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Abstract

Achieving high spectral resolution is an important prerequisite for the

application of solid-state NMR to biological molecules. Higher spectral resolution

allows to resolve a larger number of resonances and leads to higher sensitivity.

Among other things, heteronuclear spin decoupling is one of the important factors

which determine the resolution of a spectrum. The process of heteronuclear spin

decoupling under magic-angle sample spinning is analyzed in detail. Continuous-

wave rf irradiation leads only in a zeroth-order approximation to a full decoupling of

heteronuclear spin systems in solids under magic-angle spinning (MAS). In a higher-

order approximation, a cross-term between the dipolar-coupling tensor and the

chemical-shielding tensor is reintroduced, providing a scaled coupling term between

the heteronuclear spins. In strongly coupled spin systems this second-order

recoupling term is partially averaged out by the proton spin-diffusion process, which

leads to exchange-type narrowing of the line by proton spin flips. This process can be

described by a spin-diffusion type superoperator, allowing the efficient simulation of

strongly-coupled spin systems under heteronuclear spin decoupling. Low-power

continuous-wave decoupling at fast MAS frequencies offers an alternative to high-

power irradiation by reversing the order of the averaging processes. At fast MAS

frequencies low-power continuous-wave decoupling leads to significantly narrower

lines than high-power continuous-wave decoupling while at the same time reducing

the power dissipated in the sample by several orders of magnitude. The best

decoupling is achieved by multiple-pulse sequences at high rf fields and under fast

MAS. Two such sequences, two-pulse phase-modulated decoupling (TPPM) and X-

inverse-X decoupling (XiX), are discussed and their properties analyzed and

compared.



2



3

1 Introduction

1.1 General Motivation

High spectral resolution is an essential prerequisite for the application of solid-

state nuclear magnetic resonance (NMR) spectroscopy to larger biological systems.

Unambiguous assignment of resonances is only possible if the resonances can be

distinguished in a multi-dimensional correlation spectrum. Based on the assignment,

localized information about distances or torsion angles can then be obtained which

form the basis for any structural constraints obtained from solid-state NMR. Reducing

the linewidth allows not only a larger number of resonance to be resolved but, at the

same time, leads to a higher signal-to-noise ratio since the integral of the line remains

constant.

In NMR spectroscopy, one of the most important tools for obtaining narrow

lines and for simplifying the spectrum is heteronuclear spin decoupling (1).

Originally, continuous-wave (cw) decoupling was used in liquid-state NMR, but it

was soon realized that resonance offsets could lead to incomplete decoupling and

residual line splittings (2),(3). To reduce this problem, noise decoupling (4) was

introduced where a pseudo-random phase inversion was applied to the radio-

frequency (rf) irradiation. Today, one usually decouples the isotropic heteronuclear J-

coupling in liquid-state NMR by applying a multiple-pulse sequence such as MLEV

(5), WALTZ (6),(7), DIPSI (8), or GARP (9) or by using adiabatic inversion pulses like

WURST (10) or SWIRL (11). Since the J-coupling constants are often quite small, e.g.,

less than 200 Hz in organic solids, one can use relatively low rf-field strengths to

obtain broadband heteronuclear decoupling.

In solid-state NMR, the situation concerning heteronuclear spin decoupling is

more complicated. We do not only have to consider the isotropic heteronuclear J-

coupling but also the anisotropic heteronuclear dipolar coupling, which is in many

cases several orders of magnitude larger than the J-coupling. Under magic-angle

sample spinning (MAS) the anisotropic heteronuclear dipolar coupling becomes time
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dependent and leads to a sideband pattern as does the anisotropic chemical-shielding

tensor. If one now imposes an additional time dependence on the spin system due to

rf irradiation, one can get interference effects between the two time-dependent

processes if they are on the same time scale. These interference effects can manifest

themselves as undesired recoupling of the dipolar interaction (12),(13),(14),(15),(16)

which can lead to a significant broadening of the lines.

The situation becomes even more complicated in the presence of strong

homonuclear dipolar couplings. The homonuclear dipolar-coupling Hamiltonian

does not commute with itself at different points in time under MAS and also not with

the heteronuclear dipolar-coupling Hamiltonian. This property leads to an

incomplete averaging of the heteronuclear dipolar couplings by MAS. The

homonuclear dipolar-coupling Hamiltonian can also lead to a spin-diffusion type

magnetization-transfer process among the irradiated spins, which can also interfere

with the decoupling process. The term spin diffusion in the present context

characterizes a generalized polarization-transfer process between the I spins which is

propagated by flip-flop processes. The Hamiltonian for these flip-flop processes can

either be the normal static dipolar-coupling Hamiltonian or the first-order dipolar-

coupling average Hamiltonian under MAS. These differences between the liquid-state

and the solid-state NMR Hamiltonians explain why efficient heteronuclear spin

decoupling in solids is more demanding and difficult to achieve than in liquid-state

NMR.

For several decades until about 1995, high-power cw decoupling remained the

most common way to achieve heteronuclear spin decoupling in solid-state NMR

under MAS (17),(18),(19). The introduction of two-pulse phase-modulated decoupling

(TPPM) by Bennett et al. (20) initiated renewed interest in the understanding of the

decoupling process in rotating solids and started the development of more advanced

decoupling sequences.

If one could spin a solid powder sample containing only spin-1/2 nuclei

infinitely fast about the magic angle, one would basically expect to recover the high-

resolution spectrum obtained in liquid-state NMR. All anisotropic second-rank tensor
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interactions would be averaged out, and the decoupling problem would then be

reduced to decoupling the isotropic J interaction. To implement such an approach

would, however, require considerably higher MAS frequencies than are available

today (2001). Figure 1.1 shows 13C spectra of a CH group (Figure 1.1a, selectively

labeled 2-13C-alanine) and a CH2 group (Figure 1.1b, selectively labeled 2-13C-

glycine) at MAS spinning frequencies between 10 and 50 kHz obtained without

proton irradiation. At 50 kHz spinning frequency the linewidth of the CH group was

found to be about 250 Hz full width at half height (FWHH) while the minimum

linewidth reached in this sample using high-power TPPM decoupling was about

35 Hz FWHH. In the CH2 group the linewidth at 50 kHz MAS spinning frequency

was about 750 Hz while the minimum linewidth reached using TPPM decoupling

was 50 Hz. Figure 1.2 shows the measured line width (FWHH) plotted as a function

of the spinning frequency for the CH group (circles) and for the CH2 group (squares).

The solid lines in Figure 1.2 show the best two fits of the function to

Figure 1.1: 13C spectra of 2-13C-alanine (a) and 2-13C-glycine (b) at different MAS spinning
frequencies without proton irradiation.
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the measured data. The experimental linewidths follow quite well a dependence

as one would expect from theoretical considerations (see Chapter 4.1).

From the spectra shown in Figure 1.1 it can clearly be seen that with current

MAS technology spinning without rf irradiation is not sufficient to obtain dipolar-

decoupled carbon spectra in a powder sample of a typical organic solid. In order to

average out the residual dipolar couplings and the heteronuclear J-couplings, which

are invariable under MAS, rf irradiation is needed. Adding rf irradiation to MAS

generates complications due to possible interference effects between the physical

rotation of the sample and the rotation of the spins by the applied cw rf-field. The

most important interference effects in the context of decoupling are rotary-resonance

recoupling at with n=1,2 (12),(13),(14),(15) and the HORROR condition at

(16). The first leads to a recoupling of the heteronuclear dipolar coupling

while the latter leads to a recoupling of the homonuclear dipolar interaction. In

principle, there are also higher rotary-resonance conditions with but they are

usually weak. To avoid interference from these rotary-resonance conditions, it is
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Figure 1.2: Dependence of the full width at half height (FWHH) on the spinning frequency for
the spectra shown in Figure 1.1. The solid line shows the best fit of the function

to the measured values. For the CH group a=10811 Hz2, b=6.4 Hz, for the
CH2 group a=33002 Hz2, b=91.0 Hz.
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required that the decoupler field strength be significantly larger than two times the

spinning frequency (see Chapter 4.3).

Due to the various interference effects between the sample spinning and the

spin rotations by rf irradiation, it is difficult to imagine that efficient decoupling can

be achieved if the time dependencies of the two processes are on the same scale. It

seems, therefore, sensible to use rf-irradiation fields that either are considerably

higher or considerably lower than the MAS spinning frequency. The much older and

well-established approach is high-power decoupling using either cw irradiation or,

more recently, multiple-pulse sequences. Under this condition, the spin Hamiltonian

is first truncated by the rf irradiation and then on a longer time scale averaged by the

MAS rotation (Figure 1.3a). In recent years, however, the available MAS spinning

frequencies have increased quite substantially and have made the second approach

also viable. If the MAS frequency is considerably larger than the rf-field amplitude,

the Hamiltonian is first averaged by the MAS rotation and only this partially

averaged Hamiltonian is then averaged by the rf field (Figure 1.3b).

Figure 1.3: Sequential averaging of the Hamiltonian by space and spin rotations. In a) the
Hamiltonian is first averaged in spin space and then in real space by MAS while in b) the
Hamiltonian is first averaged by MAS and then in spin space. A prerequisite for such a
treatment is that the two averaging processes happen on different time scales.
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1.2 High-Power CW Decoupling

For a long time, high-power cw irradiation was the most common way to

achieve heteronuclear spin decoupling in solid-state NMR under MAS (17),(18),(19).

The spins are irradiated with a “strong” rf-field of typically 50-250 kHz for rigid

organic solids, and the decoupling quality improves with increasing field strength. In

this context, improved decoupling quality means narrower lines and higher line

intensity. Figure 1.4 shows, as a typical example, the 13C spectrum of the dipeptide L-

Val-L-Phe at an MAS frequency of = 28 kHz without proton decoupling (Fig. 1.4a)

and with high-power ( = 150 kHz) proton decoupling (Fig. 1.4b). It is immediately

obvious that the resolution of the spectrum is significantly improved by irradiating

the protons. Such an observation is typical for a “normal” organic solid which has a

strongly coupled proton network.

Despite the widespread use of cw decoupling under MAS in solid-state NMR,

the source of the residual linewidth and the decoupling process in general were not

well understood. There was quite a number of observations concerning the

dependence of the line width on various parameters but no general theory which

could explain all these observations. It was generally accepted that for efficient

Figure 1.4: 13C spectrum of a uniformly labeled dipeptide (L-Val-L-Phe) recorded without (a)
and (b) with proton decoupling at an MAS frequency of 28 kHz. The increased resolution in
the proton-decoupled spectrum is clearly visible.
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decoupling the field strength must be greater than the magnitude of both the

heteronuclear and the homonuclear dipolar interactions. In solids with strongly

coupled homonuclear spin systems the flip-flop fluctuations of the homonuclear spins

(spin diffusion) lead to an additional modulation of the residual heteronuclear dipolar

coupling which results in a narrowing of the observed line (21) due to an exchange-

type process between the components of the multiplet (22) if the proton spin-diffusion

rate constant is of the right order of magnitude. This line-narrowing process has also

been called “self-decoupling” due to the proton spin-diffusion process (23),(24),(25). It

has been shown experimentally that by applying the decoupling field off resonance

such that the effective field is inclined at an angle of 54.74° (magic angle) to the static

magnetic field, the homonuclear interactions are quenched. The reduced or vanishing

homonuclear dipolar interactions lead to a broadening of the decoupled

heteronuclear line (18). The residual linewidth for cw decoupling in solids under

MAS is usually found to decrease with increasing rf-field strength (26). It has also

been observed that the residual linewidth increases with increasing MAS frequency if

the rf-field strength is kept constant (27). Decoupling side bands can be observed at

the rf-irradiation frequency (28). A detailed discussion of the various contributions to

the line width of solid-state NMR spectra under high-power cw decoupling and MAS

is found in the literature (29).

However, the models presented so far can not explain the two experimental
15N spectra of [d9]-trimethyl-ammonium chloride shown in Figure 1.5. Without

proton decoupling (Fig 1.5a) the spectrum shows two sharp lines (FWHH ≈

50 Hz) with a splitting due to the J-coupling (1JNH ≈ 100 Hz). This spectrum was

measured at an spinning frequency of 30 kHz and at a proton resonance frequency of

600 MHz. Under cw decoupling with a field strength of = 100 kHz (Fig. 1.5 b) the

line broadens significantly and one finds two broad resonances with a splitting of

about 850 Hz. This unexpected experimental observation of a line broadening instead

a line narrowing under cw decoupling made it clear that a new model was needed to

understand the mechanism of heteronuclear spin decoupling under MAS in solids.

The different behavior of the two samples (Figs. 1.4 and 1.5) under high-power

cw decoupling can be understood within a model of decoupling which explicitly

∆1 2⁄

ν1
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includes the chemical-shielding tensor of the protons and the proton spin-diffusion

process (21),(30). This model is based on the coherent description of a two-spin

system which is coupled to the proton bath by an isotropic relaxation-type

superoperator. The system Hamiltonian of the two-spin system is first averaged by

the rf-field and then in a second step by the MAS rotation (Figure 1.3a). Such an

approach is justified if the MAS rotation is considerably (at least a factor of three)

slower than the rf-nutation frequency (the “rf-field strength”). The truncation of the

two-spin Hamiltonian by the rf field leads to a second-order cross term between the

chemical-shielding tensor of the protons and the heteronuclear dipolar coupling (30).

This term, mentioned in passing in Ref. (20), is in many cases the dominant

contribution to the residual line width of an isolated two-spin system under cw

decoupling. This conclusion was later confirmed in a paper by Zax (31) where the

possible mechanisms for the residual line broadening in cw decoupling were

discussed.

