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Abstract

There is overwhelming evidence that solid human tumours grow within a unique micro-environment. This environment is char-

acterised by an abnormal vasculature, which leads to an insufficient supply of oxygen and nutrients to the tumour cells. These
characteristics of the environment limit the effectiveness of both radiotherapy and chemotherapy. Measurement of the oxygenation
status of human tumours has unequivocally demonstrated the importance of this parameter on patient prognosis. Tumour hypoxia

has been shown to be an independent prognostic indicator of poor outcome in prostate, head and neck and cervical cancers. Recent
laboratory and clinical data have shown that hypoxia is also associated with a more malignant phenotype, affecting genomic sta-
bility, apoptosis, angiogenesis and metastasis. Several years ago, scientists realised that the unique properties within the tumour

micro-environment could provide the basis for tumour-specific therapies. Efforts that are underway to develop therapies that
exploit the tumour micro-environment can be categorised into three groups. The first includes agents that exploit the environmental
changes that occur within the micro-environment such as hypoxia and reduced pH. This includes bioreductive drugs that are spe-
cifically toxic to hypoxic cells, as well as hypoxia-specific gene delivery systems. The second category includes therapies designed to

exploit the unique properties of the tumour vasculature and include both angiogenesis inhibitors and vascular targeting agents. The
final category includes agents that exploit the molecular and cellular responses to hypoxia. For example, many genes are induced by
hypoxia and promoter elements from these genes can be used for the selective expression of therapeutic proteins in hypoxic tumour

cells. An overview of the various properties ascribed to tumour hypoxia and the current efforts underway to exploit hypoxia for
improving cancer treatment will be discussed. # 2002 Published by Elsevier Science Ltd.
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1. Introduction

1.1. Hypoxia is present in solid human tumours

During the past 10 years, it has become evident that
solid human tumours very often contain regions that are
deficient in oxygen. The presence of hypoxia has been
demonstrated in cervical cancer [1,2], squamous cell
carcinoma (SSC) of the head and neck [3,4], melanoma
[5,6], breast [7,8] and more recently in prostate cancer

[9]. The oxygen levels are typically very heterogeneous
both among patients and within individual tumours.
Oxygenation status has primarily been measured using
either polarographic oxygen electrodes (Eppendorf) or
biochemical techniques that rely upon the antibody
detection of nitroimidazole-based adducts within
hypoxic tissue (pimonidazole, EF5, EF1). Electrode pO2
data have been used extensively in clinical studies and
are often referred to as the ‘gold standard’ for deter-
mining tumour oxygenation status. However, these
electrodes show no discrimination of cell type or viabi-
lity and thus will record readings from less significant
(radiobiologically speaking) tissue. Since pimonidazole
and EF5 are selectively reduced only in viable hypoxic
cells, they have a theoretical advantage for determina-
tion of relevant hypoxia. This may also explain why
Eppendorf pO2 values do not always correlate with the
nitroimidazole-based hypoxia marker studies [10–12].
Reliable methods of identifying patients with hypoxic
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tumours will be increasingly important in the coming
years as therapies targeting this aspect of the micro-
environment approach use in the clinic.

1.2. Hypoxia is associated with poor prognosis

The presence of hypoxic cells in human tumours is
considered as one of the multifactorial causes of tumour
treatment resistance. Experimental and clinical evidence
suggest that the hypoxic fraction in solid tumours
reduces sensitivity to conventional treatment modalities,
influences growth, and may increase malignant progres-
sion. Importantly, tumour hypoxia has been clinically
demonstrated to predict an adverse treatment outcome
in the radiotherapeutic management of cancer of the
head and neck, uterine cervix and soft-tissue sarcomas
[2,4,13–16]. In head and neck cancer in particular, there
is strong evidence that hypoxia is associated with poor
outcome of radiotherapy in terms of locoregional con-
trol, disease-free survival and overall survival [13]. This
poor prognosis due to hypoxia is independent of known
prognostic parameters such as clinical stage. In some
cases, the prognostic value of hypoxia was shown to be
independent of the treatment modality. Patients with
hypoxic tumours in one series had a worse prognosis
when treated with surgery alone [2]. This result implies
that hypoxia may be associated with more advanced or
aggressive tumours.

2. Mechanisms for worse prognosis

2.1. Treatment resistance

For many years, the importance of hypoxia in solid
tumours was linked solely to the fact that hypoxic cells
are intrinsically more resistant to treatment. For ionis-
ing radiation, the dose required to produce the same
amount of cell killing is up to 3 times higher for hypoxic
cells compared with well-oxygenated cells [17]. Chemo-
therapeutic drug resistance in hypoxic cells is also par-
tially caused by reduced toxicity in the absence of
molecular oxygen. Some agents, such as bleomycin,
require free radicals in their mechanism of cell killing.
Chemotherapeutic drug resistance can also be caused by
the hypoxia-induced inhibition of cell cycle progression
and proliferation, since a number of drugs specifically
target highly proliferating cells. Proliferation decreases
as a result of decreasing oxygen levels [18], and it has
been shown that the drug toxicity falls off as a function
of distance from blood vessels [19]. Furthermore,
chemotherapeutic drug delivery to hypoxic areas is
challenged since tumour hypoxia itself arises from
insufficient and distorted vasculature. Thus the effective
dose to hypoxic regions may be much less than to other
parts of the tumour [19,20].

2.2. Increased malignancy

Recently, data have suggested that conditions within
the tumour micro-environment, most notably hypoxia,
can influence patient prognosis by means other than
treatment resistance. These data have come from both
the laboratory and the clinic.

2.2.1. Laboratory data
There is a wealth of data from the laboratory that

implicates hypoxia as a contributor to the malignant
phenotype. Hypoxia has been implicated in promoting
metastasis, angiogenesis, and selection of cells with a
more malignant phenotype.

