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Abstract

Rationale and Objectives: With the growing adoption of digital breast tomosynthesis (DBT) 

in breast cancer screening, we compare the performance of deep learning computer-aided 

diagnosis (CADx) on DBT images to that of conventional full-field digital mammography 

(FFDM).

Materials and Methods: In this study, we retrospectively collected FFDM and DBT images of 

78 biopsy-proven lesions from 76 patients. A region of interest (ROI) was selected for each lesion 

on FFDM, synthesized 2D, and DBT key slice images. Features were extracted from each lesion 

using a pre-trained convolutional neural network (CNN) and served as input to a support vector 

machine (SVM) classifier trained in the task of predicting likelihood of malignancy.

Results: From receiver operating characteristic (ROC) analysis of all 78 lesions, the synthesized 

2D image performed best in both the CC view (AUC=0.81, SE=0.05) and MLO view (AUC=0.88, 

SE=0.04) in the task of lesion characterization. When CC and MLO data of each lesion were 

merged through soft voting, DBT key slice image performed best (AUC=0.89, SE=0.04). When 

only masses and architectural distortions (ARDs) were considered, DBT performed significantly 

better than FFDM (p=0.024).

Conclusion: DBT performed significantly better than FFDM in the merged view classification 

of mass and ARD lesions. The increased performance suggests that the information extracted by 

CNNs from DBT images may be more relevant to lesion malignancy status than the information 

extracted from FFDM images. Therefore, this study provides supporting evidence for the efficacy 

of CADx on DBT in the evaluation of mass and ARD lesions.
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INTRODUCTION

Digital breast tomosynthesis (DBT) has emerged as a promising modality to improve 

screening sensitivity and accuracy. DBT produces pseudo-3D images by rotating an x-ray 

source in a partial arc around the breast while acquiring projection images. A growing 

number of studies have shown that tomosynthesis significantly reduces screening recall rates 

and increases cancer detection rates (1–4). By providing volume data as opposed to single 

projection images, DBT gives a clearer visualization of regions of interest by minimizing 

overlaying tissue compared to 2D full field digital mammography. Therefore, DBT is 

expected to be particularly useful for women with dense breasts for whom overlaying 

parenchymal tissue may obscure breast lesions (5). However, human observer studies are 

inherently qualitative and subjective interpretations. The objectivity of computer vision 

methods may therefore help inform imaging strategies across breast radiology.

The growing adoption of DBT in screening protocols makes the prospect of computer-aided 

diagnosis (CADx) on DBT images clinically impactful. Therefore, it is informative to 

compare performance on DBT to that on FFDM. Several groups have studied computer-

aided detection (CADe) of lesions using DBT images with conventional radiomic methods, 

yielding promising results (6–8). These conventional methods are being superseded in some 

applications by emerging artificial intelligence approaches such as deep learning.

Deep learning is a machine learning method which is rapidly growing in usage in the image 

processing field. Deep convolutional neural networks (CNNs) have seen the most 

widespread use in object detection and image classification tasks. These methods involve 

computing high dimensional, unintuitive features from large databases. This contrasts with 

previous CADx and CADe research which compute relatively small numbers of handcrafted 

intuitive features as CNNs can extract features through convolutional, pooling, and 

connected layers (9,10).

Deep learning is now being used in medical imaging classification tasks (11,12). Compared 

to natural object sets such as ImageNet (13), annotated medical datasets are limited in size. 

To handle small databases, approaches for medical classification tasks typically involve 

transfer learning through the application of a pre-trained CNN. The pre-trained CNN is 

typically intended for multiclass object classification on a database such as ImageNet, as 

illustrated in Figure 1 (14). Essentially, pre-trained neural networks act as feature extractors 

for image sets in different domains. Different domains typically have different population 

characteristics and different classification categories, thus necessitating a classifier such as 

SVM (15,16). Transfer learning has been applied in DBT lesion detection tasks, with 

applications on detecting both masses and calcifications (17,18). Transfer learning has also 

been applied to lesion characterization with DBT, however comparison across image types 

was not performed (19).

In order to compare the efficacy of transfer-learning based CADx on DBT and FFDM, 

transfer parameters were used to build classification models for each image type. Evaluation 

of the performance of deep learning features on FFDM and DBT images may provide 

further support in the utilization of extending deep learning-based CADx to DBT 
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applications. This may improve the precision and accuracy of characterizing breast lesions. 

