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Abstract

The robustness of procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses is
investigated. These procedures are based on attempts to detect increasingly complex patterns in the scatterplots

under consideration and involve the identification of (i) linear relationships with correlation coefficients, (ii)

monotonic felationships with rank correlation coefficients, (iii) trends in central tendency as defined by means,
medians and the Kruskal-Wallis statistic, (iv) trends in variability as defined by variances and interquartile ranges,
and (v) deviations from randomness as defined by the chi-square statistic. The following two topics related to the
_robustness of these procedures are considered for a sequence of example analyses with a large model for two-phase
fluid flow: the presence of Type I and Type II errors, and the stability of results obtained with independent Latin
hypercube samples. Observations from analysis include: (i) Type I errors are unavoidable, (ii) Type II errors can
océur when ihappropriate analysis proéedures are used, (iii) physical explanations should always be sought for why
statistical procedures identify variables as being important, and (iv) the identification of important variables tends to

be stable for independent Latin hypercube samples.
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1. Introduction

Procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses are described
and illustrated in the preceding article.! These procedures are based on attempts io recognize increasingly complex
patterns in the scatterplots under consiaeratioq and involvé the identification of (i) linear relationships with
correlation coefficients, (i1) monotonic relationship§ wi\th rank correlation coefficients, (iii) trends in central tendency
as defined by means, medians and the Kruskal-Wallis étatistic, (iv) trends in variability as defined by variances and
interquartile ranges, and (v) deviations from randomness as defined by the chi-square statistic. The robustness of
these procedures is now considered. In particular, the presence of Type I and II errors is considered (Sects. 2, 3),

and the stability of results obtained with independent Latin hypercube samples (LHSs)? is examined (Sect. 4).

2. Typeland Il Errors

The sensitivity analySis techniques under discussion use p-values to indicate if a relationship appears to exist
between an uncertain analysis input and a predicted analysis outcome (Sect. 8, Ref. 1). Clearly, it is desirable that
the techniques identify the inputs that actually affect analysis outcomes (i.e., to avoid Type II errors, which
correspond to the failure to identify important variables). As shown by the example analyses in Sect. 10 of Ref. 1,
Type II errors can occur when the test for variable importance is inappropriate for the relationships that exist
between analysis inputs and analysis outcomes (e.g., see the analyses for E2: WAS_PRES in Sect 10.4, Ref. 1). Thus,
a good analysis strategy is to use several tests for variable importance and thus reduce the likelihood of overlooking

an important variable (i.e., committing a Type II error).

In addition, it is also important that the techniques not identify inputs as having effects that are not actually
present (i.e., to avoid Type I errors, which correspond to the indication of nonexistent effects for unimportant
variables). Unfonunzitely, the “price” of using multiple tests for variable importance is an increase in the number of
Type I errors (i.e., in “false alarms™); however, it is the responsibility of the subject-area experts to explain why
individual variables are identified as being important. Ultimately, if such explanations cannot be developed, then the

analysis is suspect and the observed results may be due to errors in the implementation of the analysis.

If a variable has no effect on a particular analysis outcome and the assumptions of the statistical test in use are |
satisfied, then the corresponding p-values generated from repeated random sampling should have a uniform
distribution on the interval (0, 1). Specifically, prob (p < p) = prob (t > 1) = p, and thus p has a uniform
distribution on (0, 1), where 0 < p < 1, prob denotes probability, and 1, and f are values of the statistic with p-values
of pand p, respecﬁvely. Similarly, if multiple unimportant variables are involved, their p-values from a single
sampling should be uniformly distributed on (0, 1). Thus, for a specified p-value (i.e., p) and n unimportant
variables, the likelihood prob (Type 11 p, n) of committing a Type I error (actually, one or more Type I errors) is

given by




prob (Typelip,n)=1~(1-p), ¢))

with prob (Type I | p, n) increasing as each of p and n increases (Fig. 1). Thus, Type I errors cannot be avoided, and
their likelihood of occurrence is defined by Eq. (1) p'rovided that the p-values for unimportant variables follow a

uniform distribution.

