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Abstract
The objective of this review is to provide a broad overview of the advantages and limitations of
carbon-based nanomaterials with respect to analytical chemistry. Aiming to illustrate the impact of
nanomaterials on the development of novel analytical applications, developments reported in the
2005–2010 period have been included and divided into sample preparation, separation, and
detection. Within each section, fullerenes, carbon nanotubes, graphene, and composite materials
will be addressed specifically. Although only briefly discussed, included is a section highlighting
nanomaterials with interesting catalytic properties that can be used in the design of future devices
for analytical chemistry.
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1. Introduction
Nanomaterials, materials with sizes or features ranging from 1 to 100 nm in one or more
dimensions [1,2], are the core of an emerging technological revolution. The main advantages
of these materials are unique thermal, mechanical, electronic, and biological properties not
found in conventional materials [3–7]. Combining these unique properties with their
remarkable recognition capabilities [8] has resulted in systems with significantly improved
performance [9] and novel applications across physics, chemistry, biology, engineering, and
computer science [10]. Apart from high mechanical strength and low weight, most of the
exceptional characteristics of nanomaterials are linked to their surface properties (area,
roughness, energetics, and electron distributions) [11], which enable improved interactions
with many biological entities [12]. Such interactions depend not only on the fabrication
method, but also on the size and specific geometry of the nanoparticles [13]. As expected,
these characteristics combined with the ability to form hydrogen bonds, π-π stacking,
dispersion forces, dative bonds, and hydrophobic interactions can affect the stability and
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selectivity of nanomaterials [14]. Consequently, the distinctive properties of nanomaterials
have sparked interest in analytical chemistry and have been used to develop innovative
applications in sample preparation [15–18], separation [19–22], and sensing [23–28].

Considering the aforementioned properties of nanomaterials, the objective of this review is
to provide a broad snapshot of the applications of carbon-based nanomaterials to analytical
chemistry reported during the 2005–2010 period, aiming to perform a critical evaluation of
the characteristics and performance of these nanomaterials. Several significant contributions
published prior to 2005 have been included, but only briefly discussed. It is also worth
mentioning recent reviews that focus on different aspects of the application of various
nanomaterials to analytical chemistry [2,28–45]. Although outside the scope of the present
review, it is important to note that several techniques are currently available for the analysis
of nanoparticles [46] including electrophoresis [47,48], liquid chromatography [49,50],
electrical cross-flow filtration [51], and gel permeation [52]. Also outside the scope of the
present review are the potential toxic effects of nanomaterials [53–57]. In this regard, it is
critical to emphasize that researchers must be aware of the detrimental effects that these
novel materials could have on human health and adopt the appropriate safety precautions.

2. Relevant characteristics of carbon-based nanomaterials
Carbon-based nanoparticles have been extensively used in analytical applications. Although
the reasons for the selection of one particular allotrope over another are still imprecise (and
largely rely on previous experiences and availability), a wide variety of carbon-based
materials are available and have been applied to analytical procedures. While the use of
nanodiamonds, nano-onions, peapods, nanofibers, nanorings, and nanotubules has been
reported, recent applications mainly focus on the use of fullerenes and nanotubes (CNT)
[14]. In both cases, the basic structure is composed of a layer of sp2-bonded carbon atoms,
where each atom is connected to three other carbon atoms in the x–y plane and by a weakly
delocalized π-electron cloud along the z-axis. This configuration, which resembles that of
graphene, is responsible for the good electrical conductivity, the capability to form charge-
transfer complexes when in contact with electron donor groups [14], and the π-plasmon
resonance observed in some of these particles [58]. Furthermore, this configuration is also
responsible for the development of strong van der Waals’ forces that significantly hamper
the dispersion and solubility of carbon-based nanoparticles. To overcome these limitations
different pretreatment methods have been proposed [59–63], though the addition of polar
groups (oxygen-, hydroxyl-, polyvinylpyrrolidone, and phenyl-) [64,65] and surface defects
typically affect the stability [66,67] as well as the mechanical, magnetic, optical [61,68–70],
and electrical properties [42,71,72].

Another interesting aspect stemming from the simple structure of most carbon-based
nanomaterials is that the reactivity of atoms situated in the plane is different than those at the
edges. In this regard, Compton et al. found that for a number of biologically important
compounds, the electrochemistry of different CNT is comparable to that of different planes
of graphite [73] and that metallic impurities contained within were responsible for some of
the electrochemical catalytic properties of CNT [74]. Pumera et al. also found that non-
metallic impurities (nanograhite) can also affect the electrochemical activity of CNT
[75,76]. Furthermore, the same group showed evidence supporting that the electroanalytical
parameters (repeatability, sensitivity, linearity of the analytical response, and selectivity) of
single-, double-, and multi-walled CNT are inferior with respect to surfaces of glassy carbon
and edge-plane pyrolytic graphite electrodes [77].

