Bidirectional signaling between the cytoskeleton and integrins
Simone M Schoenwaelder* and Keith Burridge

Clustering of integrins into focal adhesions and focal complexes
is regulated by the actin cytoskeleton. In turn, actin dynamics are
governed by Rho family GTPases. Integrin-mediated adhesion
activates these GTPases, triggering assembly of filopodia,
lamellipodia and stress fibers. In the past few years, signaling
pathways have begun to be identified that promote focal
adhesion disassembly and integrin dispersal. Many of these
pathways result in decreased myosin-mediated cell contractility.
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Abbreviations

ECM extracellular matrix

ERM ezrin-radixin-moesin

FA focal adhesion

FAK focal adhesion kinase

FN fibronectin

GAP GTPase activating protein

GDI guanine-nucleotide dissociation inhibitor
GEF guanine-nucleotide exchange factor
GFP green fluorescent protein

IF intermediate filament

LPA lysophosphatidic acid

MAPK  mitogen-activated protein kinase
MLC myosin light chain

MLCK  myosin light chain kinase

PAK p21-activated protein kinase

PI phosphatidylinositol

PI3K phosphoinositide 3-kinase

PIP, Pl 4,5-bisphosphate

PIP; Pl 3,4,5-trisphosphate

PKA protein kinase A

PKC protein kinase C

PMA phorbol 12-myristate 13-acetate
PTK protein tyrosine kinase

PTP protein tyrosine phosphatase

Introduction

Adhesive interactions critically influence the organization
of the cytoskeleton. Reciprocally, the cytoskeleton affects
the organization and function of adhesive molecules such
as integrins and cadherins. In this review, we focus on the
relationship between the actin cytoskeleton and the orga-
nization of integrins. Integrins are receptors that form
transmembrane links between the extracellular matrix
(ECM) and the actin cytoskeleton. During the past
decade, their importance as signal transducers from the
ECM has been increasingly recognized. Integrins are fre-
quently clustered into specialized adhesive structures,
focal adhesions (FAs) and focal complexes, in which

numerous signaling components are concentrated [1-3].
Many aspects of integrin biology have recently been
reviewed [4°-6°]. Here we concentrate on integrin cluster-
ing and dispersal as regulated by the cytoskeleton which,
in turn, is regulated by the Rho family of G proteins. We
discuss signaling pathways that feedback from integrins to
modulate the cytoskeleton, and consider how the state of
the actin cytoskeleton controls the organization of ECM.

Cytoskeletal clustering of integrins

Integrins that are not bound to ECM ligands are gener-
ally distributed diffusely over the cell surface and appear
not to be linked to the actin cytoskeleton. Association
with the actin cytoskeleton is induced upon binding of
ECM ligands [7-9]. Depending on the state of
cytoskeletal organization, this can lead to clustering of
integrins into FAs or focal complexes. FAs are large inte-
grin aggregates found at the ends of prominent bundles
of actin filaments (stress fibers). Both stress fibers and
FAs are regulated by the GTP-binding protein RhoA.
Focal complexes are smaller integrin clusters that occur
at the tips of filopodia or lamellipodia, with these struc-
tures being under the control of the Rho family members
Cdc42 and Rac, respectively [10°]. Rho family proteins
function as ‘molecular switches’ that cycle between an
inactive GDP-bound state and an active GTP-bound
state. In general, these proteins have a low intrinsic
G'TPase activity. Cycling of nucleotides is regulated by
interacting proteins, including guanine nucleotide
exchange factors (GEFs), G'TPase activating proteins
(GAPs) and guanine nucleotide dissociation inhibitors
(GDIs). The regulators of RhoA, Rac and Cdc42 activity
have been reviewed in great detail [11°,12°].

Much effort has been directed towards understanding how
these Rho family G'TPases organize actin and the associated
distribution of integrins. More is known about how RhoA
stimulates assembly of stress fibers and FAs than is known
about Rac- or Cdc42-induced focal complex assembly. Sep-
arate lines of investigation have converged to reveal that
RhoA stimulates actomyosin-based contractility and that
this contractility contributes to the assembly of stress fibers
and FAs [3,13]. RhoA«GTP binds to and activates several
serine/threonine kinases. One of these, known variously as
Rho-kinase, ROCKII and ROKa (closely related to
p160ROCK/ROKP), phosphorylates and inhibits myosin
phosphatase, resulting in elevated myosin light chain
(MLC) phosphorylation [14] (Figure 1a). In turn, MLC
phosphorylation promotes both myosin filament assembly
and actin-activated myosin ATPase activity [3]. These
effects result in bundling of actin filaments and tension
being transmitted to integrins via their associated actin fila-
ments. Both bundling and tension will cluster integrins that
are linked to actin [15]. Rho-kinase may also phosphorylate