2.2.1.1. Metastasis. Several experimental models have
shown that tumour hypoxia is associated with an
increased ability to form metastases. Young and co-
workers demonstrated many years ago that murine
tumour cells exposed to severe hypoxia increased their
metastatic potential [21]. Similarly, in the murine KHT-C
fibrosarcoma model, hypoxic primary tumours exhibit a
significant increase in pulmonary metastases [22]. Other
in vitro experiments utilising the vasculosa area of early
chick embryos to grow human glioblastoma cells
demonstrated that microvessel density was significantly
increased under hypoxia, and that migration of tumour
cells outside of the main tumour mass occurred only
under hypoxic conditions [23].
Hypoxia is able to promote tumour metastasis in two

ways: (1) by inducing the expression of gene products
involved in the metastatic cascade and (2) by providing
selection pressure for a more aggressive phenotype (see
next section). The initiation of metastasis is a multistep
pathway that involves three major processes: degrada-
tion of the basement membrane and extracellular matrix
(ECM), modulation of cell adhesion molecules, and cell
migration. Hypoxia plays a role in influencing several of
these areas, thereby making it an attractive target to
control tumour progression.
The importance of matrix metalloproteinases

(MMPs) in tumour invasion and metastasis is widely
accepted. This family of enzymes is capable of degrad-
ing constituents of the basement membrane and ECM,
including fibrillar collagen, but may also contribute to
metastasis through interactions with cell adhesion
molecules and migration through the ECM [24]. Several
studies have shown that MMP expression is associated
with poor prognosis and decreased overall survival [25–
27]. Canning and co-workers have shown that MDA-
MB-231, a highly metastatic breast carcinoma cell line,
displays reduced secretion of tissue inhibitor of metal-
loproteinase-1 (TIMP-1) and increased expression of
MMP-9 under hypoxic conditions in vitro [28]. In addi-
tion, the increased invasion of MDA-MB-231 cells
through matrigel filters under hypoxia can be markedly
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reduced by addition of a MMP inhibitor. Similarly, in a
rabbit model of myocardial infarction, cardiac myocytes
show induced MMP-3 and MMP-9 expression, but
downregulate TIMP-1 expression following infarction
[29]. This pattern of MMP expression could be dupli-
cated in vitro by culturing myocytes under hypoxic con-
ditions, thus it seems that hypoxia is responsible for
modulating MMP expression in several pathological
conditions.
Activation of MMPs under hypoxia may be mediated

by increased expression of urokinase-type plasminogen
activator receptor (uPAR). uPAR is a cell surface
receptor responsible for the binding and activation of
urokinase-type plasminogen activator (uPA). Activated
uPA is able to convert plasminogen into plasmin, which
can then act directly in ECM degradation, and initiate
the MMP activation cascade [24]. Cell surface asso-
ciated uPAR is upregulated under hypoxia in vitro, and
also contributes to invasiveness [30]. Hypoxia mediates
this increased expression by increasing both transcrip-
tion and stability of uPAR RNA [31]. There is also evi-
dence that the association of uPAR with its ligand is
directly involved in migration, independent of uPA-
mediated proteolysis, which in combination with ECM
degradation can markedly enhance invasion [32].
Most research regarding the regulation of cell adhe-

sion molecules by hypoxia has focused on endothelial
cells with respect to angiogenesis, with relatively few
studies having been conducted using tumour cells
themselves. One such study revealed that cell surface
integrins and other adhesion molecules, such as CD44
and N-CAM, were transiently downregulated upon
exposure to hypoxia, leading to an associated decrease
in adhesion to ECM components that returned to nor-
mal levels after reoxygenation [33]. If similar changes
should occur in vivo, this could have a significant effect
on the migration of malignant cells from a hypoxic
environment to a new site of tumour growth.
In addition to its pro-inflammatory properties, inter-

leukin-8 (IL-8) has been associated with the tumour-
igenicity, angiogenesis, and metastasis of numerous
tumours including melanoma, prostate, bladder, pan-
creas and ovarian cancer. In vitro exposure of several
different cell types to hypoxia leads to elevated levels of
both IL-8 mRNA and protein [34,35]. The hypoxic reg-
ulation of IL-8 mRNA involves increases in both the
stability and transcription of the message and is dependent
upon the cooperation of the AP-1 and NF-B transcription
factors. In vivo analysis by immunohistochemistry and in
situ hybridisation of tumour sections has localised IL-8
expression adjacent to necrotic zones, lending even fur-
ther evidence to the argument that IL-8 expression is
regulated by hypoxia within the tumour micro-environ-
ment [34,36]. IL-8 expression is often correlated with an
aggressive phenotype and has the ability to cause non-
metastatic cell lines transfected with IL-8 cDNA to

become highly tumorigenic and invasive [37,38]. IL-8
transfected cells show upregulation of MMP-2 and
MMP-9 mRNA, collagenase activity, and increased
invasiveness through Matrigel-coated filters.

2.2.1.2. Selection. Hypoxia-mediated selection of
tumour cells with a diminished apoptotic potential
under hypoxic conditions has been suggested as an
important biological mechanism for tumour progression
[39]. Graeber and colleagues used embryonic fibroblasts
derived from wt and p53-deficient mice to investigate
the role of p53 in hypoxia-induced apoptosis and
showed that oncogenic transformation predisposed cells
to hypoxia-induced killing through an apoptotic path-
way modulated by p53. They also demonstrated that
apoptotic regions were more prevalent in p53+/+

tumours than in p53�/� tumours and that apoptotic
areas colocalised with hypoxic regions, distal to adja-
cent blood vessels. Based on the observation that in a
mixture of transformed p53�/� and p53+/+ cells in a 1
to 1000 ratio, p53�/� cells had overtaken p53+/+ cells
after multiple rounds of hypoxia and aerobic recovery,
they concluded that hypoxia could also select for apop-
tosis-resistant cells. Drawn primarily from these experi-
mental results, a mathematical model has recently been
developed that describes the effects of alternating peri-
ods of hypoxia and normoxia on tumours that contain
wild-type and mutant p53 cells [40]. Based on indepen-
dent experimental results, the model can predict the
time it takes for a subpopulation of mutant p53 tumour
cells to become the dominant population within defined
tumour regions, both in vitro and in vivo, and provides a
qualitative insight into the behaviour of mixed popula-
tions of wild-type and mutant cells growing under nor-
moxic and hypoxic conditions. By studying the role of
the human papilloma virus (HPV) E6 and E7 genes in
sensitising human cervical epithelial cells to hypoxia,
Kim and colleagues [41] consolidated the results of
Graeber and colleagues and extended the relevance of
these observations made in genetically manipulated
rodent cells to human neoplasia. Furthermore, studies
using three-dimensional cultures of human multicell
spheroids have also shown that tumour cells bearing
mutant p53 are able to sustain longer periods of cellular
proliferation in hypoxic conditions than those with the
wild-type gene [42].
The selective pressure resulting from hypoxia is not

limited to the selection of cells with reduced apoptotic
potential. It has also been shown to provide a possible
selection force for cells that have altered oncogenic
pathways that result in a switch to a more angiogenic
phenotype [43].
By promoting the clonal expansion of cells with

reduced apoptosis and increased angiogenesis, hypoxia
can contribute to the development and malignancy of
tumours. Recent clinical results showing that hypoxic
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cervical cancers with a low apoptotic index are highly
aggressive, strongly support this basic experimental
concept [44].

