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Abstract
Rationale and Objectives—To investigate the feasibility using quantitative morphology/texture
features of breast lesions for diagnostic prediction; and to explore the association of computerized
features with lesion phenotype appearance on MRI.

Materials and Methods—43 malignant/28 benign lesions were used in this study. A systematic
approach from automated lesion segmentation, quantitative feature extraction, diagnostic feature
selection using artificial neural network (ANN), and lesion classification was carried out. Eight
morphological parameters and 10 GLCM (gray level co-occurrence matrices) texture features were
obtained from each lesion. The diagnostic performance of selected features to differentiate between
malignant and benign lesions was analyzed using the ROC analysis.

Results—Six features were selected by ANN using leave-one-out cross validation, including
Compactness, NRL Entropy, Volume, Gray Level Entropy, Gray Level Sum Average, and
Homogeneity. The area under the ROC curve was 0.86. When dividing the database into half training
and half validation set, a classifier of 5 features selected in the half training set achieved AUC of
0.82 in the other half validation set. The selected morphology feature “Compactness” was associated
with shape and margin in BI-RADS lexicon, round shape and smooth margin for the benign lesions
and more irregular shape for the malignant lesions. The selected texture features were associated
with homogeneous/heterogeneous patterns and the enhancement intensity. The malignant lesions
had higher intensity and broader distribution in the enhancement histogram (more heterogeneous)
compared to the benign ones.

Conclusion—Quantitative analysis of morphology/texture features of breast lesions was feasible,
and these features could be selected by ANN to form a classifier for differential diagnosis.
Establishing the link between computer-based features and visual descriptors defined in BI-RADS
lexicon will provide the foundation for the acceptance of quantitative diagnostic features in the
development of computer-aided diagnosis (CAD).
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Dynamic contrast enhanced MRI (DCE-MRI) has evolved into an established clinical imaging
modality for detection and diagnosis of breast lesions. The American Cancer Society has issued
a guideline recommending annual breast MRI screening for women with lifetime breast cancer
risk greater than 20–25%. Breast MRI has demonstrated a high sensitivity, however, with
varied specificity, 37%–97% reported in the literature [1–6]. The high false positive finding
may lead to unnecessary biopsies or over treatment. As the use of breast MRI increases, the
accuracy and efficiency in interpretation becomes a challenging issue. Development of a
computer-aided diagnosis (CAD) system for breast MRI may provide a practical help,
particularly to mammographers who have limited experience on breast MRI.

The CAD for mammography is by far the most mature among all medical imaging analysis
systems. It detects abnormalities or suspicious regions, and marks them with different labels
indicating different features with varying degrees of malignancy [7–10]. A great deal of
research has also been spent on developing CAD for breast ultrasound [11–13]. Given the many
more images acquired in MRI compared to mammogram and ultrasound, development of breast
MRI CAD is far more challenging, but on the other hand will be very helpful. The currently
existing commercial CAD systems for breast MRI, such as CADstream (Confirma Inc.
Kirkland, WA) and fTP (CADsciences, White Plains, NY) provide display platforms to show
various presentations of the enhanced lesions to assist radiologists’ interpretation. The display
is mainly based on the enhancement kinetic features, such as the wash-out patterns, of voxels
with the percent enhancement above a pre-set threshold. The morphological features as defined
on BI-RADS lexicon [14], as well as the final diagnostic impression, will have to be evaluated
by radiologists.

The properties in the enhancement kinetics of lesions measured by DCE-MRI, either using
fitting parameters from pharmacokinetic models or raw enhancement data, have been
extensively investigated. On the other hand, the work in quantitative morphological analysis
of lesions is much less, partly due to the difficulty in defining relevant quantitative parameters
that could characterize benign and malignant lesions. Some effort has been spent on exploiting
computer-assisted approaches. Gihuijs et al. employed computer algorithm analysis of shape-
based features from reconstructed 3-dimensional (3D) lesions [15]. Gibbs et al. reported
significant differences in the GLCM (Gray Level Co-occurrence Matrices) texture of benign
and malignant lesions in breast MRI [16]. These two studies demonstrated that quantitative
analysis of shape- or texture- based features may be used for differential diagnosis. However,
the manual lesion segmentation employed there would limit the development of this technique
to build an automated CAD.