Figure 1

(a)

®)

E@>Eop

Signalli‘ GEF GAP

Rho-
kinase

[
1)
PPase

®
@

MLC

Contraction '::>

Assembly

Inactive
cytosolic
complex

Disassembly

Current Opinion in Cell Biology

RhoA-mediated assembly of stress fibers and focal adhesions, and
cAMP-mediated disassembly. (a) Activation of RhoA stimulates the
downstream targets Rho-kinase and PI(4)P 5-kinase. Activation of Rho-
kinase results in phosphorylation of the myosin phosphatase (myosin
PPase) [14], decreasing its activity, thereby increasing myosin light
chain (MLC) phosphorylation. In addition, direct phosphorylation of MLC
by Rho-kinase may occur. MLC phosphorylation promotes myosin
filament formation and contractility. In turn, these result in bundling of
actin filaments into stress fibers and clustering of integrins into FAs. The
activation of PI(4)P 5-kinase leads to an elevation in PIP, levels. PIP,
modulates the activity of several cytoskeletal proteins, including vinculin,
gelsolin, profilin and ERM proteins. Together, the actions of Rho-kinase
and PI(4)P 5-Kinase and possibly other RhoA targets promote FA

formation. (b) Elevation of intracellular cAMP leads to activation of PKA.
One target for PKA is MLCK, which is inhibited by PKA
phosphorylation. A second target is RhoA [54]. Phosphorylation of
RhoA leads to binding of the Rho guanine nucleotide dissociation
inhibitor (GDI) which extracts active RhoA from its membrane location,
translocating it to the cytosol, resulting in termination of the RhoA signal
[64]. Elevated cAMP also inhibits nucleotide exchange on RhoA [565°],
presumably through increased binding of RhoA to GDI. Furthermore,
RhoA phosphorylation results in a decreased affinity for its downstream
effector, Rho-kinase [56]. The combined effects of cAMP and PKA on
MLCK and RhoA lead to inhibition of myosin activity and contractility.
These result in stress fiber disassembly and integrin dispersal. Black
arrows indicate a decrease in enzyme activity.

MLC directly [16] (Figure 1a), but some evidence supports
the idea that the primary action of Rho-kinase is to inhibit
myosin phosphatase (M Parizi, J] Tomasek, personal com-
munication). Constitutively active Rho-kinase induces the
assembly of stress fibers and FAs [17,18°,19°], supporting
this model; however, the organization of these structures
induced by Rho-kinase is often different from that seen in
normal cells, suggesting that other pathways downstream
from RhoA may also contribute to their assembly and/or
organization. One possibility is RhoA-activation of phos-
phatidylinositol (P1)-5-kinase to elevate PI 4,5-bisphosphate
(PIP,) levels [20]. PIP, induces a conformational change in
vinculin [21,22] and ERM (ezrin-radixin-moesin) proteins
[23,24] exposing binding sites for actin and other proteins
that may be important in FA assembly.

The clustering of integrins into focal complexes induced
by Rac and Cdc42 is less well characterized. Whether
myosin is involved has not been established. One down-
stream target of both Rac and Cdc42 is PAK, a
serine/threonine kinase implicated in the development of

focal complexes [25]. PAK phosphorylates and inhibits the
myosin light chain kinase (MLLCK) — an enzyme that reg-
ulates myosin activity [26°] — and this might indicate that
myosin is not involved in the assembly of focal complexes.
A different conclusion has been drawn, however, from
work with another kinase downstream of Cdc42, MRCK
(myotonic dystrophy kinase related Cdc42-binding
kinase), which directly phosphorylates the MLC [27].

The role of PAK in generating lamellipodia and/or filopo-
dia is controversial. On the one hand, introduction into
cells of an activated form of PAK induces Rac-type lamel-
lipodia or ruffles, although this does not require PAK
kinase activity [25]. Several studies, however, have shown
that mutants of Rac or Cdc42 that fail to bind PAK 7 vitro
still induce lamellipodia or filopodia, suggesting that PAK
is not involved in these processes [28-30]. Recent work
has offered a possible explanation for these apparently
conflicting results. PAK is targeted to focal complexes and
this recruitment does not require interaction with Cdc42 as
it occurs in response to mutant forms of PAK that fail to