Such a second-order cross term cannot be averaged out by the MAS rotation

since the coupling of the two tensors leads to a sum of a zeroth-rank, a second-rank,

and a fourth-rank tensor. Only the second-rank tensor contribution is averaged out by

-3000-2000-10000100020003000

Figure 1.5: 15N spectrum of [d9]-trimethyl-ammonium chloride (a) without and (b) with
decoupling. In this sample we see a significant broadening of the resonances as a result of
proton decoupling.

δ [Hz]
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the MAS rotation. However, by using different spatial averaging techniques such as

dynamic-angle spinning (DAS) or double rotation (DOR) (32), (33), (34) it would be

possible to average out both the second-rank and the fourth-rank parts of the cross

term simultaneously, leaving only the isotropic (zeroth-rank tensor) part unchanged.

Second-order effects in the laboratory frame due to the truncation of the

Hamiltonian by the Zeeman field are well known in solid-state NMR (17),(18),(35).

The best known example is the second-order quadrupolar shift (36) but other

examples such as a shift originating from the dipolar coupling have been described

and observed experimentally (37),(38). There is also an isotropic second-order dipolar

shift in the rotating frame (39) which can be substantially larger than the second-order

dipolar shifts in the laboratory frame (37),(38) because the interaction is scaled by the

rf field and not by the Zeeman field. The second-order dipolar shift in the rotating

frame is very closely related to the second-order cross term of the dipolar coupling

and the chemical-shielding tensors. However, since the Hamiltonian describing the

second-order dipolar shift commutes with the S-spin subspace of the Hamiltonian, it

has no direct influence on the spectrum of the observed spin.

1.3 High-Power Multiple-Pulse Decoupling

The two-pulse phase-modulated (TPPM) decoupling sequence (20) was the

first multiple-pulse decoupling method for solid organic samples under MAS that

gave significant improvements in both line width and line intensity under a wide

range of experimental conditions. TPPM decoupling consists of two pulses each with

a flip angle of about 180° and a phase difference between the two pulses, , which is

on the order of 10° to 50°. It was shown that the significant reduction in the residual

line width comes from the fact that the second-order cross term between the chemical-

shielding tensor of the irradiated spins and the heteronuclear dipolar-coupling tensor

is reduced by TPPM decoupling (30),(40),(41). Experimentally, it was found that the

line width in TPPM decoupling is very sensitive to the precise setting of the two

parameters, the pulse length and the phase angle (21). They have to be optimized

ϕ
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empirically after any change in experimental parameters and depend on the rf-field

strength, MAS frequency, sample, spectrometer, and probe.

There are a number of variations and modifications of the TPPM decoupling

sequence. Frequency-modulated and phase-modulated decoupling (FMPM) (42)

combines the phase modulation with a frequency modulation leading to a circular

modulation of the rf irradiation. Only one of the two possible circular modulations

works as well as TPPM while the other one does not give any significant

improvement compared to cw decoupling. The small phase angle rapid cycling

(SPARC) sequences (43) and the small phase incremental alternation (SPINAL)

sequences (44) combine the TPPM scheme with a phase supercycle. They show

significant improvements in the offset behavior compared to TPPM in liquid-

crystalline samples. However, in rigid, powdered solids the SPARC and SPINAL

sequences do not perform much better than the original TPPM sequence. An

amplitude-modulated variation of TPPM called AM-TPPM (41) uses third averaging

by adding an amplitude modulated field to the cw component of the TPPM

irradiation. Again, this modification shows very little improvement compared to the

original TPPM sequence.

A different type of rotor-synchronized decoupling sequence, (45), is

based on a series of phase-shifted pulses and requires that the rf-field

amplitude be equal to six times the spinning frequency. The phase, , is shifted by 30°

between successive pulses. The sequence’s decoupling performance is comparable to

that obtained by TPPM decoupling, but the rotor synchronization and the

requirement of an rf-field amplitude of six times the spinning frequency make this

sequence less desirable at higher MAS frequencies.

Another type of rotor-synchronized decoupling sequence called X-inverse-X

(XiX) (46) consists of two pulses of equal length with a phase difference of 180°. The

decoupling performance depends only on the length of the pulse and not on the flip

angle of the pulse, i.e., not on the rf-field amplitude. Under many experimental

conditions, XiX decoupling leads to significant improvements in line intensity

compared to TPPM decoupling. In addition, the XiX decoupling sequence has only

C122
1–

2π( )ϕ
ϕ
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one adjustable parameter, namely the pulse length, and its optimum value is quite

well defined by the spinning frequency. Therefore, one only needs to perform a local

one-parameter optimization compared to a two-dimensional optimization (pulse

length and pulse phase) in the case of the TPPM sequence. In addition, the XiX

sequence is less sensitive to rf-field inhomogeneities than the TPPM decoupling

sequence.

A common characteristic of all these sequences is that the best decoupling is

typically achieved for the highest possible rf-field amplitude after optimization of all

the remaining parameters.

1.4 Low-Power Decoupling

Obviously, it is desirable to achieve the best possible decoupling with the

lowest possible rf-field amplitude. Irradiating a sample using high-power rf fields for

extended periods of time can lead to undesired heating of the sample especially if the

sample contains water. In addition, high rf fields put considerable strain on the

electronic components in the probe circuit and limit the acquisition time.

Over the past ten years the maximum obtainable MAS frequencies have

increased significantly. Today, commercially available 2.5 mm o.d. rotors allow

spinning frequencies up to 30 kHz routinely, and spinning frequencies up to 50 kHz

can be obtained safely using experimental 1.8 mm o.d. spinning systems (47). As

mentioned above, high MAS frequencies require, for high-power decoupling

schemes, correspondingly higher decoupling fields. At an MAS frequency of 50 kHz

the minimum required rf-field strength for effective decoupling is about 150 kHz.

The demand for higher MAS frequencies is driven by several developments.

Firstly, increasing -field strengths lead to an increase in the size of the CSA tensors.

To obtain a spectrum without strong sidebands one needs to spin faster than the size

of the CSA tensor, which is on the order of 30 kHz for a carbonyl carbon in a field

of 18.8 T (800 MHz proton resonance frequency). Secondly, the increase in fields

also leads to a larger spread of the isotropic chemical shifts. To avoid rotational-

B0

B0

B0



14
resonance recoupling conditions for uniformly labeled samples, it is best to spin faster

than the width of the spectrum. For an 18.8-T magnet this corresponds to a spinning

frequency of 35 kHz for a typical 13C spectrum. Lastly, it has been observed

experimentally that the linewidth in uniformly 13C-labeled compounds decreases

with increasing spinning frequency.

As an alternative to high-power decoupling one can use low-power cw

decoupling (48) in addition to fast MAS in order to achieve heteronuclear spin

decoupling with minimum power dissipation in the sample. Such an approach is

based on the reversal of the averaging processes compared to high-power decoupling

(Figure 1.3b). First the Hamiltonian is averaged by the MAS rotation, and the time-

averaged Hamiltonian is then truncated, in a second step, by a weak rf field. The main

requirement for such a scheme is that the terms in the time-averaged Hamiltonian are

significantly smaller than the applied rf field. The maximum size of the rf-field is

determined by the fact that recoupling conditions (12),(13),(14),(15),(16) have to be

avoided since they can lead to significant broadening of the lines by reintroduction of

the dipolar coupling.

1.5 General Theoretical Framework

For the theoretical description of decoupling in typical organic solids, we have

to consider a system composed of a single S spin and many I spins. This corresponds

to the situation of a dilute rare spin such as 13C or 15N coupled to an abundant spin

bath such as that given by 1H. The time-dependent Hamiltonian under MAS of such a

system in the usual rotating frame, i.e., rotating with the Zeeman frequencies of the

nuclei about the -field direction, is given by

[1.1]

assuming that the spins and the spin have a spin-quantum number of 1/2. The

first four terms of Eq. [1.1] are time-independent; and are the isotropic

B0

� t( ) �S
CS

�I
CS

�II
J

�SI
J

+ + + +=

�S
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chemical shifts of spins and , respectively; describes the homonuclear

isotropic J-couplings among the spins; and describes the heteronuclear

isotropic J-couplings between the spin and the spins. The last four terms of Eq.

[1.1] describe orientation-dependent second-rank tensor quantities, which are time

dependent due to the mechanical rotation of the sample about the magic angle. The

chemical-shielding tensors of spins and are described by and ,

respectively, while describes the homonuclear dipolar couplings among the

spins, and describes the heteronuclear dipolar couplings between the spin

and the spins. The time-dependent rf irradiation (if any) on the spins is described

by . Explicit expressions for the different terms can be found in the literature

(17),(18),(19) and are given in Appendix A.

In addition to the time dependence due to the MAS rotation, all second-rank

tensor terms also depend on the orientation of the crystallite in the rotor-fixed

coordinate system (“powder average”). In principle, one should write all the time-

dependent Hamiltonians of Eq. [1.1] not only as a function of time but also as a

function of the crystallite orientation, e.g., , where is the set of

three Euler angles which describes the orientation of the principal-axes system of the

interaction in the rotor-fixed frame of reference. For simplicity of notation this

dependence on the Euler angles will be omitted and only explicitly written where it is

important for the understanding of a given concept. To obtain the full spectrum of a

powder sample, we have to average the time-domain signal over all

possible orientations of the crystallites

. [1.2]

To analyze a Hamiltonian with multiple time-dependencies such as the one of

Eq. [1.1] analytically or numerically, there are different strategies available. One can

either use Shirley’s Floquet approach (49),(50) to convert the time-dependent

Hamiltonian into a time-independent but infinite-dimensional Hamiltonian. If the

two time dependencies are incommensurate, one has to use a bimodal Floquet

approach (51),(52),(53),(54). This Floquet Hamiltonian can then either be diagonalized
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analytically or numerically, or one can apply static perturbation theory to obtain

physical insight into the problem. If the two time dependencies are commensurate

one can also apply average Hamiltonian theory (AHT) (1),(17) to obtain a time-

independent effective Hamiltonian. For special classes of multiple-pulse sequences

under MAS, one can use symmetry rules (40),(45) to simplify the calculation of the

zeroth-order average Hamiltonian and to estimate the size of the first-order terms. If

the time scales of the two time-dependent processes are very different, one can also

apply average Hamiltonian theory using a sequential averaging approach. This

approach assumes that on the time scale of the faster averaging process, the slower

time dependence is quasi-static and can be neglected. Such an approach has to be

applied carefully since it is not able to describe any interference effects between the

two time-dependent processes. Several of these methods will be used in the following

chapters to analyze the decoupling problem under various conditions.
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2 High-Power CW Decoupling in Isolated Spin Systems

2.1 Theory

The general case of a single S spin coupled to many homonuclearly coupled I

spins (see Eq. [1.1]) is quite complicated and cannot usually be treated analytically.

We, therefore, simplify the system for our calculations and consider only the case of a

heteronuclear two-spin system under cw rf irradiation. This corresponds to a C-H or

N-H system where we neglect the long-range heteronuclear dipolar couplings as well

as all the homonuclear dipolar and J couplings among the protons. The Hamiltonian

for such a system is given by a simplified version of Eq. [1.1] which contains only the

following terms:

. [2.1]

High-power cw decoupling describes the situation where the nutation

frequency corresponding to the amplitude of the rf field, , is considerably larger

than the frequency of the MAS rotation, . In this case, we can assume that the

averaging by the rf field occurs on a much shorter time scale than the averaging by

the MAS sample rotation. We can, therefore, use a sequential averaging approach (see

Figure 1.3a) where we first calculate the effect of the rf-field on the quasi-static system

Hamiltonian and then, in a second step, determine the influence of the MAS rotation

on this partially averaged Hamiltonian. There are several ways to do this calculation.

One possibility is to transform the system Hamiltonian into an interaction frame

quantized along the rf field and apply average Hamiltonian theory to obtain a time-

independent, time-averaged Hamiltonian. We will, however, use a different approach

here. For a two-spin system we can analytically diagonalize the Hamiltonian under

the assumption that it is quasi-static on the time-scale of the rf-nutation frequency.

The quasi-static analytical solution can then be expanded in a power series. Finally,
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�SI
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the influence of the MAS rotation on the eigenvalues of the quasi-static diagonalized

Hamiltonian is calculated.

Such an sequential approach will be compared with an approach where the

averaging by the rf-field and by the MAS rotation are treated simultaneously using

average Hamiltonian theory. Here, we have to assume that the rf-field amplitude is an

integer multiple of the MAS frequency.

2.1.1 Sequential Averaging Approach

We can diagonalize the Hamiltonian of Eq. [2.1] analytically and obtain four

eigenvalues. For an initial density operator and a phase-sensitive detection

operator  we obtain an FID

, [2.2]

which has four components. The four transition frequencies ( ) are

symmetric about the carbon resonance frequency, , and are given by (1):

[2.3]

and

. [2.4]
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All symbols used in the Eqs. [2.3] and [2.4] are defined in Appendix A. For the limit of

no decoupling ( = 0 Hz), we obtain the double-quantum and zero-quantum

transitions

[2.5]

of the SI two-spin system and the two one-quantum transitions

[2.6]

of the spin. The corresponding signal intensities of these four resonance lines are

given by

[2.7]

and

. [2.8]

In the limit of strong decoupling, i.e., and , the

intensities and are small. The transition frequencies and

(Eq. [2.3]) correspond to the decoupling sidebands, which appear with a frequency

offset approximately equal to the rf-field strength (2). They will, therefore, be

neglected in the further discussion. Without rf irradiation, i.e., = 0 Hz, the

intensities and are, as expected, zero. The intensities and tend

towards 1/2 for strong and vanishing decoupling fields.

To analyze the coupling between the heteronuclear coupling term,

, and the chemical-shift term, , in Eq. [2.4], we expand the

square root as a power series. Assuming that the decoupling field strength is much

larger than the dipolar-coupling or the chemical-shielding tensors (strong decoupling

limit) we obtain
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. [2.9]

Truncating Eq. [2.9] after the first two terms is equivalent to second-order

perturbation theory and leads to the following approximate expression for the

transition frequencies:

. [2.10]

The two transition frequencies describe a splitting of the S-spin line due to a second-

order recoupling of the heteronuclear coupling term (either anisotropic dipolar

coupling or isotropic J coupling) with an I-spin chemical-shift term (either anisotropic

chemical-shielding tensor or isotropic chemical shift).