Although not as popular as CNT, graphene is another material that shows great promise in
the future of analytical chemistry. Similar to CNT, graphene consists of a one atom thick
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carbon (sp2 hybridized) sheet composed of six-member rings [78] providing an exposed
surface area that is nearly twice as large as that of single-walled carbon nanotubes [75].
Other advantages of this material that make it attractive for analytical applications include
its high mechanical strength, high elasticity, high thermal conductivity [75] and the absence
of metallic impurities that can affect the accuracy of a sensor [79]. Graphene can also be
interlinked with CNT for the fabrication of high performance transparent flexible electrodes,
resulting in films with conductivities and optical properties comparable to commercial
indium-tin oxide (ITO) [67]. As stated by Lim et al. [80], the electrochemical activity of
crystalline graphene is markedly different in chemical composition and structure from
reduced graphene oxide flakes. To investigate the effect of edge plane defects on the
electrochemical and biosensing activities, a systematic study of the heterogeneous charge
transfer rate as a function of defect density on EG was carried out. Interestingly, it was
determined that the electrochemistry of EG converges with that of reduced GO flakes
following an anodization treatment (see Figure 1), and that anodized graphene is able to
resolve the anodic peaks of all four nucleic acid bases in double stranded and single stranded
nucleic acids, a performance unmatched by other electrodes..

Although commercial availability of graphene and graphene platelets is quite limited, they
can be fabricated using a variety of methods, the first of which was published in 2004 [81].
As reported, Novoselov et al. was able to achieve high quality films that were stable under
ambient conditions in up to 10 μm lengths by mechanical exfoliation (repeated peeling) of
small patches of highly ordered pyrolytic graphite [81]. Since that time, many other
fabrication methods have been developed, including unzipping multi-wall CNT to form
graphene ribbons [82,83], substrate independent methods using micromolding inside a
capillary [84], and spray deposition of graphene oxide (GO)–hydrazine dispersions [85].
While fabrication methods have certainly become more widely available, it is important to
note that although it may be possible to fabricate single graphene sheets, these sheets have a
tendency to stick together forming multi-layer nanostructures [86]. Additionally, it is
important to mention that very careful and thorough characterization needs to be carried out
when working with these materials because while many articles report the use of graphene,
upon closer examination the material is technically graphene with a multi-layer structure
[75].

Carbon-based nanomaterials also offer the possibility of combining other types of
nanomaterials to form nanocomposites, merging different properties in a single new
material. There is nearly an infinite number of possibilities when designing nanocomposites:
fullerene-Pd nanocrystals [87], poly(2,5-dimethylaniline)-CNT [27], ceramic-CNT [88], and
teflon-CNT [89] are just a few examples. Other examples of nanocomposites and their
advantages are discussed in later sections.

Though not typically regarded as having remarkable properties resulting from the presence
of nanofeatures, thin carbon films (in the nm range) can be made by either pyrolyzing
photoresist or methods (plasma deposition, arc deposition, ion sputtering, and laser
evaporation) [90,91]. Probably the main advantages associated to these films is that they are
transparent (due to the thickness) [92,93], amenable to standard microfabrication procedures
[94,95], and their properties can be (relatively) easily tailored by selecting the appropriate
starting material [96].

While most researchers would agree with R. Feynman that there is plenty of room at the
bottom, not everything is perfect at the nanoscale. Some of the most commonly cited
drawbacks of the use of carbon-based nanomaterials include the cost, the poor batch-to-
batch reproducibility of the fabrication and purification processes, and the difficulty of
obtaining a comprehensive description of the materials from most manufacturers. A direct
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consequence is the limited number of reliable commercial sources available for these
materials. Another problem associated with the use of carbon-based materials is their
tendency to form stable complexes with organic molecules (particularly if an oxidation step
is involved). This observation is supported by the small number of papers reporting
reusability of the substrates.

In general, the use of carbon-based nanomaterials in analytical chemistry is advantageous.
When properly selected, these new materials have the potential to produce significant
improvements in all of the classical analytical processes: sample preparation, separation, and
detection. Examples of the use of carbon-based nanomaterials are herein discussed.

3. Recent developments
3.1. Sample preparation

Fullerenes are composed of a thermodynamically-stable carbon shell ~1 nm in diameter that
can withstand heat, pressure and radiation but, due to their unique electron-hybridization
pattern of sp2 bonds, are also highly configurable [97]. Fullerenes display a relatively high
electron affinity [98], and a hydrophobic surface [14] that increases their adsorption capacity
towards organic molecules, as well as their permeability through lipid membranes [99]. In
addition, these compounds have a high surface/volume ratio which makes them ideal for
extraction procedures, as demonstrated by the examples herein discussed. In 2006, Agrawal
found that uranium (VI) could be extracted from human blood serum, natural water,
seawater, standard samples, and monazite sand with a detection limit of 0.1 ng·mL−1 by
utilizing N-phenyl-(1,2-methano-fullerene C60)-61 formohydroxamic acid [100]. Jin and co-
workers observed that inserting fullerenes into certain hydrophobic polymer membranes
(Figure 2) can adsorb estrogenic pollutants from surface and treated waters [101]. This
technique was found to be ideal for removing contaminants like estrone, estradiol, and
ethinylestradiol which have high hydrophobicity and low volatility.

