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Abstract

Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous
solubility, poor stability, unfavorable bioavailability, and low target specificity make administering
them at therapeutic doses unrealistic. This is particularly true for (-)-epigallocatechin gallate,
curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel
delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid
nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are
biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and
solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and
bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their
circulation time, improve their target specificity to cancer cells or tumors via passive or targeted
delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from
prematurely interacting with the biological environment, and enhance anti-cancer activities.
Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention
and treatment of cancer.
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Introduction

Cancer has become one of the leading causes of human morbidity and mortality worldwide,
accounting for 7.6 million deaths every year [1] There are more than 100 different types of
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cancer, and they are quite varied and depend on cancer location, metastasis and size [2]. In
the United States and many other countries, common types of cancers are skin cancer, breast
cancer, colon and rectal cancer, liver cancer, lung cancer, pancreatic cancer and prostate
cancer [1. 3],

Phytochemicals are naturally occurring bioactive compounds found in vegetables, fruits,
spices, grains, and other plant foods [4]. Many phytochemicals from traditional medicine
have been used for the maintenance of health and prevention of diseases, especially

cancer [5-61. Over the past few decades, research evidence from cell culture and some animal
studies has supported that many phytochemicals have anti-cancer activities, but inconsistent
results are found in some human clinical trials [7-8]. The inconsistence may be due to the
infeasibility of high doses of phytochemicals for human studies, the low level of their
aqueous solubility, stability, bicavailability and target specificity to cancer cells and tumors,
and the high level of degradation and metabolism by enzymes in the gastrointestinal tract,
the liver and other tissues and thus short circulation time and low circulation
concentrationsl”: 9.

Nanotechnology involves the control of matter, generally in the range of 200 nm or

smaller (101, In recent years, the use of nanotechnology to enhance delivery of
phytochemicals to tumors or cancer cells for improving therapeutic efficiency has received
considerable attention [ 111, Many phytochemicals can be loaded into biocompatible and
biodegradable nanoparticles, which can enhance their absorption and bioavailability, protect
them from degradation by enzymes, enhance their stability, prolong their circulation time,
exhibit high differential uptake efficiency in cancer cells (or tumors) over other normal cells
(or normal tissues), lower toxicity through preventing them from prematurely interacting
with the biological environment [12],

Biocompatible and biodegradable nanoparticles

Liposomes, nanoemulsions, micelles, solid lipid nanoparticles (SLNs) and nanostructured
lipid carriers (NLCs), poly (lactideco-glycolide) (PLGA) nanoparticles are the commonly
used biocompatible and biodegradable nanoparticles, and they can be administered via
different routes including oral, intravenous, intraperitoneal, transdermal administration [12],
We illustrated the schematic structure of liposomes, emulsions, SLN, micelles, and PLGA
nanoparticles in Fig. 1. Poly(ethylene glycerol) (PEG) is incorporated on the surface of most
nanoparticles to maintain their integrity and stability via protecting them from degradation
and metabolism by enzymes and prolong their circulation by stabilizing them against
opsonization [12].

Even though those nanoparticles are biocompatible and biodegradable, their toxicity and
side effects should be measured. Especially, when the loading capacity and encapsulation
efficiency of phytochemicals are low, a large amount of nanoparticles are administered to
cells or animals [12]. Cytotoxicity assays are widely used to measure toxicity of
nanoparticles to cells. The widely used cytotoxicity experiments include a trypan blue
exclusion assay, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) or
(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
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tetrazolium, inner salt) (MTS) assay, a lactate dehydrogenase (LDH), a sulforhodamine B
(SRB) assay and so on. In animal studies, both short- and long-term toxicity and side effects
should be measured. The commonly used measurement methods are body weight, blood
chemistry test, complete necropsies including full gross and microscopic evaluation of all
organ-systems, histological examination and evaluation of all organs and tissues and so on.
Currently, an emerging need is to set up standardized /n vitro and in vivo models, safety test
measures and guidelines to determine toxicity and side effects of nanoparticles [121,