2.2.1.3. Angiogenesis. Tumour progression requires the
formation of new blood vessels—the process of angio-
genesis—in order to provide nutrients and remove cat-
abolites from the expanding tumour mass. Angiogenesis
is also essential for the efficient dissemination of pri-
mary tumour cells during metastasis. The early steps of
angiogenesis and tumour metastasis are nearly identical,
as both processes involve degradation of the ECM and
directed migration of either vascular or neoplastic cells.
In addition, angiogenesis requires proliferation of the
migrating endothelial cells. Therefore, it is not surpris-
ing to find that many of the molecules that facilitate
tumour cell invasion during metastasis are also involved
in angiogenesis (i.e. MMPs, the uPA system and cell
adhesion molecules), and may also be regulated by
hypoxia in this function.
Initiation of angiogenesis begins when cells within the

tumour micro-environment respond to hypoxia by the
production of the vascular endothelial growth factor
(VEGF) [45]. In vitro studies by Rofstad’s group have
shown that D-12 melanoma cells expressing low VEGF
levels under aerobic conditions, significantly increase
VEGF secretion under hypoxia, and demonstrate
increased angiogenesis and metastatic efficiency in mice
[46]. In addition to VEGF, hypoxia is also responsible
for inducing the expression of the VEGF receptors
(VEGFR1 and VEGFR2) through HIF-1 mediated
transcription [47]. Thus, it would seem that hypoxia
efficiently promotes an angiogenic signal by regulating
both the VEGF ligand and its receptors.
Basic fibroblast growth factor (bFGF), like VEGF, is

a potent angiogenic factor, but its expression in endo-
thelium does not appear to be directly regulated by
hypoxia. bFGF binds with high affinity to heparan sul-
phate proteoglycans in the ECM where it remains
sequestered in an inactive form until released by the
FGF binding protein (FGF-BP). Upon mobilisation by
FGF-BP, bFGF can exert its biological effects by sig-
nalling through one of its four receptor tyrosine kinases
[48]. Hypoxia may play an indirect role in upregulating
bFGF activity by inducing FGF-BP through the p38
signal transduction pathway [49,50]. Hypoxia can also
regulate the amount of extracellular bFGF available to
stimulate endothelial cells by inducing its secretion,
along with that of platelet-derived growth factor, from
macrophages that infiltrate the tumour micro-environ-
ment [51].
Integrins avb3 and avb5 are expressed on the angio-

genic endothelium where they mediate adhesion with
ECM components such as vitronectin. Human umbili-
cal endothelial cells (HUVECs) exposed to 1% oxygen
show increased expression of av and b3 subunits, while

b5 expression remained constant compared with aerobic
controls [52]. A concomitant increase in the attachment
to fibrinogen, a avb3-mediated process, was also
observed under hypoxia. There is evidence that this
integrin regulates matrix degradation through the bind-
ing of proteolytically active MMP-2, which facilitates
collagen degradation in vitro [53]. Cell–matrix inter-
actions can augment VEGF signal transduction through
complexes of avb3 and VEGFR-2, whereby binding of
vitronectin to its receptor results in increased VEGFR-2
kinase activity [54].

2.2.2. Clinical data
Several clinical studies support the association

between hypoxia and malignancy. Data in primary
uterine cervical carcinoma [1,2,15,55], soft-tissue sar-
coma [4,56] and SSC of the head and neck [3,13,14,57–
61] showed that tumour hypoxia was prognostic for
poorer outcome, irrespective of the treatment modality.
Different end-points were evaluated, locoregional con-
trol, disease-free survival, disease-specific survival or
overall survival. In the study of Brizel and colleagues
[13], 63 patients with head and neck cancer receiving
primary radiotherapy underwent pre-treatment polaro-
graphic tumour oxygen measurement of the primary
tumour or a metastatic neck lymph node. The median
pO2 for the primary lesions was 4.8 mm Hg, and it was
4.3 mm Hg for the cervical nodes. Hypoxia adversely
affected 2-year local control (30 versus 73%, P=0.01),
disease-free survival (26 versus 73%, P= 0.005), and
survival (35 versus 83%, P=0.02).
In general, tumour hypoxia does not depend on clin-

ical tumour size, clinical stage, histological type, grade,
extent of necrosis, or patient haemoglobin levels, and is
therefore an independent predictor of outcome. Based
on these results, it has been proposed that tumour
hypoxia may directly influence malignancy and that the
poor prognosis of hypoxic tumours is not simply a
result of resistance to therapy [2,14]. Indeed, tumour
hypoxia has been shown to promote lymph-vascular
space involvement and parametrial infiltration in SCC
of the uterine cervix [2]. Moreover, positive correlations
between the lactate concentration of the primary
tumour and the incidence of lymph node metastases
have been demonstrated in cervical carcinoma [62] and
in carcinoma of the head and neck [63]. High lactate
level is indicative of extensive anaerobic metabolism
and, hence, poor oxygenation in the tumour tissue [64].
There is substantial evidence that hypoxia is asso-

ciated with clinical metastases and several mechanisms
have been suggested. Nordsmark and colleagues
demonstrated an inverse relationship between the
tumour cell potential doubling time (Tpot) and the
median tumour pO2 in human soft tissue sarcomas [56].
The authors suggested that a high proliferation rate was
confined to more hypoxic tumours. In human cervical

B.G. Wouters et al. / European Journal of Cancer 38 (2002) 240–257 243



carcinoma, a low apoptotic index was associated with
highly aggressive tumours [44]. Although experimental
studies suggest that apoptotic cell kill is compromised in
hypoxic tumours due to TP53 mutations [39], no asso-
ciation between mutant TP53 and hypoxia could be
found in human soft-tissue sarcomas [16] or in cervical
cancers [65]. In cervical cancers, a high incidence of
metastases in squamous cell carcinoma of the uterine
cervix is associated with poor oxygenation of the pri-
mary tumour and not with vascular density [66].
The exact mechanisms by which tumour hypoxia

leads to distant metastases are still to be elucidated.
Some suggestions for improving treatment strategies
come from the study of Rofstad and colleagues in SCC
of the uterine cervix treated with radiotherapy. The
authors argue that treatment failure was primarily a result
of hypoxia-induced radiation resistance rather than
hypoxia-induced lymph-node metastasis, suggesting that
novel treatment strategies aiming at improving tumour
oxygenation or enhancing the radiation sensitivity of
hypoxic tumour cells may prove beneficial to improve
radiation therapy of advanced cervical carcinoma [67].