Several studies have employed computer algorithms for automated lesion segmentation. Liney
et al. used region growing to outline lesion and investigate the diagnostic power of shape-based
features [17]. Chen et al. also applied region growing to segment lesions and then evaluated
the kinetic features [18]. Later Chen et al. proposed another lesion segmentation method using
fuzzy c-means algorithm (FCM), and reported that the performance using FCM is more reliable
than using region growing [19]. They also applied this technique to automatically search the
hot spot and analyze its enhancement properties [20]. A systematic statistical analysis may be
used to select an optimal set of features to achieve the highest diagnostic accuracy [21].

Based on these previously published works, the first aim of this study is to build a systematic
diagnostic platform to differentiate between malignant and benign lesions, from computerized
lesion segmentation, quantitative feature extraction, diagnostic feature selection, and lesion
the classification. The lesion segmentation was performed using a clustering-based algorithm
based on operator-defined location, and then a full panel of quantitative morphological and
texture descriptors was obtained for lesion characterization. The artificial neural network
(ANN) was employed to select features to form the classifier for differentiating between benign
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and malignant lesions. The diagnostic performance of the selected classifier was evaluated
using the receiver operating characteristics (ROC) analysis. A recent review paper published
by Beherns et al. pointed out that for these computer-extracted features to be accepted, the link
with morphology descriptors defined in BI-RADS lexicon needs to be established [22]. There
has been little work reported in this aspect. The second aim of this study is to explore the
association of extracted quantitative features with lesion phenotype appearance on MRI, to
provide the initial step towards establishing this link between computer-based quantitative
features and BI-RADS visual descriptors.

MATERIALS AND METHODS
Subjects and MRI protocol

The study included 28 histological-proven benign and 43 malignant lesions selected from our
breast MRI database collected from 1999 to 2005. The age of the patients was from 29 to 76
years old (48±9, median 48) in the malignant group, and 21 to 74 (45±7, median 45) in the
benign group. Only lesions that showed strong contrast enhancements with a clearly defined
boundary were selected for this study. Those cases presenting diffuse infiltrating enhancements
or ill-defined tumor margin were excluded. Table 1 summarizes the pathology of all analyzed
lesions. This study was approved by the institutional review board, and was HIPAA-compliant.
All patients gave informed consent to participate in the study.

The MRI was performed on a 1.5T scanner using a dedicated 4-channel phased-array breast
coil (Philips, Cleveland, OH). The dynamic imaging was performed using a T1-weighted 3D
SPGR (RF-FAST) pulse sequence, with TR= 8.1 ms, TE= 4.0 ms, flip angle=20°, matrix size=
256×128, FOV varying between 32 and 38 cm. The temporal resolution for each dynamic
acquisition was 42 seconds. Thirty-two axial slices with 4 mm thickness were used to cover
bilateral breasts. Four pre-contrast and 12 post-contrast sets were acquired. The contrast agent
(Omniscan®, 1cc/10 lbs body weight) was manually injected at the beginning of the 5th

acquisition and timed to complete in 15 seconds. The post-contrast enhanced images acquired
at the 6th frame, i.e. at 1-min after contrast arrival (adjusting for the delay due to injection time),
were used for the analysis to identify the enhanced lesions.

Overall Analysis Scheme
Automated computer algorithms were used to segment and extract features characterizing each
lesion. The required procedures include 1-) segmentation of enhanced lesions, 2-) extraction
of quantitative parameters for both morphological and texture features, 3)-selection of features
using artificial neural networks to form the classifier, and to test its discriminative ability using
ROC analysis.