Compounds like flavonoids, proteins, peptides, and hydrophilic small molecules like
phosphopeptides can be extracted by solid phase extraction (SPE) using C60-fullerene bound
to silica particles [102]. Aromatic and non-aromatic amines can be discriminated using SPE
with a combination of two columns, one with fullerene C60 and the other with Merck
LiChrolut EN [103]. Through this novel method, aromatic amines could be retained in the
fullerene column while the non-aromatic amines remain in the commercial column. Jurado-
Sanchez and co-workers compared the SPE efficiencies of different sorbents when
extracting several types of amines [104]. Fullerenes proved to be adequate for the extraction
of amines (retention efficiency of 65%). Additionally, SPE of tryptic peptides from human
serum albumin and fibrinogen can be obtained using silica gels derivatized with C60-
fullerenes [105].

CNT have also shown strong adsorption affinity towards organic and inorganic molecules
(particularly hydrophobic ones), relative non-porosity, and ability to develop π-π
electrostatic interactions with other molecules [14,106]. In this regard, Zhou and co-workers
developed a multi-wall CNT phase as SPE for the determination of the water contaminants
metalaxyl, diethofencarb, myclobutanil, prometryn, and tebuconazole [107]. Zhou’s group
produced a fast, sensitive, and simple method that allowed the detection of these analytes at
concentrations as low as 3 ng·L−1. Wang et al. proposed a similar technique for the
extraction (with CNT as the sorbent material), analysis, and quantification of pesticides in
water samples [108]. In this case, Wang used gas chromatography-mass spectrometry (GC-
MS) to analyze the mixture and obtained a linearity of all 12 pesticides over a range of 0.04–
4 μg·L−1 with detection limits reaching 0.01–0.03 μg·L−1. Wang’s findings demonstrated
that several pesticides could be analyzed simultaneously at a low cost and short analysis
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time. Alternatively, Al-Degs and co-workers observed that determining the presence of
contaminants in water samples can be done without the need for chromatographic
separations; instead, the simultaneous determination of pesticides can be performed using
CNT-SPE with multivariate calibration [108,109]. However, after a critical comparison of
the enrichment efficiency of CNT against C18 and activated carbon, the same group of
researchers advised investigators to try activated carbon before using significantly more
expensive sorbents (such as CNT or C18 silica) [110]. Multi-wall CNT as SPE can be used
for the determination of several organophosphorus pesticides and thiadiazine in forestal,
ornamental, and agricultural soils by employing GC with nitrogen phosphorus detection
[106]. The same group also demonstrated the advantages of this approach by measuring
organophosphorus contaminants (ethoprophos, diazinon, chlorpyriphos methyl, fenestration,
malathion, chlorpyriphos, fenamiphos, and buprofezin) in fruit juice [111]. This method
yielded mean recovery values beyond 73% and detection limits ranging from 1.85 to 7.32
μg·L−1 for the previously mentioned pesticides. A different approach was presented by
Lopez-Feria et al. when they packed a commercially available PTFE-SPE cartridge with
multi-wall CNT or carboxylated single-wall CNT for the determination of pesticides in two
monovarietal and one ecologic commercial extra virgin olive oil samples [112]. In their
paper, Lopez-Feria’s group showed that SPE could be done in one single-preconcentration-
elution step that allowed an analysis time of less than 8 min with detection limits of 1 to 3
μg·L−1. Single-wall CNT can also be used to preconcentrate metals like Co, Cu, Pb, and Ni
[113]. Additionally, preconcentration and SPE of heavy metal ions like Cu(II), Co(II),
Ni(II), and Pb(II) present in environmental samples can be performed by the addition of a
complexing reagent, like o-cresolphthalein complexone, to the above mentioned technique
[114].

Determination of parabens in cosmetic products is also achievable via multi-wall CNT-SPE
using a corona-charged aerosol detector as demonstrated by Marquez-Sillero and co-workers
[115]. This technique proved to be successful in determining the concentration of different
parabens with detection limits in the range of 0.5–2 mg·L−1. Alkylbenzene sulfonates can
also be extracted using carboxyl modified multi-wall CNT as SPE adsorbent, and later
detected by employing HPLC [116]. Analytical scale membrane extractions are made
possible by immobilizing functionalized CNT into membranes, facilitating the solute
exchange and extraction from the donor to the acceptor phase [117].

Although adopting different nomenclatures, a number of variants to SPE have been
developed incorporating CNT as sorbent materials. Among other examples, a novel method
called solid phase membrane tip extraction (SPMTE) was developed by See et al. [118].
This new approach consisted of a membrane-protected multi-wall CNT SPE utilized for
microextractions which was integrated in a semi-automated dynamic mode. This method
resulted in good detection limits (0.2–0.5 μg·L−1) and good recoveries (95%–101%) for
triazine herbicides. Another example is the modification of solid phase microextraction
(SPME) with single-wall CNT to extract environmental pollutants like methyl tert-butyl
ether, ethyl tert-butyl ether, and methyl tert-amyl ether from human urine [119] or the
fabrication of a micro-solid-phase extraction (μ-SPE) in the needle of a syringe using single-
wall CNT and multi-wall CNT as the sorbent materials [120]. The main advantage of the
latter is the possibility of integrating sampling, analyte enrichment, and sample introduction
into a single device.