Assuming that the MAS rotation is slow compared to the time scale of the rf

nutation ( ), one can now apply average Hamiltonian theory to the transition

frequencies to eliminate the time dependence due to the sample rotation:

.[2.11]

Here, the integration represents the time average over a full rotor period,

.

All purely second-rank tensor quantities in Eq. [2.11], i.e., the product of a

scalar with a second-rank tensor, will be averaged out by the rotation about the magic

angle. Therefore, we will not be able to observe a contribution due to the cross term
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between the scalar J coupling and the anisotropic chemical-shielding tensor or due to

the cross term between the isotropic chemical shift and the anisotropic dipolar-

coupling tensor.

The purely scalar cross term represents the off-resonance

decoupling term as is known from liquid-state NMR (3),(4). For a 1JCH coupling

constant of about 130 Hz and an isotropic chemical-shift offset of 10 ppm,

corresponding to 6 kHz at 600 MHz proton resonance frequency, we obtain a splitting

of only 7.8 Hz assuming an rf-field strength of 100 kHz. Since the line width of rigid

solids is only rarely below 10 Hz, such a splitting can usually not be observed.

The last term in Eq. [2.11] represents the coupling of two second-rank tensors,

namely the chemical-shielding tensor of the I spin and the heteronuclear dipolar-

coupling tensor. The product of two second-rank tensors can generally be described

by a weighted sum of a zeroth-rank, a second-rank, and a fourth-rank tensor (5).

Therefore, this term will not be fully averaged out by a rotation about the magic angle

and needs to be analyzed in more detail.

We will calculate the averaging by the sample rotation in a more general way

as a rotation about an arbitrary axis inclined at an angle, , with respect to the static

magnetic field. To do this, we have to consider the transformations of both second-

rank tensors from their respective principal-axes systems (PAS) into the laboratory-

fixed coordinate system (Figure 2.1). The chemical-shielding tensor is first rotated into

the PAS system of the dipolar-coupling tensor. Then both the chemical-shielding

tensor and the dipolar-coupling tensor are rotated into the rotor-fixed frame from

which they are subsequently rotated into the laboratory-fixed coordinate system. This

leads to the following time-dependent transformation for the two tensors:

[2.12]

. [2.13]
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The Wigner rotation-matrix elements are defined according to the

conventions presented in Ref. (5). The sample spinning frequency is ;

is the set of Euler angles which describes the transformation from the principal-axes

system of the dipolar-coupling tensor to the rotor-fixed coordinate system (powder

average); and are the three Euler angles describing the orientation of the I-

spin chemical-shielding tensor in the principal-axes system of the dipolar-coupling

tensor. The spherical-tensor notation of the two tensors ( elements) is defined in

Appendix A.

We can now insert Eqs. [2.12] and [2.13] into Eq. [2.11] and simplify the

resulting expression. The time-averaged product of two second-rank tensors has, to

zeroth-order approximation, non-vanishing contributions only under the condition

where m and n are the summation indices in Eqs. [2.12] and [2.13],

respectively. Under this condition Eq. [2.11] can be substantially simplified, and one

obtains the following result for the time-averaged transition frequencies:

PAS of dipolar- PAS of chemical-�
2 α I βI γI, ,( )

coupling tensor shielding tensor

rotor-fixed
coordinate system

laboratory-frame
coordinate system

�
2 α β γ, ,( )

�
2 ω– rt θr– 0, ,( )

Figure 2.1: Sequence of transformations and Euler angles necessary to rotate the two tensors
from their respective principal-axes systems into the laboratory-fixed coordinate system. The
chemical-shielding tensor is first rotated into the principal-axes system of the dipolar
coupling tensor ( ), then both tensors are rotated into the rotor-fixed frame
( ), and from there, finally, into the laboratory-fixed frame ( ).

�
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�
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. [2.14]

Here, are the Clebsch-Gordan coefficients as defined in Ref. (6) and

are reduced Wigner rotation-matrix elements (5). The angle was assumed

to be zero since it only changes the orientation of the rotor at the start of the

experiment. All other symbols have been defined previously.

The first term in Eq. [2.14] represents the isotropic chemical shift of spin , the

second term the isotropic splitting due to off-resonance decoupling (3),(4). The third

term describes the chemical-shielding tensor of the spin, the fourth term is the cross

term between the isotropic J coupling and the chemical-shielding tensor of the spin,

and the fifth term is the cross term of the isotropic chemical shift of the spin and the

heteronuclear dipolar-coupling tensor. These latter three terms scale as second-rank

tensors with . The last term in Eq. [2.14] is the cross term between

the chemical-shielding tensor of the spin and the heteronuclear dipolar-coupling

tensor. It consists of the sum of three different terms (j = 0,2,4) which scale as a zeroth-

rank, a second-rank, and a fourth-rank tensor under single-axis rotation.

Setting the angle of the rotation axis to = 0° gives the solution for the static

spectrum. Under this condition all scaling factors = 1 and all terms contribute
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to the line shape of the S-spin resonance. If the inclination angle of the rotation axis

with respect to the static magnetic field corresponds to the magic angle ( =

), all second-rank tensor contributions to the transition frequencies will

vanish, because = 0. The chemical-shielding tensor of the S spin, the cross

term between the isotropic J coupling and the chemical-shielding tensor of the I spin,

the cross term between the isotropic chemical shift of the I spin and the heteronuclear

dipolar-coupling tensor, and the second-rank tensor contribution to the cross term

between the chemical-shielding tensor and the heteronuclear dipolar-coupling tensor

will be scaled to zero. Only the isotropic chemical shift of the S spin, the off-resonance

decoupling term, and the isotropic and scaled fourth-rank tensor parts of the second-

order cross term remain:

. [2.15]

For each crystallite orientation, the spectrum consists of a doublet centered about the

isotropic chemical-shift of the S spin. The splitting consists of an orientation-

independent part given by the off-resonance decoupling term and by the zeroth-rank

tensor part of the second-order cross term and an orientation-dependent part given

by the fourth-rank tensor contribution to the second-order cross term.

It is, in principle, possible to average out both the second-rank and the fourth-

rank tensor components of Eq. [2.14] by using dynamic-angle spinning (DAS)

(sequential averaging) or double rotation (DOR) (simultaneous averaging) techniques

(7), (8), (9). In this case the resonance frequencies are given by
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, [2.16]

and the resulting second-order splitting is fully isotropic and gives rise to a spectrum

that consists of a sharp doublet centered about the isotropic chemical shift of the

spin. The splitting of the line is determined by the off-resonance decoupling term and

the isotropic part ( =0) of the second-order cross term.

Equations [2.14] and [2.15] allow very efficient simulation of second-order

spectra, which is important if extraction of parameters from experimental spectra is

desired. Non-linear least-square fitting to obtain parameters (e.g., orientation of the

two tensors) and their corresponding error ranges is, in principle, possible based on

this analytical solution assuming that the two-spin model is a good approximation.

2.1.2 Simultaneous Averaging of Space and Spin Parts

We can also calculate the average Hamiltonian for an two-spin system by

simultaneously time averaging over the MAS rotation and over the rotation due to

interaction-frame transformation by the rf field. Here, we have to assume that

is an integer, i.e., we assume that the two rotations are synchronized. If

we avoid the rotary-resonance conditions, i.e., by assuming , we obtain for the

zeroth-order average Hamiltonian:

[2.17]

and for the first-order average Hamiltonian:

. [2.18]

For simplicity only terms involving -spin operators are shown. The constants

and are the Fourier coefficients of the time-dependent heteronuclear dipolar
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coupling and the -spin chemical-shielding tensor, respectively. They are defined in

Appendix A. For large values of , we can simplify Eq. [2.18] and obtain:

. [2.19]

The result obtained in Eq. [2.19] is fully equivalent to the result obtained from

sequential averaging in Eq. [2.11]. This can easily be seen by expanding the time-

dependent chemical-shielding tensor and the dipolar-coupling tensor of Eq. [2.11] as

Fourier series (see Eqs. [7.6] and [7.8] in Appendix A) and keeping only the time-

independent terms. Both approaches clearly show that the cross term between the

chemical-shielding tensor and the heteronuclear dipolar-coupling tensor dominates

the residual line width in high-power cw decoupled spectra of isolated spin pairs.

2.2 Numerical Simulations

Simulations to analyze the behavior of an isolated two-spin system were

carried out using the NMR simulation environment GAMMA (10). Numerical values

close to the values found for the model compound, [d9]-trimethyl-15N-ammonium

chloride (see Fig. 1.5) were used in the numerical simulations. The anisotropy of the

dipolar-coupling tensor was set to = 20 kHz, and the chemical-shielding

tensor was assumed to be axially symmetric ( = 0) with an anisotropy of =

6.8 kHz. The two tensors were assumed to be coaxial unless otherwise mentioned.

The accuracy of simulations based on the approximate analytical solution from

second-order perturbation theory (Equation [2.15]) was tested by comparing exact

numerical simulations calculated by small-step integration of the time-dependent

Hamiltonian with simulations based on the analytical solution at different rf-field

strengths. The numerical simulations were done for an MAS frequency of =

5 kHz and with 5000 time steps per rotor cycle leading to a 40 ns time resolution.

Simulations for 300 different crystallite orientations was summed and the method of

Cheng et al. (11) was used to obtain optimum coverage of the sphere. The dwell time
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was set to one third of the rotor cycle (full SW = 15 kHz), and 4096 data points were

computed. The spectra were processed using an exponential line broadening of

100 Hz. The spectra based on the approximate analytical solution of the time-

averaged Hamiltonian were calculated directly in the frequency domain. All

parameters were the same as in the time-domain simulations except that 10000

different powder orientations were summed. The resulting frequency-domain spectra

were convolved with a 100-Hz Lorentzian line. The spectra in Figure 2.2 are

calculated for three different rf-field strengths = 70 kHz, 30 kHz, and

analytical

5000 0 -5000 5000 0 -5000

5000 0 -5000 5000 0 -5000

5000 0 -5000 5000 0 -5000

numerical
simulation

simplified ω1/(2π)

70 kHz

30 kHz

10 kHz

solution

ωN/(2π) [Hz] ωN/(2π) [Hz]

Figure 2.2: Comparison of simulations based on small-step numerical integration of the time-
dependent Hamiltonian and simulations based on the approximate analytical solution
(Equation [2.15]) for three different decoupling field strengths. The two methods of
simulations at = 70 and 30 kHz show differences on the order of one percent. The
simulations at = 10 kHz are very different from each other, which reflects the fact
that the assumptions made in the second-order truncation (Equation [2.8]) are not valid here.

ω1 2π( )⁄
ω1 2π( )⁄

ω1 2π( )⁄
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10 kHz. For the two higher rf-field strengths the two simulation methods agree very

well with differences in the central line on the order of one percent. These small

deviations are most likely due to the truncation terms higher than second order in the

analytical solution or to the relatively low number of powder points used in the time-

domain simulation. The spinning sidebands at ±5000 Hz observed in the numerical

simulations are not present in the analytical solution because it is based on the

assumption of a stroboscopic observation. For = 10 kHz (Fig. 2.2c), the

differences are large and the line shapes of the two spectra do not agree at all. This is

due to the breakdown of the assumptions made in deriving the analytical solution in

Equation [2.15]. At an rf-field strength of 10 kHz the decoupling field strength is no

longer greater than the magnitudes of the chemical-shielding and the dipolar-

coupling tensors. In addition, the n=2 rotary-resonance condition (12),(13),(14),(15) is

fulfilled, which cannot be described by a sequential averaging approach as was used

in deriving the approximate analytical equation. The advantage of the frequency-

domain simulation based on the analytical solution is its computation speed. The

frequency-domain simulation is about 6000 times faster than the time-domain

simulation using small step integration of the Liouville-von-Neumann equation.

Figure 2.3 shows simulations of the second-order recoupled spectra under

static (a), magic-angle sample spinning (b), and double-rotation (c) conditions

illustrating the averaging properties of the second-order recoupled Hamiltonian

under spatial rotation. The simulations were performed as frequency-domain

simulations based on the analytical solution shown in Equation [2.14]. The

decoupling field strength was = 71.5 kHz. Ten-thousand different crystallite

orientations were summed, and the resulting spectrum was convolved with a

Lorentzian line of width 50 Hz. The static spectrum (Figure 2.3a) is very broad with a

full width at the base of 1838 Hz. It is the result of a superposition of the isotropic

splitting with both the second-rank and the fourth-rank contributions to the second-

order Hamiltonian. The MAS spectrum (Figure 2.3b) shows a pure fourth-rank tensor

powder pattern superimposed on the isotropic splitting with a full width of 528 Hz

close to the bottom of the line. The DOR spectrum (Figure 2.3c) shows, as expected,

two sharp lines with an isotropic splitting of 363 Hz.

ω1 2π( )⁄

ω1 2π( )⁄
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The dependence of the second-order recoupled spectra on the relative

orientation of the two tensors is illustrated in Figure 2.4. The simulations were done

as frequency-domain simulations using the same parameters as for the spectra shown

in Fig. 2.3. It can clearly be seen that there is a strong dependence of the line shape on

the angle as expected from Eq. [2.15]. It is not straightforward to predict the line

shape from Eq. [2.15], especially if the chemical-shielding tensor is not axially

symmetric. The simulations of Fig. 2.4, however, show that the variations could be

strong enough to allow the determination of the angle between the two tensors from

this type of second-order spectrum, assuming that the investigated system can indeed

be described by an isolated two-spin system.