bind Cdc42 [31°]. This targeting does require PAK binding
to PIX (PAK interacting exchange factor), a GEF for Rac
[32°]. This suggests that there is a complex formed
between Rac or Cdc42; PAK (a downstream effector) and
PIX (an upstream GEF). Mutations that disrupt the Rac or
Cdc42 interaction with PAK 7z vitro may not disrupt the
complex 77 vivo because of the bridging interactions
between PIX and PAK. These results also raise the possi-
bility that PAK introduced into cells may induce
lamellipodia by activation of endogenous Rac via PAK’s
interaction with PIX. Multiprotein complexes of this type
may also occur with RhoA and should be considered in the
analysis of RhoA mutants that fail to interact directly with
particular downstream effectors. With respect to the induc-
tion of lamellipodia and filopodia by Rac and Cdc42,
several other targets have also been implicated including
PI 5-kinase [33], phosphoinositide 3-kinase (PI3K) [34°],
PORT1 [35], IQGAP [36,37] and WASP (Wiskott-Aldrich
syndrome protein) [38,39]. The relative contributions of
these proteins in the assembly of the actin arrays that gen-
erate lamellipodia and filopodia remain to be determined.

Rho family Rnd proteins (Rnd1, Rnd 2 and Rnd3/RhoE)
[40°,41°] show closest identity to RhoA, with an identical
effector domain apart from one residue. Despite this strik-
ing sequence similarity, they display a very distinct
biochemical and behavioral pattern with (unlike RhoA) a
very high G'TP-binding capacity but little if any intrinsic
G'T'Pase activity, suggesting that they exist 7z v7vo in a con-
stitutively active GTP-bound state. Rnd microinjection
into cells induces decreased adhesion (a round morpholo-
gy), disassembly of stress fibers and FAs — the opposite
effect of activated RhoA. Rnd3/RhoE promotes migration
of MDCK cells in response to hepatocyte growth factor
(HGF) [41°], consistent with antagonism of RhoA effects.
The Rnd proteins appear to act as negative regulators of
RhoA signaling pathways but how they are regulated and
their downstream targets remain to be determined.

Integrin dispersal from FAs

Migration involves cyclical changes in local adhesive
strength: decreases in adhesion can result from changes in
the affinity of integrins for their ECM ligands, from disas-
sembly of the cytoskeletal protein complex that interacts
with integrin cytoplasmic domains, or from the dispersal of
clustered integrins. Several factors that antagonize integrin
clustering in FAs and that promote the disassembly of FAs
have been identified. It is important to note that there are
significant cell type differences. In epithelial cells, for exam-
ple, activation of protein kinase C (PKC) by PMA leads to
rapid disassembly of FAs [42], whereas in fibroblasts the
same treatment either has no effect or potentiates cell
spreading and FA assembly [43,44]. Agents that inhibit
actin—myosin interaction, either directly [15] or indirectly
through MLLCK [45-47] or RhoA inhibition [48], promote
disassembly of stress fibers and FAs, consistent with the idea
that contractility drives the formation of these structures.

Several of the factors discussed below appear to cause inte-
grin dispersal from FAs by inhibiting contractility.

Regulation by cAMP-dependent protein kinase

Elevated cAMP and consequent activation of protein kinase
A (PKA) affects cell morphology, inducing loss of actin stress
fibers and FAs, rounding of cells and detachment from the
underlying substratum [45,49,50] (Figure 1b). These
effects, however, are not conserved across all cell types [51].
Elevation of cAMP also decreases the phosphorylation of
multiple proteins, including decreased tyrosine phosphory-
lation of the FA proteins paxillin [52] and FA kinase (FAK)
[53]. Activated PKA phosphorylates MLLCK, inhibiting its
activity and causing a concomitant decrease in ML.C phos-
phorylation [45], supporting the idea that actin-myosin
interaction and contractility are critical for the assembly of
stress fibers and FAs (reviewed in [3,13]).

RhoA has been identified as a substrate for PKA resulting
in phosphorylation on Ser188 [54]. This has been suggest-
ed to inhibit multple aspects of RhoA activity
[54,55°,56,57°,58°]. Phosphorylated RhoA displays
decreased guanine-nucleotide exchange [55°], possibly
due to increased affinity of RhoA for RhoGDI [54]. Bind-
ing to RhoGDI results in extraction of RhoA from the
membrane and translocation to the cytosol where it is gen-
erally presumed to be inactive [54]. RhoA phosphorylation
on Ser188 leads to decreased association with Rho-kinase
[57°,58°]. The overall effect of cAMP-mediated phospho-
rylation of RhoA is to downregulate its activity. It is
interesting to note that in cells under tension, sudden
release of this tension causes a sharp rise in cAMP levels
[59]. In this circumstance, the inhibition of RhoA activity
by elevated cAMP may allow remodeling of
integrin—cytoskeletal connections, thereby permitting a
cell to adapt to its altered environment.