Liposomes are particles having mono- or multi-bilayer of phospholipids structures 131,
Phospholipid is a molecule that has a hydrophilic head and two hydrophobic fatty acid tails.
The head group on the surface of liposomes is attracted to water, and the fatty acid tails are
repelled by water [121. Cholesterol is another compound used in liposomes for enhancing
liposome physical characteristics [14. After phytochemicals are loaded into liposomes, their
aqueous solubility, stability and circulation time can be enhanced, and their toxicity and side
effects can be lowered [15]. Liposomes can entrap hydrophilic phytochemicals in their
internal water compartment and hydrophobic phytochemicals into the membrane [26].
Liposomes can be used v/a oral administration, intravenous injection, subcutaneous
administration and topical application [16-17],

Nanoemulsions

Emulsions are prepared by dispersing one liquid dispersed phase into the other continuous
phase [12]. Qil is dispersed into water containing a surfactant or emulsifier to form oil-in-
water emulsions, which have hydrophilic shells and hydrophobic cores. Nanoemulsions need
high-energy input and more surfactants or co-surfactants to lower the surface tension and
maintain the size less than 100 nm in diameter [8]. Qil-in-water nanoemulsions are
commonly used to deliver hydrophobic phytochemicals, such as curcumin [19],

quercetin [201 resveratrol [21] and genistein [22] to tumors and cancer cells. The advantages
of nanoemulsions include to increase aqueous solubility of hydrophobic phytochemicals,
enhance their stability and circulation time, improve their absorption and

bioavailability [18: 23],

SLNs and NLCs

SLNs and NLCs are synthesized lipid particles composed of lipids, surfactants, water,
maybe co-surfactants [24]. They have a hydrophilic shell and a hydrophobic lipid core.
Phospholipids and surfactants are used to form the hydrophilic shell. Triglycerides, waxes,
fatty acids are commonly used to form the hydrophobic lipid core. Different from emulsions,
the hydrophobic lipid cores in SLNs and NLCs are solid or semi-solid. SLNs and NLCs
have a perfect and imperfect lipid core structure, respectively [121. The imperfect lipid cores
of NLCs increase the loading capacity of phytochemicals [12]. Both SLNs and NLCs are
colloidal carriers with an average diameter 100 nm or less [2%]. SLNs are developed in the
early 1990s, serve as an alternative nanocarrier system to liposomes, nanoemulsions, and
polymeric nanoparticles [26-27], NLLCs developed at the end of the 1990s [28]. As a new
generation of lipid nanocarriers, NLCs can avoid many limitations of SLNs including low
loading capacity, high release potential, and drug expulsion during storage [29],
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Different from liposomes, micelles have a monolayer of phospholipids (or other amphiphilic
monomers or polymers) and a hydrophobic lipid core [39-31]. Many amphiphilic molecules
having a polar/hydrophilic group and a nonpolar/ hydrophobic group can be used to
synthesize micelles [32]. Surfactants and/or co-surfactants are commonly used in preparing
micelles [32]. Micelles can increase the aqueous solubility of hydrophobic phytochemicals,
enhance their bioavailability, reduce adverse effects (such as toxicity), enhance permeability
across the physiological barriers, and changes their biodistribution in the body [301.

