Skip to main content
Log in

Controlled WISP-1 shRNA Delivery Using Thermosensitive Biodegradable Hydrogel in the Treatment of Osteoarthritis

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper presents a new method of delivering shRNA with biodegradable, thermosensitive PLGA-PEG-PLGA hydrogels for gene treatment of osteoarthritis (OA). OA is a chronic debilitating disease. Without the proper treatment and prognosis, it may result in the loss of joint function in aged people. Currently, gene therapy targeted on WISP-1 has emerged as an alternative method for OA treatment. In order to constantly release shRNA at 37.0 °C, we synthetized the hydrogels via ring-opening copolymerization of lactide (LA) and glycolide (GA) using Polyethylene glycol (PEG Mn = 1000) and stannous octoate (Sn(Oct)2, 95%) as the macroinitiator and catalyst. First, the PLGA-PEG-PLGA copolymer was mixed with WISP-1shRNA and PEI-Lys in distilled water at 4.0 °C. Then, the WISP-1shRNA/PEI-Lys loaded hydrogel was formed after incubation of the mixed solution at 37.0 °C. During tests, the plasmid was released from this hydrogel complex constantly, and enhanced the transfection efficiency of WISP-1shRNA. In addition, silencing WISP-1 results to lower expression of MMP-3 and ADAMTS, and the accumulation of HBP1 in synoviocytes. Therefore, the hydrogel containing WISP-1shRNA is demonstrated an efficient way for the treatment of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldring M B, Goldring S R. Osteoarthritis. Journal of Cellular Physiology, 2007, 213, 626–634.

    Article  Google Scholar 

  2. Wieland H A, Michaelis M, Kirschbaum B J, Rudolphi K A. Osteoarthritis - an untreatable disease? Nature Reviews Drug Discovery, 2005, 4, 331–344.

    Article  Google Scholar 

  3. Vavken P, Dorotka R. Burden of musculoskeletal disease and its determination by urbanicity, socioeconomic status, age, and sex: Results from 14,507 subjects. Arthritis Care & Research, 2011, 63, 1558–1564.

    Article  Google Scholar 

  4. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. European Journal of Pain, 2006, 10, 287–333.

    Article  Google Scholar 

  5. Loza E, Abasolo L, Jover J A, Carmona L. Burden of disease across chronic diseases: A health survey that measured prevalence, function, and quality of life. The Journal of Rheumatology, 2008, 35, 159–165.

    Google Scholar 

  6. Conaghan P G, Kloppenburg M, Schett G, Bijlsma J W. Osteoarthritis research priorities: a report from a EULAR ad hoc expert committee. Annals of the Rheumatic Diseases, 2014, 73, 1442–1445.

    Article  Google Scholar 

  7. Loza E, Lopez-Gomez J M, Abasolo L, Maese J, Carmona L, Batlle-Gualda E. Economic burden of knee and hip osteoarthritis in Spain. Arthritis and Rheumatism, 2009, 61, 158–165.

    Article  Google Scholar 

  8. Jevsevar D S. Treatment of osteoarthritis of the knee: evidence-based guideline, 2nd edition. Journal of the American Academy of Orthopaedic Surgeons, 2013, 21, 571–576.

    Google Scholar 

  9. Fernandes L, Hagen K B, Bijlsma J W J, Andreassen O, Christensen P, Conaghan P G, Doherty M, Geenen R, Hammond A, Kjeken I, Lohmander L S, Lund H, Mallen C D, Nava T, Oliver S, Pavelka K, Pitsillidou I, da Silva J A, de la Torre J, Zanoli G, Vliet Vlieland T P M. EULAR recommendations for the non-pharmacological core management of hip and knee osteoarthritis. Annals of the Rheumatic Diseases, 2013, 72, 1125–1135.

    Article  Google Scholar 

  10. Bijlsma J W, Berenbaum F, Lafeber F P. Osteoarthritis: An update with relevance for clinical practice. Lancet, 2011, 377, 2115–2126.

