6)

Note that Eq. (5) implies the common assumption that
ideally about 10% of a processed bulk hard magnet con-
sists of non-magnetic phases [49]. For further details on
the HTS approach using TB-LMTO-ASA calculations,

we refer to Refs. [32, 48].

In order to convert our zero-temperature single-
crystal, single-domain DFT-HTS results for K1 and Ha

to room-temperature estimates, which can serve as guide-
lines for experimental efforts, the calculated values need
to be divided by four for Nd. For Ce, a division by 35
provides a conservative estimate. These heuristic factors
have been derived from benchmark calculations of well-
known hard-magnetic materials (see Table II and discus-
sion in Ref. [32]).

For the optimization of the hyperparameters of our ML
model (see Secs. 2.1 and 3.1) we used the ReFe12-4zA4zX
(z = 0 . . . 3) subset of all the different Re(Fe,A)12X con-
figurations in our database. In this data set, each A
position (8i, 8j, 8f) which initially has been occupied by
Fe atoms, was subsequently fully replaced by other alloy-
ing elements A. For each choice of the NX = 3 choices
for X, there exists one configuration without alloying el-
ements (i.e. z = 0) and Nsub = 7 possible configurations
for each of the NA = 11 alloying elements A, namely
three for both z = 1 and z = 2 and one for z = 3.
For Re = Nd, the data set therefore consists of 234
[= NX · (1 +Nsub×NA) = 3 · (1 + 7×11)] configurations.
For Re = Ce, two compounds could not be converged
in the given crystal structure, thus the data set contains
only 232 configurations.

In total, our database contains 3,080 entries. Besides
the 466 configurations used for training the ML models,
the data includes 2,614 compounds with multiple substi-
tutional alloying elements and partially chemically het-
erogeneous occupations of Wyckoff sites. For example
the 8i position can be occupied by two Co atoms and six
Fe atoms. This remaining data set was used for the sub-
sequent testing (see Sec. 3.2) of our model with the pre-
viously optimized hyperparameters. Note that the test
data are inherently difficult to be predicted with our real-
istic choice of training data as they contain lots of situa-
tions about which the trained model was not informed at
all (i.e., two different alloying elements in the same con-
figuration). The objective of our work is not to create the
best possible model (for which we should obviously use
the whole data set for training) but to reflect a realistic
scenario and therefore use the typical outcome of a sys-
tematic DFT study in terms of number and distribution
of the data points.

2.3. Material Representation

For a straightforward decoding of the structural and
chemical information stored in the feature vectors x, the
construction of x needs to be bijective. This means that a
reversible mapping exists between x and the represented
atomistic configuration. We introduce here a descriptor
that sufficiently fulfills this requirement. It contains the

number of atoms n
(i)
j of each chemical species i resolved
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FIG. 2. Illustration of descriptors for selected Re(Fe,A)12X
compounds. Note that the first seven configurations are in-
cluded in the training set (ReFe12-4zA4zX, z = 0 . . . 4) whereas
the last four compositions belong to the test set (see text for
details).

on each of the Wyckoff positions j,

x = 〈n(1)1 , . . . , n
(1)
P , n

(2)
1 , . . . , n

(2)
P , . . . , n

(N)
1 , . . . , n

(N)
P 〉,

(7)
where N is the number of different elements in the data
set and P is the number of different Wyckoff positions
in the crystal structure. When certain positions are oc-
cupied only by certain elements (e.g., the 2a site of the
ReA12X structure is occupied only by Re atoms) the
general form of x given in Eq. 7 can be simplified by

leaving out those entries for which n
(i)
j is zero through-

out the whole data set.

The descriptors for a data set of the ReA12X structure
with, for instance, two different Re elements on the 2a
position (j = 1), three different A elements on the 8i, 8j,
and 8f positions (j = 2, 3, 4), and two different interstitial
elements on the 2b position (j = 5) are then written as

x = 〈n(1)
1 , n

(2)
1 , n

(3)
2 , n

(3)
3 , n

(3)
4 , n

(4)
2 , . . . , n

(N-2)
4 , n

(N−1)
5 , n

(N)
5 〉

(8)

and have 13 components in total [instead of N · P =
7 · 5 = 35 with Eq. (7)]. Fig. 2 illustrates the descriptors
constructed in this way for selected Re(Fe,A)12X com-
pounds.

