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Abstract 

Photosystem I reduction by the soluble metalloproteins cytochrome c6 and plastocyanin, which are 

alternatively synthesized by some photosynthetic organisms depending on the relative availability of 

copper and iron, has been investigated in cyanobacteria, green algae and plants. The reaction mechanism 

is classified in three different types on the basis of the affinity of the membrane complex towards its 

electron donor protein. The role of electrostatic interactions in forming an intermediate transient complex, 

as well as the structural and functional similarities of cytochrome c6 and plastocyanin are analysed from an 

evolutionary point of view. The proposal made is that the heme protein was first “discovered” by nature, 

when iron was much more abundant on the Earth's surface, and replaced by plastocyanin when copper 

became available because of the oxidizing conditions of the new atmosphere. 
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1. Introduction 

Photosystem I (PSI) is a membrane-embedded protein complex that carries out the light energy-driven 

transfer of electrons from a soluble metalloprotein, located inside the thylakoid lumen, to another soluble 

protein in the outer side of the vesicle (that is, the chloroplast stroma in eukaryotic organisms) [1]. The 

donor molecule inside the thylakoids can be either the copper protein plastocyanin (Pc) or the heme 

protein cytochrome c6 (Cyt), whereas the acceptor molecule on the other side of the membrane can be 

either the iron–sulfur protein ferredoxin (Fd) or the flavin-containing protein flavodoxin (Fld) [2]. 

Some organisms contain the genetic information to make only one of the two alternative proteins (Pc or 

Cyt, Fd or Fld), but some others are able to produce both of them. In the latter organisms, whichever is 

the protein synthesized depends on the bioavailability of the constituent metal elements. In the particular 

case of Pc and Cyt, there are some cyanobacteria (probably, the oldest ones) that only contain Cyt, 

some others are able to make Pc and Cyt, as do green algae as well, and plants just produce Pc [3 and 

4]. 

Highly interesting are the evolutionary aspects of the alternative role played by Pc and Cyt. A few years 

ago, we proposed that Cyt was used by the first oxygen-evolving photosynthetic organisms, when iron 

was much more available than copper because of the reducing character of the Earth's atmosphere [5]. 

In fact, the solubility of iron compounds is lower when the metal is in its oxidized state, whereas the 

solubility of copper substances is higher when the metal is in its oxidized form. As the atmospheric 

molecular oxygen concentration was rising because of the photosynthetic activity, the relative 

bioavailabilities of copper and iron were going up and down, respectively, and Cyt was being replaced 

with Pc. The reason why some cyanobacteria and green algae still keep their capacity to synthesize 
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both Pc and Cyt could be related to their metabolic adaptability to changing environments in seas, lakes 

and rivers. 

If we take into account that PSI evolved from the only photosystem present in anoxygenic green sulfur 

bacteria, whose electron donor is a c-type cytochrome [6 and 7], it makes sense that such a heme 

protein adapted itself as to be recognized by the emerging PSI. The other photosystem of oxygenic 

organisms (PSII)—which possesses a heme protein called cytochrome c549, associated to its internal 

membrane side only in cyanobacteria but not in plants [8 and 9]—should have followed a similar 

evolutionary process from non-oxygenic purple bacteria, whose electron donor is a mono- or tetra-heme 

c-type cytochrome [6 and 7]. It thus seems that the chlorophyll-containing membrane complex—along 

with its electron-donating cytochrome—was first evolving from photosynthetic bacteria to cyanobacteria 

following a divergent pathway up to yield the two photosystems, PSI and PSII. In the course of the 

further transition from cyanobacteria to green algae and plants, Cyt would be replaced by Pc as electron 

donor to PSI and cytochrome c549 would lose its primitive role up to be totally lacking in eukaryotic PSII, 

in which it is replaced by a 23-kDa protein. 

2. Structural similarities between cytochrome c6 and plastocyanin 

Cyt is a c-type cytochrome, with a heme group as redox center and a tertiary structure made by three to 

four alpha-helices [10], whereas Pc is a type I blue copper protein, which consists of several beta-

strands and a small alpha-helix (see [11], for a review). The geometry of the metal coordination sphere 

is octaedric for the iron and tetraedric for the copper, and the amino acids acting as metal ligands are 

histidine and methionine in Cyt [10], and two histidines, one cysteine and one methionine in Pc [11]. An 

obvious question arises: how can two proteins so much different play the same physiological role? 