2.3. Gene expression

The multiple roles assigned to hypoxia, including the
induction of angiogenesis, apoptosis and metastasis,
likely result in large part from changes in gene expres-
sion that accompany hypoxia. A significant number and
wide variety of hypoxia-induced genes have been descri-
bed. Changes in the expression of many of these genes
serve to counteract hypoxia and increase oxygenation,
while others affect the cellular adaptation to decreased
oxygen levels or mediate death signal pathways.
Upregulation of growth factors and hormones such as

vascular endothelial growth factor (VEGF) [68], plate-
let-derived endothelial cell growth factor/thymidine
phosphorylase (PDECGF/TP) [69] and erythropoietin
(EPO) [70] results in endothelial cell proliferation and
increased red blood cell production and serves to restore
oxygen availability. Expression of the VEGF receptor
Flt-1 is also induced in endothelial cells under hypoxic
conditions [71]. Induction of the messenger molecule
nitric oxide synthase (NOS) under hypoxia has been
postulated as a mechanism to stimulate vasodilation
resulting in increased blood flow [72].
As an adaptation to oxygen deprivation, cells need to

shift their adenosine triphosphate (ATP) production
from oxidative phosphorylation to anaerobic glycolysis.
Thus, the activity of glycolytic enzymes such as phos-
phoglycerate kinase-1 (PGK-1) [73] and pyruvate kinase
M (PK-M) [74] is increased during hypoxia, and the
expression of glucose importer proteins (GLUTs)
[75,76] are also induced.
Several genes involved in regulating cell survival,

metabolism and proliferation have been reported to be

induced by hypoxia, including c-jun [77], insulin-like
growth factor-2 (IGF-2), IGF-binding protein 1 and 3
(IGFBP-1 and IGFBP-3), transforming growth factor b
(TGF-�) [78], placental growth factor (P1GF) [79], uro-
kinase receptor [80], tyrosine hydroxylase (TH) [81],
p27Kip1 [82] and p21Waf1 [83].
The regulation of gene expression under hypoxia has

been shown to occur through many different mechan-
isms, including transcription, mRNA stability, transla-
tion and post-translational modifications. VEGF
expression in particular is controlled at several levels by
hypoxia, including increased transcription initiated by
the transcription factor HIF-1 [84], enhancement of
message stability by association with an RNA-binding
protein HuR [85], and by increased production of a
required chaperone protein ORP150 [86]. The 50UTR of
VEGF mRNA has also been shown to contain a func-
tional internal ribosomal entry site (IRES), which facil-
itates cap-independent translation. This may serve as an
advantage under hypoxic conditions where translation
is low and competition for cap-dependent translation
factors is high [87–89].
Cells exposed to hypoxia upregulate the expression of

several transcription factors, including hypoxia-induci-
ble factor (HIF-1) [90], p53 [91], AP-1 [92], C/EBPb
[93], early growth response 1 (Egr-1) [94] and nuclear
factor kB (NFkB) [95]. Perhaps the most important
within this group is HIF-1, which induces the expression
of more than 30 known genes (for a review see Ref.
[96]), including EPO [90,97], VEGF [98], NOS2 [99], Flt-
1 [100], GLUT-1 and GLUT-3, PK-M [101] and IGF-2.
The transcription of the HIF-1-responsive genes is sti-
mulated through the binding of HIF-1 and other tran-
scriptional activators to a hypoxia responsive element
(HRE) in the gene promoter [102–105].
The HIF-1 transcription factor itself, is regulated by a

post-translational mechanism. HIF-1 is a heterodimer
consisting of the two subunits, HIF-1a and HIF-1b
(identical to the aryl hydrocarbon receptor nuclear
translocator (ARNT)) which are both ubiquitously
expressed [71,106]. HIF-1b protein is stable, while HIF-
1a is targeted for ubiquitination by the von Hippel-
Lindau tumour suppressor protein (VHL) and rapidly
degraded by the proteasome under well-oxygenated
conditions [107–109]. VHL recognises a hydroxylated
prolyl residue (P564) in the HIF-1a protein, which
remains unhydroxylated under hypoxic conditions
[110,111]. Thus, HIF-1a is stabilised during hypoxia
and can dimerise with its partner HIF-1b to induce the
transcription of HRE-responsive genes.

3. How do we combat hypoxia

The realisation that hypoxia is a common character-
istic of human tumours that adversely effects patient
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prognosis suggests that targeting hypoxia will be an
effective means of improving treatment. Scientists and
clinicians alike are using two fundamentally different
approaches to tackle the problems of hypoxia. The first
approach is to improve or restore normal tumour oxy-
genation, and the second approach is to exploit the
unique property of tumour hypoxia for targeting treat-
ment to the tumour. The success of these two approa-
ches will ultimately depend upon the relative
importance of hypoxia in treatment resistance and
malignancy.

3.1. Improve oxygenation

Attempts to increase the oxygen supply to the hypoxic
yet potentially viable tumour cells has been a major goal
of experimental and clinical research for over 40 years.
Various strategies have been considered including
hyperbaric or increased oxygen breathing, the adminis-
tration of hypoxic cell sensitisers, and, more recently,
erythropoietin to improve the haemoglobin level and to
avoid repeated transfusions. Although most of the early
attempts to overcome hypoxia have led to mixed results,
in head and neck cancer a large meta-analysis of these
trials has shown that oxygen modification results in a
significant improvement in local control and disease-
specific survival [112,113].