Nanocomposites have also proven to be appropriate for the extraction of several analytes.
Multi-wall CNT-polyaniline nanocomposites have been used to extract and detect phenolic
compounds through GC analysis [121]. Du and co-workers developed this technique and
showed that the nanocomposites could be used more than 250 times without losing their
efficiency and were able to achieve a detection limit as low as 2 ng·L−1. Multi-wall CNT-

Scida et al. Page 5

Anal Chim Acta. Author manuscript; available in PMC 2012 April 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Sudan IV molecularly imprinted polymers were used for the extraction of Sudan IV from
chili powders [122].

3.2. Separation
Although different nanomaterials have been applied to a wide variety of separation
techniques [40], the field seems to be dominated by methods requiring small amounts of the
selected nanomaterials (capillary electrophoresis, microchip capillary electrophoresis, and
some chromatographic techniques). In this regard, Moliner-Martínez et al. used fullerenes
(C60) coated with surfactants as a pseudostationary phase [123,124] and concluded that
while the presence of fullerenes increase the migration time of selected analytes (β-lactams
antibiotics, amphenolicols and anti-inflammatory drugs), they did not significantly improve
sensitivity.

Carbon nanotubes have been extensively used as buffer additives in CE (pseudostationary
phases). In this regard, Xiong et al. [125] improved the separation of purine and pirimidine
bases in yeast by adding multi-wall CNT to the background electrolyte. The results of this
work showed that the nanotubes provided greater resolution than TX-100 alone. Xu et al.
[126] improved the separation of DNA fragments by adding a mixture of
polyvinylpyrrolidone (PVP) and multi-wall CNT to the running buffer. The authors
hypothesized that a synergistic effect between the network generated by PVP and nanotubes
was responsible for the improvements. Moreover, Na et al. in 2006 proposed an effective
technique to separate the two enantiomers of clembuterol using CNT coated with β-
cyclodextrins. The authors stated that the tubular structure of the CNT allowed a better
attachment of β-cyclodextrins to the nanotube surface. The system also enabled the
enantiomeric separation of ephedrine [127].

An alternative use of nanomaterials in separation protocols is to immobilize them onto a
solid support. Sombra et al. [128] demonstrated that coating the capillary wall with oxidized
multi-wall CNT (immobilized through covalent modification of fused capillaries) allowed
the separation of eight non-steroidal anti-inflammatory drugs, β-lactams antibiotics, and
chloramphenicol with high resolution and without band-broadening or distortion of the
baseline. The authors also stated that single-wall CNT immobilized by the same procedure
did not render comparable results. Single- wall carbon nanohorns have been used as a
stationary phase in CE for the separation of five water-soluble vitamins [129]. The
electrochromatographic features obtained when the nanohorns were immobilized in the
capillary showed good separation efficiencies and higher retention factors than those
obtained with a bare fused-silica capillary. Furthermore, the results were comparable to
those obtained with single-wall CNT immobilized onto the capillary and showed significant
improvements in resolution. Moreover, Stege et al. [130] implemented a method for the
determination of melatonin in complex food matrices by capillary electrochromatography
with immobilized carboxylic multi-walled CNT as a stationary phase. The results showed
high electrochromatographic resolution, good capillary efficiencies, and improved
sensitivity with respect to those obtained with conventional capillaries. Alternatively, the
microfabrication of a liquid chromatographic column made out of silicon, structured by a
perfectly ordered two-dimensional array of squared micropillars and modified by in situ
synthesized CNT was presented by Fonverne et al. [131]. As shown in Figure 3, CNT were
grown on the surface of the pillars via chemical vapor deposition and used to separate uracil,
phenol, N,N-diethyl-m-toluamide, and toluene. This phase could be reused several times
without variation of the results, indicating good adhesion of the CNT and high compatibility
with the microfluidic application.

André et al. [132] investigated the preparation and chromatographic characteristics of a
silica column that was chemically-modified with amino groups, and then functionalized with
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CNT. In this work, the authors separated eight aromatic compounds and four terpenes,
obtaining good resolution and reproducibility. In agreement with other reports [14], the
authors proposed that dipole-dipole interactions, hydrogen bonds, π-π stacking, dispersion
forces, dative bonds, hydrophobic interactions, and steric effects were involved in the
separations. Also, they inferred that the planar geometry of the analytes, the substitution in
the ortho position of polychlorinated biphenyls, as well as the hydroxyl position in the
terpenes played an important role in the interaction with CNT. The synthesis of a novel
stationary phase, based on classic swelling polymerization methods, was presented by
Zhong et al. [133]. The novel composite, made with polystyrene and multi-wall CNT, was
used as a stationary phase for HPLC with a wide tolerance to pH values and a long lifetime.

Immobilizing nanoparticles is another viable option for controlling the retention of analytes
in gas chromatography (GC). A novel stationary phase was developed using self-assembled
single-wall CNT and used to separate various classes of compounds [134]. The authors
stated that the addition of single-wall CNT enabled obtaining good separation efficiency,
classical chromatography behavior, and high-resolution separations. The high surface area
of the CNT allowed separations of gases. At the same time, the high thermal stability of the
CNT permitted separations of compounds with higher molecular weights at higher
temperatures, extending the range of conditions to be applied on the same column.