Lesion Segmentation
The lesion was segmented from the contrast enhancement maps at 1-min post injection,
obtained by subtracting the pre-contrast images taken at the third frame from the post-contrast
images taken at the 6th frame. For each lesion, the operator placed an initial ROI indicating
the lesion location, and also decided the beginning and ending slices that contained the lesion.
Then the outline of the lesion region of interest (ROI) on each imaging slice was automatically
obtained using the fuzzy c-means (FCM) clustering based algorithm [19]. The ROIs from all
imaging slices containing this lesion were combined to obtain 3D information of the whole
lesion. Figure 1 demonstrates an example illustrating the step-by-step procedure. The analysis
consisted of these steps: 1) initial square ROI selection placed by a human operator on one
imaging slice to indicate the location of the suspicious area; 2) lesion enhancement within the
selected ROI using an unsharp filter with a 3 by 3 kernel constructed using the inverse of the
two-dimensional Laplacian filter; 3) application of FCM on the enhanced ROI to obtain the
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membership map of all voxels indicating the likelihood of each voxel belonging to the lesion
or the non-lesion cluster. The weighting component on each fuzzy membership is chosen as
2, while the stopping criteria is the absolute change in objective function in consecutive
iterations less than a pre-specified number ε =10−5. 4) binarization of the lesion membership
map with the selected threshold to separate lesion from non-lesion voxels. The threshold was
determined by the operator empirically; and if not satisfactory a different value may be used.
5) 3D connected-component labeling to remove scattered voxels not connecting to the main
lesion ROI, and hole-filling to include all voxels contained within the main ROI which were
labeled as non-lesion (such as necrotic voxels showing low enhancements). The entire process
was performed using programs written with MATLAB 7.0. It took less than 1 second to
segment a lesion with size of 4 cm3 on a personal computer.

The segmentation result obtained using the computerized algorithm was compared to the
manual segmentation performed by an experienced radiologist with three years of experience
interpreting breast MRI. Using the same lesion location and the beginning and ending slices,
the lesion ROI on each slice was manually drawn. It was performed twice, with one-week
interval in between. The lesion volume for each case was calculated by counting all voxels
contained within the ROI, and multiplying that by the voxel size. The volumes obtained in 2
manual operations were compared, and the averaged volume from 2 manual operations were
compared to that of computerized segmentation.

Feature extraction
Morphology features—Eight morphological features including Volume, Surface Area,
Compactness, NRL (Normalized Radial Length) mean, Sphericity, NRL entropy, NRL ratio,
Roughness (definition given in the Appendix) were calculated to describe the morphological
properties. The first three features showed the 3D properties of the lesion. The compactness
was defined as the ratio of the square of surface area to the total volume of the lesion. A sphere
will have the lowest compactness index. A highly non-convex lesion, such as a spiculated mass,
will have a high compactness index. The latter five features were based on the normalized
radial length (NRL), defined as the Euclidean distance from the object’s center (Center of
Mass) to each of its contour pixels and normalized relative to the maximum radial length of
the lesion.

Texture features—Texture is a repeating pattern of local variations in image intensity, and
is characterized by the spatial distribution of intensity levels in a neighborhood. Ten GLCM
texture features (energy, maximum probability, contrast, homogeneity, entropy, correlation,
sum average, sum variance, difference average, and difference variance), as defined by
Haralick et al., were obtained for each lesion [23].

Diagnostic Feature Selection
After feature extraction, a total of eight morphological features and ten GLCM texture features
were obtained for each lesion. The artificial neural network (ANN) was utilized to obtain an
optimal classifier to differentiate between benign and malignant lesions.

The features were selected using LNKnet (http://www.ll.mit.edu/IST/lnknet/) package in order
to identify the ones that yield maximum discrimination capability thus achieving the optimal
diagnostic performance. Each parameter set was normalized to have zero mean and unit
variance before training. Forward search strategy was applied to find the optimal feature subset,
which was obtained when the trained classifier produced the least error rate. Multilayer
Perceptron (MLP) is one of the most common ANN topologies, where units are structured in
input, hidden, and output layers. The specific structure of MLP was determined by selecting
the one leading to the best performance. The selection based on morphology or texture features
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alone used 1 input layer with 3 nodes, 1 hidden layer with 2 nodes, and 1 output node from 0
to 1 indicating level of malignancy, where 0 means absolute benign and 1 means absolute
malignant. Weights and bias of neural network were determined by two-phase training
procedure. The first phase had 30 iterations of back propagation, and the second phase had a
longer run of conjugated gradient descent to ensure full convergence. The logistic sigmoid
function was used to interpret the output variation in terms of probability of class membership
within the range (0,1). The performance of the selected classifier was evaluated using ROC
analysis.