3.1.1. Erythropoietin (EPO)
EPO is a glycoprotein hormone produced by the kid-

ney in response to tissue hypoxia that stimulates red
blood cell production in the bone marrow. Currently,
there is active interest in using recombinant human EPO
in patients with low haemoglobin (Hb) levels in order to
improve tumour oxygenation. The hypothesis is that
some hypoxic tumours may result from low Hb levels in
anaemic patients. Hb concentration has been shown to
be an important prognostic factor for the outcome of
various cancer types treated by radiotherapy. Most of
the clinical studies published have shown better tumour
control in patients with higher Hb levels than in patients
with Hb in the lower part of—or below—the normal
range. There seems to be a good documentation for the
effect of Hb on radiation response in carcinoma of the
uterine cervix [114–117], in head and neck cancer [118–
122], in bronchogenic carcinoma [123–125], in bladder
carcinoma [126–129] and prostate carcinoma [130].
Overall, patients with low haemoglobin levels have
lower local control and survival. The only prospective
study on the effect of transfusion on tumour control is a
small study in carcinoma of the cervix [131]. Patients
who were transfused to maintain their Hb level above
135 g/l showed significantly improved local control
rates.
Recombinant human EPO (r-HuEPO) has been eval-

uated in normal subjects, as well as in subjects with

various anaemic conditions. In oncology, EPO is known
to increase the Hb level in cancer patients without
interfering with their course of radiation therapy. In a
study by Lavey and colleagues [132], the 40 participat-
ing patients had a Hb value <135 g/l and a malignant
tumour located above the diaphragm without evidence
of distant metastasis for which they were scheduled to
undergo a 5–8 week course of daily radiation therapy.
Half the patients also received 150–300 mg/kg of EPO
subcutaneously (s.c.) three times per week starting 0–10
days prior to the first dose of radiation. The EPO and
control groups did not differ significantly in patient age,
gender, tumour type, initial Hb, erythropoietin or iron
bioavailability. The Hb level increased more than 6%
during radiation therapy in all 20 of the EPO patients,
but in only 2/20 of the control patients (P<0.001). The
Hb rose from a mean � standard deviation (S.D.) of
119�13 g/l to >140 g/l during radiation therapy in
80% of the EPO group compared with 5% of the con-
trol group (P<0.001). The mean change in Hb con-
centration during radiation (an average rise of 5% per
week) in the EPO group significantly higher than in the
control group (P<0.001).
Abels and colleagues also showed that approximately

50–60% of anaemic cancer patients receiving chemo-
therapy responded with a Hb rise of at least 20 g/l to
EPO therapy given three times weekly at a dose of 150
I.U./kg over a period of 12 weeks [133]. In a subsequent
open-label dose titration study, doses up to 300 IU/kg,
were sometimes required, demonstrating the relative
resistance to the effect of EPO in these patients. In
another study, 60 anaemic patients treated with neo-
adjuvant radio-chemotherapy and EPO experienced
more pathological responses compared with that of a
historical control group (67% versus 27%) [134]. At the
moment, several phase III trials are running to test the
hypothesis that an increase of Hb with EPO during
radio- or chemo-therapy has the ability to improve
outcome.

3.1.2. ARCON
The ARCON protocol (accelerated radiotherapy

combined with carbogen and nicotinamide) is currently
being evaluated in the clinic. Carbogen (95% O2+5%
CO2) is used to reduce diffusion limited or chronic
hypoxia, and nicotinamide is added to reduce acute
hypoxia resulting from temporary vasculature shut-
down [135–140]. The use of these agents simultaneously
has indeed been shown to increase the radiation dama-
ging effect in a variety of rodent tumour models [141–
145].
Increased oxygenation of tumours treated with car-

bogen and nicotinamide has been demonstrated in
patients [140]. Promising results have been obtained in
several non-randomised clinical studies using this com-
bination in conjunction with accelerated irradiation.
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The Nijmegen radiotherapy group reported a significant
beneficial effect for the treatment of stage T3–T4 SCC
laryngeal tumours compared with historical conven-
tional radiation therapy data, both in terms of loco-
regional control and survival [146,147]. Phase II clinical
results obtained for bladder carcinoma also showed a
significantly increased local control and overall survival
from the triple combination treatment, when compared
with previous experiences using standard radiotherapy
[148].
However, these positive findings were not confirmed

by a phase I/II study of the European Organization for
Research and Treatment of Cancer (EORTC) that
involved head and neck SCC tumours of various locali-
sations [149]. EORTC studies involving non-small cell
lung cancer [150], and glioblastoma were also negative
[151]. A randomised phase III clinical trial will be star-
ted shortly to ultimately determine the success of this
protocol.

3.1.3. Radiosensitisers
Many years have been dedicated to the search and

development of compounds that could substitute for
oxygen at the time of radiotherapy. This approach was
based on the concept that these compounds could
mimic the effects of oxygen at the time of radiation
delivery, thereby increasing DNA damage and restoring
radiosensivity. However, most of the compounds devel-
oped could not be administered to patients at effective
concentrations with acceptable toxicity. None the less,
hypoxic sensitisers continue to be developed and used in
some instances. Nimorazole, a 5-nitroimidazole deriva-
tive, has been widely used as an antimicrobial agent
against Trichomonas vaginalis and other protozoa
including Entamoeba histolytica and Giardia intestinalis
with little reported toxicity. Similarly, significant or
chronic toxicity has been absent from the phase I and II
studies involving the use of nimorazole [152,153]. In a
large double-blind randomised phase III trial in Den-
mark, nimorazole was reported to significantly improve
the effect of radiotherapy of supraglottic and phar-
yngeal tumours, while the toxicity of the drug was mild
[154]. This result was highly significant, and nimorazole
has now been incorporated into the standard treatment
of most head and neck cancer patients in Denmark.

3.2. Exploit the microenvironment

The second approach in combating hypoxia is funda-
mentally different from attempts to restore or replace
oxygen. In this scenario, the unique property of tumour
hypoxia is used as an advantage for targeting cancer
treatment. There are three primary means by which this
targeting is currently being attempted. The first is to
target the lack of oxygen per se, for example by using
bioreductive drugs that are only toxic in the absence of

oxygen. The second is to exploit the unique features of
the tumour vasculature that are both responsible for
and a consequence of tumour hypoxia. Finally, one can
target the known molecular and cellular biological
responses to hypoxia.

