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Abstract

Cocaine dependence is a difficult-to-treat, chronically relapsing disorder. Multiple scientific 

disciplines provide distinct perspectives on this disorder; however, connections between 

disciplines are rare. The competing neurobehavioral decision systems (CNDS) theory posits that 

choice results from the interaction between two decision systems (impulsive and executive) and 

that regulatory imbalance between systems can induce pathology, including addiction. Using this 

view, we integrate a diverse set of observations on cocaine dependence, including bias for 

immediacy, neural activity and structure, developmental time course, behavioral comorbidities, 

and the relationship between cocaine dependence and socioeconomic status. From the CNDS 

perspective, we discuss established and emerging behavioral, pharmacological, and neurological 

treatments and identify possible targets for future treatments. The ability of the CNDS theory to 

integrate diverse findings highlights its utility for understanding cocaine dependence and supports 

that dysregulation between the decision systems contributes to addiction.
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1 Introduction

Cocaine is a powerful psychoactive and addictive substance. Approximately 15% of cocaine 

users develop dependence within the first decade after initial use, with lifetime incidence of 

dependence estimated at 20% (Lopez-Quintero et al., 2011; Wagner and Anthony, 2002). In 

some racial minorities, these estimates are even higher (e.g., 35% lifetime incidence of 

dependence in African American users) (Lopez-Quintero et al., 2011). Cocaine dependence 

is difficult to treat and is recognized as a chronically relapsing disorder, in which affected 

individuals choose continued drug use despite negative consequences, and return to use after 
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periods of abstinence. Understanding the processes that undergird these choices is an 

important undertaking for the science and treatment of this disorder.

A variety of scientific approaches have tried to understand and explain cocaine dependence. 

Some have focused on molecular variables, such as pharmacological action (Volkow et al., 

1999); others have focused on demographics, including age, race, and socioeconomic status 

(SES) (Lopez-Quintero et al., 2011; Palamar et al., 2015). These multiple levels of analysis 

provide distinct perspectives on cocaine dependence, but connections across levels have 

been rare. A thorough understanding of these multilevel phenomena, in our view, will 

require a scientific theory or paradigm that not only can integrate observations across levels 

in a compelling way, but can also suggest novel hypotheses. As Henri Poincaré noted in his 

classic text, Science and Hypothesis (Poincaré, 1905), “Science is built up of facts, as a 

house is built of stones; but an accumulation of facts is no more a science than a heap of 

stones is a house (p. 157).”

The question we should ask is what would we want from such a theory that could set the 

extant facts in order? At the very least, any such theory should integrate the neuroscience of 

cocaine's effects on the brain, developmental processes associated with drug use initiation, 

the relationship of SES to cocaine use, and the high prevalence of certain comorbidities. 

Such a theory should also have the capacity to suggest novel treatments and perhaps reveal 

mechanisms underlying established treatments.

We have been involved with formulating a view, referred to as the competing 

neurobehavioral decision systems (CNDS) theory (Bickel and Yi, 2008; Bickel et al., 2007, 

2012a) that has considerable integrative power. This view, consistent with a broad array of 

dual-systems theories, suggests that choices result from the interaction between the two 

decision systems and that those who are experiencing addiction suffer from imbalance or 

dysregulation between these two systems. In this chapter, we will examine cocaine 

dependence from the perspective of this theory. To accomplish this, we will first give a brief 

synopsis of this theoretical view and examine the evidence to support the dysregulation 

between the dual systems in individuals with cocaine dependence. Next, we will examine 

how this perspective provides insight on the relationship between cocaine dependence and 

developmental life course, SES, and comorbidities. Finally, we will examine the 

implications of the CNDS perspective for existing and emerging approaches to the treatment 

of cocaine dependence.

2 The Competing Neurobehavioral Decision Systems Theory

Dual-systems models of decision-making have been discussed since Descartes and have 

evolved to many variations and applications (Sanfey and Chang, 2008), particularly in the 

areas of self-control (Metcalfe and Mischel, 1999) and addiction (Bechara, 2005; Goldstein 

and Volkow, 2002, 2011; Jentsch and Taylor, 1999). In decision-making research, most 

models refer to the dual systems as System 1 and System 2. System 1 refers to unconscious 

and automatic processes, requiring little effort, while System 2 refers to conscious, 

controlled, and effortful processes (Evans, 2008; Evans and Stanovich, 2013).
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The CNDS theory is a dual-systems model that accounts for self-control failure (Bickel et 

al., 2007, 2011a), has been directly applied to addiction (Bickel et al., 2011a; Sofis et al., 

2014) and emphasizes the relative control between impulsive and executive decision 

systems. The impulsive system, comprised of the limbic and paralimbic brain regions, and 

executive system, comprised of the prefrontal and parietal cortices, are interdependent and 

compete for relative control during decision-making (see Bickel et al., 2012a for pictorial 

representations). Normal functioning results when the systems are in regulatory balance; 

however, when the two systems are not in regulatory balance, pathology may result (Bickel 

et al., 2015). Although worthwhile, systematic comparison of the CNDS theory and other 

dual-systems models is beyond the scope of this chapter, thus we reserve such comparisons 

for future discussions.