To explore the best diagnostic performance possibly achievable, the entire dataset was used in
training using leave-one-out cross validation. Then, the lesions in the benign and malignant
group were randomly split into half, one as training set (14 benign and 22 malignant) and the
other as validation set (14 benign and 21 malignant). The selected classifier obtained using the
whole dataset with leave-one-out cross validation, and that obtained using the half training set
was compared. The area under the ROC achieved in the whole dataset, and that in the half
validation set using the classifier selected from half training set was also compared.

RESULTS
Evaluation of computerized vs. manual lesion segmentation

Firstly the consistency between two manual segmentations performed by radiologist was
evaluated, shown in Figure 2(a), separately labeled for benign and malignant lesions. The
Pearson’s correlation coefficient is r=0.97 for both benign and malignant lesions. Taking the
average of the two radiologist's segmentation as the “ground truth,” it was compared to the
segmentation obtained by computerized algorithms, shown in Figure 2(b). The correlation
coefficient for all lesions is r=0.94; higher for malignant lesions (r=0.97) and lower for benign
lesions (r=0.92). When a lesion was considered correctly segmented by the computer when the
overlap with the ground truth is ≥ 90%, 64/71 lesions (90%) were correctly segmented by FCM-
based method.

Diagnostic Performance of Individual and Combined Features
When using eight morphology features alone, the classifier selected by ANN included three
parameters: Compactness, Lesion Volume, and NRL Entropy. Using these three features for
ROC analysis, it achieved AUC (area under curve) of 0.80. When considering ten texture
features alone, the selected parameters were: Gray Level Entropy, Gray Level Sum Average
and Homogeneity. The AUC based on these three features was 0.78. When combining the three
selected morphology and three texture parameters, the AUC was improved to 0.86. The ROC
curves using these 3 sets of data are shown in Figure 3.

The analysis was also performed by splitting the dataset into half training and half validation
set. Five parameters were selected by ANN in the half training dataset, which achieved the
area under ROC of 0.93. They were Compactness, NRL Entropy, Gray Level Entropy, Gray
Level Difference Variance, and Homogeneity. All these 5 parameters were among those 6
selected in the entire dataset using leave-one-out cross validation. When these 5 parameters
were used for diagnosis in the remaining half validation set, it reached the area under ROC of
0.82, which was close to the 0.86 achieved using the whole dataset with leave-one-out cross
validation.

The diagnostic performance of each individual feature selected in this classifier was also
analyzed. The mean and standard deviation of these 6 selected parameters in the malignant and
benign groups, and diagnostic performance (AUC) based on each individual feature are
summarized in Table 2. The morphological feature “Compactness” (p=0.001) and “NRL
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Entropy” (p=0.01) showed significant differences between the benign and the malignant group.
The selected GLCM texture features “Gray Level Entropy” (p=0.002) and “Gray Level Sum
Average” (p=0.01) were significantly lower in the benign compared to the malignant group.
The other two features, “Homogeneity” (p=0.71) and “Volume” (p=0.27), by themselves did
not show significant differences, but they could be combined with other features to achieve
the optimal diagnostic accuracy. Figure 4 shows the distribution of 3 selected features,
“Compactness”, “Gray Level Entropy”, and “Gray Level Sum Average”, separately in the
malignant and benign groups. For each individual parameter, the benign group had a lower
value compared to the malignant group, but with a great overlap. Therefore, it is unlikely for
a single parameter to have a high diagnostic performance by itself. To investigate the
association with lesion phenotype, for each feature the indices from all 71 lesions were sorted
in ascending order, so the lesions with high vs. low indices could be identified and compared.

Morphology Feature- Compactness
During the entire feature selection testing process, the “Compactness” was consistently
selected suggesting its high predictive power. Of all 32 features, the “Compactness” as a single
feature could achieve the highest AUC of 0.7. The “Compactness” is defined as the ratio of
the surface area to the volume; therefore it is sensitive to shape and margin of the lesion. As
shown in Figure 5, the benign lesion has compactness index =1.7 (rank #22/71), and the
malignant lesion has compactness index =63 (rank #60/71). This feature appeared to be
associated with shape and margin in BI-RADS lexicon; round shape and smooth margin for
the benign; and irregular shape and irregular or spiculated margin for the malignant lesion.