3.2.1. Exploit hypoxia per se
3.2.1.1. Bioreductive drugs. Bioreductive drugs are
compounds that are reduced by biological enzymes to
their toxic, active metabolites. They are designed such
that this metabolism occurs only or preferentially in the
absence of oxygen. The use of these drugs in combina-
tion with traditional therapies has the potential to
greatly improve treatment outcome by increasing cyto-
toxicity to the hypoxic fraction. Tirapazamine (TPZ) is
the leading compound in this class of agents and has
shown promising results in a number of clinical trials
when used in combination with cisplatin and/or radio-
therapy [155–157]. A wide number of cell lines are sen-
sitive to TPZ, regardless of their p53 status, and require
50–150 times higher dose for the same toxicity under
aerobic conditions [158]. The mechanism of this pre-
ferential toxicity is mediated by an enzymatically cata-
lysed one-electron reduction of TPZ, which yields a
highly reactive radical capable of causing cell death by
producing various types of DNA damage [159]. In the
presence of oxygen, the TPZ radical is rapidly oxidised
back to the non-toxic parental compound, thus mini-
mising toxicity to well-oxygenated tissues. Preclinical in
vitro testing has shown TPZ to have a synergistic effect
on cell kill when given prior to cisplatin [160]. This
synergism reflects the findings in animal studies
[158,161] and clinical trials [162,163] showing that this
combined chemotherapy potentiates the antitumour
efficacy of cisplatin without increasing systemic toxicity.
The mechanism of this synergism has yet to be eluci-
dated, but has been postulated to involve the inhibition
of cisplatin-induced DNA cross-link repair [160,164].
Another promising bioreductive drug nearing clinical

trial is AQ4N, a prodrug that is activated by reduction
in hypoxic cells producing a stable product (AQ4) that
intercalates within DNA and blocks topoisomerase II
action. A key advantage to this drug is that the active
AQ4 is stable, thus allowing diffusion to aerobic regions
where it can act to produce a ‘bystander’ effect, or be
effective in areas of transient/acute hypoxia [165]. In
murine tumour models, AQ4N is not effective as a sin-
gle agent, but shows substantial antitumour activity
when combined with methods to increase the hypoxic
fraction (physical clamping or hydralazine), radiation,
or anticancer drugs [166,167].

3.2.1.2. Gene therapy. Poor prognosis for many cancer
patients prescribed conventional drug or radiation
treatments has increased interest in clinical protocols
based on gene therapy. The aim is to transfer genetic
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material to the tumour cell or its micro-environment in
quantities sufficient to obtain a therapeutic level of
expression. However, strategies devised to date have
limited efficiency, most notably due to deficiencies in the
delivery systems employed. A recent approach to this
problem employs the concept of targeting anaerobic
bacteria to the hypoxic/necrotic areas of solid tumours.
An association between bacteria and tumours dates
back more than 100 years ago when William Coley
found that certain patients who contracted bacterial
infections recovered remarkably well from certain can-
cers. Currently, Clostridium spp. [168,169] and atte-
nuated Salmonella typhimurium auxotrophs [170,171]
are being investigated at several research centres as sys-
tems to deliver anti-tumour compounds specifically to
the tumour site. The latter strain grows under aerobic
and anaerobic conditions, with selectivity for tumours
reported as a consequence of its auxotrophic nature.
The specificity of clostridia for tumours resides in its
obligate requirement for anaerobic conditions, giving
Clostridium an advantage over Salmonella. Intrave-
nously (i.v.) injected spores of a non-pathogenic clos-
tridial species have been shown to localise to, and
germinate in, the hypoxic/necrotic regions of solid
tumours. Although growth alone in the tumour is not
sufficient for therapeutic efficacy, the possibility now
exists to engineer Clostridium spp. to produce a variety
of therapeutic proteins with anticancer properties.
Clostridia can thus be used as highly selective in-situ cell
factories able to produce and secrete antitumour ther-
apeutics specifically at the tumour site. Moreover, it has
been shown that the immune response does not hinder
repeated administration of clostridial spores, that colo-
nisation can be improved using vascular targeting
treatment using Combretastatin A4-phosphate (CA-4P)
(see next section) and that gene expression can be stop-
ped at any time using suitable antibiotics [172]. We [173]
and others [174,175] demonstrated that it is possible to
express therapeutic proteins, not only in vitro, but also
in vivo after administration of the recombinant clos-
tridia to tumour-bearing animals [176]. Moreover, the
specificity of this gene delivery system can be further
increased, by placing the therapeutic gene under the
regulation of a radio-induced promoter, leading to spa-
tial and temporal control of gene expression [177].
Taken together, these experiments demonstrate that the
principle of using the Clostridium vector system, or
other anaerobic bacteria such as Bifidobacterium [178],
is feasible and holds considerable promise for tumour-
specific therapy.

3.2.2. Exploit tumour vasculature
Abundant evidence has demonstrated that solid

tumours require an expansion of the blood supply to
provide their oxygen and nutritional requirements. Yet
in tumours, this process of angiogenesis results in dis-

proportional and inadequate vascular architecture, with
vessels that are structurally and functionally different
from those in normal tissues [179–181]. Consequently,
this abnormal intra-tumoral vessel network, which eli-
cits a high rate of endothelial cell proliferation [182],
offers an ideal target for novel therapeutic strategies,
such as anti-angiogenesis and vascular targeting.

3.2.2.1. Anti-angiogenesis. Angiogenesis is a complex
biological process that offers potential therapeutic tar-
gets at many points [183]. The target population most
often consists of actively dividing and migrating vas-
cular endothelium from established normal host and
tumour vessels. Many of the current strategies for ther-
apeutic anti-angiogenesis involve the blockade of
angiogenic growth factors and the suppression of endo-
thelial cell recruitment through small molecule receptor
blockers, specific antibodies or the use of endogenous
inhibitors. The five classes of angiogenesis antagonists
in current clinical trials include molecules that block
matrix breakdown, inhibit endothelial cells directly,
block activators of angiogenesis, inhibit endothelial-
specific integrin/survival signalling and distinct
mechanisms of action. Due to the large number of cur-
rently investigational anti-angiogenic approaches, we
limit our discussion to a select number of drugs cur-
rently subject to clinical investigation.
The initial step in the angiogenic process is the