PLGA nanoparticles

Synthetic polymers have many advantages including high purity and reproducibility over
natural polymers [33]. The most commonly used synthetic polymer for assembling
nanoparticles is PLGA. PLGA is biocompatible and biodegradable, because it yields lactic
acid and glycolic acid after it undergoes hydrolysis in the body. PLGA nanoparticles have
the properties of increasing drug efficacy and sustained release [34]. In particular, PLGA has
been approved by FDA for human therapy [3%]. PLGA nanoparticles have been used as
carriers to deliver many phytochemicals such as curcumin, resveratrol, and quercetin [36-38],

Phytochemicals-loaded nanoparticles and their anti-cancer activities

EGCG

In this review, we focus on some commonly consumed phytochemicals, including (-)-
epigallocatechin gallate (EGCG) abundant in green tea, curcumin abundant in turmeric,
quercetin abundant in red onions, resveratrol abundant in red grapes and genistein abundant
in soybeans (Fig. 2), and investigate whether nanoencapsulation can enhance their
characteristics and anti-cancer activities.

Green tea is made from the plant, Camellia sinensis, and has been taken as a healthy drink
since ancient times. There are three major types of tea (with consumption rate): fermented
black tea (78%-85%), unfermented green tea (14%-20%) and partially fermented oolong
tea (less than 2%) [391. Over the past few decades, scientific studies showed green tea
ingestion, not black tea, might prevent many types of cancer such as breast and prostate
cancer [49]. There are four major epicatechin derivatives: EGCG, epigallocathechin (EGC)
and epicathechin-3 gallate (ECG) and epicatechin (EC) [391. EGCG accounts for 25%-55%
of the total catechins [3%]. Green tea contains more catechins than black or oolong tea [39],
One /n vitro study screened and determined cancer prevention effects of 10 major
polyphenols found in green tea including caffeic acid (CA); gallic acid (GA); EGCG; EGC;
ECG,; EC; catechin (C); gallocatechin (GC); catechingallate (CG); gallocatechingallate
(GCG). EGCG demonstrated the highest chemopreventive potential among them [411. Many
other studies also support these results [40: 42431 The underlying mechanisms of anti-cancer
activities of EGCG include anti-angiogenesis, apoptosis and cell cycle arrest [37-421. EGCG
significantly inhibited new blood vessels growth and further decreases tumor

progression [421. EGCG also inhibited a crucial enzyme urokinase (uPA) for the growth of a
variety of different types of tumors [40]. Moreover, EGCG induced cancer cell apoptosis and
cell cycle arrest in the G1 phase, and inhibited cancer cell proliferation [41 441,
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However, EGCG has many limitations. First, EGCG is not stable in both physiological fluids
and water [43]. Second, EGCG's bioavailability was extremely low in research animals and
humans [46-48], The oral bioavailability was less than 1% reported by animal and human
studies [43. 48] The peak blood EGCG concentration was 0.15 umol-L ™1 after 2 cups of
green tea ingestion [47]. Third, EGCG is quickly degraded or metabolized by enzymes in the
liver and other tissues. Fourth, EGCG has a low level of target specificity to cancer cells or
tumors. Hence, there is a critical need to overcome those problems. Many studies have
demonstrated that nanoparticles can increase EGCG's stability, bioavailability and target
specificity to cancer cells, and enhance its anti-cancer activities [43. 48] (Table 1). From our
published articles, EGCG's stability in liposomes and NLCs was significantly

increased [39. 44,491 Nanoparticles can also protect EGCG from premature degradation [391.
EGCG loaded in nanoparticles exhibited a sustained release manner, which lowers treatment
frequency, doses and side effects. Moreover, incorporating target ligands on the surface of
EGCG nanoparticles can enhance targeted delivery of EGCG to cancer cells 591, Sanna V et
al. incorporated target ligands on the surface of EGCG nanoparticles, which enable the
targeted delivery of EGCG to prostate cancer cells expressing the prostate-specific
membrane antigen (PSMA) 31, One study used EGCG derivatives to make micellar
nanocomplexes, which carriered and delivered herceptin to breast cancer cells. They found
that these nanocomplexes effectively lowered cancer cell viability in vitro and inhibited
tumor growth 7 vivo 152,

Hence, nanoparticles can increase EGCG stability and bioavailability, enhance its sustained
release and targeted delivery of EGCG to cancer cells, which may open a new door for
cancer prevention and treatment.