When comparing the physicochemical features of these two proteins, one realizes that they do share a 

number of crucial parameters: the redox potential value is almost identical (ca. 350 mV, at pH 7), the 

molecular mass is quite similar (8–10 kDa), and the isoelectric point (pI) may vary among the different 

organisms, but it is practically the same within each organism (Table 1). 

Even more interesting is the comparative analysis of the functional areas of the two proteins. Cyt 

contains a series of hydrophobic residues surrounding the solvent accessible part of the heme group, 

and Pc exhibits a similar hydrophobic patch close to the surface histidine coordinating the copper atom. 

In addition, Pc and Cyt possess an electrostatically charged area—similarly placed at the surface with 

respect to their respective hydrophobic region—formed by acid or basic residues according to their 

isoelectric point (Fig. 1). It has been proposed that the electrostatic patch (or site 2) is responsible for 

complex formation with PSI, and the hydrophobic area is making the close contact with PSI to establish 

the electron transfer pathway to the oxidized chlorophyll molecule P700
+
 (see [12], for a recent review). 

A highly interesting finding showing the close similarity between Pc and Cyt has recently been achieved 

with the Anabaena proteins [13]. It has been observed that the only arginyl residue in Pc and Cyt, which 

is similarly located at the molecular surface between sites 1 and 2 (Fig. 2), makes the two proteins 

unable to reduce PSI when it is substituted by glutamate. Furthermore, the replacement of just one 

aspartate residue—which is similarly located at the edge of site 2 in Pc and Cyt—with a positively 

charged amino acid enhances the PSI reduction rate with the two proteins [13]. 

3. Mechanisms of photosystem I reduction 
The structural similarities between Pc and Cyt can thus explain their ability to interact with PSI, but the 

differences in their electrostatic area can make them exhibit different affinity towards PSI. This is a key 

point to interpret the reaction mechanism followed by the two proteins to transfer electrons to the 



oxidized photosystem, according to a process that should involve formation of a transient complex 

between the two redox partners, rearrangement of the redox centers inside the complex to 

accommodate themselves in the right position, and electron transfer itself [14]. Assuming that the 

reaction is triggered by light, the state of PSI when it is excited by the photon will determine the further 

course of the reaction. Obviously, the different affinity between the donor protein and PSI in the dark will 

determine that the photosystem is either alone or forming a transient complex—which can be or cannot 

be properly oriented—when the photoreaction starts. 

Fig. 3 displays the three possible routes that would thus lead from the separate reactants to the final 

products. Which one is the route followed will depend on the relative values of the equilibrium constants 

for complex formation (KA) and complex rearrangement (KR) before light excitation, that is, on the 

predominant state of PSI in the dark. According to this scheme, we have classified the reaction 

mechanism of PSI reduction by Pc and Cyt in three types, as follows: type I, when KA is relatively low; 

type II, when KA is high but KR is low; and type III, when both KA and KR are high. The rate constant for 

the overall reaction will thus be determined not only by the relative values of these two equilibrium 

constants in the dark (KA and KR) and in the light (KA′ and KR′) but also by the rate of electron transfer 

(ket) after PSI photooxidation. Even though such a theoretical model comprises all possible equilibria, 

the kinetic analyses of experimental data can easily be performed according to a much simpler model, 

as described by Hervás et al. [14]. 

4. Electrostatic and hydrophobic interactions 
The affinity of Pc and Cyt towards PSI is a key parameter in the description of the whole process, as 

likewise is the flexibility of the two partners inside the transient complex. In this context, it is easy to 

understand that the surface electrostatic potential distribution and the hydrophobic areas are as 

important as the steric factors to allow for the right accommodation of the reactants like two pieces of a 

puzzle. In fact, the nature and intensity of long-range interactions between PSI and its donor protein will 

govern the formation of the transient complex, whereas the short-range forces along with the steric 

adjustments will mainly control the complex rearrangement and electron transfer. 

In the last years, we have investigated the reaction mechanism of PSI photoreduction in a number of 

evolutionarily distant organisms, namely cyanobacteria, green algae and plants [13, 14, 15, 16, 17 and 

18]. Table 1 summarizes the isoelectric point of Pc and Cyt in every organism. The electrostatic charge 

of these two proteins—and that of PSI as well—actually makes the reactants interactions repulsive 

(Synechocystis and Phormidium) [16 and 17], neutral (Prochlorothrix Pc) [18] or attractive (others) [13, 

14 and 15]. In the particular case of Synechocystis and Phormidium, the repulsive nature of the 

interactions between PSI and its donor protein explains why PSI reduction follows a type I mechanism. 