Texture Feature- GLCM Gray Level Entropy
The GLCM texture feature “Gray Level Entropy” was significantly higher (p=0.002) in the
malignant group than the benign group. As shown in Figure 6, a homogeneously enhanced
lesion has a lower GLCM “Gray Level Entropy” (benign lesion, Entropy index=6.6, rank
#10/71) compared to the heterogeneously enhanced lesion (malignant lesion, Entropy index
=8.1, ranked #41/71). The gray level intensity histogram calculated from the displayed image
is also shown in Figure 6. The broader width of the malignant peak represents a relatively
heterogeneous gray level distribution. After sorting the “Gray Level Entropy” indices using
ascending order, the top 3 malignant lesions with highest indices and the bottom 3 benign
lesions with the lowest indices with matched lesion sizes were identified. The combined
histogram is shown in Figure 7. The histogram of 3 benign lesions with low “Gray Level
Entropy” indices showed a narrower peak and lower intensity compared to 3 malignant cases
with high indices. Therefore, the GLCM entropy appeared to be associated with the internal
enhancement patterns (homogeneous vs. heterogeneous), as well as the enhancement intensity
defined in the BI-RADS lexicon.

Texture Feature- GLCM Gray Level Sum Average
Another gray level texture feature ‘Gray Level Sum Average’ was also significantly higher
(p=0.01) in the malignant group than in the benign group. As shown in Figure 8, a strongly
enhanced malignant lesion has a higher GLCM “Gray Level Sum Average” (sum average index
=37, ranked #66/71) compared to the benign lesion (sum average index =22, ranked #22/71).
Figure 9 shows the histogram of 3 malignant lesions with the highest indices and 3 benign size-
matched lesions with the lowest indices. The peak of the benign lesion histogram appeared at
the lower end of the spectrum compared to that of malignant lesions, also their peak widths
were narrower compared to those of malignant lesions. This feature appeared to be associated
with the gray level enhancement intensity and homogeneity. Therefore, similar to GLCM
entropy, the GLCM sum average appeared to be associated with the enhancement intensity and
the internal enhancement patterns (homogeneous vs. heterogeneous) defined in the BI-RADS
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lexicon. Despite the similarity shown in these examples with very high and very low indices,
the GLCM entropy and sum average was not correlated with each other (r=0.4), and were
selected as independent features.

DISCUSSION
Compared to the well-established CAD for mammogram, development of automated CAD for
breast MRI is in its early stage. Only a few investigations have pursued automated lesion
segmentation and/or feature extraction for lesions detected by breast MRI, as summarized in
Table 3. In this study we applied quantitative analysis to characterize the morphology and
texture features of breast lesions and used the artificial neural network to select a classifier for
differential diagnosis. This comprehensive approach was only reported by Meinel et al., but
only using a small set of features [21]. They extracted a set of 6 shape-based and 1 intensity-
based features using back propagation neural networks, and showed that when this information
was provided to radiologists, their performance was improved [21]. In our study a total of 8
morphology and 10 GCLM texture features were extracted to characterize each lesion. Six
features, 3 morphology and 3 texture, were selected by ANN using leave-one-out cross
validation, and they could achieve an area under the ROC curve of 0.86. When splitting the
dataset, 5 features were selected in the half training set, and they could achieve the area under
the ROC curve of 0.82 in the remaining half validation set. The consistency of selected
parameters using these two models demonstrated robustness of this approach. However, the
ultimate performance of the selected classifier will need to be tested in a different independent
dataset.

In this study a semi-automated lesion segmentation method with minimum operator
intervention was implemented and evaluated. The method required the operator to indicate the
beginning and ending slices containing the lesion, and to place an initial square-shaped ROI
on one imaging slice. The purpose was to indicate the lesion location. It should be noted that
the pre-marked ROI does not need to be the smallest rectangular box covering the lesion, which
is required in the algorithm reported by Penn et al. [25].

In order to determine the accuracy of the FCM-defined lesion ROI, we use radiologist’s manual
drawing as the reference. The radiologist performed the segmentation twice, and the results
showed a correlation coefficient (r=0.97), indicating a high consistency. When the averaged
manual segmentation ROI was used to correlate with the FCM-segmentation results, the
correlation coefficient was r=0.97 in malignant lesions, similar as that between two manual
segmentations; but the correlation in benign lesions was lower (r=0.92). Five of the 7 cases
showing < 90% overlap were benign lesions. They either had lower enhancement or with ill-
defined margin, that made determination of boundary more difficult. Another reason that may
lead to blurred lesion boundary is the motion artifact between pre- and post-contrast images.
The currently available registration method aligns the entire image; and the registration of
breast may be compromised to accommodate registration of other body parts such as the
thoracic region. Therefore, in this study we did not apply registration. Further development of
a better registration method focusing on registration of the breast may improve the accuracy
of the lesion segmentation.