The LHSs indicated in Egs. (8)-(10) of Ref. 1, and on which the examples in Sect. 10 of Ref. 1 are based,
involved 75 variables (Table 2, Ref. 1). However, 49 of these variables were not used in the calculation of the model
results EO:WAS__PRES and E0:BRAALIC; and 48 of these variables were not used in the calculation of the model
results E2:WAS_SATB and E2:WAS_PRES (Table 1, Ref. 1). Thus, the p-?alues associated with these 49/48
variables should have uniform distributions on the interval (0, 1). The Kolmogorov-Smirnov test3 can be used to
indicate if the distributions of p-values for these variables do indeed have uniform distributions on (0, 1). In
particular, the 0.9 and 0.99 two-sided Kolmogorov-Smirnov bounds around the cumulative distribution function
(CDF) for the true distribution (i.e., uniform on (0, 1)) are given by 1.22/(n+/n/10)* and 1.63/(n+n /10 )%,
respectively, where n is the sample size (Table A14, Ref. 3). For n =48, 49, the corresponding 0.9 and 0.99 bounds
are 0.17 and 0.23, respectively. |

As 4 variables (i.e., EO:WAS_PRES, E0:BRAALIC, E2:WAS_SATB, E2:WAS_PRES) and 8 tests (i.e., CC, RCC,
CMN, CL, CMD, CV, CIQ, SI) are under consideration (see Sect, 10, Ref. 1), 32 distributions of p-values resuit
(Fig. 2). The p-values that give rise to these 32 distributions were calculated with the analytic rather than the Monte
Carlo procedures described in Ref. 1. Of these 32 distributions, 24 are within the 0.9 bounds. Further, 6 of the 9
distributions that are outside the bounds are for the variable/test pairs (EO:WAS_PRES, CC), (E0:BRAALIC, CC),
(E2:WAS_SATB, CC), (EO:WAS_PRES, RCQC), (EO:BRAALIC, RCC), and (E2:WAS_SATB, RCC). As results
obtained with CCs and RCCs are not independent, the indicated deviations of (EQ: WAS_PRES, CC) (E0:BRAALIC,
CC) and (E2:WAS_SATB, CC) from a uniform distribution on (0, 1) are not independent of the indicated deviations
for (E0:WAS_PRES, RCC), (EO.'BRAALIC, RCC), and (E2:WAS_SATB, RCC). The most notable deviation occurs
for the pair (E0:BRAALIC, CV), with no p-values exceeding 0.7. There is something associated with EQ:BRAALIC
that is causing an underrepresentation of large p-values for unimportant variables. This underrepresentation
probably derives from the fact that EO: BRAALIC has a few large values and many very small values (Fig. 2b, Ref. I).
Fortunately, the shape of the individual CDFs in Fig. 2 does not suggest any tendency for the tests to produce
unusual numbers of very small p-values; thus, there does not appear to be a tendency to produce excessive numbers
of Type I errors in the examples under consideration. However, the results in Fig. 2 do suggest that the p-values for
unimportant variables may not have a uniform distribution on (0, 1). Because of this behavior, additional

simulations were carried out as described in the next section.




3. Typel and Type ll Errors: Additional Simulations

An additional set of simulations was carried out to provide a check on the reasonableness of the distributions of
p-values in Fig. 2. In particular, 10 independent LHSs of size 300 were generated with the Iman and Conover
restricted pairing technique* from 50 independent variables with uniform distributions on the interval [0, 1]. These
LHSs were then associated with the calculated values for EO:WAS_PRES, EO0:BRAALIC, E2:WAS _SATB and
EZ WAS_PRES obtained with the original LHS of size 300 discussed in Sect. 2 of Ref. I, and the corresponding
distributions of p-values were calculated for the precedmg four output variables, each of the eight tests under
consideration, and each of the 10 independent LHSs." Again, the p-values were calculated with the analytic

procedures described in Ref. 1. The outcome is 10 CDFs for each of the 32 test/output variable pairs.

If the assumptions of the tests are met and the calculations are implemented correctly, then the CDFs for each
test/dependent variable pair should approximate a uniform distribution on [0, 1]. This generally appears to be the
case. For example, the original CDFs for EO:WAS_PRES and tests based on CCs and RCCs move across the 0.99
Kolmogorov-Smimov boundary (Figs. 2a, b). In contrast, the .current exercise with 10 independently-generated

LHSs produces CDFs of p-values that generally stay within the 0.9 Kolomogorov-Smirnov bounds (Fig. 3).