    Article  Google Scholar 

  11. Smith E, Hoy D, Cross M, Merriman T R, Vos T, Buchbinder R, Woolf A, March L. The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study. Annals of the Rheumatic Diseases, 2014, 73, 1323–1330.

    Article  Google Scholar 

  12. Spector T D, MacGregor A J. Risk factors for osteoarthritis: Genetics. Osteoarthritis and Cartilage, 2004, 12(Suppl A): S39–S44.

    Article  Google Scholar 

  13. Miller R E, Lu Y, Tortorella M D, Malfait A M. Genetically engineered mouse models reveal the importance of proteases as osteoarthritis drug targets. Current Rheumatology Reports, 2013, 15, 350.

    Article  Google Scholar 

  14. Li N G, Shi Z H, Tang Y P, Wang Z J, Song S L, Qian L H, Qian D W, Duan J A. New hope for the treatment of osteoarthritis through selective inhibition of MMP-13. Current Medicinal Chemistry, 2011, 18, 977–1001.

    Article  Google Scholar 

  15. Liu F, Kohlmeier S, Wang C Y. Wnt signaling and skeletal development. Cellular Signalling, 2008, 20, 999–1009.

    Article  Google Scholar 

  16. Studer D, Millan C, Ozturk E, Maniura-Weber K, Zenobi-Wong M. Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells. European Cells & Materials, 2012, 24, 118–135.

    Article  Google Scholar 

  17. Lories R J, Peeters J, Bakker A, Tylzanowski P, Derese I, Schrooten J, Thomas J T, Luyten F P. Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis & Rheumatism, 2007, 56, 4095–4103.

    Article  Google Scholar 

  18. Blom A B, Brockbank S M, van Lent P L, van Beuningen H M, Geurts J, Takahashi N, van der Kraan P M, van de Loo F A, Schreurs B W, Clements K, Newham P, van den Berg W B. Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: Prominent role of Wnt-induced signaling protein 1. Arthritis & Rheumatism, 2009, 60, 501–512.

    Article  Google Scholar 

  19. Hannon G J. RNA interference. Nature, 2002, 418, 244–251.

    Article  Google Scholar 

  20. Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391, 806–811.

    Article  Google Scholar 

  21. Mittal V. Improving the efficiency of RNA interference in mammals. Nature Reviews Genetics, 2004, 5, 355–365.

    Article  Google Scholar 

  22. van Osch G J. Osteoarthritis year in review 2014: Highlighting innovations in basic research and clinical applications in regenerative medicine. Osteoarthritis & Cartilage, 2014, 22, 2013–2016.

    Article  Google Scholar 

  23. Ma H, He C, Cheng Y, Li D, Gong Y, Liu J, Tian H, Chen X. PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment. Biomaterials, 2014, 35, 8723–8734.

    Article  Google Scholar 

  24. He C, Zhuang X, Tang Z, Tian H, Chen X. Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. Advanced Healthcare Materials, 2012, 1, 48–78.

    Article  Google Scholar 

  25. Tian H, Lin L, Jiao Z, Guo Z, Chen J, Gao S, Zhu X, Chen X. Polylysine-modified polyethylenimine inducing tumor apoptosis as an efficient gene carrier. Journal of Controlled Release, 2013, 172, 410–418.

    Article  Google Scholar 

  26. Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chemical Society Reviews, 2008, 37, 1473–1481.

    Article  Google Scholar 

  27. Jeong J H, Kim S W, Park T G. Biodegradable triblock copolymer of PLGA-PEG-PLGA enhances gene transfection efficiency. Pharmaceutical Research, 2004, 21, 50–54.