This description has the advantage that structural and
chemical information are encoded separately. We briefly
note that this representation is somewhat similar to the
descriptor which has been used very recently by Faber
et al. for predicting the formation energies of elpasolite
crystals [14].

The construction of this descriptor involves a space
group analysis of the crystal structure, for which we use
the FINDSYM tool of Stokes & Hatch as implemented
in the ISOTROPY Software Suite [50, 51].

2.4. Optimization of Compositions

To efficiently search for compositions that exhibit opti-
mal combinations of µ0M and K1, we optimize the model
functions ym(x) (with y being µ0M or K1) using the
stochastic basin-hopping optimization (BHO) algorithm
as implemented in the Python package scipy [52]. De-
tails of the optimization procedure are given in the A.
BHO has the advantage of allowing both bounded and
constrained components of x. The components of the
Wyckoff descriptor have to be bounded because each of
them has a lower limit (0) and an upper limit (maximal
number of atoms per Wyckoff position, e.g. eight atoms
for the 8i sites). At the same time, the components of
x are constrained because each non-zero component de-
creases the possible maximal value of all other compo-
nents representing the same Wyckoff position.

After optimization, the descriptor x′ that fulfills the
search criteria, i.e., ym(x′) > yt (subscript ’t’ for tar-
get), can be directly mapped to the corresponding chem-
ical composition and distribution of the elements on the
Wyckoff positions. This fast and efficient procedure di-
rectly benefits from the bijective nature of the Wyckoff
descriptor, which allows a reversible mapping between x
and the respective material.

In the optimization, we effectively seek descriptors
that maximize the anisotropy coefficient K1 (and thereby
the anisotropy field Ha) by using a relatively conservative
target value for µ0Mt = 1.4 T since it is well known that
the highest values for µ0M are given by compositions
containing mainly Fe with (small) contents of Co (see
Slater-Pauling curve [53–55]). Note that we are not aim-
ing at minimizing Ef as a consequence of limitations in
the input data since our reference database for determin-
ing Ef contains only elemental crystal phases to compare
with. For this reason, we only use the criterion Em

f < Eft

with a moderate target value Eft = 0.1 eV/atom for the
optimized compositions (because ±0.1 eV/atom is about
the predictive power of the TB-LMTO-ASA method for
compound formation energies).

3. RESULTS

Since the hyperparameters for the SVR algorithm (ker-
nel function k, regularization parameter C, and width γ)
are not known beforehand, we first determine the opti-
mal set of hyperparameters that maximizes the predictive
power of the model and minimizes its tendency for over-
fitting. The performance of the optimized ML models is
then tested for unseen compositions from our database.
Finally, we use an optimization procedure to find the
material composition or—more precisely—its descriptor,
for which our two figures of merit are within the desired
range of values: µ0M > 1.4 T and K1 maximal.
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3.1. Training the ML Models

To find the optimal set of hyperparameters for the ML
models, we varied the regularization parameter C for the
SVR as well as the kernel width γ for various kernel func-
tions. C was varied between 0.1 and 1000 and γ between
10−7 and 1.0, with the kernels being linear, polynomial
(degree d = 2), and rbf functions. The numeric hyper-
parameters C and γ were varied on a logarithmic grid.

To validate the ML models built with a specific set of
hyperparameters, we determine the Pearson correlation
coefficient ρ and the mean absolute error (MAE) [42, 56],

ρ(y, ym) =
cov(y, ym)

σyσym

, (9)

MAE(y, ym) =

∑N
i=1 ‖ym − y‖
Nsamples

, (10)

where cov is the covariance function, σ denotes the stan-
dard deviation, and Nsamples is the number of samples.
The correlation coefficient ρ measures the linear rela-
tionship between two (normally distributed) datasets. It
varies between −1 and +1, where values close to zero
indicate that no correlation exists. The limiting values
ρ = +1 (−1) imply a perfectly direct (indirect) linear
proportionality between ym and y. The MAE (in units
of the predicted property) indicates the average differ-
ence between ym and y and should therefore be as small
as possible.