A primary advantage of using the neural network to search of diagnostic classifier is that it
does not require user input to choose an appropriate model or to select features. Szabo et al.
applied a similar approach to evaluate the discriminative ability of combined qualitative
morphologic and kinetic features of breast lesions [26]. The features were visually assessed by
three experienced radiologists based on manually drawn ROIs. The dataset was randomly
divided into a training set of 59 lesions (46 malignant and 13 benign) and a verification set of
46 lesions (29 malignant and 17 benign). Other than ANN the conventional methods such as
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logistic regression method can also be used to build linear predictive models. The performance
between different classifiers selected by different methods may be compared in the future.

Very little attention was focused on linking computer-extracted lesion features to BI-RADS
lexicon. Therefore, the second aim of this study is to explore the association of the extracted
quantitative features with the lesion phenotype appearance on MRI. Examples from a particular
imaging slice of lesions with high vs. low index were first investigated. Then 3 size-matched
lesions, with the highest and lowest indices were compared. Size-matching was necessary to
ensure elimination of this possible confounder.

The “Compactness” was correlated with “Sphericity” and “Roughness”. The benign lesions
have lower “Compactness” and “Roughness” indices, but higher “Sphericity” compared to
malignant lesions. The result is consistent with Liney et al. reporting that benign lesions were
found to extend more along spherical patterns than malignant lesions [17]. By definition, the
“Compactness” is expected to be associated with shape and margin in BI-RADS lexicon, and
the example given in Figure 5 supports this link. “NRL Entropy” describes the complexity of
the radius from lesion boundary to the center of mass, so it is expected to be associated with
the margin of a lesion.

Most of the GLCM texture features were highly correlated with each other. A homogenously
enhanced lesion has lower “Gray Level Entropy” and higher “Gray Level Energy” compared
to a heterogeneously enhanced lesion. The examples given in Figure 6 indicate that the benign
lesions were more likely to show more homogeneous and lower enhancements. A similar
finding was reported by Gibbs and Turnbull [16]. They compared four breast classification
schemes that utilize enhancement and texture features based on manually-drawn ROI in 45
malignant and 34 benign lesions. When texture parameters were combined in their logistic
regression model, the “Gray Level Entropy” and “Homogeneity” were also found to be the
most important feature for lesion differentiation. The increase in entropy in malignant lesions
may suggest that malignant lesions are more complex than benign lesions.

The quantitative analysis to extract the morphology and texture features using computer-based
algorithm is essential for the development of CAD. While the enhancement pattern and shape
characteristics can be easily evaluated by visual assessment, it represents a great challenge to
link such features to computational numbers, particularly the texture features. Each quantitative
feature many be associated with different descriptors defined in BI-RADS lexicon to some
extent. For example, shape and margin can both contribute to the “Compactness” index. The
other two features presented in this study, “Gray Level Entropy” (Figure 6 and Figure 7) and
“Gray Level Sum Average” (Figure 8 and Figure 9), both are associated with homogeneous/
heterogeneous enhancements and the degree of enhancements; which can not be separated.
This is a complex problem, and there will not be a simple one-to-one correspondence
relationship. The study presented here may provide the initial step towards establishing this
link between computer-based quantitative features and BI-RADS visual descriptors.