ω/(2π) [Hz]

static

MAS

DORc)

b)

a)

2000 1500 1000 500 0 -500 -1000 -1500 -2000

2000 1500 1000 500 0 -500 -1000 -1500 -2000

2000 1500 1000 500 0 -500 -1000 -1500 -2000

Figure 2.3: Simulated second-order line shape under static, magic-angle spinning, and
double-rotation conditions. The static spectrum is very broad and shows a superposition of a
zeroth-rank, a second-rank, and a fourth-rank tensor contribution to the Hamiltonian. The
MAS spectrum is a pure fourth-rank tensor powder pattern superimposed on an isotropic
splitting. The DOR spectrum shows only the isotropic splitting.
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2.3 Experimental Results

As a model substance for an isolated two-spin system, fully 15N-labeled tri-

(trideuteromethyl)-ammonium chloride (1H-15N spin system) was used. The

synthesis of [d10]-trimethyl-15N-ammonium chloride is described in the literature

(16). The shortest nitrogen-nitrogen distance calculated from the crystallographic data

for trimethyl-ammonium chloride (17) is 5.7 Å corresponding to a dipolar-coupling

constant of = 13.3 Hz. The shortest proton-proton distance is of similar

magnitude in the methyl-deuterated compound. The chemical-shielding tensor of 15N

in this compound is very small. A static proton-decoupled spectrum (data not shown)

using a symmetric , sequence resulted in a Gaussian line with a half

width at half height of 290 Hz. The chemical-shielding tensor of the proton was not

measured directly. Its anisotropy was obtained from fitting the second-order MAS

spectrum assuming that the PAS of the chemical-shielding tensor of the proton and

the PAS of the dipolar-coupling tensor are coaxial. The value obtained from these fits

was = 6800 ± 200 Hz. This value agrees with independent measurements of

the chemical-shielding tensor (18). The anisotropy of the dipolar coupling of the 15N-

ωN/(2π) [Hz]

βI

0°

90°54.74°

30° 60°

2000 1000 0 -1000 -2000

ωN/(2π) [Hz]
2000 1000 0 -1000 -2000

βI

Figure 2.4: Dependence of the second-order recoupled spectrum on the orientation of the two
tensors. The chemical shielding tensor was assumed to be axially symmetric so only one
parameter ( ) is needed to describe the orientation of the principal-axes systems of the two
tensors. The line shape of the spectra depends very strongly on the relative orientation.
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1H spin pair was measured from static and slow-spinning MAS spectra and was

found to be = 20110 ± 210 Hz corresponding to a distance of =

1.066 ± 0.004Å.

Figure 2.5 shows one-dimensional 15N spectra acquired without (a) and with

(b and c) decoupling of the protons by cw irradiation. All three spectra were recorded

at an MAS frequency of 30 kHz. The spectrum without decoupling (Figure 2.5a)

shows a sharp doublet with a splitting equal to the known one-bond JNH-coupling of

about 100 Hz. The appearance of the doublet indicates that the spin-diffusion rate

δNH 2π( )⁄ rNH

-3000-2000-10000100020003000

-3000-2000-10000100020003000

a)

b)

-3000-2000-10000100020003000

ωΝ/(2π) [Hz]

c)

Figure 2.5: (a) 15N spectrum of [d9]-trimethyl-15N-ammonium chloride without proton
decoupling recorded at an MAS spinning frequency of 30 kHz. The visible splitting is the one-
bond JNH-coupling of about 100 Hz. cw-decoupled 15N spectra at proton resonance
frequencies of (b) 300 MHz and (c) 600 MHz at an MAS spinning frequency of 30 kHz and a
decoupling field strength of 100 kHz.
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constant is below 100 Hz (19). Figures 2.5b and 2.5c show the cw-decoupled 15N

spectra ( = 100 kHz) of [d9]-trimethyl-15N-ammonium chloride at an MAS

frequency of 30 kHz and at proton resonance frequencies of 600 MHz (Figure 2.5b)

and 300 MHz (Figure 2.5c). Due to the high spinning frequency and the

perdeuteration of the methyl groups, the proton spin-diffusion rate constant is quite

small, and the cross-term between the dipolar-coupling tensor and the CSA tensor

dominates the spectrum. Therefore, we observe two well-separated lines with a

splitting proportional to the proton resonance frequency. The fine structure visible in

the numerical simulations (Figure 2.4) is not observed in the experimental 15N

spectrum of trimethyl-ammonium chloride.

Figure 2.6 shows a series of 15N spectra where the proton decoupling field

strengths was varied from = 17 to 72 kHz. The spectra were recorded at an

MAS spinning frequency of = 5 kHz. The line widths near the base of the

ω1 2π( )⁄

4000 2000 0 -2000 -4000

ωN/(2π) [Hz]

72 kHz

60 kHz

48 kHz

34 kHz

24 kHz

17 kHz

Figure 2.6: 15N spectra of 15N-labeled tri-(trideuteromethyl)-ammonium chloride as a
function of the proton decoupling power. The decoupling field strength was varied from

 = 17 to 72 kHz. The linewidth scales to a good approximation with .ω1 2π( )⁄ 1 ω1⁄

ω1/(2π)

ω1 2π( )⁄

ωr 2π( )⁄
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peaks at different decoupling powers correlate very well with the inverse of the

proton decoupling field strength as expected from the theoretical calculations shown

in Chapter 2.1. This suggests that neglecting all terms higher than second order in the

perturbation expansion of Equation [2.11] was justified.

As mentioned already in Chapter 2.1, the second-order recoupling can be

made isotropic by performing the experiment under DOR or DAS conditions. The

pulse sequence used to record an isotropic second-order recoupled spectrum under

DAS is shown in Figure 2.7. The experiment was implemented as a pure-phase

experiment (20) in t1 and uses States-type processing (21) to distinguish between

positive and negative frequencies. Since the second-order recoupled Hamiltonian is

quantized along the decoupling field of the spins (Eq. [2.19]), additional storage

pulses (22) are needed for the spins before and after the change of the rotor axis in

contrast to a standard pure-phase DAS experiment (20).

For the 2D-DAS experiment 50 t1 times were recorded with 256 scans of 256

points in t2 for each of the two complex data sets. During t2, phase-alternating 2π-

pulse decoupling was employed to obtain a narrow line in ω2. The flipping time to

(CP)ϕ3

(CP)ϕ2

(π_2)ϕ1

(π_2)ϕ7 (π_2)ϕ8

(π_2)ϕ6

I

S

(π_2)ϕ4

(π_2)ϕ5

79.19°

37.38°

t1/2 t1/2

+x +x

t2∆

decouple

Figure 2.7: Pulse sequence used to measure the DAS spectrum of the second-order
recoupling. The pulse sequence implements pure phase during t1 by storing the appropriate
orthogonal components during the change of the rotor axis. The two data sets, modulated as

and are then summed. The rf-field strength during the two
decoupling periods must be equal.
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change the angle of the rotor axis from = 37.38° to = 79.19° was set to =

100 ms. During this time no noticeable loss of magnetization was observed since the

longitudinal relaxation times of both spins are considerably longer than the time .

The rf-field strength during the cw decoupling in t1 was ≈ 35.7 kHz. After

hypercomplex Fourier transformation and phase correction, a slice through the

highest point in along was taken and is shown in Figure 2.8. A comparison

with an MAS spectrum recorded under similar conditions shows a significant

narrowing of the line due to the averaging of both the second-rank and fourth-rank

tensors. However, the DAS spectrum still has very broad lines, which may be due to

inaccuracies in adjusting the two DAS angles or to differences in the cw-decoupling

field strengths at the two different rotor orientations (23). The splitting obtained by a

fit of the DAS spectrum to two Lorentzian lines is Hz. It would be

advantageous to implement this experiment under DOR instead of DAS. Both

problems, the adjustment of the two angles and the differences in the rf field

strengths, would not be present under DOR.

θ1 θ2 ∆

∆

ω1 2π( )⁄

ω2 ω1

4000 3000 2000 1000 0 -1000 -2000 -3000 -4000

ωN/(2π) [Hz]
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MAS

Figure 2.8: Nitrogen magic-angle spinning (MAS) and dynamic-angle spinning (DAS) spectra
of [d9]-trimethyl-15N-ammonium chloride for a decoupling field strength of =
35.7 kHz.
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3 High-Power CW Decoupling in Strongly-Coupled Spin

Systems

3.1 Theory

Experimentally, a typical organic solid with strong proton-proton couplings

shows relatively sharp lines under cw decoupling and moderate MAS frequencies

(see Fig. 1.4) and not the splitting and broadening predicted by the analysis of an

isolated two-spin system (see Eq. [2.15] and Fig. 1.5). Thus, it is obvious that the

description of Chapter 2 is not realistic for many spin systems. In rigid organic solids,

one is usually faced with an -spin system where the I spin is not isolated but

coupled to a large number of abundant I spins. The dense coupling network of the I

spins was neglected in the isolated two-spin system model. It is not clear a priori how

many I spins one would have to include before one obtains a realistic picture of a

strongly coupled spin system. Hodgkinson et al. (1) estimate that one needs

approximately 15 homonuclear spins to reasonably approximate a multi-spin system.

An analytical description or a numerical simulation of such a spin system becomes

very difficult because the size of the Hilbert space is large, e.g., for a 15-spin system

the size of a matrix representation of the Hilbert space is 32768 by 32768, and

numerical simulations are only possible by using special methods. One, therefore,

needs a model to include the effects of the strong homonuclear dipolar-coupling

network in the simple coherent two-spin model without increasing the dimension of

the matrix representation of the density operator.

For labeled samples, one should, in principle, consider an -spin system

where the homonuclear couplings between the spins (homonuclear J and dipolar

couplings) are included. Typically the gyromagnetic ratio of the spins is much

lower than that of the spins ( = 4 for I=1H and S=13C, = 10 for I=1H and

S=15N). The strength of the homonuclear dipolar-coupling network among the

spins is much weaker since the magnitude of the dipolar couplings depend on the

product of the gyromagnetic ratios of the two coupled spins (see Appendix A). Even

for moderate MAS frequencies we expect, therefore, that the influence of the
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homonuclear dipolar couplings among the spins will be averaged out and can

usually be neglected. The homonuclear J couplings among the spins are invariant

under MAS and heteronuclear decoupling and will only lead to an additional

multiplet structures of the  spin resonances.

One possible model is the description of the strong coupling among the

abundant I spins by a spin-diffusion type superoperator, which is isotropic in the I-

spin space and leads to spin flips between the and the states of the I spins (Figure

3.1). Such a superoperator has been used before in the context of transient oscillation

in heteronuclear Hartmann-Hahn cross polarization (2). In order to include the spin-

diffusion superoperator in the description of the spin system, one has to use a

Liouville-space representation (3) with the Liouvillian given by:

. [3.1]

The Hamiltonian, , describes the coherent two-spin system and is given by

Equation [2.1] while the spin-diffusion superoperator is given by

. [3.2]

The term spin diffusion in the present context characterizes a generalized

polarization-transfer process among the I spins, which is propagated by flip-flop

processes. The superoperator of Equation [3.2] is the most simple one since there is

S

S

S

α β

I

S

ωSI(t)

ωS(t)

ωI(t)
Γ

I-spin bath

Figure 3.1: Schematic representation of the theoretical model used to simulate heteronuclear
spin decoupling. One S spin and a single I spin are described fully quantum mechanically by
a Hamiltonian, and the I spin is coupled by a spin-diffusion type superoperator to an I-spin
bath.
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only a single rate constant, , that characterizes the polarization-transfer process in

the proton bath. One could also use an anisotropic version of with three rate

constants , , and but there is no evidence that supports or requires such a

complication.

If we calculate the proton decay under the superoperator of Equation [3.2], we

find

. [3.3]

This relation provides the possibility of experimentally determining the spin-

diffusion rate constant needed for the model of Equation [3.1].

In the context of the I-spin homonuclear polarization-transfer process, the

homonuclear dipolar-coupling Hamiltonian plays the most important role. Under

high-power cw irradiation and MAS, the effective homonuclear dipolar-coupling

Hamiltonian of Eq. [1.1] is scaled by a factor of 1/4 compared to the effective dipolar-

coupling Hamiltonian under MAS alone (4) (see also Eq. [4.4]). The Hamiltonian is

scaled by the rf irradiation by -1/2 due to the second-rank tensor properties of the

spin part of the homonuclear dipolar coupling:

. [3.4]

Magic-angle spinning influences only the spatial part of the homonuclear

dipolar coupling. Due to the second-rank tensor properties of the spatial part of the

homonuclear dipolar interaction, the zeroth-order average Hamiltonian term

vanishes over a full rotor period, :

[3.5]

The first-order average Hamiltonian term for the homonuclear dipolar interaction

 is given by
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[3.6]

where depends on the geometry of the dipolar-coupling network (distances and

orientation) but not on the MAS rotation frequency. Its full functional form is given in

Appendix B. Except for the direction of the quantization axis (x in the rotating frame,

z in the laboratory frame), we obtain the same functional form of the effective

Hamiltonian as with MAS alone (see Eq. [4.4]). While the form of differs from

the one of the static dipolar interaction, , it still causes proton flip-flop processes.

This type of Hamiltonian can also mediate the same type of polarization transfer as is

found in static spin diffusion (4),(5),(6). We expect, therefore, that the spin-diffusion

rate constant scales with the inverse of the MAS spinning frequency and that there is a

factor of four difference between the laboratory-frame and the rotating-frame spin-

diffusion rate constants.

By diagonalizing the Liouvillian of Equation [3.1] one can obtain the resonance

frequencies and the linewidths of the various transitions. For

we obtain two one-quantum S-spin transitions

with the resonance frequencies:

[3.7]

and the linewidth (full width at half height). Both resonances have the

same intensity. For we obtain two degenerate

lines with the resonance frequency  and the linewidths:

. [3.8]
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However, the broader of the two resonances has negligible intensity. Equations [3.7]

and [3.8] are based on an approximate solution of the eigenvalues of the Liouvillian of

Equation [3.1].