Regulation by Rac and Cdc42

Various growth factors (e.g. epidermal growth factor
[EGF], insulin, platelet-derived growth factor [PDGF])
induce FA disruption [60°,61-63]. Rather little is known
about the mechanism, although the effect is often depen-
dent on the concentration of growth factor used. One
possible mechanism for EGF-induced actin disruption was
provided by Chang e7 /., who demonstrated that the time
course for Src-mediated tyrosine phosphorylation of
p190RhoGAP correlated closely with EGF-mediated
cytoskeletal disassembly [64]. Tyrosine phosphorylation of
p190RhoGAP has been suggested to increase its RhoGAP
activity, making it an ideal candidate for mediating a
decrease in RhoA activity and leading to disassembly of
FAs. Interestingly, many of the growth factors that disrupt
FAs also activate Rac or Cdc42. A complex interrelation-
ship exists between RhoA and Rac/Cdc42. In some
situations, activation of Cdc42 or Rac results in subsequent
RhoA activation [65,66]. Yet the functions of Rac and
Cdc42 seem antagonistic to the actions of RhoA. Whereas
Cdc42 and Rac promote cell extension, RhoA promotes



Figure 2

Regulation of Rho activity by tyrosine
phosphorylation. A large body of evidence
indicates that the assembly of stress fibers and
FAs is regulated by tyrosine phosphorylation
[3]. Inhibitors of PTKs (e.g. Tyrphostin A25)
inhibit the activation of RhoA. Alternatively,
inhibitors of PTPs (e.g. vanadate, phenylarsine
oxide [PAO]) stimulate RhoA activity and
induce the formation of stress fibers and FAs. In
addition, there is evidence that there are critical
tyrosine phosphorylation events upstream of
RhoA [75]. This figure proposes a model
whereby the activity of RhoA GEFs is regulated
by tyrosine phosphorylation. Phosphorylation of
a GEF by a PTK activates the GEF, promoting
nucleotide exchange on RhoA, in turn leading
to assembly of stress fibers and FAs. GEF
activity is turned off by PTPase activity. RhoA
GAPs could also be regulated (inhibited) by
tyrosine phosphorylation but this is not shown
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contractility. Contractility can itself contribute to extension
if strong adhesion exists but, when adhesion to the sub-
stratum is weak, RhoA-induced contractility will retract a
leading edge and oppose the extension induced by Rac or
Cdc42 [67]. This has been most clearly seen with the
behavior of nerve growth cones [68,69°].

Although Cdc42 and Rac can lead to activation of RhoA,
activated Cdc42 and Rac have been noted to diminish
stress fibers and FAs [67,70°]. Constitutively active forms
of PAK, a kinase activated by both Cdc42 and Rac, also dis-
assemble stress fibers and FAs when introduced into cells
[31°,70°,71°]. This suggests that it may be the effector
responsible for the antagonism between Rac/Cdc42 and
RhoA. As mentioned earlier, MLCK has been identified as
a substrate for PAK, and PAK phosphorylation of MLLCK
inhibits its phosphorylation of MLLC [26°]. These observa-
tions indicate a biochemical pathway by which Rac and
Cdc42 can diminish the contractility induced by RhoA and
thus favor the disassembly of stress fibers and FAs. Growth
factors that activate Rac or Cdc42 typically promote cell
migration. Because FAs often retard migration, the disas-
sembly of these structures via a PAK-mediated inhibition
of MLLC phosphorylation would be expected to contribute
to cell migration stimulated by growth factors.

Regulation by tyrosine dephosphorylation

"The relationship between tyrosine phosphorylation and FA
assembly is complex. The assembly of many of the signal-
ing components in FAs depends on FAK activity generating
specific phosphorylated sites that can bind other signaling
proteins [72]; however, assembly of the structural compo-
nents of FAs can occur in the apparent absence of tyrosine
phosphorylation within FAs [73,74]. Nevertheless, many
treatments that enhance tyrosine phosphorylation promote
FA and stress fiber formation [3]. Conversely, agents that
decrease tyrosine phosphorylation have been observed to

disrupt FAs and stress fibers [3]. We conclude that although
tyrosine phosphorylation promotes FA and stress fiber
assembly it is not via the tyrosine phosphorylation of FA
components. Evidence for upstream regulation of stress
fiber and FA assembly by tyrosine phosphorylation came
from Nobes ez a/. who demonstrated that there is a tyrosine
kinase upstream of RhoA that regulates RhoA activation
[75]. Although the mechanism by which tyrosine phospho-
rylation regulates RhoA activity is unclear, one possibility is
through regulation of Rho GEFs (Figure 2). Work with Vay,
a GEF for Rac, provides precedent for GEFs being regu-
lated by tyrosine phosphorylation. Vav is a substrate for the
nonreceptor tyrosine kinases L.ck [76,77] and Syk [78°], and
in platelets is tyrosine phosphorylated in response to inte-
grin-mediated adhesion [78°,79]. This appears to regulate
its GEF activity, and possibly its ability to associate with
other signaling proteins [80].