3.3. Detection
One of the properties that arises when particle size reaches the nanometer scale (and upon
the interaction with electromagnetic radiation) is the development of the so-called surface
plasmon resonance. This collective excitation of the electrons on the particle’s surface
depends on the chemistry, size, and shape of the particle [135] leading to the design of a
wide variety of optical probes. Among other nanomaterials, CNT display unique optical
properties [58,61,68,136] that include small band-gaps and photoluminescence in the near-
infrared (NIR). Taking advantage of such properties, Chen et al. reported the use of single-
wall CNT as macromolecular Raman labels for highly-sensitive and selective protein
detection with 1000-fold greater sensitivity than fluorescence. The strong Raman intensity
of CNT tags was applied to the detection of human auto-antibodies against proteinase 3 in
serum, a biomarker for Wegener’s granulomatosis [137]. Because single-wall CNT exhibit a
sharp absorption peak in the UV–Vis–NIR range when they are individually dispersed in
aqueous solutions, Cao et al. was able to develop CNT-based molecular probes by
conjugating single-stranded DNA (ssDNA) with single-wall CNT to study hybridization
events. Hybridization on the sidewall of the CNT resulted in systematic red shifts of the
absorption spectra of semiconducting nanotubes, demonstrating that ssDNA–CNT probes
could potentially be used to detect specific kinds of DNA oligonucleotides as optical nano-
biosensors [138]. Song et al. described a sensor to determine Cu2+ ions with magnetic silica
nanoparticles attached to multi-wall CNT using click chemistry. In this work, the authors
proposed a hybrid nanomaterial that presented peroxidase-like color activity [139].

The synthesis of aligned CNT/polymer composite films with high optical transparency,
robust flexibility, and excellent conductivity was reported by Peng et al. These composite
films showed many potential applications, such as flexible conductors for optoelectronic
devices [140]. In addition, it has been reported that CNT can be used to enhance the
electrogenerated chemiluminescence (ECL) of CdS quantum dots (QD) film by reducing the
injection barrier of electrons to the QD [141].

Many of the advantages of electrochemical detection can be enhanced by the use of
conductive nanoparticles. For this reason, several authors have used a variety of
nanomaterials (inorganic, organic, and composites) to modify conventional detection
electrodes. In most cases, the nanoparticles increased the electrode area (and consequently
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the sensitivity) [142], enhanced the electron transfer between the surface and redox centers
in analytes, and/or acted as catalysts to increase the efficiency of electrochemical reactions.
Consequently, a rich body of literature has emerged supporting the advantages of fullerenes
[143–145] and CNT [146–151] towards the detection of both inorganic and organic species.
Among them, Deng et al. used multi-wall CNT to modify carbon paste electrodes in the
presence of alizarin violet (AV) for the determination of molybdenum (VI) traces by anodic
adsorptive stripping voltammetry [152]. Besides the analytical advantages of this approach,
the authors stated that this method avoids the use of toxic and expensive mercury electrodes.
A sensitive method for the analysis of heavy metals using l-cysteine-functionalized multi-
wall CNT has been described [153]. Aiming to improve the analytical performance of
electrodes, composites of multi-wall CNT/bismuth/Nafion were deposited and examined for
sensitivity towards trace Pb(II) and Cd(II) by anodic stripping voltammetry [154,155].

The application of CNT to the electrochemical detection of organic molecules has also been
heavily investigated. Lui et al. studied the electrochemical behavior of hydroquinone (HQ)
using cyclic voltammetry (CV) with a glassy carbon electrode modified with a gel
containing multi-wall CNT and an ionic liquid at room-temperature. With the modified
electrode, the authors obtained a pair of quasi-reversible redox peaks for HQ and stated that
the reported cathodic peak current (Ipc = 9.608×10−4 A) was 43 times larger than the current
of the bare GCE, and 11 times larger than that of the Ipc obtained with the multi-wall CNT/
GCE [156]. Erdem et al. reported the advantages of using a graphite pencil electrode
modified with CNT for the detection of nucleic acids and DNA hybridization based on
enhancement of the guanine signal using differential pulse voltammetry [157]. A sensor for
the detection of methimazole, an emergent contaminant and disruptor of the endocrine
system, was developed by Martinez et al. [158]. The authors obtained a low detection limit
of 0.056 μmol·L−1 and high throughput, processing as many as 25 samples per hour.
Similarly, Ghalkhani et al. performed voltammetric studies of sumatriptan on the surface of
a pyrolytic graphite electrode modified with multi-wall CNT decorated with AgNP. The
modified electrode was successfully used for the accurate determination of trace amounts of
sumatriptan in pharmaceutical preparations [159]. Multi-wall CNT have also been used for
many other applications in food science. In this regard, it is worth mentioning the excellent
work performed by Escarpa’s group in the determination of flavonoids and antioxidant
profiles [160,161] and the work from Compton’s group for the determination of capsaicin,
the chemical responsible for the hot taste of chilli peppers [162]. Kachoosangi et al. also
developed a composite electrode composed of multi-wall CNT and the ionic liquid n-
octylpyridinum hexafluorophosphate. This electrode showed improved electrochemical
performance (sensitivity and stability) with respect to other conventional electrodes using
graphite and mineral oil [163]. Moreover, the mediator tris(2,2′-bipyridyl)cobalt(III)
(Co(bpy)3