The aim of this study is to provide an objective comparison between the diagnostic 

performance of FFDM, synthesized 2D image, and DBT key slice in the tomosynthesis cine 

loop through CADx in differentiating malignant from benign breast lesions. This type of 

comparison is innovative as while it is common to compare performance over different 

algorithms, comparison of performance across different image types is relatively unexplored.

MATERIALS AND METHODS

Database description

A retrospective review was performed on all patients who had undergone both FFDM and 

DBT resulting in a mammographically-detected lesion which was ultimately biopsied for 

final surgical pathology. FFDM and DBT imaging were performed on a Hologic Selenia 

Dimensions unit (Marlborough, Massachusetts, United States). All aspects of the diagnostic 

workup were performed at the [REDACTED] and images were retrospectively collected 

under Health Insurance Portability and Accountability Act (HIPAA) approved and 

institutional review board (IRB) approved protocols. A total of 76 patients with 78 lesions 

were included in this study, with exams ranging in date from August 2015 to June 2017. The 

average age of included patients was 54.7 years (standard deviation = 10.1 years). Of the 78 

lesions, 30 lesions were biopsy proven to be malignant and 48 lesions were biopsy proven to 

be either high risk or benign. A summary of patient and lesion characteristics is included in 

Table 1. Each lesion was identified in the CC and MLO view on the (1) FFDM image, (2) 

synthesized 2D image, and (3) DBT key slice in the tomosynthesis cine loop.

A fellowship-trained breast imager manually identified the key slice of each lesion from the 

tomosynthesis cine loop. For mass lesions, the key slice was defined as the slice nearest to 

the center of the lesion with the largest lesion diameter and/or when the lesion was best in 

focus. For architectural distortion lesions, the key slice was defined as that in which the 

largest number of spiculations were seen and/or when the lesion was best in focus. For 

calcification lesions, the key slice was defined as that in which the greatest number of 

calcifications were in focus. We acknowledge that manual selection of a key slice may 

introduce bias in analysis, particularly if the mass lesion is not circumscribed or the 

calcifications are not along the plane of image acquisition. In future work, methods of 

evaluating the full lesion volume will be explored. These may have the potential to further 

improve classification performance beyond that observed in this study. In terms of lesion 

categorization, the high risk lesions and the benign lesions were grouped into the “benign” 

category. All high risk lesion patients either ultimately underwent surgical excision or had at 

least two years of imaging follow-up. No patients were upgraded to malignancy in this high 

risk lesion category.

Feature extraction and reduction

The VGG19 deep convolutional neural network, which consists of 19 weight layers, was 

used to extract features in this study (20). VGG19 was pre-trained on over one million 

images from the ImageNet dataset which consists of natural objects used for multiclass 

object classification (10, 13). Learned weights obtained during pre-training were applied to 
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the network in this study, and features were extracted from various layers of the network. 

These features were used in the research task of classifying breast lesions as malignant or 

benign. Note that due to the small database size, the network was not trained or fine-tuned in 

order to avoid overfitting. Instead, images were fed through the existing architecture, and 

quantitative features were extracted from various layers (21).A fellowship-trained breast 

radiologist identified each lesion on all three modalities: FFDM, DBT synthesized image, 

and DBT key slice. A square region of interest (ROI) measuring 512 × 512 pixels was 

manually placed to fully cover the lesion on both the CC and MLO views for each image 

type. ROIs were then bicubically interpolated to a size of 224 × 224 pixels to conform to the 

size of training images used in the initial training of VGG19. Examples of malignant and 

benign ROIs from each image type is shown in Figure 2.

Features were extracted from each max pooling layer of the VGG19 convolutional network 

for each of these modalities, and features from each maxpool layer were fed through a 

meanpool layer to reduce the number of features. Following initial feature extraction, feature 

dimension reduction was further conducted by eliminating features with zero variance over 

all lesions considered in this study.

Feature Selection and Classification

Following feature extraction and reduction, leave-one-out stepwise feature selection was 

performed to identify a non-redundant set of informative features (22). To identify such a 

feature set, stepwise feature selection was performed in a leave-one-out manner over the 

training data, with one training case left out each round. Each round, stepwise feature 

selection was performed by iteratively adding and removing features from the classification 

feature set, using the p-value of the F-statistic as a metric to measure significance in 

improvement of the model. The null hypothesis is that a candidate feature would have a zero 

coefficient in the multilinear model, and if there exists sufficient evidence to reject the null 

hypothesis, then the candidate feature is added to the model. Conversely, if there exists 

insufficient evidence to reject the null hypothesis, then the candidate feature is removed 

from the model. This iterative algorithm continues until no single step improves the model. 