Despite our encouraging results, some limitations exist in the present study. First, spiculation
is known to be a characteristic feature of malignant lesion, but that can only be evaluated on
high spatial resolution images. An active contour model to delineate the tumors after the initial
estimation on FCM-based segmentation may be applied to enhance delineation of spiculation.
Other analysis methods, such as radial length analysis [27] and Fourier analysis [28,29], may
also be applied to better evaluate the extent of spiculation. Second, the automatically extracted
features in our study were investigated slice by slice and the averaged value was used to
represent the whole lesion. Gihuijs et al. reported an alternative method [15]. They
computationally reconstructed the whole 3D lesion, then performed analysis in all three
dimensions. Chen et al. started with automated lesion segmentation on 2D slices then after
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reformatting to an isotropic voxel size they performed 3D texture analysis [30]. The success
of a true 3D texture analysis relies on isotropic image acquisition in breast MRI, which requires
a longer imaging time or smaller coverage. It may not be a worthy trade-off to get the texture
information along the slice thickness dimension. Third, the feature of the lesion shown on pre-
contrast images was not analyzed. For a solitary lesion imbedded in fat, pre-contrast images
may allow a better visualization of the lesion shape and margin. Especially when the lesion is
not strongly enhanced (such as the benign case shown in Figure 5), the pre-contrast images
may provide a superior contrast quality than that of the subtraction image for evaluation of
lesion shape and margin for diagnosis. Therefore, indeed the pre-contrast images may provide
additional information to further improve the diagnostic performance or the confidence of the
radiologists; however, by itself it is not sufficient for making diagnosis. Forth, we only included
mass-type breast lesions to demonstrate feasibility of our approach. The difficulty to
characterize a non-mass lesion lies on the uncertainty in lesion segmentation, because the
boundary is not as well-defined as in the mass lesion. Since all features are derived from the
tissue within the segmented lesion ROI, the diagnostic performance will be heavily dependent
on the accuracy of lesion segmentation. Therefore at this early developmental stage the non-
mass lesions were excluded in this study. In the future other lesions displaying non-mass like
enhancement patterns, such as linear, linear-branching, segmental, regional, should be included
to test the performance of obtained classifier. Lastly, we did not include kinetic features. Gibbs
et al. [16] reported that the diagnostic accuracy increased from 80% accuracy when only relying
on texture features, to 92% with combined texture and kinetic parameters. Liu et al. [31] also
reported that addition of kinetic criteria might improve the overall diagnosis accuracy. Since
our focus was to establish the link between quantitative morphology and texture features with
BI-RADS descriptor, the kinetic features were intentionally left out in this work, but those will
be added into analysis in the future.

In summary, we have developed quantitative morphological and texture features analysis
method for breast MRI diagnostic prediction. The ROC analysis result showed a reasonably
high accuracy. In this work we only analyzed unspecific morphological and texture features,
aiming to demonstrate the feasibility of this approach to serve as the basic frame for further
development into an automated true CAD, i.e. that provides diagnostic impression. Other
features, such as spiculation, rim-enhancement and kinetic features with fast wash-in and wash-
out, are the most specific features suggesting malignancy. They may be directly incorporated
into the final diagnostic classifier. The availability of a breast MRI CAD system may improve
the confidence in interpretation of breast MRI, especially for mammographers with limited
MRI experience.
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APPENDIX
The 8 morphology features described in the text are calculated as follows: (p is the pixel size
on the imaging plane, and t is the slice thickness, r is the individual radial length,).

Volume
Vol = ∑

∀x,∀y,∀z
FROI(x, y, z) ∀ p 2 ∀ t

(1)

Surface
Surf = ∑

∀x,∀y,∀z
SROI(x, y, z) ∀ p ∀ t

(2)
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Compactness

Comp = Surf 2

Vol

(3)

NRL mean
μNRL = 1

N ∑
j=1…N

rj
(4)

Sphericity

Spher =
μNRL
σNRL

(5)

NRL entropy
ENRL = − ∑

j=1…H
probj log2(probj)

(6)

Where

Probj =
rj
∑ rj

NRL ratio
RNRL = 1

N ∀ μNRL
∑

j=1…N
(rj − μNRL ) : rj > μNRL

(7)

Roughness

Rough =

1
N ∑

j=1…N
(rj − μNRL )44 − 1

N ∑
j=1…N

(rj − μNRL )2

μNRL

(8)

Where FROI is the pixel number in the ROI,

SROI is the pixel number along the boundary of the ROI,

σNRL is the standard deviation of NRL,
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Figure 1.
Process of lesion segmentation (a) pre- contrast image, (b) post-contrast image, (c) selected
square ROI, (d) Unsharp filtered image, (e) Membership map from FCM, (f) Binarized
membership, (g) 2-D connected component and hole filling.
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Figure 2.
(a) The correlation between two manual lesion segmentation results; triangle for malignant
lesion and solid circle for benign lesion. The Pearson’s linear regression line is shown. The
overall correlation coefficient is r=0.97, also r=0.97 for both malignant and benign lesions. (b)
The correlation between the manual segmentation (average from 2 measurements) and the
automated segmentation. The overall correlation coefficient is r=0.94, with higher r=0.97 for
malignant lesions and lower r=0.92 for benign lesions.
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Figure 3.
The ROC curves from the ANN analysis. The AUC is 0.80 based on morphology features, and
0.78 based on GLCM texture features, and when combining the morphology and texture
features the AUC increases to 0.86.