3+) which was incorporated into the multi-wall CNT–Nafion composite film via a
simple ion-exchange route was developed by Chen et al. [164]. Then, AuNP were attached
onto Co(bpy)3

3+/multi-wall CNT–Nafion film via electrostatic interactions between the
negatively charged AuNP and the positively charged Co(bpy)3

3+. M. Chicharro et al. used a
glassy carbon electrode modified with carbon nanotubes dispersed in PEI for the
amperometric detection of phenolic pollutants (phenol, 3-chlorophenol, 2,3-dichlorophenol
and 4-nitrophenol) and herbicides (amitrol, asulam, diuron, fenuron, monuron and
chlortoluron) in micellar electrokinetic capillary chromatography (MEKC) separations
[165].

CNT also have the potential to promote the attachment of biorecognition elements [166], the
retention of catalytic activity [167], and the electron transfer rate (in some cases even with a
direct and quasi-reversible redox process [166–170]). For these reasons, CNT are still one of
the most popular substrates to prepare biosensors. However, one of the critical challenges
(especially when the electrode area is limited), is to understand the driving forces and
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consequences of the interaction between CNT and proteins [149,171]. This issue is critical
for maximizing the activity of the biological entity immobilized onto the surface. Valenti et
al. [172] investigated the kinetics of the adsorption–desorption process of a model protein
(BSA) to CNT. The authors stated that BSA molecules arriving at the CNT surface may
adopt a preferred orientation with the positive and non-polar patches of the protein facing
the hydrophobic sorbent surface, resulting in an attachment-controlled adsorption process.
Later, Mora et al. investigated the relationship between the interaction phenomena
(adsorption/desorption kinetics and amount) and the activity of adsorbed D-amino acid
oxidase (DAAO) [173]. They found that the adsorption of DAAO to CNT is controlled by a
combination of hydrophobic and electrostatic forces, and observed that the activity of the
sensor was influenced not only by the adsorbed amount but also by the conformation
adopted by the enzyme on the CNT surface. Carot et al. studied the adsorption mechanism
of short chain 20-mer pyrimidinic homo ss-DNA (oligodeoxyribonucleotide, ODN: polyC20
and polyT20) onto CNT [174]. Felhofer et al. recently demonstrated that the activity of a
model enzyme (catalase) adsorbed to thin-films of CNT depended not only on the adsorbed
amount but also on the initial adsorption rate [175]. Using a similar experimental set-up
Nejadnik et al. showed that in some cases, enzymes (e.g. glucose oxidase) can be adsorbed
to the interior of the CNT film, obtaining nanocomposites with higher catalytic activities
[176] (see. These results support the hypothesis that adsorption can be effectively used to
immobilize enzymes to the surface of CNT. Besides being simpler and faster, this route also
avoids the use of chemicals (such as 3-(3- dimethylaminopropyl)carbodiimide [177]) that
may not only increase the cost of the work, but also may lead to some loss of protein activity
resulting from the handling in the process and the possible formation of cross-linked protein
aggregates. Although examples of the use of CNT as substrates for the development of
biosensors abound in literature, it is worth highlighting a report describing the benefits of
using vertically aligned carbon nanotubes (CNT) [178].

Aiming to improve the sensitivity of electrochemical detection of proteins, Liu et al.
developed an aptasensor based on CNT [179]. In this work, authors used thrombin as a
model target analyte and thrombin-binding aptamer as a molecular recognition element. The
authors stated that the sensor enabled the amplification of the electrochemical signal and
significant improvements of the sensitivity, reaching a limit of detection of 5×10−13 mol·L−1

for thrombin. Kara et al. described a label-free aptasensor (Figure 4) designed for direct
protein analysis at multi-wall CNT-enhanced screen-printed carbon electrode surfaces [180].
The 5′amino-linked aptamer sequence was immobilized onto the modified screen printed
electrode and then the binding of thrombin to aptamer sequence was monitored by
electrochemical impedance spectroscopy in the presence of 5 mmol·L−1 [Fe(CN)6]3−/4−. A
detection limit of 105 pmol·L−1 was obtained.

Stege et al. modified screen-printed electrodes with multi-wall CNT for the determination of
arylsulphatase and phosphatase activities in soil. The authors proposed that this method
could be applied for the screening of microbial activities in real matrices thus and could
have a significant application in the agricultural industry [181]. Moreover, screen-printed
immunosensors modified with CNT were integrated to both continuous-flow systems and
microfluidic systems to determine Botrytis cinerea and prostate specific antigen,
respectively [182,183]. In both cases, the authors stated that the sensitivity of the
electrochemical signal was greater than the one obtained without CNT. Zhao et al. have
developed a novel Shigella flexneri immunosensor based on HRP-labeled antibodies against
S. flexneri (HRP–anti-S. flexneri) immobilized by physical adsorption on the multi-wall
CNT/sodium alginate composite-modified screen-printed electrode surface. The analytical
performance of the immunosensor towards S. flexneri was investigated by CV with a linear
range of 104 to 1011 CFU·mL−1 and a detection limit of 3.1 × 103 CFU·mL−1 [184]. Other
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examples of CNT based immunosensors applied for the detection of bacteria and viruses
have also been recently reported [185].