Importantly, delay discounting is a behavioral measure of self-control that designates the 

relative strength of the competing decision systems (Bickel et al., 2012b; McClure and 

Bickel, 2014). Delay discounting procedures measure future valuation by asking participants 

if they would prefer a smaller, immediate amount of a commodity or a larger, delayed 

amount. The immediate amount is titrated until a point of subjective equality (the 

indifference point) is determined. A hyperbolic function often best accounts for the fit of the 

indifference points across delays and is represented by the equation (Mazur, 1987),

where V is the subjective value of the reinforcer, A is the amount of the reinforcer, D is the 

delay to receipt of the reinforcer, and k is a free parameter that serves as an index of 

discounting (higher values of k indicate higher rates of discounting). Nicotine- (Bickel et al., 

1999), alcohol- (Petry, 2001), cocaine- (Bickel et al., 2011b, 2014a; Heil et al., 2006), and 

heroin-dependent (Madden et al., 1997) individuals discount future rewards more than 

controls. Higher rates of discounting, then, reflect hyperactive control by the impulsive 

decision system, consistent with the bias for immediate reward evident in addiction (Bickel 

et al., 2011a).

The study of neuroeconomics, which combines psychology, economics, and neu-roscience 

(Bickel et al., 2011a), has provided confirmatory neural evidence for the actions of the 

CNDS (described in the following sections). When participants complete delay-discounting 

procedures in an MRI scanner, relative activity between the executive and impulsive systems 

varies, dependent upon the choice being made. For example, choices for the immediate and 

delayed reinforcer result in greater activity in the impulsive and executive systems, 

respectively (McClure et al., 2004, 2007). Moreover, when the reinforcer is delayed for both 

choices, the limbic system shows no differential activation. Thus, activation of the impulsive 

decision system depends on the presence of an immediate reinforcer (McClure et al., 2004).

2.1 The Impulsive Decision System

The impulsive decision system, comparable to System 1, is embodied in the limbic (e.g., 

midbrain, amygdala, habenular commissure, and striatum) and paralimbic (e.g., insula and 
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nucleus accumbens) brain regions (Bickel et al., 2007). Habit formation, emotional 

responding, and the acquisition of primary reinforcers to satisfy biological needs (Bickel et 

al., 2013) are controlled by the impulsive decision system.

As discussed above, imaging studies have confirmed that the impulsive decision system is 

involved in the choice for immediate reinforcers in delay discounting. Choice for immediate 

reinforcers (McClure et al., 2004) selectively activate the paralimbic cortex and parts of the 

limbic system, including ventral striatum, medial orbitofrontal cortex, medial prefrontal 

cortex, posterior cingulate cortex, and left posterior hippocampus (McClure et al., 2004, 

2007).

2.2 The Executive Decision System

The second decision system of the CNDS, comparable to System 2, is embodied in the 

parietal lobes and portions of the prefrontal cortex, including the dorsolateral pre-frontal 

cortex (Bickel et al., 2007). Some overlap of function in the decisions systems exists for 

several areas of the prefrontal cortex, including the orbitofrontal cortex. The cortical 

pathways of the executive decision system are responsible for planning, memory, attention, 

and future valuation (Bickel et al., 2013). Neuroeconomic evidence has demonstrated 

activation of the lateral prefrontal cortex and parietal lobe during decision-making in delay 

discounting for monetary and primary reinforcers (i.e., juice) regardless of delay, indicating 

the executive system is involved in all decisions (McClure et al., 2004, 2007). Moreover, 

greater activation in the executive system structures occurs during the more difficult choices 

requiring greater executive function.

2.3 The Competing Neurobehavioral Decision Systems Theory in Health and Addiction

When regulatory balance is achieved between the impulsive and executive decision systems, 

an individual is considered self-controlled and is likely to have no dysfunction (Bickel et al., 

2015). Conversely, hyperactive control by either the impulsive or executive decision system 

can lead to pathological behavior. Many combinations of relative strength of each system are 

possible (Bickel et al., 2013). Consider Fig. 1 that shows a continuum from low to high 

control by the impulsive decision system on the y-axis and on the x-axis, low to high 

executive control. The diagonal line represents regulatory balance between the two decision 

systems. Shaded regions represent high risk for engaging in negative health behaviors. The 

pathological decision-making strategies associated with these behaviors emerge when 

control by the impulsive decision system overpowers control by the executive decision 

system. For example, high impulsive system control coupled with low or medium executive 

control results in greater relative control by the impulsive decision system and can result in 

pathological decision-making (e.g., bias toward smaller, immediate over larger, delayed 

consequences) (Bickel et al., 2011a, 2013).