Figure 3.2 shows the numerically calculated transition frequencies (Fig. 3.2a)

and linewidths (Fig. 3.2b) for an instantaneous time point during MAS in a dipolar-

coupled two-spin system as a function of the proton spin-diffusion rate constant, .

The data were obtained by numerically diagonalizing the Liouvillian of Equation [3.1]

but are in excellent agreement with the approximate solutions of Equations [3.7] and

[3.8]. The data shown in Fig. 3.2 were calculated using the parameters

= 2.5 kHz, = 100 kHz, and = 10 kHz

(solid lines), and 20 kHz (dashed lines), respectively. The heteronuclear J coupling

and the chemical-shielding tensor of the  spin were assumed to be zero.
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Figure 3.2: (a) Calculated resonance frequencies as a function of the spin-diffusion rate
constant . (b) Calculated linewidth (full width at half height) under the same
conditions.
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In an MAS experiment, the resonance frequencies, the line widths, and the line

intensities are functions of the rotor position and are, therefore, time-dependent. The

averaging of these variables over a rotor cycle has no simple analytical solution. In

addition we have to perform a powder average over all possible crystallite

orientations. In Chapter 3.2, we use numerical Liouville-space simulations to illustrate

the line shape and the behavior of the spin system for different values of the spin-

diffusion rate constant, .

3.2 Numerical Simulations

The simulations shown in Figure 3.3

illustrate the behavior of a two-spin system

as a function of the -spin, spin-diffusion

rate constant, . All simulations were

carried out using the method of small-step,

piecewise-constant integration of the

Liouville-von-Neumann equation. Figure

3.3 shows the simulated powder patterns

for a C-H two-spin system for values of kI

ranging from kI=0 s-1 to kI=4000 s-1. The

dipolar coupling used in the simulations

corresponds to a one-bond C-H coupling

( = 46 kHz) while the CSA tensor

of the spin was assumed to be parallel to

the dipolar coupling with a value of

=6 ppm at a proton resonance

frequency of 600 MHz. The decoupling

field strength was set to =100 kHz.

For kI=0 s-1 we obtain the expected two lines for each crystallite orientation in the

powder, leading to a fourth-rank powder pattern. With increasing values of k we see

a smoothening of the sharp features of the doublet and the emergence of a sharp line

in the center. For kI=4000 s-1 we obtain a single, relatively sharp line at the S-spin

kI

Figure 3.3: Simulated powder line shapes
for a two-spin system as a function of the
proton spin-diffusion rate constant k
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isotropic shift position with a full width at half height of about 65 Hz. The simulations

of Figure 3.3 show that the spin-diffusion model qualitatively describes the expected

behavior of a heteronuclear two-spin system. A more quantitative comparison

between the model and experimental results will be given in Chapter 3.3.

3.3 Comparison Between Experiments and Simulations

To judge the accuracy of the theoretical model described in Chapter 3.1 we

have to know the magnitude of the proton spin-diffusion rate constant in order to

compare measured spectra with simulations using the spin diffusion model. The

proton spin-diffusion rate constant in 8% labeled 2-13C-alanine has been measured

following the scheme of local polarization injection (7). A schematic of the pulse

sequence used for the measurements is shown in Figure 3.4. It generates localized

polarization at protons directly bound to 13C spins. The first cross-polarization (CP)

step is only used to enhance the signal intensity. The second and third CP steps are

short ( = 75 µs) to ensure that the only significant polarization transfer is via one-

bond proton-carbon dipolar couplings and to avoid proton spin diffusion during the

cross-polarization time. During the mixing time, , the magnetization is either spin-

locked (rotating-frame spin-diffusion measurement) or aligned along the z-axis by

CPCPCP decouplingI

S

τm

π
2
---

τcp
3( )τcp

2( )τcp
1( ) τd

SL

Figure 3.4: Pulse sequence to measure the proton rotating-frame, spin-diffusion rate constant.
The second and third cross-polarization time was chosen short to obtain polarization transfer
across the one-bond dipolar coupling only. To measure the laboratory-frame spin diffusion
rate constant, the spin-lock period (SL) is replaced by a pair of 90° pulses.

τcp
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Figure 3.5: Decay of localized proton magnetization in 8% labeled 2-13C-alanine. (a) shows the
decay in the rotating frame while (b) shows the decay in the laboratory frame for five different
MAS spinning frequencies.
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two 90° pulses (laboratory-frame spin-diffusion measurement). The intensity of the

carbon magnetization is measured as a function of the mixing time, . Figure 3.5

shows the results of the rotating-frame (Fig. 3.5a) and the laboratory-frame (Fig. 3.5b)

measurements. The solid lines in Figure 3.5a show the best mono-exponential fits to

the experimental data. One can clearly see that the assumption of a mono-exponential

decay was fulfilled to a good approximation. The laboratory-frame measurements of

Figure 3.5b also show a roughly exponential decay of the polarization. The time

constants are about a factor of four larger than the ones obtained from the rotating-

frame measurements, as expected from Eq. [3.6]. The source of the additional

oscillations on the laboratory-frame measurements is not fully understood.

The measured rate constants, , are kI=265 s-1 for =30 kHz, kI=360 s-1 for

=25 kHz, kI=540 s-1 for =20 kHz, kI=920 s-1 for =15 kHz, and kI=1400 s-1 for

=10 kHz. Figure 3.6 shows the measured spin-diffusion rate constants as a function

of the spinning frequency. As expected, the rate constants corresponding to spinning

frequencies in the range between 10 and 30 kHz are approximately proportional to

the inverse of the spinning frequency as predicted by Equations [3.6] and [4.4]. These

τm

kI νr

νr νr νr

νr

1/νr [s]
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Figure 3.6: Measured rotating-frame, spin-diffusion rate constants in 8% labeled 2-13C-alanine
as a function of the MAS frequency.



50
rate constants can be used to simulate cw decoupled spectra of alanine and to

compare the simulations with experimental data.

Figure 3.7a shows 13C spectra of 2-13C-alanine at spinning frequencies ranging

from 10 kHz to 30 kHz measured at a proton resonance frequency of 600 MHz and

with a cw decoupling field strength of = 100 kHz. It can clearly be seen that

the linewidth of the line increases with increasing spinning frequency. Such a

spinning-frequency dependent line broadening has been observed experimentally

before at lower spinning frequencies (8),(9) in samples with partially averaged dipolar
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Figure 3.7: (a) Measured spectra of 2-13C-alanine using a cw decoupling field strength of
=100 kHz at different spinning frequencies between =10 kHz and 30 kHz at a pro-

ton resonance frequency of 600 MHz. The simulated spectra in (b) use the measured spin-dif-
fusion rate constants, , and assume a one-bond C-H dipolar coupling.
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couplings. At lower spinning frequencies the line shape appears to be described quite

well by a mixed Gaussian/Lorentzian line while at higher spinning frequencies the

line shape becomes more complicated and seems to have several components. The

simulated spectra in Figure 3.7b were obtained using the measured proton spin-

diffusion rate constants and assuming a one-bond C-H dipolar coupling and an

axially symmetric proton chemical-shielding tensor of = 4 ppm. The agreement

between the simulated and the measured spectra is quite good, keeping in mind that

there was only a single adjustable parameter for the set of simulations, namely the

chemical-shielding tensor of the protons. This indicates that the model of Chapter 3.1

provides a good theoretical framework for the description of strongly-coupled spin

systems under high-power cw irradiation.
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4 Low-Power CW Decoupling

4.1 Theory

As already mentioned earlier, in the case of low-power cw decoupling (1) the

order of the averaging processes is reversed compared to high-power cw decoupling

under MAS. The rotation of the sample about the magic angle is now the faster of the

two averaging processes (see Figure 1.3b). The MAS time-averaged Hamiltonian can

be calculated from the time-dependent Hamiltonian of Eq. [1.1] using average

Hamiltonian theory (2). If the spinning frequency approaches infinity, the zeroth-

order average Hamiltonian provides an exact description of the time evolution of the

spin system. The Hamiltonian is then given by

. [4.1]

This Hamiltonian contains only the first four terms of Eq. [1.1]. The Hamiltonian of

Eq. [4.1] is the usual liquid-state NMR Hamiltonian.

For finite MAS frequencies, we have to consider higher-order terms in the

average Hamiltonian expansion. The first-order average Hamiltonian is given by

. [4.2]

Analyzing the commutators in Eq. [4.2] is straightforward and leads, in the absence of

rf irradiation, to only three non-vanishing terms: (i) the cross term between the

homonuclear dipolar coupling of the  spins with the CSA tensor of the  spins

; [4.3]

(ii) the cross term of the homonuclear dipolar coupling of the  spins with itself
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; [4.4]

and (iii) the cross term between the homonuclear dipolar coupling of the spins and

the heteronuclear dipolar coupling

. [4.5]

This term leads to a direct broadening of the spin resonances since it has the form of

a generalized coupling between the spin and the spins. The effective coupling

frequencies can be calculated from the commutators of Eq. [4.2] and are given

explicitly in Appendix B.

The first two contributions act only indirectly on the -spin resonances by

propagating spin diffusion among the spins (3),(4). We assume that the MAS

spinning frequency is high enough that we can neglect terms that depend on

and higher powers in the average Hamiltonian expansion. This assumption is fulfilled

to a good approximation for spinning frequencies larger than 10 kHz as can be seen

from the good fit of the expected dependence of the line width to the measured

line widths in undecoupled spectra of a CH and CH2 group (see Figure 1.2).

Based on the three terms of Eqs. [4.3]-[4.5], which form the first-order average

Hamiltonian, two potential sources for the residual linewidth under high-frequency

MAS without proton irradiation become apparent: (i) The spin diffusion among the

spins mediated by the Hamiltonians of Eqs. [4.3] and [4.4] can lead to an “exchange-

type” narrowing or broadening of the J-multiplet (3),(4). (ii) The generalized

heteronuclear coupling terms of Eq. [4.5] can lead to a direct broadening of the -spin

resonances.
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We can estimate the maximum

contribution to the residual linewidth

generated by spin diffusion acting on a

heteronuclear J-splitting. Figure 4.1 shows

carbon spectra simulated for a J-coupled CH

two-spin system where the spin diffusion

among the protons is included in the

simulation using the model presented in

Chapter 3.1 (3). The J-coupling was set to

130 Hz, a typical value for a CH group. The

strength of the coupling in the -spin bath

was varied. The maximum linewidth

obtained was about 90 Hz FWHH at a value

of = 500 s-1. This clearly indicates that at

the spinning frequencies considered here a

major source for the residual linewidth is the

cross term between the homonuclear and the

heteronuclear dipolar couplings (Eq. [4.5]) in

the first-order average Hamiltonian.

Adding the rf-irradiation term

( ) to the Hamiltonian leads to

three additional important terms in the first-order average Hamiltonian of Eq. [4.2].

These three terms are (i) the cross term between the rf irradiation and the chemical-

shielding tensor of the  spins

; [4.6]

(ii) the cross term between the rf irradiation and the heteronuclear dipolar coupling

tensor

; [4.7]

Figure 4.1: Simulation of an isolated
dipolar-coupled CH two-spin system
with a J-coupling of 130 Hz under MAS.
The coupling of the two-spin system to
the proton bath was described by a
relaxation superoperator. The parameter

which was varied in the simulations
is a measure for the coupling strength in
the proton bath.

kI

-200 0 200

0

100

250

500

1000

2500

5000

kI [s
-1]

ω/(2π) [Hz]

I

kI

�
rf ω1Ikxk∑=

I

�d
1( ) ω1

ωr
------ ωk

rf Iky⋅
k
∑⋅=

�e
1( ) ω1

ωr
------ ωSk

rf 2SzIky⋅
k
∑⋅=



56
and (iii) the cross term between the rf irradiation and the homonuclear dipolar

coupling tensor

. [4.8]

The averaged constants , , and can be calculated from the commutators of

Eq. [4.2] and are given in Appendix B.

Assuming that the rf-irradiation field strength is much lower than the spinning

frequency but considerably larger than the residual dipolar coupling after averaging

by MAS we can now transform the MAS-averaged Hamiltonian into a interaction

frame quantized along the rf field and perform a second averaging step. The total

Hamiltonian before this second averaging step is given by

. [4.9]

If we only consider zeroth-order average Hamiltonian terms in this interaction frame

by the cw rf field we obtain a Hamiltonian

[4.10]

which contains only the isotropic chemical shift of the spins, the homonuclear J

coupling of the spins, and a term originating from the homonuclear dipolar

couplings of the spins. The last term of Eq. [4.10] promotes spin diffusion among the

spins and has a similar structure to the one found when employing high-power cw

decoupling (4) (see also Eq. [3.6]). The constant can be calculated from the

interaction-frame transformation and is given in Appendix B.

The system is only described to a good approximation by the Hamiltonian of

Eq. [4.10] if the rf field is considerably larger than the -spin terms in . Especially

critical are the isotropic chemical-shift offsets of the spins, the heteronuclear J

coupling, and the first-order terms involving rf irradiation. On the other hand, the

consecutive averaging approach is only valid if the rf field is considerably smaller

than the spinning frequency. Therefore we expect the best results at high spinning
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frequencies since this will lead to smaller terms in and, at the same time, allows

the use of higher “low-power” decoupling fields without interference effects from the

sample spinning.

If we assume that , we obtain the following first-order average

Hamiltonian where only terms linear in and involving the -spin operators are

shown:

. [4.11]

It is interesting to note that again the cross terms between the chemical-shielding

tensor of the spins and the heteronuclear dipolar-coupling tensor dominates the

first-order average Hamiltonian as was found in the case of high-power decoupling.