In order to perform mechanistic studies of the immobilized proteins or to fabricate
electrochemical biosensors, various nanocomposites of CNT with MnO2 [186], NiO [187],
TiO2 [188], Pt [189], or Au [148,190] have also been prepared. Chen et al. developed an
amperometric glucose biosensor based on a MnO2/multi-wall CNT electrode [186]. MnO2
was homogeneously coated on vertically aligned multi-wall CNT by electrodeposition and
showed high resistance towards fouling by chloride ions. In addition, interference from other
species was avoided. A matrix of NiO/multi-wall CNT, for the immobilization of protein
and biosensing was developed by Qiu et al. [187]. The modified electrode showed excellent
electrocatalytic activity towards the reduction of H2O2 without the help of an electron
mediator. Moreover, CNT-modified titania nanotube arrays, prepared by vapor-growing
CNT inside of the titania nanotube have been used by Pang et al. [188]. Pt nanoparticles of 3
nm in diameter were uniformly deposited on TiO2/CNT electrodes, showing remarkably
improved catalytic activities for the oxidation of H2O2. The consequent glucose biosensor
fabricated by modifying a TiO2/CNT/Pt electrode with glucose oxidase yielded a high
sensitivity with a response time of less than 3 s and a detection limit of 6 μmol·L−1. Also,
Wang et al., have used HRP incorporated into a multi-wall CNT/thionine/Au (MTAu)
composite film via electrostatic interactions between positively charged HRP and negatively
charged MTAu [190]. The resulting composite was able to retain the electrocatalytic activity
of HRP and showed good direct electron transfer behavior. These hybrid nanomaterials
exhibited a desirable microenvironment for protein immobilization and great facilitation of
the electron transfer reaction.

CNT have also been studied as a way to improve the performance of other detection
platforms including a ratiometric pH sensor to measure real water samples [191] and a field-
effect biosensor to measure penicillin [150]. In addition, CNT have been used to develop a
gas ionization sensor [192] and a prototype detector for the determination of radiation [193].
Li et al. reported a hydrogen sensor with high sensitivity and selectivity based on a
composite of single-wall CNT and chitosan. The improvement in the detection was
attributed to the active binding of hydrogen gas to the amino and hydroxyl functional groups
in chitosan [194]. Wongchoosuk et al. reported an electronic nose based on hybridized
CNT–SnO2 gas sensors prepared by electron beam evaporation (see Figure 5). This device
was used to detect methanol, a contaminant in whiskeys [195].

As previously stated, graphene has unique electronic properties [196] and therefore can
enable the development of revolutionary technological applications [78]. Several sensors
based on graphene have also been reported, mainly in combination with other materials
[197]. For example, a new and highly enhanced sensing platform based on a Nafion–
graphene nanocomposite film was established, enhancing the sensitivity for Cd2+

determinations [198]. Graphene has also been used as support for Pt-Ru NPs for the electro-
oxidation of methanol [199]. Kang also demonstrated that graphene (deposited on GCE)
showed excellent electrocatalytic activity towards paracetamol [200]. More recently, a
highly sensitive and specific fluorescence resonance energy transfer (FRET) aptasensor for
thrombin detection was developed based on the dye-labeled aptamer assembled graphene.
[201]

4. Nanomaterials for Future Applications in Analytical Chemistry
Although some papers presented are beyond the scope of this review, the purpose of this
section is to highlight interesting catalytic properties of carbon-based nanomaterials that
have the potential to be used to develop a wide variety of new analytical applications.
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As stated in the introduction of this review, fullerenes are known for their electronic
properties and high electron affinity. These properties make them good catalytic materials
for a variety of reactions. For instance, a mixture of polyhydroxy fullerenes (PHF) and
titanium dioxide improves the photocatalytic degradation of organic dyes due to
hydroxylation and concomitant suspension of fullerenes, as shown by Krishna and co-
workers [202]. Titanium oxide, coupled with fullerenes, is a common combination for the
catalysis of certain reactions. Krishna et al. proved that a mixture of TiO2 and PHF increased
the concentration of hydroxyl radicals by up to 60% when compared to the concentrations
obtained without PHF, a fact that is consistent with the above- mentioned enhancement of
dye degradation and other microbial inactivation experiments performed by the same group
[203]. A nanotube array with the same combination of materials and catalytic properties
allowed the photoelectric catalytic degradation of nonbiodegradable azodyes with very high
efficiency rates [204]. In addition to TiO2, γ-Al2O3 can also be coupled with fullerenes to
achieve catalysis [205]. In this case, photocatalysis of the oxidation of organic compounds
under an oxygen atmosphere was possible in temperatures up to 200 °C. Tzirakis and co-
workers used the photo-oxygenation of 2-methyl-2-heptene as a probe reaction and obtained
an increased catalytic activity in the presence of fullerenes (up to 3% w/w). Depleted
fullerene soot (with fullerene content of about 2–3%) can be used as a support for the
catalytic the reduction of NO with CO [206]. The production of bimetallic copper-cobalt and
copper- manganese oxides supported on DFS yielded high activity in the reduction of NO
with CO below 150 °C. Other combinations also illustrate catalytic possibilities for
fullerenes. Yu and co-workers demonstrated that hydrophilic C60-derived nanostructures
have catalytic effects in antitumoral and antibacterial applications [207].