Imbalance of the CNDS is evident in many disease states where individuals have bias for 

immediate consequences over delayed, healthier choices. Hyperactive control of the 

impulsive decision system results in patterns of behavior consistent with obesity, legal and 

illicit substance use, and gambling problems. Regulatory imbalance can also be a result of 

hyperactive control by the executive system.
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3 The Competing Neurobehavioral Decisions Systems Theory and Cocaine

3.1 Neural Evidence of the Imbalance of Decision Systems

Imbalance of the CNDS contributes to excessive discounting and addiction behaviors 

(Bickel et al., 2012b). Addiction occurs when the executive system is weak and the 

hyperactive impulsive decision system drives choice (Bechara, 2005). Cocaine use, via 

neuronal plasticity, promotes a transition in regulation from the prefrontal cortices to the 

striatum leading to compulsive and habitual drug seeking (Everitt et al., 2008). Advances in 

imaging have provided us with tools to examine the neural evidence of this imbalance in 

cocaine addiction.

3.1.1 Hyperactivation of the impulsive system—The impulsive decision system is 

comprised of regions of the limbic system and related areas (McClure et al., 2004). One of 

these regions, the orbitofrontal cortex, is associated with: (1) the reinforcing aspects of 

cocaine, (2) immediate choice preferences, and (3) craving and cocaine salience (Lucantonio 

et al., 2012; McClure et al., 2004; Steinberg, 2007). Compared to healthy controls, cocaine 

addicts show increased activation in limbic regions (i.e., the amygdala, anterior cingulate 

cortex, and striatum) following exposure to cocaine cues (Childress et al., 1999; Garavan et 

al., 2000). These increases in activation suggest regions responsible for drug craving and 

hyperactivation in craving states. Hyperactivation of the impulsive system in cocaine users is 

also consistent with findings of acute withdrawal circuits becoming hypermetabolic during 

spontaneous craving (Kalivas and Volkow, 2005; Lucantonio et al., 2012). Moreover, 

hyperactivation of the medial orbitofrontal cortex and anterior cingulate cortex (structures 

with impulsive functions) occurs following acute methylphenidate administration in cocaine 

addicts (Wilcox et al., 2011), suggestive of system over-activation following repeated 

stimulant administration (akin to sensitization observed in animals) (Robinson and Berridge, 

1993).

Interestingly, while hyperactivation and hypermetabolism of the limbic system occurs under 

certain conditions, cocaine-dependent participants show an overall reduction in aspects of 

the impulsive decision system compared to healthy controls. These reductions include 

decreased activation of the orbitofrontal cortex and cingulate gyrus (Volkow et al., 1993) and 

decreased gray matter volume of the amygdala (Makris et al., 2004) and the ventromedial, 

orbitofrontal, anterior cingulate, and anteroventral insular cortices (Franklin et al., 2002). 

Although these findings may seem counterintuitive from the viewpoint of CNDS (i.e., 

reduced function and structure of the impulsive decision system in cocaine addicts), cocaine 

may prime the limbic regions associated with cue salience and motivation, consistent with 

hyperactivation of the impulsive decision system following drug administration and 

contributes to increased craving and compulsive intake (Volkow et al., 2005). Consistently, 

acute methylphenidate administration may normalize limbic activation by working similarly 

to cocaine but with slower pharmacokinetics. That is, in cocaine addicts, acute 

methylphenidate increases activation in the anterior cingulate cortex during a cue-reactivity 

task (Goldstein et al., 2010), restores response levels to normal after fatigue in a Stroop task 

(Moeller et al., 2012), and increases resting-state functional connectivity in limbic regions, 

including the anterior cingulate cortex (Konova et al., 2013). Thus, hyperactivation of the 
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impulsive decision system, as a consequence of cocaine priming the system, weakens 

relative control of the executive system and decreases self-control (Noel et al., 2013).

3.1.2 Hypoactivation of the executive system—In addition to hyperactivity of the 

impulsive system, drugs of abuse cause an interruption of the top-down processes required 

for self-control (Dalley et al., 2011). Neural evidence suggests that cocaine induces 

executive dysfunction. Although hyperactivation may occur in some instances, as mentioned 

above, overall reductions in signaling, glucose metabolism (Kalivas and Volkow, 2005), and 

structural volume (Franklin et al., 2002) in both the impulsive and executive systems are 

observed after cocaine use. Moreover, the degree of cocaine use is associated with both 

structural and functional deficits in the executive system (Beveridge et al., 2008).