Twenty-nine of the remaining 30 test/output variable pairs produced distributions of p-value CDFs that were
similar to the two CDF distributions in Fig. 3. The exception to this consistency occurred for EO:BRAALIC and the
CVs test (Fig. 4). For this test/output variable pair, the p-values remain below approximately 0.7, which was also the
case in Fig. 2f. The variable EO:BRAALIC has a large number of values that are effectively zero (Figs. 2, 4, Ref. 1).
As aresult, the estimated variances ¢, gl in Eg. (50) of Ref. 1 used to define the F statistic for the CVs test do not have
a normal distribution for the individual independent variables, and so the associated p-values do not have a uniform

distribution on {0, 1] even though the independent variables have no effect on EO:BRAALIC.

4. Robustness with Respect to Repeated Independent Samples

The examples in Sect. 10 of Ref. 1 use a sample of size 300 obtained by pooling the three samples of size 100
each indicated in Eqgs. (8)-(10) of Ref. 1. The availability of these three independent samples provides a way to
examine the robustness of the techniques under consideration. In particular, the analyses in Sect. 10 of Ref. 1 with
each of the 8 techniques can be repeated with the individual samples of sizé 100. The extent to which the individual
samples agree in the identification of important variables then provides an indication of how robust the techniques

are with respect to repeated independent samples and also reductions in sample size (Table 1).

When comparing the variable selections in Table 1, it is important to keep in mind that the likelihood of a Type
Terror increases rapidly as p-values increase (Fig. 1), with 25 variables and a p-value of 0.01 producing a probability

of 0.22 of a Type [ error as indicated in Eq. (1). Further, the p-values for unimportant variables may not be random




on (0, 1) due to patterns that are imposed on the data by the effects of other variables (Fig. 4). Thus. the
probabilities in Fig. 1 are, at best, only an indication of the likelihood of a Type I error. As a result, the comparison
of sets of important variables obtained with different replicates is probably valid only for variables with fairly low p-

values. As p-values increase (e.g., > 0.01), such comparisons become less and less meaningful.

The overall pattern that emerges from the results in Table 1 is that the most important variables identified with

the pooled sample of size 300 are also identified as being important with the three individual samples of size 100. In
particular, the two most important variables as defined by the size of their p-values are typically the same across all
fqur saknples for the individual tests (i.e., CCs, RCCs, CMs, CLs, CMDs, CVs, CIQ, SI), although it should be
reﬁééhized that the results obtained with the pooled sample are not independent of the results obtained with the
individual samples. Hence, the use of a sample size of 300 or 100 made little difference with respect to the variables
identified as being most important, although the larger sample size did tend to indicate likely effects for more
variables than was the case for the smaller sample size. Similar robustness has been observed in several other studies

involving Latin hypercube sampling.57

The most notable deviations from this consistency occur for the CVs test for EQ:BRAALIC and E2:WAS_PRES
and the CIQ test for EO:BRAALIC.. The variable EO:BRAALIC is significantly affected by both WMICDFLG and
ANHPRM (Fig. 4, Ref. 1). However, as WMICDFLG is being missed by the CVs test, it is perhaps not surprising
that the individual samples are not producing consistent results. A logarithmic transformation improved the results
obtained with the CVs test for WMICDFLG with the pooled sample (Table 16, Ref. 1) and also produced somewhat
better results for the individual samples (Table 2). The variable E2:WAS_PRES is almost completely dominated by
BHPRM (Fig. 6, Ref. 1), with this effect being missed by the CVs test for replicate R3; further, although BHPRM is
identified by the CVs test as the most important variables affecting E2: WAS_PRES for replicate R2, the p-value is
high (i.e., 0.0633). The CIQ test misses the effect of ANHPRM on EO:BRAALIC for replicates R1 and R2, with this
behavior probably resulting from the large number of zero and near-zero values associated with EO:BRAALIC
(Fig. 4, Ref. 1). The CVs and CIQ tests attempt to detect important variables on the basis of variable spread rather
than variable location as is the case for the CMNs, CLs and CMDs tests. For the output variables under
consideration, the tests based on location appear to be more effective in identifying important variables than tests

based on spread.