To estimate whether the model is over-fitted, i.e., it
exactly matches the training samples but nothing else,
we performed tenfold cross validation (CV) [42]: The
data set used for building and optimizing the ML model
consists of 234 (232) samples of type ReFe12-4zA4zX for
Re = Nd (Ce). It is randomly divided into ten subsets
of which nine are used to train a new ML model and the
tenth is used for validation. This procedure is repeated
ten times and the average values of the correlation met-
rics ρ and MAE for the ten validation sets are used as a
measure of the performance of the model with respect to
unseen test data.

TABLE I. Optimal set of hyperparameters [kernel k, degree
d for polynomial (p) kernels, regularization parameter C, and
kernel width γ] and correlation metrics (ρ and MAE) from
tenfold CV. µ0M varies between 0 and 2 T; Ef varies between
−1 and 1 eV/atom; K1 varies between 10 and 90 MJ/m3 for
Nd and between 50 and 230 MJ/m3 for Ce. For µ0M , only
configurations with a significant magnetization of µ0M > 0.25
T have been used for training (181 for Nd, 179 for Ce).

Property Hyperparameters CV (Nd) CV (Ce)

(unit) k(d), C, γ ρ (MAE) ρ (MAE)

µ0M (T) p(1), 100, — 0.95 (0.09) 0.91 (0.11)

K1 (MJ/m3) p(2), 100, 0.1 0.90 (3.9) 0.88 (10.3)

Ef (eV/atom) p(2), 0.1, 0.1 0.95 (0.043) 0.94 (0.04)

The optimal set of hyperparameters for each com-

bination of ML model and material property were de-
termined by taking those hyperparameters for which C
and γ were minimal and satisfying ρ > 0.95ρmax (ρmax:
maximal correlation coefficient for each model/property
combination). This ensured that the models were both
as accurate and as universal as possible at the same
time. The optimal set of hyperparameters and the corre-
sponding correlation metrics ρ and MAE obtained with
these hyperparameters are listed in Tab. I. The corre-
lation coefficients obtained with CV are in the range of
ρ = 0.88. . .0.95 for the models with the optimal set of
hyperparameters. The CV results are displayed in Fig. 3
for the Nd(Fe,A)12X compounds.

3.2. Testing of the ML models with unseen
compositions

For testing our ML models we use test sets that contain
configurations, where the the alloying atoms fractionally
occupy the 8i Wyckoff site. The resulting predictions for
Nd(Fe,A)12X are presented in Fig. 4(top) for SVR and
Fig. 4(bottom) for LR. The determined correlation coef-
ficients ρ and MAEs are summarized in the last column
of Tab. I. For K1 and Ef, ρ is somewhat lower than the
CV results while the correlation for µ0M is similar to the
one determined by CV.

Most of the outliers in the SVR predictions for
µ0M , see Fig. 4(top), originate from Mn-containing com-
pounds. This can be attributed to the magnetic be-
havior of Mn, which can change from ferromagnetic
to anti-ferromagnetic magnetism depending on the pre-
cise atomic arrangement [57]. For K1 and Ef, most
of the outliers are attributed to phases where the non-
ferromagnetic elements Al, P, Si, Ti, and Zn represent
more than 66 % of all A elements in the compound. In
both cases, the evolution of the calculated properties with
the elemental concentrations is less systematic and pre-
dictions are inherently difficult. It is important to note
that the outliers are, however, uncritical for the final op-
timization because they do not lead to compositions that
meet our search criteria.

The test results give us a good indication on how
well the ML models will interpolate between the training
data, or in other words, how well the models will predict
the whole property space of the ReA12X crystal struc-
ture (for the trained Re, A, and X elements). Note that
the achieved MAEs are of the same magnitude as the
desired accuracy ε of the SVR models (see section 2.1).

3.3. Optimal Compositions

A selection of the obtained optimal compositions is
presented in Tab. II along with their respective values
for µ0M and K1 and the expected values for (BH)max

and Ha estimated according to Eqs. (5-6).
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compounds. The colored circles indicate the corresponding predictions for the 832 unseen compositions used as test samples.
The grey squares are the predictions for the models trained on the whole data set (training and validation data). The used
(optimal) sets of hyperparameters for the SVR model are given in Tab. I. The MAEs are given in the units of the corresponding
axes.