3.2 Developmental Processes and Cocaine Addiction

3.2.1 Differential development—Evidence of differential development between the 

CNDS explains impaired self-control in adolescents, as the two decision systems appear to 

differentially mature. During the first half of adolescence (i.e., ages 10–15), dopaminergic 

activity increases dramatically in brain areas associated with the impulsive decision system 

(Sisk and Zehr, 2005), including a dramatic dopamine and dendritic synaptic over-

expression in the striatum (Andersen et al., 2000). Related to this overexpression, the 

nucleus accumbens, an area of the impulsive decision system responsible for the rewarding 

properties of stimuli, and orbitofrontal cortex display hyperactivation in children and 

adolescents compared to adults in resting state (Galvan et al., 2006) and when completing a 

monetary reward task (Ernst et al., 2005). Moreover, differential myelination between limbic 

and nonlimbic regions enhances activation in the impulsive decision system (Galvan et al., 

2006). As adolescents mature, the overexpression and hyperactivation of the impulsive 

system begins to prune to model an inverted U-shaped function over time (Sisk and Zehr, 

2005; Teicher et al., 1995). That is, after the overexpression peaks, extra connectivity begins 

to decline while the slower to mature executive decision system continues to develop.

Development of the executive decision system includes increases in parietal gray matter 

volume (Sisk and Zehr, 2005) along with dramatic dopamine and dendritic synaptic 

overexpression in the prefrontal cortex (Andersen et al., 2000). Gray matter density 

development and myelination in the frontal and parietal cortices continues into adulthood 

(Sowell et al., 2003), thus increasing relative control of the executive over the impulsive 

decision systems with age.

3.2.2 Related behaviors—The differential development of the two systems and inverted 

U-shaped curve of impulsive decision system development is evident in self-control. 

Paralleling the over-expression of dopamine and activation of the impulsive decision system, 

a drastic increase in risky behavior is present in adolescence. Specifically, self-reported 

sensation-seeking and risky sexual behavior increases drastically, peaks in early 

adolescence, and declines as self-regulatory behavior begins to mature (Baams et al., 2015; 

Steinberg, 2007; Steinberg et al., 2008).

Importantly, a longitudinal study modeled the imbalance of the CNDS and reported that high 

rates of delay discounting and poor working memory (both measures of weak executive 
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control) predicted greater subsequent initiation of drug use (i.e., alcohol, marijuana, and 

tobacco) (Khurana et al., 2015). Using data from two large national surveys (Substance 

Abuse and Mental Health Services Administration, 2004, 2013), Fig. 2 highlights this 

increased vulnerability in adolescents by illustrating the percentage of adolescents who used 

cocaine in the last 30 days by age group. Note, the percentage of use rapidly peaks in 

adolescence and declines with increasing age.

3.3 Socioeconomic Status and Cocaine Addiction

A widely demonstrated negative linear relationship exists between SES and illicit drug use, 

health problems, and mortality. This monotonic gradient, describing the relationship 

between SES and health status, extends from the lowest to the highest ends of the 

socioeconomic spectrum. As a result, this relationship cannot be entirely accounted for by 

poverty-induced deprivation or healthcare access (Adler and Stewart, 2010). This gradient 

represents the health disparity in prevalence of negative health behaviors (e.g., drug use, 

risky sexual behavior, and obesity) such that a lower prevalence of disease states is observed 

in high-SES individuals and a higher prevalence is observed in lower SES individuals. The 

greater the income inequality within a society, the larger the health disparity (Banks et al., 

2006). This trend is apparent within the United States and is representative of the general 

trend showing larger health disparities in countries with more income inequality (Wilkinson 

and Pickett, 2011). Rates of mental illness, obesity, and substance use are disease states 

strongly associated with SES inequalities (Pampel et al., 2010).

One measure included in SES, education level, contributes to the prevalence of past year 

cocaine use and exemplifies this general trend in health disparities. In 2012, 2.4% of people 

who did not graduate from high school, while only 1.1% of college graduates, used cocaine 

in the past year. This relationship between SES and cocaine use began in the 1990s when 

risk perception of using cocaine increased and therefore became less culturally acceptable. 

As a result, high-SES individuals were more likely to discontinue cocaine use while low 

SES individuals continued use (Miech, 2008). The increased prevalence of cocaine use 

among lower income individuals demonstrates the negative socioeconomic gradient present 

across a wide variety of negative health behaviors, including cigarette smoking (Hiscock et 

al., 2012), illicit drug use (Buka, 2002), and obesity (Baum and Ruhm, 2009).

The CNDS theory can be used as a conceptual framework to explain the discrepancy 

between the prevalence of negative health behaviors among individuals with varying SES 

(Bickel et al., 2014b). The experiences associated with low SES, including increased 

allostatic load and lack of resources (Haushofer and Fehr, 2014; Mani et al., 2013), disrupt 

the development and regulatory balance between the impulsive and executive decision 

systems (Bickel et al., 2014b; Noble et al., 2012). Exposure to these environmental 

circumstances facilitates a biased decision-making process favoring immediate over delayed, 

healthier consequences. This executive dysfunction results from hyperactivation of the 

impulsive decision system and results in continued choice for immediate rewards, which 

perpetuates the disparity in negative health behaviors, including cocaine use.
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3.4 Comorbidities with other Substance Use and Risky Sexual Behavior

The CNDS theory also provides a framework for understanding the relationship between 

comorbid disease states and cocaine use. Regulatory imbalance of the systems resulting 

from hyperactivity of the impulsive decision system may explain the presence of decision-

making favoring immediate rewards (e.g., cocaine use and risky sexual behavior) (Chesson 

et al., 2006; Johnson and Bruner, 2012) over delayed, more healthy consequences. These 

decision-making processes are central to many disease states, which contributes to the 

incidence of comorbidity (Bickel and Mueller, 2009). Comorbid substance use, including 

tobacco (Budney et al., 1993; Burling et al., 1996), alcohol (Bierut et al., 2008), marijuana 

(Narvaez et al., 2014), and opiate use (Bierut et al., 2008), is common in cocaine users 

although few treatments intended for cocaine dependence take these comorbidities into 

account (Yoon et al., 2013).