Many conditions lead to the dephosphorylation of FA com-
ponents and FA disassembly. For example, some growth
factors (e.g. EGE, insulin, PDGF) induce dephosphoryla-
tion of FA proteins and this is accompanied by FA
disassembly [61-63,81]. Similarly, introduction of potent
protein tyrosine phosphatases (P'TPs), such as that from
Yersinia, leads to dephosphorylation of FA components and
a disruption of FAs and stress fibers [82°,83,84]. The inter-
pretation of these results has often been that the decreased
tyrosine phosphorylation of FA proteins causes the disrup-
tion. In light of the previous discussion, however, we would
suggest that the critical dephosphorylation is upstream of
RhoA, resulting in decreased RhoA activity, and that in the
case of growth factors, the dephosphorylation of FA compo-
nents is a consequence rather than a cause of disassembly.

Cells deficient in the P'TP Shp-2 display decreased spread-
ing and migration, but increased FAs [85°]. With respect to
the increased FAs, again our interpretation is that Shp-2



may normally regulate a RhoA GEF. In the absence of
Shp-2, increased RhoA GEF tyrosine phosphorylation
results in elevated RhoA activity and increased FAs. Sev-
eral PTPs have been found to interact with FA
components. PTP1B binds to the FA component p130¢as
(Cas) [86]. In one study, overexpression of wild-type
PTP1B, but not a mutant that failed to bind to or dephos-
phorylate Cas, revealed decreased cell spreading and
decreased cell migration [87]. These cells developed FAs,
but the cells appeared to have lost their polarity, possibly
indicating a suppression of Cdc42 activity. In a separate
study, using different cells, overexpression of PTP1B
showed no effects on spreading or morphology; however,
overexpression of an inactive form of PTP1B decreased
cell adhesion and decreased FAs and stress fibers [88]. In
the latter work, the inactive PTP1B was considered to be
acting as a dominant-negative mutant and these effects
were attributed to decreased Src activity, due to increased
phosphorylation of the inhibitory site on Src, Tyr527. It
would be interesting to know the state of RhoA activity in
these cells. Another PTP, PTP-PEST, binds to two FA
components, Cas [89,90°] and paxillin [91°]. PTP-PEST
has not been detected in FAs, however, and this associa-
tion might only occur when the components are soluble
within the cytoplasm and not concentrated within FAs.
Overexpression of PTP-PEST inhibits cell migration [92°]
and is associated with decreased Rac activity (SK Sastry, K
Burridge, unpublished results).

A dual specificity phosphatase PTEN, has been found to
dephosphorylate FAK [93°]. Overexpression of PTEN
inhibited cell migration, spreading and FA assembly,
whereas decreasing levels of PTEN enhanced migration.
Again, the effects on FA assembly could indicate that
PTEN regulates RhoA activity by acting on a tyrosine
phosphorylated RhoA GEF. During the past year, however,
several groups have shown that PTEN is a lipid phos-
phatase that dephosphorylates PI 3,4,5-trisphosphate
(PIP;) [94°-97°], antagonizing the PI3K signaling pathway.
The PI3K pathway has been implicated in cell migration
[34°] and so the effects of PTEN on migration, spreading
and FA assembly may not be due to tyrosine dephosphory-
lation but due instead to PTEN’s lipid phosphatase activity.
Interestingly, some PTPs are closely associated with Rho
family GEFs or GAPs. Thus, the P'TP LAR, which in some
cells is found in FAs [98], associates with Trio, which con-
tains GEF activity for both RhoA and Rac [99]. Similarly,
PTPL1 interacts with PARG1, a GAP for RhoA [100].

Regulation by nonreceptor tyrosine kinases

In the preceding section, we argued that tyrosine phospho-
rylation of FA proteins does not contribute to FA assembly,
other than in the recruitment of signaling components. Ele-
vated tyrosine phosphorylation of FA proteins has, however,
been associated with FA disassembly and turnover. For
example, in cells transformed by the oncogenic PTK v-srv,
FAs are disassembled and cytoskeletal organization is dis-
rupted [3]. The disassembly of FAs in v-s7¢ transformed cells

is associated with elevated tyrosine phosphorylation of mul-
tiple proteins, both structural (e.g. integrins, talin and
vinculin) and regulatory (e.g. FAK, paxillin and Cas).