Even though the test results (section 3.2) already indi- cate that the ML predictions should be accurate, we veri-
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fied the ML-predicted values with a posteriori performed
TB-LMTO-ASA calculations. In addition to the opti-
mal compositions, the magnetic properties of the most
promising candidates drawn from our database [32] as
well as the state-of-the-art benchmark materials SmCo5
and Nd2Fe14B are presented for completeness. The pre-
dicted and calculated values are compared to experimen-
tal data whenever available. Note that the values for the
formation energy Ef are not given in the table explicitly,
but they are negative for all configurations shown.

The optimal compositions given in Tab. II exemplify
the versatility of our approach, i.e. the combination of an
optimization algorithm with a bijective descriptor. Two
compositions were, for instance, optimized under the con-
straint that they should contain Ti, which is known for
its beneficial effect on the phase stability [61]. The pre-
dicted NdFe8.5Cu3.5N phase, as another example, avoids
the elements Co and Ni, which are both more expensive
than Cu.

4. DISCUSSION

In the discussion, we focus on the comparison between
the ML predictions and DFT-determined values of the
optimal compositions. In addition, we critically assess
the potential of the proposed compositions to substi-
tute the state-of-the-art materials NdFe14B and SmCo5.
Finally, we demonstrate the potential benefit of using
kernel-based ML methods over classical LR fitting.

4.1. Comparison between ML predictions and DFT

Although the ML models were trained only to samples
containing one alloying element (in addition to Fe), it is
remarkable that the predictions for the optimal composi-
tions (which contain often at least two alloying elements)
are in overall very good agreement with the DFT cal-
culations performed a posteriori (the average ML-DFT
difference is below 4 %). A plausible reason for this is
the property of iron, other transition metals (Tm), and
their alloys (whose electronic band structures are mainly
formed by the Tm d-orbitals) that along the Tm series
in the periodic systems the band structures and densities
of states for a specific crystal structure are only scaled in
width but hardly changed in shape with varying number
of electrons occupying the bands (see, e.g. Refs. [62, 63]).

The apparent success of the machine to learn the un-
derlying physics should not distract us from the fact that
the interpolation behavior between training samples is
mainly determined by the kernel function. This prop-
erty of ML models is visualized in Fig. 5 where the pre-
dicted K1 values for different contents of Co on the 8i
site, n8i(Co) = 0 . . . 8 (= z), in the NdFe12-z/2Coz/2N
phase space are plotted for different kernel functions in
comparison with TB-LMTO-ASA results. Whereas with
the polynomial kernel (d = 2), the nearly linear increase

of K1 is very well reproduced, the linear kernel fails al-
ready in predicting the training data at z = 0 and 8,
respectively. Due to its higher flexibility, the ’rbf’ kernel
exactly reproduces the training data points. The draw-
back of this flexibility is that the deviation from the DFT
results becomes very large in the range of z values.

One of the recipes of success for ML of materials prop-
erties is therefore the combination of a descriptor, whose
components have an almost linear relationship with the
modelled properties, and a comparably inflexible kernel
function. Since many physical properties have polyno-
mial relationships of low degrees with the material com-
position, this approach is expected to work equally well
for other materials properties.

At the same time, one limitation of our approach is
that the employed descriptor encodes all chemical and
structural information implicitly. ML Models built with
this descriptor are thus not transferable to other crystal
structures. Promising universal descriptors, which may
overcome this shortcoming, have already been proposed
for molecular systems [26, 64] and their suitability for use
needs to be tested for periodic crystals in the future [13].

4.2. Potential of the optimized compositions

The hard-magnetic properties of both benchmark ma-
terials, which contain comparably high amounts of Re
elements, are currently known as the upper limits for
(BH)max (NdFe14B) and Ha (SmCo5). As to be ex-
pected, our candidates do not beat these values, but they
represent alternatives with significantly reduced Re con-
tents.