4 The CNDS and Cocaine Treatment

The CNDS theory has been used previously to understand and categorize the effects of 

various delay-discounting manipulations (Koffarnus et al., 2013). Here, we apply a similar 

analysis to current and emerging treatments for cocaine dependence.

4.1 Conventional Treatment for Cocaine Dependence

A number of therapies have been successfully used to treat cocaine dependence, among 

which cognitive behavioral therapy (CBT) has the largest evidence base (Carroll and Onken, 

2005; Carroll et al., 2008; Maude-Griffin et al., 1998). However, behavioral measures of 

executive dysfunction (e.g., poor Stroop performance) consistently predict poor response to 

these treatments (Aharonovich et al., 2006; Bleiberg et al., 1994; Moeller et al., 2001; 

Simpson et al., 1999; Streeter et al., 2008; Worhunsky et al., 2013; Xu et al., 2010). 

Likewise, functional and structural neuroimaging data, such as diminished prefrontal cortex 

activation and white matter integrity, further implicate executive dysfunction in poor 

treatment response (Brewer et al., 2008; Moeller et al., 2005; Worhunsky et al., 2013; Xu et 

al., 2010).

Many of these conventional treatments, including CBT, require a complex repertoire of 

executive skills (e.g., coping strategies or the ability to recognize dynamic relapse cues and 

modify behavior accordingly), which are likely compromised in individuals demonstrating 

regulatory imbalance between decision systems. From the viewpoint of the CNDS, a more 

promising approach would be to precisely target areas of dysfunction to produce more 

uniformly efficacious treatment outcomes compared to conventional treatment strategies 

(Bickel et al., 2012b). In the sections that follow, we consider a number of treatments that 

may accomplish this goal.

4.2 Treatments to Decrease Control of the Impulsive Decision System

4.2.1 Contingency management—One of the most reliable treatments for cocaine and 

other substance dependence in recent decades has been contingency management, a 

behavioral approach that arranges immediate delivery of monetary or other tangible 

reinforcers contingent on physiologically verified drug abstinence (Higgins et al., 1991, 
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1994) (for review and meta-analysis, see Lussier et al., 2006; Prendergast et al., 2006). This 

approach rapidly reduces cocaine use (Robles et al., 2000) and maintains abstinence over 

long periods of time (Poling et al., 2006; Rawson et al., 2002), even in the absence of 

continued treatment (Epstein et al., 2003; Higgins et al., 1995; Petry and Martin, 2002). 

Moreover, contingency management for cocaine use may be implemented successfully at 

relatively low cost (Petry and Martin, 2002; Petry et al., 2004) and may be paired with 

adjunctive therapies (e.g., CBT) (Epstein et al., 2003) to further improve treatment 

outcomes.

As discussed previously, substance use may be viewed as an intertemporal choice between 

immediate drug reinforcement and the temporally diffuse and distant outcomes associated 

with drug abstinence (e.g., sustained physical and mental health and attainment of 

occupational goals). Regulatory imbalance between decision systems may predispose 

individuals toward cocaine use by disproportionately weighting the value of immediate drug 

reinforcement. With this in mind, the provision of extrinsic, relatively immediate 

reinforcement for abstinence in contingency management therapies may supplant the 

naturalistic, delayed outcomes of abstinence (e.g., improved health and social function) that 

are otherwise insufficient to impact behavior in those suffering from regulatory imbalance. 

In addition, cessation of cocaine use during contingency management likely facilitates initial 

contact with these naturalistic outcomes, perhaps contributing to continued abstinence 

following treatment (Epstein et al., 2003; Higgins et al., 1995; Petry and Martin, 2002). 

Consistent with these mechanisms, a recent study examining contingency management for 

opioid abuse allowed participants to either redeem these earnings immediately at each 

laboratory visit or accumulate their earnings in an account over the course of the study 

(Bickel et al., 2010). Participants with the highest baseline rates of delay discounting more 

frequently redeemed their earnings immediately than participants with lower rates of delay 

discounting, demonstrating the selective importance of immediate outcomes for participants 

with regulatory imbalance. Future studies should be designed to determine whether a similar 

finding would be observed with contingency management for cocaine dependence.