degradation of the basement membrane surrounding the
endothelial cells [184]. MMPs play a critical role in the
degradative process [185]. Thus, inhibitors of MMPs are
an obvious choice for anti-angiogenic strategies. Syn-
thetic molecules such as marimastat, prinomastat, and
BAY 12-9566 have been investigated as such agents.
Unfortunately, phase III clinical trials using these inhi-
bitors alone or in combination with chemotherapy have
demonstrated no clinical efficacy [186]. The apparent
explanation for this observation is that MMPs may be
more important in the early stages of cancer and may
not be required once the metastases have been estab-
lished. Another method to target the enzymatic break-
down of the basement membrane and surrounding
tissue is to disrupt the uPA system [187]. The urokinase
inhibitor penicillamine is currently being tested in a
phase II clinical trial for glioblastoma.
Molecules that inhibit endothelial cell migration and

proliferation include the endogenous molecules angios-
tatin and endostatin [188], as well as the potent terato-
gen thalidomide. Angiostatin, a fragment of the
precursor plasminogen was the first isolated tumour-
derived angiogenesis inhibitor [189]. Treatment of
experimental animals with angiostatin causes regression
of the primary tumour, prevents angiogenesis and
metastatic growth [189,190]. Endostatin is a C-terminal
fragment of collagen type XVIII [191]. Interestingly, the
activity of endostatin and angiostatin are synergistic
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when combined suggesting different molecular targets
[192]. Both of these molecules are currently the subject
of phase I clinical trials. Thalidomide has also been
shown to have anti-angiogenic properties and in vitro
data suggest that it also inhibits endothelial cell and
tumour cell proliferation [193,194]. Recent reports from
phase II clinical trials have shown encouraging results
[195,196].
VEGF, its receptor and its signalling pathway are

attractive targets for anti-angiogenic strategies. A series
of compounds that target this pathway including small
molecule inhibitors of the VEGF-R, such as SU5416
[197], SU6668 [198], a ribozyme that degrades VEGF
mRNA (angiozyme) [199] and antibodies directed
against VEGF [200,201] or VEGF-R (PTK-787/
ZK22584) [202] have been developed and are under
clinical investigation.
Interactions between tumour cells and the ECM are

vitally important for invasion and migration. In parti-
cular, avb3 and avb5 integrins, serve as major receptors
for ECM-mediated cell adhesion and migration [203].
These integrin molecules have been demonstrated to be
upregulated during repair, retinal neovascularisation
and tumour neo-angiogenesis [204–206]. This adhesion
event is mediated by an arg-gly-asp (RGD) peptide
motif and small peptides containing such a motif have
been demonstrated to inhibit integrin function [207].
Angiogenesis is inhibited both by antibodies directed
against these integrins and by peptide antagonists that
block integrin–extracellular matrix interactions. A
humanised monoclonal antibody directed against avb3,
designated Vitaxin [208,209] and a small molecule
blocker of avb3, EMD121974 are currently the subject
of clinical investigation.
A number of anti-angiogenic strategies work through

mechanisms distinct from those described above. CAI is
an inhibitor of calcium influx [210] currently in phase I
studies in combination with paclitaxel against solid

tumours. Interleukin-12 (IL-12) is a multifunctional
cytokine determined to be anti-angiogenic [211–213] by
inducing interferon gamma and interferon-g-inducible
10 kDa protein (IP10) [214]. Furthermore, the group B
streptococcus toxin, CM101 that selectively targets
proliferating blood vessels has completed phase I trials
with encouraging results [215].

3.2.2.2. Vascular targeting. The concept of ‘vascular
targeting’ was championed many years ago [181,216]
and has recently become a very active area of research.
This concept refers to the use of agents that exploit
vasculature features that are unique within the tumour.
Several advantages of targeting the vasculature have
been presented including: (i) potential efficacy against
any solid tumour since the main target is the endothelial
cell lining, (ii) lack of treatment-induced resistance, since
endothelial cells are genetically stable, (iii) accessibility
of the drug and target, and (iv) indirect killing of many
thousands of tumour cells from vessel damage and sub-
sequent nutrient deprivation. This approach would also
result in killing of those cells that are at intermediate
levels of hypoxia, resistant to classical therapies [217].
Five different approaches to vascular targeting have
been attempted in clinical settings (see Table 1).
The specificity of hyperthermia and photodynamic

therapy for vasculature is somewhat limited as is the
accessibility of these modalities for a variety of tumour
sites. Flavone acetic acid (FAA) has been shown to be
active in a variety of murine tumours [218–220]. This
activity was accompanied by the induction of tumour
necrosis factor a (TNFa), blood flow changes and the
induction of haemorrhagic necrosis. However, changes
in blood flow were not observed in patients and there-
fore this agent was ineffective in clinical trials [221,222].
Its structural analogue, the 5,6-dimethylxanthenone 4-
acetic acid (DMXAA) compound, appears to induce
TNFa more strongly in tumours than in normal tissues

Table 1

Vascular targeting strategies with demonstrated preclinical antitumour activity

Hyperthermia Damage to endothelial cells with subsequent alteration

of micro-haemodynamics and vascular stasis

e.g. Refs. [246–248]

Photodynamic therapy Aims to target directly the tumour cells, but also

induces tumour cell loss through the destruction

of intratumoral microvasculature

e.g. Refs. [249,250];

Tumour necrosis factor a (TNFa) Vascular damage and subsequent blood flow failure

with acute haemorrhagic intratumoral necrosis; also

true for drugs that mediate their action through

TNFa induction, such as flavone acetic acid (FAA)
and its analogue DMXAA

e.g. Refs. [218,225,251]

Antibody-directed targeting Targeting tissue factor to initiate thrombosis within

the tumour, with the formation of central necrosis

e.g. Refs. [252]

Tubulin-interfering agents Acute endothelial cell collapse, vessel damage and

blood flow reduction, with rapid major

haemorrhagic necrosis

e.g. Refs. [219,229,232,253]

DMXAA, 5,6-dimethylxanthenone 4-acetic acid.
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Fig. 1. Biological responses to hypoxia can be viewed in terms of four successive steps. The HIF-1 pathway serves as an example of such a response.