Stepwise feature selection is described in greater detail elsewhere (22).

After repeating the stepwise feature selection algorithm for reach left out training case, the 

cumulative frequency of the selection of individual features is considered. The most 

frequently selected features over the leave-one-out iterations were selected for use in the 

classification model. The motivation behind this iterative method of feature selection is to 

keep the number of features included in models constant when comparing across image 

types. Stepwise feature selection on its own produces variable quantities of selected features, 

which might introduce bias into the evaluation of the performance of classifiers, as it has 

been shown that classification performance varies with the number of included features (23). 

By using the frequency of selection to identify a fixed number of features, this potential 

source of bias was reduced.

For combined analysis of masses and calcifications, the four most frequently selected 

features were used in the final classifier. For analysis of either mass/architecturural 

distortions or calcifications, the two most frequently-selected features were maintained. The 
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numbers of features used in this study were selected to be near the optimal number of 

features for classification with support vector machine (SVM) for the dataset size based on 

recommendations by Hua et al (24). The reduced feature set was used to train an SVM 

classifier with a linear kernel in a leave-one-out manner (25). Outputs from the SVM were 

used to perform receiver operating characteristic (ROC) analysis and to determine the area 

under the ROC curve (AUC), which was used as a figure of merit in this study (26). The 

standard error of the AUC was calculated to estimate the range of values for the population. 

Note that analysis was performed in a leave-one-out manner as opposed to independent 

training and testing sets due to the small size of available data. The resulting classification 

performances reported in this study are therefore an overestimation of performance, as 

separated training and testing may yield lower performance. However, the aim of this study 

was to compare performance, this likely has a minimal impact on the study’s conclusions.

An extension of this analysis was needed to further understand the value of complementary 

information provided by the two standard screening views of each breast. To this end, we 

investigated the performance of a merged classifier by combining signatures from the CC 

and MLO views of each lesion. The merged classifier was constructed through soft voting of 

the SVM output of classifiers trained separately on the CC and MLO view images (27). This 

analysis was repeated separately for each of the three imaging modalities

The visual characteristics of masses and calcifications vary, and this analysis sought to 

explore whether corresponding characteristics of malignancy vary as well (28). Thus, the 

imaging data were additionally examined in subsets based on lesion type (mass/architectural 

distortion or calcifications). Training and classification was repeated following the same 

methodology as when performed on the full dataset.

Statistical evaluation

Statistical significance of the difference of each task’s AUC from random guessing was 

calculated for each classifier using a statistical z-test (29, 30). The statistical significance of 

the difference between classifiers was evaluated using the p-value of a univariate z-score 

statistical test calculated using ROCKIT software (26). Corrections for multiple comparisons 

were performed following the Holm-Bonferroni method (31).

RESULTS

Lesion Characterization by Single View

The AUC was determined for the classification of malignant and benign lesions for each 

breast imaging modality (FFDM and DBT) and for each view (CC and MLO). The resulting 

AUC and standard error values are presented in Table 2. For the MLO view, the performance 

of synthesized 2D images was higher than the performance of FFDM or DBT key slice for 

both calcification lesions and mass/ARD lesions. For the CC view, the performance of 

synthesized 2D images was highest for calcification lesions, and performance of FFDM was 

highest for mass/ARD lesions.
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Lesion Characterization by Merged Views

Lesions may be best characterized in one of the two standard views used in screening 

mammography (CC and MLO). Therefore, incorporation of information from both views 

may provide complementary information motivating this study’s use of a merged classifier.

The merged classifier for DBT key slice images consistently outperformed DBT key-slice 

single view classifiers in each lesion subset, suggesting that the two views of DBT images 

provide complementary information. For FFDM and Synthesized 2D images, the merged 

classifier did not consistently perform better than single-view classifiers. Thus, the merged 

classifier was not decidedly preferred on this dataset for these image types. Examples of 

lesions which were correctly and incorrectly classified by the various classifiers are shown 

in Figure 4.

Performance of the merged classifier is reported in Table 2 and illustrated in Figures 5–6. 

Performance of each the Synthesized 2D images and DBT key slices were compared to 

FFDM in the task of lesion characterization, using the merged-view classifiers. After 

correcting for multiple comparisons through the Holm-Bonferroni method, the performance 

of DBT key slice was significantly superior to the performance of FFDM.