Curcumin is a hydrophobic polyphenol component abundant in the spice turmeric of ground
rhizome of the herb Curcuma longa®8-57]. Curcumin has a potential to inhibit cancer cell
proliferation, carcinogenesis, tumorigenic, and angiogenesis, hence it has been used for the
prevention and treatment of many chronic diseases, especially cancer [6: 58], However, a high
level of its physical and metabolic instability and a low level of aqueous solubility of free
curcumin limit its anti-cancer activities [59],

Many curcumin loaded nanoparticles have been developed to enhance its aqueous solubility,
stability, bioavailability, sustained release property, targeted delivery to cancer cells and anti-
cancer activities [5% (Table 2). Biocompatible and biodegradable liposomes, PLGA
nanoparticles, SLNs, NLCs and micelles have been used to carry and deliver curcumin to
cancer cells [66-81] Curcumin loaded nanoparticles demonstrated a sustained release
property and enhanced cellular bioavailability of curcumin, and further decreased cancer cell
viability in in vitro studies [69-61], Nano-curcumin compared to free curcumin decreased cell
viability to a fold change of 1.5 in PC3 prostate cancer cells [62] a fold change of 1.5-2.5 in
MCF-7 breast cancer cells [63] and a fold change of 1.2 in HepG2 hepatocellular carcinoma
cells [64]. In murine models, nanoparticles increased bioavailability, peak blood
concentrations and tumor distribution of curcumin, and suppressed tumor/ carcinoma growth
and angiogenesis. Nano-curcumin compared to free curcumin resulted in a 50% reduction in
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prostate tumor growth [6%] and a 42% reduction in pancreatic tumor volume [66]. Most of the
studies used passive rather than targeted delivery strategies to deliver curcumin to cancer
cells or tumors. Tumor development and progression depend on angiogenesis [671. Curcumin
nanoparticles can pass the leaky neovasculature and target to tumorigenic areas by the
enhanced permeability and retention effects [68-69]. Targeted delivery of curcumin to cancer
cells or tumors requires incorporation of target ligands on the surface of nanoparticles,
which consequently maximize the distribution and accumulation of curcumin in cancer cells
or tumors [9: 701,

Taken together, many studies have suggested that nanoparticles (liposomes, SLNs, NLCs
and PLGA nanoparticles) can improve characteristics of curcumin including solubility,
stability and bioavailability, and its anti-cancer activities, and might be a good strategy for
cancer prevention and treatment [18. 59, 71],

Quercetin (3,3",4’,5”-7-pentahydroxy flavone) is a polyphenolic compound found in onion,
apple, berries, tea and brassica vegetables, as well as many nuts, seeds, barks, flowers and
leaves [79]. The underlying mechanisms of quercetin as a potential natural anti-cancer agent
include apoptosis induction, suppression of proliferation and metastasis 81, Anti-
proliferative activities of quercetin have been demonstrated in breast (811, leukemia [82],
colon [83] squamous cell [84], endometrial [83], gastric [88] and non-small cell lung [87]
cancer cells. Despite its promising anti-cancer activities, the clinical application of quercetin
in cancer treatment is restricted due to its low level of aqueous solubility and tumor-targeting
specificity [471.