"T'he tyrosine phosphorylation of many of these proteins may
contribute to FA disassembly, but the involvement of FAK
is noteworthy. Using temperature-sensitive mutants of Src, a
correlation was found between FA disruption and FAK
phosphorylation, raising the possibility that FAK functions
in FA disassembly [73,101°]. Several lines of evidence sup-
port the idea that FAK has a role in FA turnover and motility.
For example, cells deficient in FAK display reduced motili-
ty and increased numbers of FAs [102]. Similarly,
displacement of FAK from FAs by a dominant-negative con-
struct inhibits cell migration [74]. Conversely, FAK
overexpression results in increased migration [103] and
many invasive tumor cell lines with enhanced motility
exhibit elevated levels of FAK activity [104]. Increased
numbers of FAs in cells expressing kinase-dead v-Src [101°]
or lacking FAK [102], suggest the involvement of Rho.
Schwartz and coworkers have found that cells lacking FAK
do indeed maintain higher levels of RhoA activity in
response to adhesion (MA Schwartz, unpublished data).
GRAF, a Rho GAP, found associated with the carboxyl ter-
minus of FAK [105], may be responsible for decreasing
RhoA activity in response to FAK phosphorylation.

Regulation by extracellular matrix proteins

Several ECM proteins (thrombospondin, tenascin-C and
SPARC) are enriched at sites of wound repair where cell
migration is normally induced (reviewed in [106,107°]).
These proteins stimulate migration and have been shown
to promote disassembly of FAs and stress fibers [108,109];
however, it should be noted that the anti-adhesive effects
of these proteins do seem to be variable and context-
dependent. A role for cGMP in the action of
thrombospondin and tenascin has recently been estab-
lished [110], whereby this cyclic nucleotide is required for
the interaction of specific regions of these proteins with
cells. Recent work has implicated PI3K in throm-
bospondin-mediated effects on FAs and stress fibers [111°].
Decreases in adhesion are required for cells to be able to
migrate; therefore, these anti-adhesive matrix proteins may
contribute to efficient cell migration during wound repair.

Regulation of integrin distribution by
microtubules and intermediate filaments

Most of the work studying the relationship between the Rho
family of G'T'Pases and the cytoskeleton has been aimed at
understanding their control of actin organization; however,
Rho has significant effects on the two other major filamen-
tous systems, microtubules and intermediate filaments.
Microtubules have long been known to affect the adhesion
of fibroblasts as well as various aspects of fibroblast migra-
tion. Inhibitors of microtubule polymerization decrease the
rate of fibroblast spreading [112], decrease protrusive activi-
ty of the leading edge [113], and result in a loss of polarized
migration [114]. Spreading, protrusion and polarized migra-



tion are also regulated by members of the Rho family, sug-
gesting that the state of microtubules may affect these
G'T'Pases. Consistent with this hypothesis, microtubule
depolymerization enhances cell contractility and the assem-
bly of stress fibers and FAs [115-118]. Elevated MLC
phosphorylation was detected in response to microtubule
depolymerization, suggesting a biochemical basis for the
increased contractility [119]. This is supported by further
work indicating that microtubule depolymerization activates
Rho [117,120°-122°]. Significantly, GEF-H1, an exchange
factor for both Racl and RhoA, has been localised to micro-
tubules [123°]. It is possible that GEFs sequestered on
microtubules are unable to promote guanine nucleotide
exchange and that depolymerization of microtubules liber-
ates these GEFs, allowing them to activate Rho. Whereas
microtubule depolymerization has been found to activate
RhoA, the converse has been found with Rac. Microtubule
polymerization is associated with activation of Rac
(CM Waterman-Storer, personal communication).

Microtubules in many cultured cells are highly dynamic
polymers, alternating phases of growth with periods of rapid
depolymerization. Some microtubules are relatively stable,
however, and can be distinguished by antibodies that identi-
fy a post-translational modification, the detyrosination of
tubulin to expose a carboxy-terminal glutamic acid. Cook
and coworkers [124°] found that activation of RhoA
increased the population of stable microtubules. One possi-
ble mechanism for this stabilization is suggested by the
studies of Kaverina ez /. [125°], who observed that FAs can
capture the ends of microtubules and stabilize these struc-
tures against depolymerization. They also found that FAs can
nucleate microtubule assembly under situations when cells
are recovering from treatment with microtubule inhibitors
such as nocodazole. The mechanism of stabilization is as yet
unclear, but, as microtubules influence cell polarity, their
selective stabilization may contribute to polarized migration.

Besides stimulating stress fibers and FAs, constitutively
active RhoA also causes a collapse of vimentin intermediate
filaments [126]. Sin ¢z a/. [127°] have found that the RhoA-
activated kinase ROKa (Rho-kinase) binds to vimentin and
that vimentin is a substrate for this kinase. The phosphory-
lation of vimentin by ROKa inhibits its polymerization 7z
vitro, resembling the actions of other kinases that have
been shown previously to promote the collapse and disas-
sembly of vimentin filaments [128]. Introduction of
constitutively active ROKa induces the collapse of inter-
mediate filaments, similar to their collapse induced by
microtubule depolymerization [127°]. Interestingly, the col-
lapse of vimentin filaments to a condensed aggregate next
to or around the nucleus in response to microtubule depoly-
merization has been shown to depend on force generated
by actin-myosin interaction [129]. ROKa (Rho-kinase)
stimulates contractility (see above), suggesting that the col-
lapse of the vimentin filamentous network is the result of
the combined effects of vimentin phosphorylation and
enhanced contractility. Vimentin phosphorylation may dis-

connect these filaments from their close association with
microtubules, because microtubules remain extended even
as vimentin condenses. The significance of the vimentin
collapse in response to RhoA activation is not clear.