An important point that emerges from the individual replicates is that consistency across independent analyses
does not necessarily imply that these analyses are properly identifying the dominant variables. For example, all four
analyses with both CCs and RCCs identify HALPRM and ANHPRM as being the two most important variables with
fespect to E2:WAS_PRES (Table 1) and completely fail to identify the dominant role played by BHPRM (Fig. 6, Ref.
1). For E2:WAS_PRES, the three replicates are producing similar patterns, which in turn are producing similar

outcomes when analyzed with CCs and RCCs.




5. Discussion

Two aspects of statistical analyses of scatterplots to identify important factors in large-scale simulations have
been examined: the occurrence of Type I and Type 11 errors, and the stability of results obtained with independent

LHSs.

The occurrence of Type 1 errors is unavoidal;ié in sampling-based sensitivity analyses (Fig. 1), with the
likelihood of such errors increasing as the number of independent variables under consideration increases and also as
more tests are applied to a given dependent variable. Although the possibility of Type 1 errors exists, this is not
‘viewed as a serious problem for two reasons. First, the really important variables typically display a sufficiently
strong éffect that there is little likelihood that this effect could have originated from chance alone. Sécond, a variable
should never be assumed to be important solely on the basis of a statistical test. Rather, an explanation for its
indicated importance should be developed on the basis of the properties of the model under consideration. If such an
explanation cannot be developed, then the effect may be spurious or, as occurs with disconcerting frequency, there

may be an error in the implementation of the model.

The occurrence of Type II errors is a real possibility when statistical tests are used that are inappropriate for the
patterns that occur in the analysis results under consideration. In a large analysis, there may be hundreds -of
dependent variables that are investigated in sensitivity analyses in a rote manner (i.e., the same test or tests are
applied to each dependent variable rather than a unique sequence of tests being developed for each dependent
variable). A good analysis strategy is to aéply a sequence of tests to each dependent variable. Then, there is a high
likelihood that at least one of these tests wilbl be appropriate for a given dependent variable and correctly identify the
factors affecting this variable. A possible sequence of tests is correlation coefficients (CCs), rank correlation
coefficients (RCCs), common locations (CLs) or common medians (CMDs), and statistical independence (SI)

(Sect. 11, Ref. 1).

Sample size is often an important consideration in sensitivity analyses for long-running models. In particular,
the computational cost of evaluatiﬁg the model may be a significant limitation on the number of model evaluations
that can be carried out, with Latin hypercube sampling having been developed to make efficient use of a limited
number of model evaluations.2 Given the need to limit sample size, the stability of. results obtained with
independent, relatively small samples is a concern. In the empirical investigations reported here, individual LHSs of
size 100 typically identified the same dominant variables as identified with a sample of size 300 obtained by pooling
the three individual samples. Thus, relatively-small samples led to the identification of the important variables
provided an appropriate statistical test was used. An inappropriate test will fail regardless of sample size. However,
success at identifying less important variables rather unsurprising goes up as the sample size increases. The
preceding suggests that a small sample size will lead to an identification of the most important variables, with an

increased sample size leading to greater resolution of the effects associated with less important variables. The




authors’ experience is that the uncertainty in individual model predictions tends to be dominated by a small number

of variables even though the model itself may have a large number of uncertain inputs.
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Figure Captions

Fig. 1. Contour plots for probability of a Type I error, prob (Type Il p, n), as a function of p-value, p, and number
of unimportant variables, n (See Eq. (1)).

Fig. 2. Distribution of p-values and associated Kolmogoro\/-Smirnov bounds for individual tests and variables in
LHS that do not affect E0: WAS_PRES, EO:BRAALIC, E2:WAS_SATB and E2:WAS_PRES.

Distributions of p-values for 10 independc;ﬁtly-generated LHSs: (3a) CCs for EO:WAS_PRES and (3b)
RCCs for EO:WAS_PRES.

o]
w

Fig. 4. Distribution of p-values for 10 independently-generated LHSs for CVs test and E0:BRAALIC.
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Fig. 1. Contour plots for probability of a Type [ error, prob (Type 1| p, n), as a function of p-value, p, and number
of unimportant variables, n (See Eq. (1)).