Many quercetin-loaded nanoparticles have been developed to increase the bioavailability and
biopotency of quercetin to improve its anti-cancer activities [95-991 (Table 3). The quercetin
loaded nanoliposomes enhanced the cytotoxic effects on C6 glioma cells and induced
necrotic death of those cells [88]. Rezaei-Sadabady er a/reported that liposomes significantly
improved aqueous solubility and bioavailability of quercetin [891. Its antioxidant capacity and
effectiveness for removing reactive oxygen species (ROS) was increased and the cellular
uptake by human MCF-7 breast cancer cells was enhanced when encapsulating quercetin in
a liposomal delivery system [99]. Nano-quercetin compared to free quercetin significantly
decreased the viability of A549 lung cancer cells /n vitro. Nano-quercetin and free quercetin
at 100 pmol-L~1 decreased the cell viability of A549 lung cancer cells by 60% and 100%,
respectively [98]. /n vivo anti-cancer efficacy of nanomicellar quercetin was evaluated in
human A549 lung tumor xenograft mice received 30 mg/kg body weight of free or
nanomicellar quercetin via oral gavage three times per week for three weeks [911. At the end
of this study, nanomicellar quercetin had more than 1.5-fold higher tumor growth inhibition
than free quercetin. Importantly, nanomicellar quercetin treatment did not result in weight
loss [91]. Chemically modified polymeric nanocapsules as quercetin carriers were described
and characterized for the passive and active targeting to cancer cells and tumors [92]. The
active targeting to HeLa cells or mice IGROV-1 tumor expressing folate receptors was
achieved by conjugating folic acid to PLGA utilizing PEG as a spacer in polymeric
nanocapsules [92]. Biocompatible quercetin encapsulated NLCs (Q-NLCs), which consist of
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natural lipid, vitamin E acetate, surfactant and free quercetin, were successfully synthesized
in our group by using a novel phase inversion-based process method [89]. The aqueous
solubility of quercetin was improved more than 1 000 times when using NLCs as carriers for
quercetin. Compared to free quercetin and void NLCs, Q-NLCs significantly enhanced
cytotoxicity and apoptosis of MCF-7 and MDA-MB-231 breast cancer cells, and increased
cellular uptake of quercetin by those cells. Importantly, void NLCs and phosphate buffered
saline treatments showed similar low cytotoxicity to those cells [89],

In summary, nanotechnology may overcome many characteristic limitations of quercetin and
enhance its anti-cancer activities.

Resveratrol (3,5,4’-trinydroxy- trans-stilbene) is a natural polyphenolic compound produced
by the enzyme stilbene synthase in response to environmental stress like sunlight, heavy
metals, fungal infection, injuries or UV irradiation [93], and acts as a natural inhibitor of cell
proliferation [94]. Resveratrol is abundant in grapes, red wine, raspberries, mulberries,
blueberries and knotweed. Resveratrol has two isomeric forms: ¢/s- and trans-resveratrol,
which can convert to each other by yeast during fermentation or UV irradiation. One gram
of fresh grape skin contains about 50 to 100 pg of #rans-resveratrol, which contributes to
high resveratrol concentrations in red wine and grape juice [9].

Many /n vitro and animal studies have demonstrated that resveratrol has anti-cancer
activities [96-97] However, the evidence is inconclusive regarding the effectiveness for cancer
prevention or treatment in human studies. The major problems are its low level of
bioavailability, aqueous solubility and target specificity to cancer cells. In order to overcome
those limitations and to enhance anti-cancer activities, scientists have developed many
biocompatible and biodegradable nanoparticles including liposomes, albumin nanoparticles,
SLNSs, NLCs, chitosan nanoparticles and gelatin nanoparticles [98-991 (Table 4). Nano-
resveratrol compared to free resveratrol resulted in higher cellular uptake of resveratrol by
NCI-H460 lung cancer cells, which was associated with greater DNA damage and apoptotic
incidence 1901, The underlying mechanisms for nano-resveratrol included cancer cell
apoptosis include the down-regulation of Bcl-2 and NF-xB expression and the up-regulation
of Bax, p53, p21 and caspase-3 expression [1921. Other studies also reported that nano-
resveratrol activated apoptotic pathways in human lung A549/cDDP cancer cells [99],
ovarian carcinoma cells [1921 MCF-7 breast cancer cells [103] and PC-3, DU-145, and
LNCaP prostate cancer cells [194]. Nano-resveratrol compared to free resveratrol also
significantly decreased prostatic cancer incidence [98] and colon cancer growth [105] jn
animal studies.