The Prochlorothrix Pc, in its turn, reacts according to a type II mechanism, with formation of an 

intermediate complex that is stabilized by hydrophobic forces. In other organisms, it is possible to 

observe the existence of an electrostatic intermediate complex, independently of the fact that the further 

rearrangement could be (type III) or not be (type II) kinetically detected. 

The long evolution of oxygenic photosynthetic organisms—the first cyanobacteria appeared on the 

Earth's surface more than three billion years ago—would thus lead the reaction mechanism from the 

type I to type III, through type II, in order to reach the maximum efficiency of PSI reduction. However, 

such a unidirectional process should have followed some discontinuous ways because of the transition 

from Cyt to Pc. It is indeed possible that the mechanism of PSI reduction was first being adapted so as 

to evolve from type I to type III with Cyt, but the further appearance of Pc required a second adaptation 

of PSI to its new electron donor protein. This is thus an excellent case study of an evolutionary process 



that is both convergent (two different proteins adapting each other to play the same physiological role 

within each organism) and parallel (two different proteins evolving similarly from one to another 

organism) [2]. 

5. Breaking-off of the intermediate complex 
The redox reaction should not be considered to be complete after electron transfer but after dissociation 

of the oxidized donor protein from its binding site in PSI, thereby leaving it free for another reduced 

molecule to bind. In the case of type I mechanism, the repulsive interactions between PSI and its donor 

protein impede the formation of any stable transient complex—the reaction rather proceeds according to 

an oriented collision between the soluble donor protein and the membrane embedded PSI; it is not so 

difficult to envisage that a new reaction could easily start when a second molecule approximates to PSI. 

Even in the case of the type II mechanism involving hydrophobic recognition between the partners, the 

rather low intensity of such interactions could readily destabilize the complex. 

In the case of type II and III mechanisms with electrostatically stabilized transient complexes, the 

dissociation of partners can be favoured by the shift of a negative charge from the metal atom to the 

chlorophyll molecule and the subsequent electron density displacement in the interaction area, thereby 

inducing small but crucial conformational changes that could trigger complex breaking-off. In this 

context, it is worth noting that the solution structure of Monoraphidium Cyt reveals interesting differences 

between its oxidized and reduced states (Fig. 4). In fact, one of the two propionates of the heme group, 

as well as the side chains of some amino acids—in particular, histidine at position 30—are significantly 

displaced depending on the redox state of the heme iron [19]. Similar structural changes between the 

reduced and oxidized states of Pc have been likewise observed [20 and 21]. 

6. Concluding remarks 
In summary, we can say that PSI reduction by Pc and Cyt has experienced a long evolutionary process 

in order to not only optimise the kinetic efficiency of the overall reaction, but also to promote the 

transition from Cyt to Pc. At the beginning, the molecular recognition and complex formation were not 

well established, but the subsequent evolution made the attractive electrostatic interactions the factors 

governing the redox reaction up to optimise the electron transfer within a rather stable transient 

complex. Finally, local structural changes in the interaction area between the two partners were 

designed to reach the last stage—that is, the complex dissociation after electron transfer—and start a 

new redox cycle. 
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Table 

  

Table 1. Variations in the isoelectric point (pl) and in the nature of the interactions with 

photosystem I of cytochrome c6 (left) and plastocyanin (right) isolated from differently 

evolved organisms 
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Fig. 1. Surface electrostatic potential distribution of cytochrome c6 and plastocyanin from different 
organisms. The two molecules are oriented with their sites 1 and 2 at the top and in front, respectively. 
Positively and negatively charged areas are in blue and red, respectively. Calculations were made at 40 
mM ionic strength and pH 7.  



 

 
 
Fig. 2. The only arginyl residue in cytochrome c6 (left) and plastocyanin (right) from Anabaena is similarly 
located between their respective sites 1 and 2. The orientation of the two molecules is the same as in Fig. 
1. The arginyl residue is in green.  

 

 

 
 
Fig. 3. Reaction mechanisms of photosystem I (PSI) reduction by its electron donor protein (Prot), namely 
cytochrome c6 or plastocyanin. The reaction mechanism is classified in three types depending on the route 
followed by the reactants. See the text for explanation. 
 

 



 
 
Fig. 4. Stereoview showing the main conformational changes between the oxidized (red) and reduced 
(blue) forms of Monoraphidium cytochrome c6.  

 