Nie et al. Page 14

Acad Radiol. Author manuscript; available in PMC 2009 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Distribution of three selected features between malignant (M) and benign (B) groups. The
benign group had a lower value compared to the malignant group, but with a great overlap.
The illustrated cases in Figure 5, Figure 6, and Figure 8 are indicated. The texture feature of 3
malignant cases with high index and 3 benign cases with low index are shown in Figure 7 and
Figure 9.
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Figure 5.
The Compactness index is sensitive to the spherical vs. non-spherical shapes. Pre-contrast,
post-contrast and subtraction images from two cases with relative low/high Compactness index
are shown. The top row is one malignant lesion with compactness index 63, ranked #60 in all
71 lesions. The bottom row is one benign case with compactness index 1.7, ranked #22 in all
71 lesions.
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Figure 6.
The “Gray Level Entropy” index is sensitive to homogeneous vs. non-homogeneous patterns.
Pre-contrast, subtraction images and the gray level histogram from two cases with relative low/
high “Gray Level Entropy” index are shown. The top row is one malignant case with “Gray
Level Entropy” index 8.1, ranked #41 in all 71 lesions. The bottom row is one benign case with
“Gray Level Entropy” index 5.6, ranked #10 in all 71 lesions. The malignant case has a broader
peak of gray level distribution and a higher intensity compared to the benign case.
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Figure 7.
The “Gray Level Entropy” index from 3 malignant lesions with the highest index, and 3 benign
lesions with the lowest index. The sizes were 1.5–2.0 cm, matched between the malignant and
benign lesions. The malignant lesions had broader distribution peaks compared to the benign
ones.
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Figure 8.
The “Gray Level Sum Average” is also sensitive to the enhancement distributions. Pre-contrast,
subtraction images and the gray level histogram from two cases with relative low/high “Gray
Level Sum Average” index are shown. The top row is one malignant case with “Gray Level
Sum Average” index 37, ranked #66 in all 71 lesions. The bottom row is one benign case with
“Gray Level Sum Average” index 22, ranked #21. The malignant case has a higher intensity
also a broader peak of distribution compared to the benign case.
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Figure 9.
The “Gray Level Sum Average” index from 3 malignant lesions with the highest index, and 3
benign lesions with the lowest index. The sizes were 1.2–1.8cm, matched between the
malignant and benign lesions. The peaks of 3 malignant lesions occurred at higher end of the
intensity spectrum compared to the benign ones, also the distribution was broader.
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Table 1

Histopathology of Benign and Malignant Breast Lesions

Subtype of Tumors N Percentage

Benign lesions 28
    Fibrocystic changes 8 (29%)
    Fibroadenoma 15 (53%)
    Others 5 (18%)

Malignant lesions 43
    IDC (Invasive Ductal Carcinoma) 27 (63%)
    DCIS (Ductal Carcinoma In-Situ) 4 (9%)
    ILC (Invasive Lobular Carcinoma) 8 (19%)
    Others 4 (9%)
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Table 2

Group Mean, P value, and Diagnostic Accuracy of Selected Parameters

Parameters
Mean ± SD

P value Diagnostic Accuracy
(AUC±SD)Benign Malignant

Compactness 6.79±3.56 26.1±11.3 0.001 0.76±0.06
NRL Entropy 0.59±0.33 0.31±0.29 0.01 0.65±0.07
Volume 8357±4688 6335±4975 0.27 0.57±0.08
Gray Level Entropy 7.11±1.30 8.02±0.88 0.002 0.74±0.06
Gray Level Sum Average 25.2±6.58 29.2±6.11 0.01 0.67±0.06
Homogeneity 0.21±0.12 0.22±0.06 0.70 0.51±0.07
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