Bu L et a/modified the surface of nanoparticles by two ligands, avidin (A) and biotin (B) to
make targeted nanoparticles to enhance target specificity of resveratrol-loaded chitosan
nanoparticles to hepatic carcinoma [106]. Targeted compared to non-targeted resveratrol
loaded nanoparticles had the higher liver targeting index and more potent cytotoxicity
against HepG2 cells.

Chin J Nat Med. Author manuscript; available in PMC 2017 June 28.
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Overall, biocompatible and biodegradable nanoparticles can enhance aqueous solubility,
stability and bioavailability of resveratrol and increase its anti-cancer activities.

Genistein (4,5,7-trihydroxyisoflavone, GEN) has been identified as the main isoflavone
found in soybeans enriched foods. Genistein intake is high in some Asian countries,
especially Japan and China [198]. Some studies have demonstrated that GEN has anti-cancer
activities [198-1101 However, only several papers investigated anti-cancer properties of GEN
nanoparticles (GEN-NP).

In Table 5, Mendes et a/[111] treated Ehrlich Ascites Tumor (EAT) bearing Swiss mice using
multicompartimental nanoparticles containing paclitaxel (PTX) and GEN, and found 0.2
mg/kg body weight/day of PTX resulted in 11% of tumor inhibition, but 12 mg/kg body
weight/day of GEN caused 44% of tumor inhibition. De Zampieri et a/[112] found that
GEN-nanoparticles resulted in a higher amount of GEN accumulation in deeper layers of the
skin and GEN-nanoparticles might be a promising nanocarrier system for skin delivery of
GEN and skin cancer prevention and treatment. Other studies have demonstrated that nano-
GEN demonstrated a sustained release manner, increased GEN uptake by cancer cells and
enhanced anti-cancer activities of GEN in different cancer cells [113. 1141,

Future perspectives

Although nanoparticles can enhance anti-cancer activities of phytochemicals reported in
many /n vitroand in vivo studies, there are still some concerns regarding their cost, safety,
side-effects and long-term toxicity. Hence, a new subdiscipline of nanotechnology called
nanotoxicology has emerged [18. 115-116] Even though the oral administration route is
preferred [18] most nanoencapsulated phytochemicals, especially tumor-targeting
nanoparticles, are delivered to animals mainly by intravenous, subcutaneous, intraperitoneal
administration. Due to gastrointestinal digestion and degradation, developing nano-delivery
systems for the oral administration of phytochemicals remains challenging [115]. Improving
cancer cell- or tumor-targeting efficiency and specificity of phytochemical nanoparticles is a
promising and emerging research area, because they can increase anti-cancer efficacy and
effectiveness of phytochemicals, and lower their toxicity and side effects to normal cells and
tissues. After finishing cell and animal studies, prospective clinical studies are needed to
evaluate their anti-cancer activities and measure toxicity and side effects in humans[14: 1171,
Furthermore, there is an urgent need to finalize occupational and environmental safety
guidelines for synthesizing and using nanoparticles by the government [1181,

Conclusions

In conclusion, liposomes, nanoemulsions, micelles, SLNs, NLCs and PLGA nanoparticles
are commonly used biocompatible and biodegradable nanoparticles and used as
phytochemical carriers. Nanotechnology has a great potential for improving solubility,
stability, bioavailability and anti-cancer activities of EGCG, curcumin, quercetin, resveratrol
and genistein. More studies are required to optimize formulations of nanoparticles for

Chin J Nat Med. Author manuscript; available in PMC 2017 June 28.
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enhancing their anti-cancer effectiveness and efficacy and tumor-targeting specificity, and
lowering their cost, side-effects, and toxicity.
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Fig. 1.
Schematic structure of commonly used biocompatible and biodegradable nanoparticles. A,
Liposome; B, Emulsion; C, SLN; D, Micelle; E, Polymeric micelle
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