In comparison with the best results from the HTS

0 2 4 6 8
Occupation n8i(Co)

47

48

49

50

51

52

K 1
(M

J/m
3 )

Kernels:
linear
poly (d=2)
rbf
TB-LMTO-ASA

FIG. 5. (Color online) Influence of the kernel function on the
prediction of K1 for unseen compositions NdFe12-z/2Coz/2N
(z = n8i(Co) = 0 . . . 8) in comparison to TB-LMTO-ASA re-
sults. The model was trained using the linear, polynomial (de-
gree d = 2), and ’rbf’ kernels. Only the values for n8i(Co) = 0
and 8 were used for training.
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TABLE II. Selected compositions with high K1 and µ0M above 1.4 T found by optimizing the ML models built for the ReA12X
crystal structure. Predictions of the ML models are indicated with a superscript ’m’ and compared to a posteriori performed

DFT (TB-LMTO-ASA) calculations. The Wyckoff positions of Fe substitutes are specified as superscripts (e.g., Co
1/8i
0.5 means

that Co occupies one out of eight 8i positions, which is equivalent to 0.5 atoms in the formula unit). The best candidates from
the HTS [32] are marked with an asterisk (∗). The calculated K1 values are scaled (after the slash) for better comparability
with experiments (see section 2.2 for the heuristic scaling factors). The macroscopic values for (BH)EST

max and Ha are estimated
according to Eqs. (5-6). The available experimental values for µ0M , K1, (BH)max, and Ha are given in parentheses. Ef is
negative for all listed compositions.

Composition Predictions of ML Models TB-LMTO-ASA Calculations Estimations of macroscopic values

µ0Mm (T) Km
1 (MJ/m3) µ0M (T) K1 (MJ/m3) (BH)EST

max (kJ/m3) Ha (T)

CeFe6Co
8/8f
4 Cu

3/8i
1.5 Ti

1/8i
0.5 N 1.45 165 1.45 169 / 4.8 337 233

CeFe7Ni
8/8f
4 Co2/8iN 1.48 167 1.57 170 / 4.9 398 216

CeFe8Ni
8/8f
4 N∗ — — 1.61 167 / 4.8 417 207

NdFe6.5Co
2/8i,5/8f
3.5 P

3/8j
1.5 Ti

1/8i
0.5 C 1.42 57 1.46 60 / 15 346 83

NdFe8.5Cu
3/8i,4/8j
3.5 N 1.48 57 1.57 55 / 14 397 70

NdFe8Ni
8/8f
4 N∗ — — 1.68 57 / 14 457 67

Benchmark Materials

SmCo5 — — 1.07 (1.07 [58]) 69 (26 [58]) 184 (219 [59]) 129 (40.4 [58])

Nd2Fe14B — — 1.87 (1.86 [60]) 19 (4.9 [58]) 563 (516 [59]) 20 (6.6 [58])

(marked with an asterisk in the table), the K1 and Ha

values of most of the compositions found by optimiz-
ing the ML models are similar or higher. The largest
improvement is achieved for NdFe6.5Co3.5P1.5Ti0.5C, for
which Ha is more than 20 % higher than for the best
candidate from the HTS in Ref. [32]. In the future, it
would also be interesting to compare our best candidates
obtained with BHO to predictions using multi-objective
optimization, see Ref. [34] for an example in materials
processing.

Finally, intermetallic phases with hypothetically good
hard-magnetic properties can exist in reality only if
they have sufficient thermodynamic stability. As stated
above, in our DFT database of Ref. [32] on which our
present ML work is based, the formation energies of inter-
metallic phases are calculated with the TB-LMTO-ASA
method and only with respect to their constituing single-
component phases. The ASA is a well suited and justified
approximation for calculating hard-magnetic key quanti-
ties µ0M and K1 of ReA12-based phases with approxi-
mately close-packed crystal structure [32, 47]. For esti-
mating formation-energy differences between competing
multi-component phases more precisely, total-energy cal-
culations with more accurate full-potential DFT methods
are necessary. However, theoretically predicted phases
with promising hard-magnetic properties are already
valuable information for experimentalists who want to
produce hard-magnetic materials by metallurgical means
even without prior theoretical stability prediction. Fu-
ture work on extending DFT databases to hard-magnetic
phases with accurate phase-stability information is a de-
sirable task. However, for the present ML work it is not
an issue because the presented ML approach to predict
chemical compositions of the specific ReA12 structure
type with good hard-magnetic properties, is not limited

by a limited precision of the thermodynamic-stability
data. Once that the DFT database is extended with more
accurate full-potential DFT data for formation energies
of competing multi-component phases, the presented ML
approach will be immediately applicable to such an im-
proved database.

