Skip to main content
Log in

Characterization of Leaf-Inspired Microfluidic Chips for Pumpless Fluid Transport

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Microfluidic networks are extensively used in miniaturized lab-on-a-chip systems. However, most of the existing microchannels are simply designed and the corresponding microfluidic systems commonly require external pumps to achieve effective fluid transport. Here we employed microfabrication techniques to replicate naturally-optimized leaf venations into synthetic hydrogels for the fabrication of pumpless microfluidic chips. The unique properties of leaf-inspired microfluidic network in convectively transporting fluid were characterized at different inclination angles. Flow velocity inside these microfluidic networks was quantitatively measured with Particle Image Velocimetry (PIV). Mass diffusion from biomimetic microfluidic network to surrounding bulk hydrogels was investigated. The results demonstrate that the leaf-inspired microfluidic network can not only effectively transport fluid without the use of external pumps, but also facilitate rapid mass diffusion within bulk hydrogel chips. These leaf-inspired microfluidic networks could be potentially used to engineer complex pumpless organ- on-a-chip systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang L, Chung B G, Langer R, Khademhosseini A. Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discovery Today, 2008, 13, 1–13.

    Article  Google Scholar 

  2. Kenis P J A, Ismagilov R F, Whitesides G M. Microfabrication inside capillaries using multiphase laminar flow patterning. Science, 1999, 285, 83–85.

    Article  Google Scholar 

  3. Wu W, Hansen C J, Aragón A M, Geubelle P H, White S R, Lewis J A. Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter, 2010, 6, 739.

    Article  Google Scholar 

  4. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam M R, Weigl B H. Microfluidic diagnostic technologies for global public health. Nature, 2006, 442, 412–418.

    Article  Google Scholar 

  5. Woias P. Micropumps—past, progress and future prospects. Sensors and Actuators B: Chemical, 2005, 105, 28–38.

    Article  Google Scholar 

  6. Kim T, Cho Y H. A pumpless cell culture chip with the constant medium perfusion-rate maintained by balanced droplet dispensing. Lab On A Chip, 2011, 11, 1825–1830.

    Article  Google Scholar 

  7. Lynn N S, Dandy D S. Passive microfluidic pumping using coupled capillary/evaporation effects. Lab On A Chip, 2009, 9, 3422–3429.

    Article  Google Scholar 

  8. Osborn J L, Lutz B, Fu E, Kauffman P, Stevens D Y, Yager P. Microfluidics without pumps: Reinventing the T-sensor and H-filter in paper networks. Lab On A Chip, 2010, 10, 2659–2665.

    Article  Google Scholar 

  9. Zimmermann M, Schmid H, Hunziker P, Delamarche E. Capillary pumps for autonomous capillary systems. Lab On A Chip, 2007, 7, 119–125.

    Article  Google Scholar 

  10. Bischel L L, Young E W, Mader B R, Beebe D J. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials, 2013, 34, 1471–1477.

    Article  Google Scholar 

  11. Khnouf R, Beebe D J, Fan Z H. Cell-free protein expression in a microchannel array with passive pumping. Lab On A Chip, 2009, 9, 56–61.

    Article  Google Scholar 

  12. Resto P J, Berthier E, Beebe D J, Williams J C. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices. Lab On A Chip, 2012, 12, 2221–2228.

    Article  Google Scholar 

  13. Walker G, Beebe D J. A passive pumping method for mi-crofluidic devices. Lab On A Chip, 2002, 2, 131–134.

    Article  Google Scholar 

  14. Du Y, Shim J, Vidula M, Hancock M J, Lo E, Chung B G, Borenstein J T, Khabiry M, Cropek D M, Khademhosseini A. Rapid generation of spatially and temporally controllable long-range concentration gradients in a microfluidic device. Lab On A Chip, 2009, 9, 761–767.

    Article  Google Scholar 

  15. He J, Du Y, Villa-Uribe J L, Hwang C, Li D, Khadem-hosseini A. Rapid generation of biologically relevant hydrogels containing long-range chemical gradients. Advanced Functional Materials, 2010, 20, 131–137.

    Article  Google Scholar 

  16. Huh D, Matthews B D, Mammoto A, Montoya-Zavala M, Hsin H Y, Ingber D E. Reconstituting organ-level lung functions on a chip. Science, 2010, 328, 1662–1668.

    Article  Google Scholar 

  17. Sung J H, Esch M B, Prot J M, Long C J, Smith A, Hickman J J, Shuler M L. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab On A Chip, 2013, 13, 1201–1212.

    Article  Google Scholar 

  18. Kim S, Lee H, Chung M, Jeon N L. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab On A Chip, 2013, 13, 1489–1500.

    Article  Google Scholar 

  19. Wu W, Hansen C J, Aragón A M, Geubelle P H, Whitebd S R, Lewis J A. Direct-write assembly of biomimetic microvas-cular networks for efficient fluid. Soft Matter, 2010, 6, 739–742.

    Article  Google Scholar 

  20. He J, Mao M, Liu Y, Shao J, Jin Z, Li D. Fabrication of nature-inspired microfluidic network for perfusable tissue constructs. Advanced Healthcare Materials, 2013, 2, 1108–1113.

    Article  Google Scholar 

  21. Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp J M, Khademhosseini A. A cell-laden microfluidic hydrogel. Lab On A Chip, 2007, 7, 756–762.

    Article  Google Scholar 

  22. Noblin X, Mahadevan L, Coomaraswamy I A, Weitz D A, Holbrook N M, Zwieniecki M A. Optimal vein density in artificial and real leaves. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9140–9144.

    Article  Google Scholar 

  23. Hwang C M, Sim W Y, Lee S H, Foudeh A M, Bae H, Lee S H, Khademhosseini A. Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method. Biofabrication, 2010, 2, 045001.

    Article  Google Scholar 

  24. Baker B M, Trappmann B, Stapleton S C, Toro E, Chen C S. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab On A Chip, 2013, 13, 3246–3252.

    Article  Google Scholar 

  25. Chen H, Cornwell J, Zhang H, Lim T, Resurreccion R, Port T, Rosengarten G, Nordon R E. Cardiac-like flow generator for long-term imaging of endothelial cell responses to circulatory pulsatile flow at microscale. Lab On A Chip, 2013, 13, 2999–3007.

    Article  Google Scholar 

  26. Hsu Y H, Moya M L, Hughes C C, George S C, Lee A P. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab On A Chip, 2013, 13, 2990–2998.

    Article  Google Scholar 

  27. Mu X, Zheng W, Xiao L, Zhang W, Jiang X. Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab On A Chip, 2013, 13, 1612–1618.

    Article  Google Scholar 

  28. Moya M L, Hsu Y H, Lee A P, Hughes C C, George S C. In vitro perfused human capillary networks. Tissue Engineering Part C: Methods, 2013, 19, 730–737.

    Article  Google Scholar 

  29. Schimek K, Busek M, Brincker S, Groth B, Hoffmann S, Lauster R, Lindner G, Lorenz A, Menzel U, Sonntag F, Walles H, Marx U, Horland R. Integrating biological vas-culature into a multi-organ-chip microsystem. Lab On A Chip, 2013, 13, 3588–3598.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dichen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Mao, M., Li, D. et al. Characterization of Leaf-Inspired Microfluidic Chips for Pumpless Fluid Transport. J Bionic Eng 11, 109–114 (2014). https://doi.org/10.1016/S1672-6529(14)60025-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60025-1

Keywords

Navigation