CNT are great catalysts due to their wide variety of surface properties, including high
surface area. Multi-wall CNT can catalyze the redox reaction of chloroauric acid and
reductive drugs for the production of AuNP [208]. These particles can later be used for the
analysis of tetracycline hydrochloride (a reductive drug) by light scattering. Detection of
methane in environmental samples by a nickel electrode modified with multi-wall CNT,
Nafion, and nickel hydroxide was developed by Qiao et al. [209]. This detection was
possible due to the catalytic effects that the modified electrode had on the oxidation of
methane. Nitrogen-containing CNT immobilized to platinum electrodes promoted the
electrocatalytic oxidation of methanol in direct methanol fuel cells [210].

CNT can also be used to support catalytic metal-based nanoparticles. GCE modified with
multi-wall CNT, coated with TiO2 nanoparticles, were found to display electrocatalytic
properties in the reduction of H2O2 [211]. The same composite was used in the photo-
electro-catalytic degradation of methylene blue [212]. Another type of composite that can be
used in catalytic reactions is Pd-nanoparticles supported on carboxylic functionalized CNT
for the electro-oxidation of ethanol on a GCE [213]. The oxidation of ethanol was achieved
in alkaline medium and the results obtained show promise for the development of methanol
fuel cells and ethanol sensors. The electro-oxidation of methanol is also possible by
employing Pt nanoparticles immobilized to CNT modified with polyimide materials [214]
and PtRu nanoparticles supported on nitrogen-doped CNT [215].

5. Conclusions
A wide number of novel applications of carbon-based nanomaterials have been recently
reported. Besides chemical composition, size and shape are probably the most important
variables identified. In addition, the hydrophobicity of the surface (affected by the number
of functional groups) plays a key role in the optical, electrochemical, and adsorptive
properties of carbon-based nanomaterials and should be carefully evaluated. Typically,
hydrophobic particles can be used to enhance non-specific interactions (via increases in
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surface area) with organic molecules. On the other hand, highly derivatized carbon-based
surfaces provide excellent platforms to develop applications based on electrostatic and
specific interactions.

Although there is an incredible volume of literature supporting the use of carbon-based
nanomaterials, researchers should carefully asses the properties of such materials before
claiming exceptional behavior. Additionally, while the main focus of reports published in
past years has been the use of carbon nanotubes, it is the authors’ opinion that this trend may
change as researchers develop new types of carbon-based materials. Among them, graphene
was identified as one emerging allotrope that could play a fundamental role in the
preparation of future sensors. All things considered, the use of carbon-based nanoparticles in
analytical chemistry has been obviously advantageous and has enabled the integration of
analytical chemistry with a large number of fields. Although today the use of
nanotechnology in analytical chemistry has a fairly young approach that mixes art, intuition,
and science; many researchers around the world have recognized the utility of
nanomaterials. We believe that the analytical applications of carbon-based nanomaterials
will continue to rise and will soon develop into a mature and independent field.
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Figure 1.
AFM topographical images and cross sections for (A) pristine EG and (B) anodized EG
surfaces. Edge defects are generated on the anodized EG surface, leading to high
electrochemical activity [80].
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Figure 2.
SEM images of fullerenes inserted in hydrophobic polymer membranes for the
preconcentration of estrogenic compounds [101].
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Figure 3.
A) SEM images of the CNT growth with the final process before the sealing of the cover
plate: (a) with a 20 nm nickel film, (b) with a 50 nm nickel film, and (c) with a 100 nm
nickel film. B) HPLC analysis of the reversed phase test mixture (uracil, phenol, N,N-
diethyl-m-toluamide, toluene), isocratic eluent water:acetonitrile (80:20), at a flow rate of
700 nL·min−1 with a UV detection at 254 nm (a) on the reference column (C18 reversed
phase coating) and (b) on the CNT column. Reprinted with permission from Ref [131].
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Figure 4.
(A) Schematic representation of the experimental procedure followed for the obtaining of
the analytical signal: (a) multi-wall CNT modification of the SPCEs; (b) surface
modification with covalent agents; (c) aptamer binding; (d) α-thrombin interaction; (e) EIS
detection. (B) SEM images of the working surface area of bare SPCES after electrochemical
pretreatment (a), after aptamer immobilization (b) and after its interaction with thrombin (c).
(C) SEM images of the working surface area of MWCNT modified SPCEs after the same
modifications detailed in (B). SEM resolution: 3 μm [180].
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Figure 5.
SEM images of sensing films; (a) undoped SnO2 film, (b) 0.5 wt% CNT–SnO2 film and (c)
1 wt% CNT–SnO2 film. The yellow circles in (b) and (c) indicate CNT fragments, (d)
typical cross-sectional SEM image of CNT–SnO2 film and (e) typical HRTEM image of
CNT–SnO2 film [195].
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