Cumutative Probabllity

Cumulative Probability

1.0

08 -

! ! L I =’y
EO:WAS_PRES ——— Y-
EQ:BRAALIC  -rroereen i
E2:WAS_SATB -------- o =t
E2:WAS_PRES ————- e )

R = [ ~

. RV /S L

Frame 2a L ’J.I 4 w
I 0.90 K-S BOUND
S 0.99 K-S BOUND
——T . i ]

0.0

0.2 04 0.6
p-Value : Correlation Coefficient (CC)

0.8

1.0

08

! T T 1
EO:WAS_PRES ——— . o
EG:BRAALIC  wworrveveme &F
E2:WAS_SATB R
E2:WAS_PRES ———n- " -y
Frame 2¢ .:,.-"// :.- =y ’,-"_..-"'

Ay
:Y' //
hE
ot "
“‘f o “/
£ .
4ol e
S ol 0.90 K-S BOUND ===nnnn-
SRy 0.99 K-S BOUND -revvreenee
.1 1 i \

0.0
0.0

Fig. 2.

0.4 0.6
p-Value : Common Means {CMN)

0.8

1.0

Cumutative Probabllity

Cumulative Probabllity

1.0

0.8 -

06 -

04

198
EO:WAS_PRES
EO:BRAALIC
E2:WAS_SATB
E2:WAS_PHRES

Frame 2b
'-I
rr
P,——r "M-. . N
e 0.90 K-S BOUND --------
L oy 0.99 K-S BOUND -eeeemeereres
.......... 240 . ' i

0.0

10

02 0.4 0.6 0.8
p-Value : Rank Comelation Coefficient (RCC)

08 L

06 -

04

02

1 g
EO:WAS_PRES PR
EO:BRAALIC F A
E2:WAS_SATB RV PR
E2:WAS_PRES ————- o p HE

Frame 2d

-
-
#
’
4
0
’
’
’
’
-
’
’
*
’ 4
d -
4

fsr o 0.90 K-S BOUND
o 0.99 K-S BOUND
L i 1

a.0

0.4 0.6
p-Value : Common Locations {CL)

08

TRI-6342-5750-1

Distribution of p-values and associated Kolmogorov-Smirnov bounds for individual tests and variables in

LHS that do not affect EO:WAS_PRES, EO:BRAALIC, E2:WAS_SATB and E2:WAS_PRES.




Cumulative Probability

Cumulative Probabllity

1.0 T T . T
EO:WAS_PRES ——— A - I EO:WAS_PRES
EO:BRAALIC  -veeeeveerens i EO:BRAALIC
E2:WAS_SATB --=eeeun S0 LA E2:WAS_SATB
0.8 |- EZWAS_PRES ———n- “ A 0.8 |- EZWAS_PRES
Frame 28 .".'..- ',t H ., r :_’n’,o .'."; N . Frame 21
.z
0.6 = %
o
-4
2
04 - 3
E
=
[&]
02 ~
0.90K-SBOUND  ----svn- 0.90 K-SBOUND  ~--=-----
o B , 099 K-SBOUND  -ovoeeree ' 099 K-S BOUND  -ecemesnee
X 0 i H
0.0 0.2 0.4 0.6 0.8 1.0 0.4 06 08 1.0
p-Vaiue : Common Medians (CMD) p-Value : Common Variances (CV)
1.0 1 1.0 T
ng;VAs_PgES EC:WAS_PRES
“BRAAL EO:BRAALIC
E2WAS_SATB E2:WAS_SATB
08 | EXWAS_PRES 0.8 |- EZWAS_PRES
Frame 2g Frame 2h
06
04 | z
i
g
o.
[
=
g
. 2 .
0.90 K-S BOUND  =--eein- 3 L o
0.99K-S BOUND  -oreeescnee © £ 0.90 K-5 BOUND
00 &= 4 ! 1 : i ! 099 -5 BouND
X S ! !
0.0 0.2 0.4 0.6 0.8 1.0 0‘%,0 02 0.4 06 08 1.0
p-Value : Common Interquartiles (CIQ) p-Value : Statistical independence (St)

TRI-E342-5751-1

Fig. 2. Distribution of p-values and associated Kolmogorov-Smirnov bounds for individual tests and variables in
LHS that do not affect EO-WAS_PRES, E0:BRAALIC, E2:WAS_SATB and E2:WAS_PRES (continued).