    Article  Google Scholar 

  28. Langer R, Tirrell D A. Designing materials for biology and medicine. Nature, 2004, 428, 487–492.

    Article  Google Scholar 

  29. Moffatt S, Cristiano R J. Uptake characteristics of NGR-coupled stealth PEI/pDNA nanoparticles loaded with PLGA-PEG-PLGA tri-block copolymer for targeted delivery to human monocyte-derived dendritic cells. International Journal of Pharmaceutics, 2006, 321, 143–154.

    Article  Google Scholar 

  30. Ta H T, Dass C R, Larson I, Choong P F, Dunstan D E. A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials, 2009, 30, 4815–4823.

    Article  Google Scholar 

  31. Li Z, Ning W, Wang J, Choi A, Lee P Y, Tyagi P, Huang L. Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharmaceutical Research, 2003, 20, 884–888.

    Article  Google Scholar 

  32. Lee P Y, Li Z, Huang L. Thermosensitive hydrogel as a Tgf-β1 gene delivery vehicle enhances diabetic wound healing. Pharmaceutical Research, 2003, 20, 1995–2000.

    Article  Google Scholar 

  33. Huang Y C, Chiang C Y, Li C H, Chang T C, Chiang C S, Chau L K, Huang K W, Wu C W, Wang S C, Lyu S R. Quantification of tumor necrosis factor-α and matrix metalloproteinases-3 in synovial fluid by a fiber-optic particle plasmon resonance sensor. Analyst, 2013, 138, 4599–4606.

    Article  Google Scholar 

  34. Wang H S, Kuo P Y, Yang C C, Lyu S R. Matrix metalloprotease-3 expression in the medial plica and pannus-like tissue in knees from patients with medial compartment osteoarthritis. Histopathology, 2011, 58, 593–600.

    Article  Google Scholar 

  35. Bondeson J, Blom A B, Wainwright S, Hughes C, Caterson B, van den Berg W B. The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis & Rheumatism, 2010, 62, 647–657.

    Article  Google Scholar 

  36. Wang Z, Luo J, Iwamoto S, Chen Q. Matrilin-2 is proteolytically cleaved by ADAMTS-4 and ADAMTS-5. Molecules (Basel, Switzerland), 2014, 19, 8472–8487.

    Article  Google Scholar 

  37. Durham T B, Klimkowski V J, Rito C J, Marimuthu J, Toth J L, Liu C, Durbin J D, Stout S L, Adams L, Swearingen C, Lin C, Chambers M G, Thirunavukkarasu K, Wiley M R. Identification of potent and selective hydantoin inhibitors of Aggrecanase-1 and Aggrecanase-2 that are efficacious in both chemical and surgical models of osteoarthritis. Journal of Medicinal Chemistry, 2014, 57, 10476–10485.

    Article  Google Scholar 

  38. Majumdar M K, Askew R, Schelling S, Stedman N, Blanchet T, Hopkins B, Morris E A, Glasson S S. Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis. Arthritis & Rheumatism, 2007, 56, 3670–3674.

    Article  Google Scholar 

  39. Blom A B, van Lent P L, van der Kraan P M, van den Berg W B. To seek shelter from the WNT in osteoarthritis? WNT-signaling as a target for osteoarthritis therapy. Current Drug Targets, 2010, 11, 620–629.

    Article  Google Scholar 

  40. Nakamura Y, Nawata M, Wakitani S. Expression profiles and functional analyses of Wnt-related genes in human joint disorders. The American Journal of Pathology, 2005, 167, 97–105.

    Article  Google Scholar 

  41. Alcaraz M J, Megias J, Garcia-Arnandis I, Clerigues V, Guillen M I. New molecular targets for the treatment of osteoarthritis. Biochemical Pharmacology, 2010, 80, 13–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Jianguo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yubao, G., Hecheng, M. & Jianguo, L. Controlled WISP-1 shRNA Delivery Using Thermosensitive Biodegradable Hydrogel in the Treatment of Osteoarthritis. J Bionic Eng 12, 285–293 (2015). https://doi.org/10.1016/S1672-6529(14)60121-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60121-9

Keywords

Navigation