We can also calculate the average Hamiltonian by simultaneously averaging

over the rotation of the spin part and the space part of the Hamiltonian assuming that

the ratio between the rf-irradiation field strength and the spinning frequency is an

integer. The zeroth-order average Hamiltonian is given as

, [4.12]

assuming that p>2, i.e., no recoupling condition (e.g., HORROR condition at

) is matched. The first-order average Hamiltonian for a ratio ,

where p is an integer, is given by:

. [4.13]

Only terms involving -spin operators are shown for simplicity. For large values of

we can simplify Eq. [4.13] and obtain:
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, [4.14]

which contains similar terms as one obtains from the sequential averaging approach

in Eq. [4.11]. One has to keep in mind that for large values of the cycle time of the

average Hamiltonian calculation becomes quite long and the question of the

convergence of the average Hamiltonian approach has to be considered.

It is interesting to compare this average Hamiltonian to the case of high-power

cw irradiation as shown in Eq. [2.19]. Exactly the same terms dominate the residual

line width, and only the weighting prefactors, which depend on the ratio between

the spinning frequency and the rf-field strength, have a different functional form.

There are two possible ways to further decrease the linewidth using the low-

power rf-irradiation approach. One can further increase the MAS frequency and,

thereby, reduce the size of the first-order terms in Eqs. [4.13] and [4.14]. Increasing the

spinning frequency will also allow the use of higher rf-irradiation fields which will

decrease the size of the first-order average Hamiltonian even more. The second

approach would be the design of multiple-pulse sequences which reduce the size of

the first-order terms. Here one has to avoid recoupling conditions which could,

potentially, lead to an unwanted broadening of the lines.

4.2 Numerical Simulations

Numerical simulations of low-power cw decoupling suffer from the same

problems as numerical simulation of high-power cw decoupling. Simulating a small

spin system does not reflect the reality of a strongly coupled proton system and one

has to find ways to incorporate the effect of strong proton couplings into a small

coherently simulated spin system.

Nevertheless, numerical simulations in small spin systems can be used to

illustrate the fact that the cross term between the chemical-shielding tensor and the

heteronuclear dipolar coupling tensor is indeed the dominant contribution to the

�
1( ) pωkπJSk

ωr
----------------------

ωSk
+mωk

-m

m2pωr

---------------------
m 2–=

m 0≠

2

∑– 2SzIkx⋅
k
∑=

p

p



59
residual line width for low-power cw decoupling. Figure 4.2 shows the maximum line

intensity for a three-spin simulation in a C-H-H system at an MAS spinning frequency

of 50 kHz as a function of the rf-field strength. The spin system consists of a dipolar

coupled CH pair with = 46 kHz and an additional proton which is dipolar

coupled to the first proton only ( = 40 kHz). Without proton irradiation the

line width is, as expected from Eq. [4.5], dominated by the presence of a large

homonuclear dipolar coupling. Setting the homonuclear dipolar coupling to zero (and

keeping the rf irradiation off) leads to an intensity of one independent of the size of

the proton CSA tensor. For the whole range of rf-field strengths, the addition of a CSA

tensor to the proton which is coupled to the carbon ( = 3 kHz, = 0, coaxial

with the dipolar coupling) leads to a significant reduction in the maximum line
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Figure 4.2: Maximum peak intensity of a simulated three-spin system under MAS rotation (
= 50 kHz) as a function of the rf-field strength. The crosses ( ) indicate the values for
simulations without a CSA tensor on the protons, the squares ( ) indicate values for
simulations including a CSA tensor on the proton coupled to the carbon ( = 3 kHz,

 = 0, coaxial with the dipolar coupling).
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intensity. This is in good agreement with Eqs. [2.18] and [4.13] which predict that the

cross term between the chemical-shielding tensor and the heteronuclear dipolar

coupling tensor dominates the residual line width for both high-power and low-

power cw decoupling. The simulations without the CSA tensor show almost perfect

decoupling, i.e., an intensity close to one, over the whole range of rf-field strengths

except when the =1,2,3, or 4 rotary-resonance conditions ( ) (5),(6),(7),(8)

are matched. One can also see that matching the HORROR condition ( ) in

the case of a non-negligible CSA tensor leads to an increased line intensity due to a

recoupling of the homonuclear dipolar coupling.

4.3 Experimental Results and Discussion

All experiments presented in this section were carried out on a Bruker DMX-

500 spectrometer equipped with a 1.8 mm o.d. double-resonance MAS probe capable

of spinning up to 50 kHz (9). In order to accurately calibrate the decoupler field

strengths, the amplitude of the rf-pulses was measured by attenuating the output of

the amplifier and feeding it into the receiver of the NMR system. The obtained voltage

is a measure of the rf-field strength. The calibration of the voltage in terms of

frequency units was then carried out by measuring the nutation frequency at a few

selected power levels (Figure 4.3)

To evaluate the decoupling performance as a function of the rf-field strength at

different spinning frequencies, experiments were performed on 8% labeled 2-13C-

alanine (Figure 4.4) and on 5% labeled 2-13C-glycine (Figure 4.6). Enriched samples

were used to enhance the rate of data collection. The degree of labeling used in the

experiments does not influence the results presented here. The alanine sample was

used to characterize the behavior of a CH group while the glycine sample was used to

characterize a CH2 group. The spinning frequency was varied between 20 and 50 kHz

and the rf-field strength was varied between 1 and 215 kHz in steps of 0.1 dB. For

each spinning frequency and decoupling field strength a 1D 13C spectrum was

recorded, and the line width and the line intensity were obtained by fitting the FID

with a single mixed Lorentzian/Gaussian line. The assumption of such a line shape

n ω1 nωr=

ω1 ωr 2⁄=
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proved to be good. The value for the full width at half height (FWHH) was obtained

by fitting the FID and extracting the numerical values for the FWHH from the best fit.

Figure 4.4 shows the line width of the 13C line in alanine (FWHH) in a cw

decoupling experiment as a function of the ratio of the decoupler field strength and

the spinning frequency for the four spinning frequencies = 20, 30, 40, and 50 kHz.

It can clearly be seen that the line becomes broad around the well-known rotary-

resonance conditions with n=1,2 (6),(7) where the heteronuclear dipolar

coupling is recoupled due to the interference between the spinning frequency and the

rf-field strength. As expected, weak rotary-resonance recoupling for is also

observed. The HORROR recoupling condition (10) at is not observed in

these measurements because HORROR recouples only the homonuclear dipolar

couplings, which do not significantly influence the line width of the 13C line.

At the highest decoupling field strength ( = 215 kHz, last data point in all

measurements) we find that the line width increases significantly with increasing

spinning frequency as expected (11). This increase in line width is due to the closer

proximity to the n=2 rotary-resonance condition and to the reduction of the effective

homonuclear dipolar coupling among the protons at higher spinning frequencies. The
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reduced proton-proton coupling strength leads to a quenching of the spin diffusion

and thus to a reduced “self-decoupling” (3),(12),(13),(14) of the residual line

broadening after cw decoupling (15). At 20 kHz MAS spinning frequency the line

width obtained at 215 kHz decoupling field strength is about 40 Hz while at 50 kHz

MAS the residual line width is above 60 Hz.

If we look at decoupling field strengths below the rotary-resonance

condition, we find that at the higher spinning frequencies it is possible to achieve

reasonably good decoupling. At 20 kHz MAS the narrowest line width obtained is

300 Hz FWHH at a decoupling field strength of about 5 kHz. At 30 kHz MAS the line

width is reduced to 70 Hz at a decoupling field strength of 8.5 kHz, and at 40 kHz the

line width is only about 50 Hz at an rf-field strength of 10 kHz. Under these

conditions, the line is already narrower than the one obtained with a cw decoupling

Figure 4.4: 13C line width (FWHH) in 8% labeled 2-13C-alanine at MAS spinning frequencies
of 20, 30, 40, and 50 kHz as a function of the decoupler field strength scaled by the MAS
frequency.
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field of 215 kHz at the same spinning frequency. At 50 kHz MAS the narrowest line

width of about 40 Hz is obtained at a field strength of 21 kHz. This width is quite close

to the minimum of 35 Hz obtained in this sample using TPPM decoupling at 45 kHz

MAS and an rf-field strength of 215 kHz (Figure 4.5c).

To give an impression of the quality of the spectra, some low-power decoupled

spectra for the four MAS spinning frequencies are shown in Figure 4.5b. The

decoupling power was set to the value in the interval from 0 to half the spinning

frequency that gives the lowest line width in Fig. 4.4. Figure 4.5a shows the spectra at

the same MAS frequencies for high-power decoupling ( ), and Figure

4.5c shows an optimized TPPM-decoupled spectrum at an MAS frequency of 45 kHz

and an rf-field strength of 215 kHz. All spectra are shown on the same scale to allow

direct comparison of line intensity and line width.

Figures 4.6 shows the dependence of the line width on the rf-field strength in

cw decoupled spectra for a CH2 group in 2-13C-glycine. In principle, the same

Figure 4.5: a) High-power decoupled spectra obtained with a cw-decoupling field strength of
215 kHz; b) optimized low-power cw-decoupled spectra of 2-13C-alanine (CH) at four
spinning frequencies; c) optimized TPPM decoupled spectrum at 45 kHz MAS spinning
frequency.
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features as in the CH group are observed, but the overall line width is increased

significantly. This illustrates the well-known fact that CH2 groups are generally more

difficult to decouple than CH groups due to the strong homonuclear dipolar coupling

of about = 40 kHz. The higher-order rotary-resonance conditions are much

more pronounced than in the measurement of the CH group (Figure 4.4). The

narrowest lines for low-power decoupling are found to be about 60 Hz FWHH. They

are obtained at 50 kHz MAS frequency and a decoupling field strength of about

11 kHz. This width is about 20% larger than the 50 Hz obtained in this sample using

TPPM decoupling at 215 kHz with 45 kHz MAS (Figure 4.7c). Figure 4.7 shows again

the best low-power cw decoupled spectra (Figure 4.7b) in comparison with the best

high-power cw decoupled spectra (Figure 4.7a) to allow direct comparison of the line

intensities and the line widths obtained by the different methods. For higher MAS

spinning frequencies, low-power cw decoupling is again superior to high-power cw

Figure 4.6: 13C line width (FWHH) in 5% labeled 2-13C-glycine at MAS spinning frequencies
of 20, 30, 40, and 50 kHz as a function of the decoupler field strength scaled by the MAS
spinning frequency.
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decoupling, but the narrowest lines are still obtained using optimized TPPM

decoupling.

The bandwidth of cw decoupling at low rf-field strengths is, of course, limited

and an accurate setting of the rf-irradiation frequency is important. Simple offset-

compensating composite pulse sequences such as WALTZ-4 (16),(17) gave only very

small improvements in the bandwidth compared to cw irradiation. Since the

dominant term for the residual line width under low-power decoupling (Eq. [4.11])

has the same structure as the one under high-power decoupling (Eq. [2.19]), one can

expect that further improvements in low-power decoupling are possible by using

pulse sequences that reduce the size of the first-order average Hamiltonian term.

To illustrate the performance of the decoupling with low-power cw irradiation

in a larger molecule, tests were performed on a sample of a fully 13C and 15N labeled

cyclic decapeptide, antamanide, which can be crystallized to yield quite narrow lines

(18). Figure 4.8 shows spectra of antamanide (a) at 50 kHz and (b) at 30 kHz MAS

Figure 4.7: a) High-power decoupled spectra obtained with a cw-decoupling field strength of
215 kHz; b) optimized low-power cw-decoupled spectra of 2-13C-glycine (CH2) at four
spinning frequencies; c) optimized TPPM decoupled spectrum at 45 kHz MAS spinning
frequency.
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frequencies. At 50 kHz MAS frequency (Fig. 4.8a) low-power cw decoupling shows a

significant improvement over high-power cw decoupling using an rf-field strength of

185 kHz. It is, however, also obvious that optimized TPPM decoupling can reduce the

line width even further. In the chemical-shift range of the -carbons (approximately

51-62 ppm) the differences between the 10 kHz cw decoupled spectrum and the

TPPM decoupled spectra are relatively small, and similar line widths are obtained in

10203040506070
δ [ppm]

10203040506070
δ [ppm]

a)

b)

TPPM

cw
10 kHz

cw
185 kHz

TPPM

cw
10 kHz

cw
185 kHz

185 kHz

185 kHz

Figure 4.8: 13C spectra of the cyclic decapeptide, antamanide, obtained at MAS frequencies of
a) 50 kHz and b) 30 kHz using various decoupling schemes.
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both spectra. The same is true for the proline- region (ca. 46-48 ppm). This agrees

well with the results obtained for the CH group in alanine (Fig. 4.5) where low-power

cw decoupling reached almost the line width obtained by TPPM decoupling. In the

area of the CH3-groups (ca. 17-20 ppm) there are only small differences. However, we

find considerably narrower lines in the TPPM decoupled spectrum in the area of the

CH2-groups (ca. 20-40 ppm), which agrees with what was in the measurements on the

CH2-group in glycine (Fig. 4.7).

At 30 kHz MAS spinning frequency (Figure 4.8b) low-power cw decoupling

performs significantly worse over the whole range of chemical-shift values than either

cw decoupling with an rf field strength of 185 kHz or TPPM decoupling. This also

agrees with what one would expect based on the results on alanine and glycine.

As a rule of thumb, low-power decoupling becomes an interesting alternative

to high-power decoupling for spinning frequencies larger than 40 kHz. The rf-field

strength should be about 1/4 of the spinning frequency. At spinning frequencies

larger than 50 kHz the rf-field strength can also be set to about 2/5 of the spinning

frequency (see Figure 4.4).
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5 Multiple-Pulse Decoupling Under MAS

5.1 General Considerations

The residual line broadening in cw-decoupled spectra is dominated by the

first-order average Hamiltonian term, which consists of a cross term between the

chemical-shielding tensor of the protons and the heteronuclear dipolar-coupling

tensor as can be seen from Eqs. [2.11], [2.18], and [4.13] for the cases of low and high

rf-field amplitudes. In principle, one can use a symmetric pulse sequence (1) to ensure

that all odd orders of the average Hamiltonian are zero. A symmetric pulse sequence

in this context means that in the toggling frame, the condition

[5.1]

is fulfilled. In static samples, this condition can easily be fulfilled by a simple phase-

alternating pulse sequence of the form . There are many more pulse

sequences in liquid state NMR which are symmetric and remove the first-order

average Hamiltonian (1),(2).