Integrin feedback to cytoskeletal reorganization
In studying the activation of Rho family GTPases most
attention has been focused on the actions of soluble factors
such as bioactive lipids, peptides and growth factors. Sever-
al studies, however, have begun to reveal that
integrin-mediated adhesion can itself activate these
G'TPases (Figure 3). Long before Rho G'TPases were iden-
tified, it was known that adhesion to ECMs induced
extensive filopodia and membrane ruffling. These
cytoskeletal/membrane protrusions are now recognized as
the hallmarks of Cdc42 and Rac activation respectively,
leading to the prediction that integrin-mediated adhesion
activates these small G proteins (Figure 3). Recent work
has substantiated this idea [130°,131°]. Dominant-negative
mutants of Cdc42 and Rac inhibit the extension of filopo-
dia and ruffles in response to adhesion to FN. In addition,
PAK, a serine/threonine kinase activated by both Cdc42
and Rag, is stimulated by FN adhesion [131°]. Both studies
found that Cdc42 activation appears to be upstream of Rac
activation, consistent with the cascade that has been iden-
tified with soluble activators of these G'TPases [65,66].
Several studies have also indicated that RhoA is activated
upon integrin-mediated adhesion [20,130°,132°], although
RhoA activation appears to be largely independent of adhe-
sion-induced Cdc42 and Rac activation [130°,131°].
Measurement of RhoA activity using the Rho-binding
domain of Rhotekin — which associates preferentially with
GTP-bound RhoA — reveals that integrin-mediated adhe-
sion causes only a modest increase in RhoGTP levels when
compared to activation by soluble factors such as lysophos-
phatidic acid (LLPA) or serum [122°].

How might integrin-mediated adhesion activate Rho fam-
ily GTPases? GEFs are obvious targets because these
mediate Rho family activation. With increasing numbers of
GEFs being identified [12°], the challenge is to determine
which ones are involved in response to integrin-mediated
adhesion. In addition, it will be important to determine
which signaling molecules downstream from integrins lead
to GEF activation. One candidate for a role in integrin-
mediated activation of Rho family GEFs in response to
adhesion is Cas. Cas binds FAK [133], is a substrate for Src
[134] and becomes tyrosine phosphorylated in response to
integrin-mediated adhesion [135-137]. Cas also binds Crk,
an SH2/SH3-containing adaptor protein that interacts with
C3G, a GEF for Ras and Rap1 [138]. Cells derived from
Cas=— mice exhibit decreased FAs and stress fibers, sug-
gestive of effects on Rho activity [139°,140°]. This raises
the question as to whether a RhoGEF interacts with Cas or
Crk. Altun-Gultekin ez a/. [141°] show that overexpression
of v-Crk in PC12 cells leads to activation of Rho kinase,
PIP, accumulation, FA assembly, stress fiber formation and
cell spreading. These observations are consistent with acti-



Figure 3

\
Cdc42

s

s
’

Soluble factors

Rac Rho

e S~

¥ ' ‘
A Filopodial + [Lamellipodia == Spreading ==}, S1ress fibers

p AN

Rho
___—7\kinase

@Tyr @

Current Opinion in Cell Biology

Integrin-mediated adhesion activates Rho family GTPases.
Attachment of cells to FN leads to activation of both Cdc42 and
Rac [130°,131°]. Both Rac and Cdc42 activate multiple
downstream targets, including the kinase PAK, which has been
implicated in cytoskeletal reorganization, including the disassembly
of stress fibers [31°,70°,71°]. Rho is also activated by integrin-
ligation [122°,132°], leading to the formation of stress fibers and
FAs [132°]. It should be noted, however, that the activation of RhoA

by integrin ligation is less robust than its activation by soluble
factors. The GEFs responsible for Cdc42, Rac and RhoA activation
following integrin engagement are not known, but one candidate is
Vav, a Rac GEF that becomes tyrosine phosphorylated and
activated in response to integrin-mediated adhesion in platelets
[78°,79]. Another candidate for a role in Rac and RhoA activation is
p130¢°as in complex with the adapter protein Crk [139°,141°-143"],
and the Crk-binding protein DOCK180 [144°-147"].

vation of RhoA and possibly Rac. Other work strongly sup-
ports the activation of Rac via Cas.