4.3. Comparison between ML and LR

As it can be seen from the testing results in Fig. 4, the
µ0M correlation metrics for the SVR ML model (with
a linear kernel function) are nearly identical to those of
LR. This clearly illustrates that the benefits of ML come
only into play if a non-linear kernel (as for K1 and Ef) is
used. In our work, this improvement is a factor of 2 for
the MAE and around 0.2 for the correlation coefficient.

5. SUMMARY

In this work, we successfully applied a ML approach to
a common materials science problem, namely the search
for a material composition that optimizes a certain physi-
cal property. Based on our HTS database, we trained ML
models that reliably predict the hard-magnetic key prop-
erties of Re(Fe,A)12X compounds with up to three differ-
ent non-ferrous alloying elements A based on input data
with compounds containing only one alloying element.
By optimizing the ML model functions we identified op-
timal compositions for the ReA12X structure that exhibit
an increase in magneto-crystalline anisotropy field Ha by
more than 10 % as compared to our previous HTS re-
sults. Although in both (BH)EST

max and Ha the predicted
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FIG. 6. (Color online) Qualitative comparison of the asym-
metric, smooth threshold function Ξ2(z)/ym with the point-
symmetric tanh, erf, and sgn functions where z = ym/yt.
Note that the arguments and parameters of the tanh, erf,
and sgn functions were adjusted here to the threshold value
1 and the range of function values between 0 and 1 in order
to be directly comparable with Ξ2; furthermore, for the tanh
and erf functions the slope was adjusted in a similar manner
as for Ξ2, cf. Eq. (A3).

optimal compositions do not excel the current state-of-
the-art materials SmCo5 and Nd2Fe14B at the same time,
they can still be valuable for bridging the gap between
these [comparably low (BH)EST

max and high Ha for SmCo5
and vice versa for Nd2Fe14B] while having significantly
lower Re contents and being therefore more cost efficient
and less supply critical.

Our results clearly highlight the potential of ML meth-
ods for materials discovery and design. With an ap-
propriate choice of model hyperparameters and mate-
rial representation it is possible to accurately predict the
materials properties in the entire compound space and
to identify compositions that optimize the learned prop-
erty. In the end, the applicability of ML is only lim-
ited by the availability and accuracy of training data.
For the future, we believe that ML of materials prop-
erties will be especially helpful, when the underlying
structure-composition-property relationships are not yet
completely clarified, as e.g., in the case of K1 for novel
Re-lean magnets.
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Appendix A: Optimization details

Using basin-hopping optimization, we intend to deter-
mine the descriptor x that minimizes the following func-
tion:

F (x) = −Ξ1(Em
f , Et)Ξ2(µ0M

m, µ0Mt)Ξ2(Km
1 ,K1t)

(A1)
where the subscript ’t’ denotes the desired target values.
Note that µ0M

m, Km
1 , and Em

f are functions of x, which
is omitted in Eq. (A1) for better readability. The smooth
threshold function Ξ1 (Ξ2) becomes one (µ0M

m, Km
1 )

below (above) the target value Eft (µ0Mt, K1t). Both
functions converge to zero otherwise. The functions Ξ1

(for Ef) and Ξ2 (for µ0M for K1) are defined as follows:

Ξ1(z) =
1

2
erfc

[
5(z − 1

2
)

]
(A2)

Ξ2(z)/ym = 1− 1

4
{tanh [−5(z − 0.95)] + 1}

{erf [−20(z − 0.95)] + 1} (A3)

with z = ym/yt and y being either µ0M , K1, or Ef, erf is
the error function and erfc is its complement. Obviously,
the complementary error function in Ξ1(z) appears as
being a logical choice for a function that should penalize
values which become higher than certain target values.

The functional form of Ξ2(z), on the other hand, needs
some more explanation. It was chosen such that values
smaller than the target value are less strongly penalized
than values above it. By comparing Ξ2 with its two main
point-symmetric constituents, namely the tanh and erf
functions, this behavior is visually exemplified in Fig. 6.
The somewhat unorthodox choice of Ξ2(z) has the ob-
jective to ’guide’ the optimization algorithm in the cor-
rect direction (increasing µ0M and K1 values). Above
the thresholds, however, all values contribute equally to
F (x), i.e., only by their magnitudes.
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