In rotating samples it is more complicated to fulfill this condition since one has

not only the time dependence due to the toggling frame but also the time dependence

due to the MAS sample rotation. One way to fulfill the condition of Eq. [5.1] is by

reversing both the rotation of the sample and the phase of the rf irradiation in the

center of the pulse sequence. Reversing the sample rotation is technically possible (3)

but requires too much time to be practical in this context.

Introducing a multiple-pulse sequence on top of magic-angle sample spinning

creates additional possibilities for recoupling conditions. Now we can have

interference not only between the sample spinning and the rf-field amplitude but also

with the frequencies contained in the multiple-pulse sequence. So far there are only

three multiple-pulse decoupling sequences under MAS which give improved results

over a large range of parameters, namely TPPM decoupling (4), decoupling (5),

and XiX (6) decoupling.

�̃ t( ) �̃ τc t–( )=

360°+x 360°-x,( )

C122
1–
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5.2 TPPM Decoupling

Two-pulse phase-modulated decoupling (4) consists of pulses with a flip angle

and alternating phases . The optimum value for the flip angle is typically

near 180°. The optimum value of the phase, , can vary over quite a large range and

is usually between 10° and 50°. Both the flip angle and the phase vary as a function of

the spinning speed, the spectrometer, the probe, and the sample. There are some

variations of the TPPM sequence (see Chapter 1.4) but none of them offers significant

improvements in rigid solids (7),(8),(9),(10).

Keeping in mind the remarks about possible interference effects between a

multiple-pulse sequence and the sample rotation, we can try to understand the effects

of TPPM decoupling by first calculating the effects on a static sample. Using the

following idealized TPPM pulse sequence with , we

obtain a pulse sequence which is cyclic in the average Hamiltonian sense, and we can

calculate the first two orders of the average Hamiltonian. The zeroth-order average

Hamiltonian is the same as for cw decoupling (Eq. [2.17]) while the first-order average

Hamiltonians for  is given by (11)

. [5.2]

Comparing the result of Eq. [5.2] with the equivalent result for cw decoupling (Eqs.

[2.11] and [2.19]) shows that the residual second-order term obtained under the TPPM

sequence is by a factor of smaller than for cw decoupling. For

= 40° this is about 0.23 or more than a factor of four in reduction of the second-order

recoupling contribution to the residual line broadening. However, one has to be

careful in interpreting this result. For smaller phase angles, , the residual coupling

term becomes smaller, but at the same time the cycle time of the sequence gets longer,

necessitating consideration of the convergence of the average Hamiltonian treatment.

Equation [5.2] does not reflect the experimental experience (vide infra) that one
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usually obtains distinct points in the two-dimensional parameter space where TPPM

decoupling performs particularly well.

TPPM decoupling can also be explained in the context of the symmetry

considerations of the so-called class of helical R sequences (12), where a simultaneous

averaging over the MAS rotation and the spin rotations is considered. However, the

symmetry considerations give only qualitative answers about the size of the different

terms in zeroth-order and first-order average Hamiltonian theory.
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Figure 5.1: a) Measured spectra of 2-13C-alanine using a TPPM decoupling field strength of
=100 kHz at different spinning frequencies between =10 kHz and 30 kHz at a

proton resonance frequency of 600 MHz. The phase angle, , was set to 30°, and the pulse
length was optimized. The simulated spectra in (b) use the measured spin-diffusion rate
constants, , under cw irradiation at the five spinning frequencies and assume a one-bond C-
H dipolar coupling. At all spinning frequencies, measurements and simulations result in a
relatively sharp line.
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It is not clear how the proton spin-diffusion rate constant under TPPM

decoupling and MAS compares to the one under cw decoupling and MAS as

measured in Chapter 3.3. There is no simple way of measuring the proton spin-

diffusion rate constant under TPPM irradiation. It has been claimed that some of the

improvements of TPPM decoupling are due to a recoupling of the proton

homonuclear couplings and, therefore, an increase in the proton spin-diffusion rate

constant (12). Despite this uncertainty in the size of the proton spin-diffusion rate

constant, one can try to simulate TPPM decoupling in the framework of the spin-

diffusion model (see Chapter 3.1) assuming that the spin diffusion rate constant, , is

of the same order of magnitude as the one measured under cw decoupling. A

comparison between measurements and simulations (see Fig. 5.1) shows quite good

agreement. However, this result does not allow us to draw any conclusions about the

size of the proton spin-diffusion rate constant because the simulations result in a

relatively narrow line over a large range of values for the parameter  (13).

The influence of the parameter on the performance of TPPM decoupling can

be better judged from looking at full two-dimensional TPPM decoupling surfaces.

Figure 5.2 shows a contour plot of the maximum line intensity for the CH group in 2-
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13C-alanine as a function of the pulse length ( ) and the phase angle ( ) for the

TPPM decoupling sequence . Higher peak intensity (darker areas in Figure

5.2) indicates better decoupling. The measurements (Figure 5.2a) were done at a

proton resonance frequency of 300 MHz and at a spinning frequency of =28 kHz.

The contour plot shows a relatively broad maximum for ≈5 µs (corresponding to a

180° pulse at a field strength of =100 kHz) and ≈40°. Considering the

simplicity of the model, the general features of the experimentally measured contour

plot are well represented in the simulation (Figure 5.2b), which shows that the model

is able to describe the spin system in a realistic way over a large range of parameters.

The simulations also reflect the various resonance conditions, which are indicated by

bands of low intensity in both the simulated and the experimental data.

A similar comparison is shown in Fig. 5.3 for the N-H group in [d9]-trimethyl-
15N-ammonium chloride where the rate constant = 0 s-1 was assumed, i.e., a fully

isolated two-spin system. Both the simulated and the measured two-dimensional

intensity plots are much less smooth than in the case of the strongly coupled proton

system. The areas of good decoupling are much narrower and occur for well-defined
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combinations of pulse lengths and phase angles. Again, the agreement between

simulation and experiment is quite good considering the simplicity of the model.

The quality of TPPM decoupling depends on two parameters: (i) the phase

angle, , and (ii) the pulse length, , or more precisely the flip angle, .

The optimum values for the two parameters are not easy to predict. It is, therefore,

required that one optimize both parameters under the desired experimental

conditions in order to obtain the best decoupling results. The dependence of the

efficiency of TPPM decoupling on the flip angle, , leads, especially at fast MAS

spinning frequencies, to a high sensitivity to rf-field inhomogeneities (vide infra). This

can also be seen from Fig. 5.3, which shows a very narrow optimum condition in the

flip-angle dimension.

5.3 XiX Decoupling

The main disadvantage of TPPM decoupling is the fact that the parameters for

optimum decoupling cannot be predicted easily and have to be determined

experimentally each time. Such an experimental two-dimensional parameter

optimization is time consuming and only possible for samples with a high signal-to-

noise ratio. A decoupling sequence with only a single variable parameter would,

therefore, have advantages especially if the position of the performance optimum

could be predicted theoretically and would be independent of as many experimental

parameters as possible. The simplest such sequence would be a phase-alternating

sequence  which has only one parameter, namely the pulse length .

5.3.1 Theory and Numerical Simulations

We assume a general pulse sequence of the form that spans rotor

cycles. The length of a single pulse is then given by = = , and

the rf-field strength is assumed to be . Such a sequence is cyclic in the

average Hamiltonian sense (1), permitting us to calculate the zeroth-order average

ϕ τp βp ω1– τp=

βp

θ+x θ-x,( )N τp
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τp nτr 2N( )⁄ πn Nωr( )⁄

ω1 p ωr⋅=



75
Hamiltonian for the general sequence. Assuming that the pulse length is not a

multiple of a quarter of a rotor period, we obtain:

. [5.3]

This shows that to zeroth-order average Hamiltonian theory the heteronuclear

dipolar coupling and the -spin chemical-shielding tensors are fully averaged out

while the isotropic heteronuclear J coupling and the isotropic chemical shift of the

spins are scaled. If the pulse length equals an integer multiple of a quarter of the rotor

period, we obtain additional recoupled dipolar (and CSA) terms which have the

general form

. [5.4]

�
0( )

ωS Sz⋅
Nωk

npπ
------------ npπ

N
----------- 
 sin Ikz⋅ npπ

N
----------- 
 cos 1– Iky⋅+ 

 ⋅
k
∑+=

NπJSk

npπ
---------------- npπ

N
----------- 
 sin 2SzIkz⋅ npπ

N
----------- 
 cos 1– 2SzIky⋅+ 

 ⋅
k
∑+

I

I

τp / τr

0 0.5 1 1.5 2 2.5 3
0

0.5

1
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The precise form of the coefficients depends on the exact recoupling condition. The

position of the recoupling conditions is, to zeroth order, independent of the rf-field

strength.

The occurrence of the recoupling conditions at multiples of a quarter of the

rotor period can also be understood by regarding the XiX sequence as an example of a

so-called sequence (5), (14), (15). For this we identify a C element with the basic

repeat unit of the XiX sequence, i.e., two phase-inverted pulses of length each. At

the positions of the minima ( ), the XiX sequence can then be identified

with a sequence of the type . For these sequences, symmetry considerations

predict that heteronuclear dipolar interactions will be reintroduced by interference of

the pulse sequence with the MAS rotation.

Numerical simulations of the S-spin intensity in an isolated two-spin system

( = 46 kHz, = 1.5 kHz, = 30 kHz, and = 147 kHz) as a function

of the pulse length, , (Figure 5.4) confirm the theoretical calculations. However,

they also show the limitations of lower-order average Hamiltonian calculations. The

resonance conditions in the numerical simulations are quite broad, and there are

many additional weaker resonances that are not predicted by the zeroth-order

Hamiltonian of Eq. [5.3]. These observations reflect the fact that the zeroth-order

average Hamiltonian calculation is not sufficient for a realistic description of the spin

system, especially if we have to average over several rotor cycles. Calculating higher-

order average Hamiltonians analytically for a general ratio for XiX

decoupling is very time consuming.

5.3.2 Experimental Data and Discussion

The dependence of the experimental peak height on the pulse length in XiX

decoupling is shown in Fig. 5.5a–c for two different rf-field amplitudes, , and two

MAS frequencies, , in a sample of 2-13C-alanine. The peak height of 1 is calibrated

with respect to experimentally optimized TPPM decoupling at the same spinning

frequency and rf-field strength. The agreement between the experimental data at

30 kHz MAS and 150 kHz rf-field strength (Fig. 5.5a) with the numerical simulations
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in an isolated two-spin system (Fig. 5.4) is quite good. The position of the main

minima agree very well, and the minima at an odd integer multiple of half a rotor

cycle are considerably broader than the ones at integer multiples of a rotor cycle,

which in turn are broader than those at odd integer multiples of a quarter rotor cycle.

At lower rf-field amplitudes there are additional minima that are not predicted by the

simulations. They are most likely due to multiple-spin effects. These weak
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Figure 5.5: Experimental peak height under XiX decoupling as a function of the pulse length
for two different spinning frequencies and two different rf-field strengths. The peak height of
1 is calibrated with respect to experimentally optimized TPPM decoupling at the same
spinning frequency and rf-field strength.
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“resonances” are found whenever the pulse length approximately matches certain

multiples of 1/24th of the rotor period. In the experimental data of Fig. 5.5 we find

such minima for , , , and

, where  is an integer.

Some of these additional “resonances” get more pronounced at lower rf field

amplitudes, which can be seen by comparing the measurements at 30 kHz MAS and

150 kHz field strength (Fig. 5.5a) with the ones at 30 kHz MAS and 110 kHz field

strength (Fig. 5.5b). It is interesting to note that for the lower MAS frequency of

20 kHz and an rf-field strength of 110 kHz (Fig. 5.5c), these additional resonances are

again smaller and about the same size as for the measurements in Fig. 5.5a. With

increasing ratio of , the “resonances” become weaker, but the peak height at the

local performance maxima between the “resonances” decreases. Ultimately, the

performance of the XiX sequence approaches, of course, that of cw decoupling. This is

illustrated in Figure 5.6, which shows the same measurement as Fig. 5.5a extended to

pulse lengths of up to 150 rotor periods.

In XiX decoupling good performance is achieved whenever the pulse length is

longer than approximately one rotor period and unwanted resonance conditions, as

discussed earlier, are avoided. It can be seen from Fig. 5.5, where the peak height was

normalized for experimentally optimized TPPM decoupling (dashed lines), that for a

broad range of pulse lengths , the peak height under XiX decoupling is up to 20%

higher than the optimized TPPM value. Even though there is a large number of

undesired minima with bad decoupling performance, their positions in units of the

rotor period, , is largely independent of the rf-field amplitude and the MAS

frequency. Therefore, values where a good decoupling performance is achievable can

easily be predicted.

The XiX decoupling sequence is simple to set up and adjust since it depends

only on a single parameter, i.e., the pulse length, . As a good starting value, the

pulse length can be adjusted to and then optimized experimentally in a

relatively narrow range ( ). As the performance depends primarily only on the

timing of the sequence relative to the sample rotation, transmitter instability, probe

τp 3n 1±( ) τr 3⁄⋅= τp 6n 1±( ) τr 6⁄⋅= τp 8n 1±( ) τr 8⁄⋅=

τp 8n 3±( ) τr 8⁄⋅= n

τp τr⁄

τp

τr

τp

τp 2.85 τr⋅=

0.1± τr⋅
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detuning or rf-field inhomogeneity do not critically affect the performance of the

sequence.