DISCUSSION

In this study, we explored the potential of using pre-trained CNNs via feature extraction for 

the task of classifying malignant from benign breast lesions on (a) FFDM, (b) synthesized 

2D images, and (c) DBT key slice images. To our knowledge, comparisons of CNN transfer 

learning performance across mammographic imaging modalities for lesion diagnosis has not 

yet been conducted. With the growing presence of DBT in breast cancer screening, it is 

increasingly important to understand differences between the use of these modalities in CAD 

algorithms such as deep learning.

The application of CNNs to classifying lesions FFDM and DBT images as either malignant 

or benign was explored. Transfer learning methodology was applied, using a pre-trained 

CNN to extract features from FFDM and DBT ROIs. The extracted features were input to a 

support vector machine classifier and the diagnostic performance of resulting class 

probabilities was determined in terms of AUC.

When mass and ARD lesions are considered, DBT performed significantly better than 

FFDM in the task of classifying lesions as malignant or benign. This is in agreement with 

observer studies and conventional radiomics studies which also found that DBT had similar 

or better performance than FFDM in the task of lesion characterization (2, 3, 32–34).

The increased lesion conspicuity in DBT is greatly beneficial when imaging dense breast 

tissue because it is can be difficult to perceive suspicious lesions in extremely dense breast 

tissue. The border of masses, number of masses, and associated findings such as dilated 

ducts or vessels around a mass are better depicted on DBT images, especially in dense 

breasts (35). Because of the ability of DBT to reduce tissue superimposition, a benefit of 

DBT is a reduction in the recall rate in women with dense breasts. Haas and colleagues (4) 
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reported that the addition of DBT reduced recall rates for all breast density groups and age 

groups, with significant differences in recall rates for scattered heterogeneously dense and 

extremely dense breasts. Their study findings reiterate the belief that DBT will prove to be 

beneficial for patients with dense breast tissue and for those with nondense breast tissue. In 

our dataset, the DBT key slice yielded the highest AUC when individually classifying 

masses/ARD and calcifications, confirming that tomosynthesis is indeed helpful to reduce 

overlapping parenchymal tissue in the analysis/classification of lesions. We acknowledge 

that the feature dimensionality was large compared to the number of lesions included in this 

study. Therefore, the results reported here are treated as initial findings, and warrant further 

investigation on a larger dataset.

Most findings at DBT are apparent on both the CC and MLO projections, but one-view-only 

findings occur at DBT, and breast cancer still occasionally may be visible on only one 

projection. Previous studies involving DBT have estimated that 5–9% of breast malignancies 

are seen only on the CC projection, whereas 1–2% of breast malignancies are apparent only 

on the MLO projection (36). Moreover, 12–15% of findings noted on both projections are 

more readily apparent on one view compared with the other (37). In our study, all three 

imaging modalities performed better when the CC and MLO views were merged, confirming 

that each view

provides unique and synergistic information to aid in the classification of a lesion. When 

individually assessed, DBT synthesized 2D image performed better than all other imaging 

methods in both the CC and MLO view.

Resulting classification performances observed in this study were comparable to those 

reported by the limited number of DBT-based deep learning CADx studies. For example, 

while an independent data set was used, Samala et al. observed an AUC of 0.90 in the task 

of classifying mass lesions through an evolutionary pruning approach (19). However, this 

study did not compare classification performance of DBT to that of FFDM or 2D 

synthesized images. Therefore, while the study by Samala et al. provides support for the 

feasibility of transfer learned deep CNNs for CADx on DBT images, the results observed in 

our study complement this finding by comparing performance over different image types. 

Similarly, Kim et al. implemented latent feature representation of breast lesions on DBT on 

a dataset independent from the one used in this study, and observed an AUC of 0.919 in 

characterizing breast masses, which agrees with the results of this study (38).

These promising preliminary results are encouraging and motivate future studies to evaluate 

the robustness of these findings in larger datasets, and to improve on these results through 

advances in techniques involved. While this study looked at data from multiple sources and 

views, we plan to merge these data sources to form a single impression on each subject. By 

incorporating all available data for a given lesion, we expect to see improvements in 

classification performance.

Furthermore, we acknowledge that the use of a key slice of the DBT volume is not 

necessarily optimal for this classification task. Before clinical implementation, efforts should 

be made to develop a system for optimized slice selection. Alternatively, future methods 
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could incorporate information from the full DBT volume. Incorporation of full volume 

information is expected to reduce bias introduced by selecting a single slice by involving all 

DBT image data available for the lesion of interest.