4.2.2 Medications—Currently no approved medication exists for stimulant addiction 

(Brackins et al., 2011) and replacement therapies with stimulants for cocaine and 

methamphetamine addiction have produced equivocal results (Moeller et al., 2008). 

However, the possibility remains that replacement agonist therapy may be a viable avenue to 

decrease or buffer the hyperactivation of the impulsive decision system during or to prevent 

crave states.

For example, dexamphetamine and methylphenidate are long-acting stimulants, with similar 

mechanisms of action to cocaine (i.e., increases in extracellular dopamine) and have shown 

positive results in reducing behaviors related to cocaine addiction. In intravenous cocaine 

users, dexamphetamine reduced positive urine samples for cocaine, self-reported use, 

craving, and criminal activity (Shearer et al., 2003). Dexamphetamine maintenance also 

reduces choice preferences for immediate cocaine over money (Rush et al., 2009). Likewise, 

methylphenidate reduces reaction to cocaine cues and attenuates anterior cingulate cortex 

activation in cocaine-dependent individuals (see review Mariani and Levin, 2012) without 

impairing inhibitory control in a go/no-go task (Vansickel et al., 2008), offering a stimulant 
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agonist medication without over activating the impulsive decision system. Moreover, 

replacement therapies such as methylphenidate, dexamphetamine, and atomoxetine are 

pharmacologically safe for maintenance therapy (Grabowski et al., 1997; Rush et al., 2009; 

Stoops et al., 2008). Thus, the benefit of longer acting agonist medications for use as partial 

agonist therapies offers a potential avenue to buffer hyperactivation of the impulsive decision 

system in cocaine-dependent individuals.

4.2.3 Neurotherapeutic stimulation—Transcranial magnetic stimulation (TMS) is a 

noninvasive brain stimulation tool which enables us to selectively activate or inhibit 

populations of neurons by altering the frequency and placement of cortical stimulation. 

When stimulation is delivered repetitively, at frequencies known to induce long-term 

potentiation (LTP) or depression (LTD) of cortical activity, this technique is known as 

repetitive TMS (rTMS) (Fitzgerald et al., 2006; Hoogendam et al., 2010; Thickbroom, 2007; 

Ziemann et al., 2008). LTP of both behavioral and neural activity is possible by applying 

either a single high frequency (e.g., 10 Hz) or an intermittent theta burst frequency to the 

cortex. In contrast, transient LTD of behavioral and neural activity is possible by applying 

either a single low-frequency (e.g., 1 Hz) or continuous theta burst frequency to the cortex. 

rTMS is an FDA-approved treatment for depression and is the only noninvasive brain 

stimulation tool available for humans.

A growing body of substance dependence literature suggests that we may be able to directly 

dampen limbic circuitry or amplify executive control circuitry in substance-dependent 

individuals through rTMS. Consequently, rTMS has garnered significant attention as an 

innovative tool for treating substance dependence from both the National Institutes of Health 

and in the literature (Barr et al., 2011; Bellamoli et al., 2014; Gorelick et al., 2014; Wing et 

al., 2013). In context with the CNDS, several strategies could be used to develop treatments 

for substance dependence, including altering the relative control of the impulsive and 

executive decision systems.

The vulnerability to drug-related cues in treatment-seeking cocaine users is likely sustained 

by high functional activity in the impulsive decision system (Ersche et al., 2012; Moeller et 

al., 2010; Moreno-Lopez et al., 2012). Consequently, application of low-frequency TMS, for 

example, applying LTD-like stimulation to the limbic system may reduce sensitivity to 

cocaine and other substance cues. Given that the nucleus accumbens is one of the primary 

brain regions involved in craving (Robinson and Berridge, 1993) and the medial prefrontal 

cortex is that structure's primary cortical input, targeting the medial prefrontal cortex would 

be a method to modulate nucleus accumbens activity among substance-dependent 

populations. Recent work by Cho et al. (2015) demonstrated that LTP-like rTMS (i.e., 10 

Hz) to the medial prefrontal cortex in a group of healthy, nondrug-using individuals was 

associated with a significant decrease in dopamine binding potential in the dorsal striatum, 

reflecting a release of dopamine in these areas. Although they did not find a significant 

change in dopamine binding in the nucleus accumbens, LTP-like stimulation of the medial 

prefrontal–striatal circuit increased delay discounting (a behavioral marker of executive 

dysfunction). This finding suggests that an LTD-like rTMS strategy over the medial 

prefrontal cortex would attenuate activity in this neural circuit and may reduce drug craving 

and impulsive decision system control. Prior data from our laboratory demonstrate that in 
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cocaine users, continuous theta burst stimulation to the frontal lobe selectively decreases 

activation in the medial prefrontal cortex and nucleus accumbens (Hanlon et al., 2015). 

Given that craving for cocaine is associated with an increase in striatal dopamine, decreasing 

the sensitivity of this circuit through rTMS may be a valuable treatment strategy. Future 

research is required to determine whether stimulating this location is tolerable in substance-

dependent populations because medial prefrontal cortex stimulation has not been widely 

pursued and is subjectively more painful than dorsolateral prefrontal cortex rTMS.