The first step is to sense that oxygen is limiting and in the HIF-1 pathway this is carried out by an oxygen-dependent prolyl hydroxylase. The second

step is the initiation of a molecular response through the activation of downstream signalling pathways. In this example, this results in the activation

of several classes of genes as a result of stabilisation of the HIF-1a subunit. A cellular response occurs due to these changes in gene expression, in

this case resulting in a switch to anaerobic metabolism and secretion of angiogenic factors. Finally, a tumour/tissue response occurs. In the HIF-1

pathway, this may be the induction of angiogenesis in the tumour micro-environment together with increased survival and proliferation of the

tumour cells. Each of these steps in the biological response to hypoxia is an opportunity for targeting therapy as indicated below each box.
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and to exert specific anti-tumour activity independently
in humans [223,224]. DMXAA is presently being tested
in a phase I trial both in the United Kingdom and New
Zealand.
Various tubulin-interfering drugs have also been

reported to provide anti-tumour activity through vas-
culature shutdown and the induction of haemorrhagic
necrosis. This was demonstrated for the tubulin-binding
drugs vincristine and vinblastine (both well known che-
motherapeutics), colchicine, as well as the structurally
similar compound homoharringtonine [218,220,225].
However, these effects were only observed at doses near
the maximum systemically tolerable concentrations.
More recently, the combretastatin family of tubulin-

binding compounds with more selective anti-tumour
activity has been introduced [226]. CA-4P has been
selected from this family for preclinical and clinical
evaluation [219,227–232]. A single CA-4P dose of 1/3 to
1/10 of the maximum tolerable dose (rat or mouse
experiments, respectively) results in rapid blood vessel
damage, and subsequently tumour necrosis. The efficacy
is somewhat tumour-dependent—being more effective in
the mouse KHT sarcoma [230] and the WAG/Rij rat
rhabdomyosarcoma [232] models than the mouse C3H
mammary carcinoma [219]. Typically CA-4P results in
central tumour necrosis, leaving a viable rim of cells on
the edge of the tumour. CA-4P also appears to be much
more effective in large tumours (>7 cm3) compared
with small (<1 cm3) tumours [232]. The mechanism of
action of CA-4P seems to result from a cell shape
change that occurs in newly formed endothelial cells,
resulting in blood vessel occlusion and total vascular
shutdown [229,233]. Currently, a limited number of
phase I clinical studies in the United States and the
United Kingdom are examining the impact of CA-4P on
tumour physiology, as well as general compliance and
normal organ function.

3.2.3. Exploit the biological responses to hypoxia
The final strategy being pursued to target hypoxia is

based on exploiting the recently understood biological
responses to hypoxia. As described earlier, cells respond
to hypoxia by modulating the expression of many genes.
These changes in gene expression, in turn, cause a cel-
lular and tissue response to hypoxia that affects both the
cellular sensitivity to treatment and the processes of
metastasis and angiogenesis. By targeting the early steps
in the activation of these pathways, one may develop
more specific and effective types of therapy.
Various biological responses to hypoxia can be

viewed in a generalised sequence of four successive steps
(see Fig. 1). The first step is carried out by an oxygen
sensor—a protein that is capable of sensing and
responding to reduced levels of oxygen. Activation of
the sensor causes a molecular response consisting of the
activation of downstream signalling pathways. This

molecular response, in turn, leads to a cellular response,
and finally a tissue or tumour response. In the past sev-
eral years, we have learned much about one of the main
hypoxic biological response pathways in mammalian
cells—that involving the HIF-1 transcription factor.
This pathway serves as a good example of this general
response sequence and for how this knowledge can be
translated into new cancer therapies.
Two recent reports suggest that the oxygen sensor in

the HIF-1 pathway is a prolyl hydroxlyase [110,111].
This enzyme, designated HIF-PH, requires oxygen for
its activity (hydroxylation of proline residues). In this
example, the molecular response to hypoxia is initiated
as a result of reduced hydroxylation of a proline residue
in the HIF-1a subunit (P564). Reduced hydroxylation
prevents the recognition of HIF-1a by the VHL ubi-
quitin ligase, thereby preventing ubiquitination. As a
result, HIF-1 is stabilised and can transactivate its many
targets, such as EPO, VEGF and GLUT-1. These chan-
ges in gene expression lead to a cellular response that
may consist of increased glycolysis in the tumour cells
or activation of endothelial cell proliferation and
migration by binding of VEGF to its receptor. Finally,
this leads to a tumour or tissue response that consists of
increased angiogenesis, and to increased survival of
tumour cells resulting from a switch to anaerobic meta-
bolism [234].
The important part of this illustration is that a

detailed biological understanding of this pathway offers
a plethora of options for targeting cancer treatment to
the tumour. For example, an attractive molecular treat-
ment would be one based on augmenting the activity of
the oxygen sensor itself. Since the multiple cellular and
tissue effects stem from this one initial protein, it pro-
vides a very specific and potent treatment target. There
are already many examples of research directed against
the second level of this pathway. Several compounds
designed to alter the activity of HIF-1 [235,236], VHL
[237], or the ubiquitin system itself [238–240] are being
explored in cancer treatment. At the level of the cellular
response, antibodies and inhibitors of both VEGF and
its receptor Flk-1 have been developed (as discussed
under the anti-angiogenesis strategies). Recent reports
suggest that inhibiting the ability of tumour cells to shift
to glycolysis would also be advantageous [234,241].
Finally, targeting treatment to the cellular or tissue
response of this pathway would consist of the more
generalised anti-angiogenesis and hypoxia-targeted
therapeutics (both discussed earlier). It is clear that as
one moves downwards in this pathway from the oxygen
sensor to the cellular and tissue responses, the targets
become less specific in nature.
Elements of this pathway can be exploited as well as

inhibited. For example, the DNA recognition sequence
for the HIF-1 transcription factor is well described. This
HRE can be inserted within gene therapy constructs, to

250 B.G. Wouters et al. / European Journal of Cancer 38 (2002) 240–257



limit the expression of therapeutic proteins to hypoxic
areas of tumours [242–245]. Dachs and colleagues [243]
established the potential for tumour hypoxia to be
exploited for targeted gene expression by showing that
the HRE from the mouse PGK-1 gene could be used to
drive expression of heterologous genes within the mass
of a solid tumour.
The HIF-1 pathway is relatively well understood and

serves as a good example of how knowledge of the bio-
logical responses to hypoxia can translate into new
therapies. However, there are numerous other molecular
and cellular responses to hypoxia that are independent
of HIF-1, perhaps each with unique oxygen sensors.
Continued research into the basic molecular and cellular
responses of hypoxia will undoubtedly contribute fur-
ther to the development of novel hypoxia-based cancer
therapies.
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