10




Cumulative Probability

1.0

0.8

0.6

0.4

L i i

EO: WAS_PRES
Frame 3a

02 .
o 0.90 K-S BOUND ---eonu
0.99 K-S BOUND ---eeenveev
00K L ! 1
0.0 0.2 0.4 0.6 0.8 10

p-Valus : Correlation Coefficient (CC)

1.0 T
EQ: WAS_PRES
Frame 3b

0.8

o
o

Cumulative Probability
o
F-S

02 -

0.90 K-S BOUND

o 0.9 K-S BOUND ----vrneer
. ] i 1
02 04 - 06 0.8 1.0
p-Value : Rank Correlation Coefficient (RCC)
TRI-6342-6008-0

Fig. 3. Distributions of p-values for 10 independently-generated LHSs: (3a) CCs for E0:WAS_PRES and (3b)

RCC:s for E0:WAS_PRES.

1.0 . . . -
EO: BRAALIC
08| A
I’ I"

>
S 06 B
< g y
a - P
o - L
2 P P
E ‘,". " ”
2 B R e -
2 04 iy p
3 L o
O - g

0.2 '-,” ”v’ i

0.90 K-S BOUND -=-mnn-
o 0.99 K-S BOUND ----eenee-
0.0 s 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

p-Value : Common Variances (CV)

TRI-6342-6009-0

Fig. 4. Distribution of p-values for 10 independently-generated LHSs for CVs test and E0:BRAALIC.

11




Table 1. ~ Comparison of Variable Rankings Obtained with Different Analysis Procedures?@ for Three
Independent Samples of Size 100 (Columns AP:R1, AP:R2, AP:R3, where AP ~ CC, RCC,
CMN, CL, CMD, CV, CIQ, Sl as appropriate), Pooled Sample of Size 300 (Column AP:All),
and a Maximum of Five Classes of Values for Each Variable (i.e., nX=5)°