4.3 Treatments to Increase Control of the Executive Decision System

4.3.1 Neurocognitive training—Executive function deficits in chronic cocaine users are 

well established (Bolla et al., 2000). Specifically, compared to healthy controls, cocaine-

dependent individuals demonstrate significant impairments of multiple measures of 

attention, visual and spatial memory, language and sensory perception functions (Jovanovski 

et al., 2005). This executive dysfunction is related to retention rates for relapse prevention 

therapy in cocaine users (Aharonovich et al., 2003, 2006). Because functional and regional 

overlap exists between executive function areas, including those involved in making delay-

discounting decisions for the delayed reinforcer (Bickel et al., 2011c; Wesley and Bickel, 

2014), training specific executive functions, such as working memory, may increase 

executive decision system control leading to program retention and a rebalance of the 

CNDS.

4.3.1.1 Working memory training: Of the impaired executive systems in cocaine addicts, 

working memory is an executive function mediated by the prefrontal cortex and is involved 

in goal-directed behavior (Miller and Cohen, 2001). Interestingly, following working 

memory training, healthy participants demonstrate increases in prefrontal and parietal region 

activation (Olesen et al., 2004). Consistent with the CNDS theory, more activation in these 

areas indicate increases in executive decision system functionality and is important because 

greater frontoparietal activity occurs when participants choose larger delayed rewards 

(McClure et al., 2004). In fact, we have demonstrated decreased delay discounting of 

monetary rewards following working memory training in cocaine addicts (Bickel et al., 

2011c), thus providing support for this potential approach to increase executive system 

functionality. In addition to working memory training, a second potential treatment, episodic 

future thinking, shows beneficial executive neurocognitive improvement capabilities.

4.3.1.2 Episodic future thinking: Episodic future thinking is a form of prospection which 

involves mental simulation of future events (Atance and O'Neill, 2001). Neural evidence 

demonstrates that future thinking tasks activate frontal cortices (Okuda et al., 2003) 

associated with the executive decision system. Moreover, goal-directed simulations activate 

the prefrontal cortex and associated regions (Gerlach et al., 2011). Behaviorally, episodic 

future thinking decreases delay discounting, which is predicted by anterior cingulate cortex 

activation (Daniel et al., 2013; Peters and Buchel, 2010). Thus, given that poor performance 

of future thinking is associated with poor executive function (de Vito et al., 2012), repetition 

of either working memory training or episodic future thinking may increase control of the 

executive decision system, improve valuation of future rewards, and provide a valuable 

adjunct to cocaine cessation therapy.
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4.3.2 Medications—Modafinil acts on several neurotransmitter systems including 

glutamate, GABA, and dopamine. Similar to the previously proposed agonist therapies to 

decrease control of the impulsive decision system, modafinil produces a similar mechanism 

of action to cocaine (i.e., increases in dopamine) and produces protracted mild stimulant 

properties to promote wakefulness. Modafinil reduces activity in the ventral tegmental area, 

an impulsive decision system brain region, and reduces self-reported craving in response to 

cocaine cues (Goudriaan et al., 2013), indicative of an attenuation of craving. Though 

modafinil has been investigated as an agonist replacement therapy (i.e., to buffer 

hyperactivation of the impulsive decision system) with mixed results (Dackis et al., 2012; 

Hart et al., 2008), modafinil's actions may be most beneficial by activating the executive 

decision system. Modafinil promotes enhanced activation of the frontoparietal regions and 

reduced activation of the ventro-medial prefrontal cortex (Schmaal et al., 2014), both regions 

associated with the valuation of rewards. Behaviorally, modafinil increases several measures 

of working memory and attention in cocaine users (Kalechstein et al., 2013). Modafinil 

reduces delay discounting in alcohol-dependent participants compared to controls (Schmaal 

et al., 2014), and importantly, modafinil does not impair inhibitory control in a go/no-go task 

in cocaine-dependent individuals (Vansickel et al., 2008) offering another stimulant 

medication that increases executive function without overactivating the impulsive system.

Modafinil, alongside other medications, has been classified as a nootropic, or a cognitive 

enhancer. Nootropics are reported to increase working and visual memory, decision-making, 

and planning (Turner et al., 2004), indicating that pharmacological interventions can 

improve executive decision system function and regulatory balance of the CNDS. 

Interestingly, improving deficits in neurotransmitter systems with nicotine agonists, 

norepinephrine transporter inhibitors, or alpha-2 adrenergic agonists, coincide with some 

improved attention, response inhibition, and working memory (Sofuoglu, 2010). Evidence 

that these other systems modulate executive function warrants further investigation into 

nootropics enhancing the executive decision system to improve treatment outcomes. 

Moreover, the benefits of pharmacological treatments can provide a valuable adjunct therapy 

to behavioral interventions such as contingency management or working memory training, 

allowing for synergistic treatment.