As mentioned earlier, overexpression of FAK promotes cell
migration [103]. Exploring the basis for this, Cary and
coworkers [142°] found that this enhancement of motility
was mediated by Cas. "Tumor cells with enhanced migration
displayed elevated Cas tyrosine phosphorylation and over-
expression of Cas was found to promote migration of cells
on ECM [143°]. Mutations that prevented Cas tyrosine
phosphorylation blocked the migratory response; further-
more, cell migration was promoted by expression of either
Cas or Crk, whereas cytokine-stimulated migration was
inhibited in cells expressing mutations in Cas or Crk that
inhibited their interaction. Significantly, migration in
response to Cas or Crk was prevented by dominant-nega-
tive Rac, suggesting that the Cas—Crk complex leads to Rac
activation [143°]. A likely protein involved in Cas-Crk sig-
naling to Rac is DOCK180 which binds to Crk in response
to integrin-mediated adhesion [144°,145°] and also binds

Rac [146°,147°]. Although it does not appear to be a con-
ventional Rac GEF itself, DOCK180, has been reported to
enhance nucleotide exchange and when overexpressed in
cells promotes elevated RaceGTP levels [147°].

Cytoskeletal regulation of matrix assembly

There is a close relationship between the organization of
the ECM and the actin cytoskeleton. This has been most
studied with fibronectin (FN). Not only is there a parallel
distribution of FN fibrils on the cell surface with submem-
branous bundles of actin filaments and FA proteins but
disruption of microfilaments with agents such as cytocha-
lasin leads to a parallel disruption of the fibrillar FN matrix
on the outside [148]. Clues as to why ECM organization
depends on cytoskeletal integrity have been provided
recently. FN matrix assembly is promoted by serum and
Mosher’s group has identified the critical ingredient in
serum as LLPA [149]. LLPA is a lipid that stimulates RhoA
activity, as well as initiating other signaling pathways.
Inhibiting RhoA activity or actin—myosin interaction was



shown to prevent FN matrix assembly leading to the sug-
gestion that it is the tension generated by the cytoskeleton
that contributes to the assembly of a FN fibrillar matrix
[120°,150°]. Several studies have provided evidence for
cryptic self-assembly sites within FN [151-153] and recent
work has demonstrated that at least some of these sites can
be exposed by mechanical stretching of FN [150°]. Dra-
matic evidence that cells exert tension on N fibrils has
been provided through the use of green fluorescent pro-
tein (GFP)-tagged FN. These experiments demonstrate
that live cells can impose sufficient tension on FN fibrils to
generate considerable stretch. Upon detachment, FN fib-
rils under tension were observed to contract rapidly to a
quarter of their stretched length [154°].

Tension generated by the actin cytoskeleton affects the
assembly and organization of the ECM and, in turn, the
organization of the ECM influences many aspects of cell
behavior. This has been illustrated in studies showing that
cell growth is diminished for cells adhering to an abnormal
FN matrix assembled from truncated FN [155°] or for cells
in which FN fibril assembly has been blocked [156°].

Conclusions

Much has been learned about how RhoA stimulates integrin
clustering into FAs and the role of myosin-mediated con-
tractility in this process. In contrast, much less is known
about the clustering of integrins into focal complexes in
response to Rac and Cdc42. The crosstalk between Rho
family G'T'Pases appears more and more complicated. In
some situations, Cdc42 and Rac activate RhoA, but the
actions of RhoA are often antagonistic to Rac and Cdc42.
Downstream effectors for Rac and Cdc42 have been identi-
fied that inhibit the development of stress fibers and FAs
induced by RhoA. Understanding the functions of the many
effectors of these G'TPases will be a challenge for the future,
as will be the unraveling of their complex interactions.

Many different factors have been identified that pro-
mote disassembly of FAs and dispersal of integrins. For
some of these factors, progress has been made identify-
ing the signaling pathways involved. Interestingly,
several of them converge on the regulation of myosin
activity and result in inhibition of contractility. Not only
do Rho family proteins regulate the state of the actin
cytoskeleton but recent work has demonstrated that
these proteins also regulate microtubules and vimentin
intermediate filaments. In addition, the state of micro-
tubule polymerization affects the activity of RhoA.

An exciting development in the field has been the recogni-
tion that integrin-mediated adhesion itself triggers activation
of Cdc42, Rac and RhoA. With increasing numbers of GEFs
being identified for Rho family GTPases, another challenge
will be to identify which GEFs are activated in response to
integrin ligation. We anticipate that adhesion-mediated reg-
ulation of Rho family GTPases will play an important part in
the complex process of cell migration.
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