5.4 Comparison between TPPM and XiX Decoupling

A more detailed comparison between the decoupling qualities of TPPM and

XiX for different samples and under different experimental conditions is given in Fig.

5.7. Experimental spectra are shown for a CH group (Fig. 5.7a), using 2-13C-alanine as

a model substance, and for a CH2 group (Fig. 5.7b), using 2-13C-glycine. The

parameters of both TPPM and XiX decoupling were optimized experimentally for the

two samples, the two MAS frequencies, and the three rf-field amplitudes. For each

pair of spectra recorded with the two decoupling sequences, it was carefully checked

cw
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Figure 5.7: Line shape of the Cα resonances of (a) 2-13C-alanine and (b) 2-13C-glycine for
TPPM and XiX decoupling at two different MAS frequencies and at three different rf-field
amplitudes. For each spectrum, the parameters of the two decoupling sequences were
adjusted to give maximum peak height.
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that the integrals of the resonance lines were identical within experimental

uncertainty.

For the CH group (Fig. 5.7a), the height of the resonance line under optimized

XiX decoupling is increased over the optimum height found for TPPM. As mentioned

already, the line widths (FWHH) are very similar for both sequences, and the gain is

primarily obtained by a sharpening of the broad ‘foot’ in the TPPM spectra. The

largest improvement of ca. 29% in peak height is achieved at the highest rf-field

amplitude of 150 kHz and at an MAS spinning frequency of 30 kHz. The advantages

of XiX over TPPM decoupling decrease with decreasing rf-field strength and

decreasing MAS frequency. At a relatively low spinning frequency of 10 kHz, XiX

decoupling only outperforms TPPM decoupling at an rf-field strength of 150 kHz

(data not shown) (6).

The general trends observed for the CH group become more pronounced for

the CH2 group of glycine, as shown in Fig. 5.7b. Again, both TPPM and XiX were

optimized for each spinning frequency and rf-field amplitude. While under high MAS

frequencies and high rf-fields strength (e.g., = 30 kHz and = 150 kHz) gains in

peak height are achieved by using XiX decoupling, TPPM decoupling offers

advantages at lower rf-field strengths and slower MAS rotation.

Figure 5.8 shows the dependence of XiX (Fig. 5.8a) and TPPM (Fig. 5.8b)

decoupling on the rf-field amplitude for one particular set of parameters. Only the rf-

field strength was changed while all other parameters were kept fixed. This

corresponds to the situation that one encounters when rf-field inhomogeneities are

present in a sample. These spectra were obtained from measurements on the CH

group of labeled 2-13C-alanine packed in a rotor in which the sample volume was

restricted to the central 1.5 mm along the rotor axis. The MAS frequency in all

measurements was set to 30 kHz. The performance of TPPM decoupling had been

optimized at a nominal rf-field amplitude of = 130 kHz, yielding parameters =

3.7 µs and = 35°. The performance of TPPM decoupling degrades significantly at

lower and a higher rf-field strength. Optimization of the XiX sequence at =

νr ν1

ν1 τp

ϕ

ν1



82
130 kHz yielded an optimum pulse length of = 93.7 µs = 2.81 . The overall

dependence on the rf-field amplitude is much weaker than for TPPM decoupling.

As mentioned above, for obtaining optimum decoupling using TPPM it is

mandatory to optimize both the pulse length and the phase difference of the

sequence. Predictions for the optimum values are difficult to make and, especially at

 1.05 1.00 0.950.900.85

0

0.2

0.4

0.6

0.8

1

rf-field amplitude

pe
ak

 h
ei

gh
t [

a.
u.

]

Figure 5.8: Dependence of the Cα resonance of 2-13C-alanine (CH group) on the rf-field
strength for (a) XiX and (b) TPPM decoupling. An amplitude of = 130 kHz corresponds to
1.00 and 0 dB attenuation. TPPM decoupling shows a much stronger dependence on the rf-
field strength than XiX decoupling.
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higher MAS frequencies, TPPM becomes very sensitive to the precise setting of the

parameters as can be seen from Figures 5.2 and 5.3. The XiX sequence, on the other

hand, only has a single parameter, and based on the MAS frequency, one can predict

the locations of the performance maxima quite well. As a rule of thumb, good starting

values for the pulse length when using XiX decoupling are and

. From these starting values a local optimization of the pulse length

should be sufficient for obtaining a close-to-optimum performance.

Gains in peak height of up to 29% over TPPM can be achieved by using the XiX

decoupling sequence. The gain in peak height is, in the examples shown here, mainly

due to a sharpening of the broad “foot” that is observed when using TPPM or cw

decoupling. In addition to a gain in resolution, application of the new sequence can

lead to significant gains in sensitivity. When applied to typical organic or biological

solids, the XiX sequence is best suited for high MAS frequencies (above ca. 20 kHz)

and high rf fields (above ca. 100 kHz), even though gains over previously developed

decoupling sequences have been observed in certain cases already at an MAS

frequency of 10 kHz.
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6 Conclusions and Outlook

The understanding of the processes which determine the residual line width

under high-power cw decoupling has improved significantly over the past ten years.

It is now known that the contribution from a cross term between the proton chemical-

shielding tensor and the heteronuclear dipolar-coupling tensor dominates the

residual linewidth. These residual coupling terms are then partially averaged out by

the proton spin-diffusion process, which leads to a exchange-type process between

the two transitions of the spins. Depending on the rate constant of the proton spin-

diffusion process, this can lead to a significant narrowing of the line compared to an

isolated two-spin situation. This process has sometimes been called “self decoupling.”

A simple analytical model using an isotropic spin-diffusion-type superoperator

allows the efficient and realistic description and simulation of cw decoupling in

strongly-coupled spin systems. The proton spin-diffusion rate constant can be

measured experimentally, allowing direct comparison of experimental results with

numerical simulations.

With increasing spinning frequencies, a new method of decoupling using low-

power rf-field irradiation becomes feasible. Here, the rf-field strength has to be

significantly lower than the MAS frequency while at the same time be large compared

to residual coupling terms. This allows efficient decoupling at fast MAS frequencies

without the need for high rf-fields that can lead to unwanted heating of the sample.

The same terms dominate the residual line width in both low-power and high-power

cw decoupling. It seems, therefore, not unreasonable to expect that further

improvements in low-power decoupling can be achieved by using multiple-pulse

sequences.

The best decoupling results are currently still achieved by high-power

decoupling using multiple-pulse sequences. The progress achieved in heteronuclear

spin decoupling under MAS can be seen quite well from Figure 6.1. It shows the Cα

resonance of 2-13C-alanine under cw (Fig. 6.1a), optimized TPPM (Fig 6.1b), and

optimized XiX (Fig. 6.1c) decoupling at the same rf-field strength of 150 kHz and at

the same MAS frequency of 30 kHz. Both TPPM and XiX decoupling show obvious

S
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improvements in line width and line height compared to cw decoupling. The peak

height for XiX decoupling is increased by an additional 29% over TPPM, while the

line width (FWHH) is only slightly reduced, namely from 33 Hz (TPPM) to 31 Hz

(XiX). The reason for this apparent contradiction is that the broad ‘foot’ at the base of

the TPPM-decoupled spectrum is reduced under XiX decoupling and now

contributes to the central, narrow part of the line (1). Such an increase in peak height

by 29% is equivalent to a decrease of the measurement time by 40% in order to obtain

the same signal-to-noise ratio.

The achievable line width in a sample is, of course, not only determined by the

quality of the decoupling but also by the structural homogeneity of the sample. This

fact is illustrated in Figure 6.2 which shows three 13C and 15N spectra recorded on a

1 kHz
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Figure 6.1: Line shape of the Cα resonance of alanine under different decoupling schemes at
an rf-field amplitude of = 150 kHz and an MAS frequency of 30 kHz. (a) cw decoupling;
(b) optimized TPPM decoupling ( = 3.1 µs and = 27˚); (c) optimized XiX decoupling ( =
94.9 µs).
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sample of antamanide under different sample-preparation techniques (2). The spectra

of the lyophilized sample (Figure 6.2a) show very broad lines and improving the

decoupling quality will have no visible influence on the one-dimensional spectra. The

spectra of the slowly crystallized sample (Figure 6.2c) show narrow and well-resolved

lines and improvements in the decoupling quality might reduce the line width even

further. This example clearly illustrates that heteronuclear decoupling is only one of

several aspect which are important for obtaining well resolved spectra.

However, even for samples with a large heterogeneous broadening like the

ones shown in Figure 6.2a, reducing the homogeneous linewidth can be important for

certain experiments. In the solid-state implementation of the INADEQUATE-CR

experiment (3) only the homogeneous part of the line width determines the sensitivity

of the experiments, while the heterogeneous part of the line width is not important.

10203040506070

(a)

(b)

(c)

13C 15N

ppm100110120130140

Figure 6.2: Selection of 13C and 15N MAS spectra of antamanide to illustrate the influence of
sample preparation on the achievable line width. (a) Lyophilized powder. (b, c) Micro-
crystalline powders obtained by evaporation of the solvent from a solution of antamanide in a
7:3 methanol/water mixture. The sample leading to spectra (b) was obtained by fast
evaporation of the solvent at room temperature in the presence of dry silica gel as a drying
agent. The sample leading to spectra (c) was obtained by slow evaporation during several
days in a controlled humidity of 76%.
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Therefore, in this experiment it is important to use the best possible decoupling even

in the presence of heterogeneous broadening due to structural inhomogeneities in the

sample. In the context of two-dimensional correlation spectroscopy the distinction

between the heterogeneous and the homogeneous line width is also important since

they will lead to differences in the line shape.

It is not clear whether the line width achievable under XiX decoupling is still

dominated by residual coupling terms or by the isotropic chemical-shift distribution

of the samples. The first contribution to the line width could be reduced by further

improvements in the decoupling sequences, while the latter would not be influenced.

Most likely both contributions to the line width are still present and their relative

contributions are sample dependent.
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7 Appendices

7.1 Appendix A

The explicit expressions for all the Hamiltonians under magic-angle spinning

used in Eq. [1.1] are given here. They can also found in the literature (1), (2), (3) but

the notation might be different. The index for the spins was replaced by an index

 in all equations where only a heteronuclear two-spin system was considered.

Isotropic chemical shifts of spins S and I:

[7.1]

[7.2]

where  and  are the isotropic chemical shifts of spins  and , respectively.

Homonuclear isotropic J coupling:

[7.3]

where  is the isotropic J-coupling constant between spins  and .

Heteronuclear isotropic J coupling:

[7.4]

where  is the isotropic J-coupling constant between spins  and .

Anisotropic chemical-shielding tensors of spins S and I:

[7.5]

[7.6]
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where and are the time-dependent chemical-shielding tensors of spins

and , respectively. The constants and are the corresponding Fourier

coefficients defined below.

Homonuclear dipolar coupling tensor of spins I:

[7.7]

where are the time-dependent, dipolar-coupling tensors between spins and

 with the Fourier coefficients .

Heteronuclear dipolar coupling tensor between spins S and I:

[7.8]

where are the time-dependent dipolar-coupling tensors between spins S and

 with the Fourier coefficients .

Rf irradiation on the  spins:

[7.9]

where is the (possibly) time-dependent rf-field amplitude. This time

dependence is not due to the MAS rotation but due to the rf-irradiation scheme.

The Fourier coefficients of Eqs. [7.5] and [7.6] are defined as

[7.10]
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where is the reduced Wigner matrix element; is the rotation angle; , ,

and are the three Euler angles which describe the orientation of the chemical-

shielding tensor in the rotor-fixed frame; and are the elements of the chemical-

shielding tensor in spherical-tensor notation. They are defined as:

. [7.12]

Here, the anisotropy of the chemical-shielding tensor, , is defined in angular

frequency units and  is the asymmetry of the chemical-shielding tensor.

The Fourier coefficients of the dipolar-coupling tensors of Eqs. [7.7] and [7.8]

are defined as:

[7.13]

[7.14]

where is the reduced Wigner matrix element; and the angles and are the

two Euler angles describing the orientation of the dipolar-coupling tensor in the rotor-

fixed frame. The spherical-tensor elements are given by
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[7.17]

is the anisotropy of the dipolar-coupling tensor in units of angular frequency. The

second line of Eqs. [7.13] and [7.14] is only valid for = ≈ 54.74° (magic angle).

For the heteronuclear dipolar-coupling tensor, analogous expressions hold true.

7.2 Appendix B

The six coefficients in Eqs. [4.5]-[4.8] can be calculated from the Fourier

coefficients of the various time-dependent Hamiltonians given in Eqs. [7.10]-[7.14].

All calculations were carried out using the Mathematica program by Wolfram

Research.

The coefficient for the cross term between the heteronuclear coupling

(anisotropic dipolar coupling plus isotropic J coupling) and the homonuclear

coupling (anisotropic dipolar coupling plus isotropic J coupling) is given by:

. [7.18]

The coefficient for the cross term between the homonuclear coupling (anisotropic

dipolar coupling plus isotropic J coupling) and the chemical shift of spin I (anisotropic

chemical-shielding tensor plus isotropic chemical shift) is given by:

. [7.19]

The coefficient for the first-order term of the homonuclear coupling (anisotropic

dipolar coupling plus isotropic J coupling) with itself is given by:
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. [7.20]

The coefficient for the cross terms between the rf field and the anisotropic chemical-

shielding tensor is given by:

. [7.21]

The coefficients for the cross term between the rf field and the anisotropic

heteronuclear dipolar-coupling tensor is given by:

. [7.22]

The coefficients for the cross term between the rf field and the anisotropic

homonuclear dipolar-coupling tensor is given by:

. [7.23]

The coefficient of [4.10] is given by: [7.24]

. [7.25]

For simplicity, only the homonuclear dipolar coupling has been considered in the

above expression while the homonuclear J coupling has been omitted.
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