4.3.3 Neurotherapeutic stimulation—Vulnerability to drug-related cues may be due to 

low functional activity in the executive decision system of substance-dependent individuals 

(Goldstein et al., 2004; Kubler et al., 2005; Moeller et al., 2010) suggesting that an LTP-like 

rTMS stimulation of the executive decision system (e.g., dorsolateral prefrontal cortex) 

might enable better resistance against drug cues. To date, the vast majority of rTMS studies 

in addiction have targeted the dorsolateral prefrontal cortex (Amiaz et al., 2009; Camprodon 

et al., 2007; Eichhammer et al., 2003; Herremans et al., 2012, 2013; Hoppner et al., 2011; Li 

et al., 2013; Mishra et al., 2010; Politi et al., 2008; Pripfl et al., 2014). While many of these 

studies demonstrated that LTP-like rTMS stimulation to the dorsolateral prefrontal cortex 

can result in a significant reduction of craving, the neurobiological mechanism is unclear. 

For example, in a comprehensive review on the efficacy of rTMS for smoking cessation, 

Wing et al. (2013) reported beneficial effects on tobacco craving following LTP-like rTMS 

on the dorsolateral prefrontal cortex.
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Neurotherapeutic stimulation is a developing area of research for treatment of drug 

dependence. Future research needs to resolve two questions, which cortical location should 

be targeted in order to maximally affect the circuitry associated with regulatory balance 

between decision systems and what stimulation frequency should be used. Identification of a 

single “optimal” protocol for all individuals or all drug classes is not likely. For example, 

some individuals may benefit the most from a treatment strategy that amplifies the executive 

decision system (e.g., 10 Hz dorsolateral prefrontal cortex stimulation) while others may 

benefit most from a strategy that attenuates the impulsive decision system (e.g., 1 Hz medial 

prefrontal stimulation). Before moving forward with expensive and slow multisite clinical 

trials investigating the efficacy of rTMS as a viable treatment tool for addiction, exploration 

of these combinations of frequencies and cortical targets to maximize potential impact 

should be considered. TMS may provide a powerful new tool to use as an adjunct to 

behavioral and pharmacotherapeutic addiction treatment. Given that no FDA-approved 

pharmacotherapy for cocaine dependence exists, brain stimulation may be a particularly 

useful therapeutic technique.

5 Conclusion and Future Directions

Integration of findings from multiple scientific disciplines and levels of analysis into a robust 

conceptual system will permit and suggest experiments, and perhaps lead to novel treatments 

for cocaine dependence. Scientific paradigms in the field of addiction have continuously 

evolved and have had at least four major paradigm shifts in the last hundred years (Bickel et 

al., 2013). The CNDS theory constitutes the most recent paradigm shift and is a valuable 

perspective for addiction research in two ways. First, it stipulates that a fundamental 

contributor to the addiction process is a dysregulation between the impulsive and executive 

decision systems. Second, it identifies those two decision systems as targets for 

interventions.

In this chapter, we have shown that numerous observations could be integrated when viewed 

from the perspective of the CNDS. Armed with that view, we connect observations regarding 

the immediacy bias evident in addiction, neural activity and structure, the developmental 

pattern associated with cocaine and other drug use vulnerabilities, the SES gradient of 

cocaine and other drug dependencies, and the presence of comorbidities. Such integration 

supports use of the CNDS theory to guide treatment strategies.

For treatment of cocaine dependence, our view is that treatments or interventions should be 

supported by a theoretical conceptualization. If the conceptualization of a disorder changes, 

that change should force a reevaluation of the treatment efficacy. The CNDS is a relatively 

new conceptualization and permits understanding of the efficacy of existing treatments (e.g., 

CBT), but also suggests novel approaches (e.g., rTMS) to either decrease activity in the 

impulsive decision system or increase activity in the executive decision system. Efficacy of 

these novel approaches will, in part, continue to test the CNDS and indicate the range of its 

relevance.

The CNDS, like many paradigmatic approaches, is an approximation of a more complete 

paradigm. The examination and use of the CNDS in the treatment of cocaine and other drug 
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dependence disorders are not based on the ultimate value of the theory, but rather its 

proximal utility in making new discoveries and assisting those trapped by cocaine 

dependence. Whether the CNDS continues to provide new research insights that contribute 

to treatment or will instead give way to an even more robust perspective will await 

subsequent investigation. In either case, the continued exploration and elaboration of this 

integrated view contributes to the science of addiction, in general, and cocaine dependence 

in particular.
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Figure 1. 
The relative control of the impulsive and executive decision systems, represented 

graphically. The diagonal line represents regulatory balance between the systems. The 

shaded regions indicate an imbalance between the two systems producing a bias for 

immediate over delayed rewards.
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Figure 2. 
Percentage of cocaine use in the past month, by age group. The results from the 2003 and 

2013 National Survey on Drug Use and Health Surveys are presented. Percentage of use 

increases with age, which then slowly dissipates over time.
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