We plan to extend the scope of feature calculation algorithms beyond deep learning in order 

to compare and merge traditional handcrafted lesion features with those extracted by deep 

learning. Comparing a standard radiomics approach to the CNN-based approach taken in 

this study may explicate whether these algorithms extract redundant or complementary 

information. Understanding the relationship between these algorithms may be constructive 

in developing CADx systems for clinical use in breast imaging. While such an investigation 

would clearly be of value, this study omitted such a comparison as it focused instead on 

comparing value of breast image types, as opposed to comparing computer vision algorithm 

methodologies. As more images are collected at our institution, we plan to incorporate more 

sophisticated deep learning methods such as fine tuning and training from scratch. By 

continually improving computer-aided diagnosis of breast lesions, we hope to improve 

diagnostic accuracy and patient management for breast cancer patients.
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Abbreviations:

ARD architecture distortion

AUC area under the ROC curve

CADe computer-aided detection

CADx computer-aided diagnosis

CC cradiocaudal

CNN convolutional neural network

DBT digital breast tomosynthesis

FFDM full-field digital mammography

HIPAA Health Insurance Portability and Accountability Act

MLO mediolateral oblique

ROC receiver operating characteristic

ROI region of interest

SVM support vector machine
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Figure 1. 
Illustration of the general deep learning approach of transfer learning through feature 

extraction. Parameters are transferred from a pre-trained neural network. Features are then 

extracted from the various layers on images from a separate domain, such as medical 

imaging.
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Figure 2. 
Examples of malignant and benign ROIs selected to use for classification of two masses and 

two calcifications. ROIs for the four example lesions are shown in each of the types explored 

in this paper.
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Figure 3. 
Structure of the VGG19 convolutional neural network, and illustration of the layers from 

which features were extracted and input to the SVM classifier to yield an output 

classification decision in this study. Features were extracted from each maxpool layer and 

then put through an average-pool layer to reduce feature dimensionality. Feature reduction 

was performed, and remaining features were input to a leave-one-out SVM classifier to 

produce a final classifier.
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Figure 4. 
ROIs of lesions that were correctly or incorrectly classified by classifiers trained for each 

image type. The most extreme lesion (i.e. highest or lowest probability of malignancy) was 

used to select the representative lesion shown here for illustrative purposes.
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Figure 5. 
Classification performance of the merged-view classifier on each subset of lesions 

considered in this study. AUC is plotted with error bars showing one standard error.

Mendel et al. Page 15

Acad Radiol. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Significance of difference between AUC values using merged CC and MLO data for 

classification in the task of predicting malignancy. After corrections for multiple 

comparisons, a p-value of 0.025 is significant at the α=0.05 significance level (31).
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Table 1.

Summary of patient ages, lesion types, and lesion molecular subtypes.

Frequency (%)

Malignant Benign

Age

≤39 -- 1(2.1)

40–49 6 (20.0) 20 (41.7)

50–59 7(23.3) 18(37.5)

60–69 12(40.0) 9(18.8)

≥70 5 (16.7) --

Average Age (SD) 59.6(10.3) 51.5(8.6)

Lesion Type

Mass 10(33.3) 23 (47.9)

Architectural Distortion
(ARD)

9 (30.0) 6(12.5)

Calcifications 11(36.7) 19(39.6)

Molecular Subtype

DCIS 14

IDC 12

ILC 3

Invasive Mammary 1

Papillary Carcinoma 1

Atypical Ductal Hyperplasia (ADH) 7

Complex Sclerosing Lesion 3

Fibroadenoma (FA) 9

Fibrocystic Change 7

Normal Breast Parenchyma 5

Cyst 1

Apocrine Metaplasia 4

Stromal Fibrosis 3

Intraductal Papilloma 5

Sclerosing Adenosis 3

Usual Ductal Hyperplasia (UDH) 1

Total 30 48
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Table 2.

Summary of AUC values observed for classifying lesions as malignant or benign.

Images analyzed All (n=78) Masses/ARD
(n=48)

Calcifications
(n=30)

FFDM

CC and MLO 0.81±0.05 0.88±0.05 0.88±0.06

CC View 0.76±0.05 0.90±0.07 0.83±0.08

MLO View 0.76±0.06 0.82±0.06 0.82±0.08

Synthesized 2D Image

CC and MLO 0.86±0.04 0.91 ±0.04 0.94±0.04

CC View 0.81±0.05 0.75±0.08 0.88±0.10

MLO View 0.88±0.04 0.87±0.06 0.90±0.06

DBT

CC and MLO 0.89±0.04 0.98±0.01 0.97±0.03

CC View 0.74±0.05 0.79±0.08 0.82±0.08

MLO View 0.83±0.05 0.80±0.07 0.84±0.07
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