Variable CC: All CC: Rl CC: R2 CC: R3 Variable CC: Al CC: Rl CC: R2 CC: R}
Name  Rank p-Val. Rank p-Val Rank p-Val Rank p-Val Name  Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Correlation Coefficients (CCs) for EO:WAS_PRES - . Correlation Coefficients (CCs) for ED:BRAALIC
WMICDFLG 1.0 00000 1.0 00000 1.0 0.0000 1.0 0.0006 - ANHPRM 1.0 00000 1.0 0.0000 1.0 00000 1.0 0.0000
HALPOR 20 00000 20 00000 20. 00000 20 00001 WMICDFLG 20 0.0000 20 00016 20 00060 20 0.0000
WGRCOR 3.0 00000 30 00180 3.0 00051. 3.0 00018 | WASTWICK 3.0 00045 40 00584 9.0 02948 40 0.0333
ANHPRM 40 00241 90 03947 40 02371 40 00598 WGRCOR 40 00048 50 00957 3.0 00318 90 03018
SALPRES 50 00855 4.0 00822 180 08602 7.0 0.2824 ANHBCEXP 50 00095 30 00420 6.0 01474 120 04274
) Correlation Coefficients (CCs) for E2:WAS_SATB ‘ Correlation Coefficients (CCs) for E2:WAS_PRES
BHPRM 710 00000 1.0 00000 10 00000 1O 0.0000 HALPRM 1.0 00000 1.0 00013 10 0.0000 1.0 0.000]
ANHPRM 20 00000 20 00003 20 0.0281 20 00033 ANHPRM 20 00000 20 00020 20 00303 20 00267
HALPOR 3.0 00006 30 00834 4.0 00706 3.0 00159 HALPOR 3.0 00090 40 0.1417 30 00680 50 072188
WGRCOR 40 00017 60 0.1241 3.0 00547 5.0 0.0473 ANHBCVGP 40 0.1123 80 03286 5.0 0.1492 200 0.7457
WRGSSAT 50 0008 80 0.1367 11.0 05224 40 00175 ) SHPRMASP 50 0.1606 100 03784 16.0 05907 6.0 0.3115
Variable RCC: All RCC: R1 RCC: R2 RCC: R3 Variable RCC: Al RCC: R1 RCC: R2 RCC: R3
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Rank Correlation Coefficients (RCCs) for EO:WAS_PRES v Rank Correlation Coefficients (RCCs) for E0:BRAALIC
WMICDFLG 1.0 0.0000 1.0 0.0000 1.0 00000 1.0 0.0000 WMICDFLG 1.0 0.0000 1.0 0.0000 10 00000 1.0 00000
HALFOR 20 0.0000 20 0.0000 20 0.0000 20 00001 - ANHPRM 2.0 00000 20 00000 20 00000 20 0.0000
WGRCOR 3.0 0.0000 3.0 0.0286 30 0.0041 30 0.0051 HALPRM 3.0 0.0014 50 0.1867 5.0 00998 3.0 00140
ANHPRM 40 00268 950 04366 4.0 0.1070 50 0.1268 WGRCOR 40 00057 40 01772 6.0 01383 40 00570
SALPRES 50 0.0664 40 0.1111 160 07611 4.0 0.0957 HALPOR 50 00087 3.0 00980 30 00396 7.0 0.3723
Rank Correlation Coefficients (RCCs) for E2:WAS_SATB Rank Correlation Coefficients (RCCs) for E2:WAS_PRES
BHPRM 1.0 0.0000 1.0 00000 1.0 0.0000 1.0 0.0000 HALPRM 1.0 0.0000 20 00110 1.0 00000 1.0 0.0001
WRGSSAT 20 00000 20 00000 20 0.0048 20 00000 ANHPRM 20 0.0000 1.0 00036 20 00820 20 0008
ANHPRM 30 00001 3.0 00013 30 O0.1182 30 00335 HALPOR 3.0 00i84 40 01194 6.0 02015 50 02157
SHPRMHAL 4.0 00225 40 01842 50 0.1243 90 0.2595 ANHBCVGP 4.0 0.1099 11.0 02611 4.0 0.1347 180 08795
HALPOR 50 0.0269 85 04570 4.0 0.1236 4.0 0.1398 WGRMICI 50 01477 50 0.1275 8.0 0334 230 0973
Variable CMN: All,1x5 CMN:R1,1x5 CMN: R2,1x5 CMN: R3,1x5 Variable CMN: AlL1x5 CMN: R1,1x5 CMN: R2,1x5 CMN: R3.1x5
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Common Means (CMNs) for E0:WAS_PRES Common Means (CMNs) for E0:BRAALIC
WMICDFLG 1.0 0.0000 10 00000 1.0 00000 10 00000 ANHPRM 1.0 00000 10 0.0014 1.0 00000 10 0.0000
HALPOR 20 00000 20 00002 20 0.0000 20 00010 WMICDFLG 20 0.0000 20 00040 20 00069 2.0 0.0001
WGRCOR 3.0 00000 30 00051 3.0 00093 3.0 0.0107 SHPRMCON 3.0 0.0057 120 03818 80 03098 7.0 0.1531
ANHPRM 40 00195 100 04751 6.0 02920 7.0 0.2881 WGRCOR 40 00636 50 01989 11.0 03914 200 0.5713
SHPRMASP 5.0 0.1439 21.0 08597 5.0 0.1824 120 0.5410 WFBETCEL 5.0 00732 }0.0 0.3274 18.0 0.6060 120 0.2874
Common Means (CMNs) for E2:WAS_SATB Common Means (CMNs) for E2:WAS_PRES
BHPRM 1.0 00000 1.0 00000 1.0 00000 1.0 0.0000 BHPRM . 1.0 00000 1.0 00000 10 0.0000 1.0 0.0000
ANHPRM 20 00000 20 00031 20 00020 3.0 00544 HALPRM 20 00000 30 00288 20 00016 20 00027
WGRMICH 3.0 00021 40 00416 3.0 00471 20 0.0070 ANHPRM 3.0 00002 20 0028 60 0.1137 50 01184
HALPOR 4.0 00124 100 02900 8.0 02345 10.0 03619 ANHBCEXP 4.0 00405 6.0 0.1860 5.0 01137 40 00230
WRGSSAT 40 0.0143 50 00429 200 0.5575 60 01363 HALPOR 50 00415 160 05971 40 0.0956 150 063635
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Table 1. Comparison of Variable Rankings Obtained with Different Analysis Procedures? for Three
Independent Samples of Size 100 (Columns AP:R1, AP:R2, AP:R3, where AP ~ CC, RCC,
CMN, CL, CMD, CV, CIQ, St as appropriate), Pooled Sample of Size 300 (Column AP:All),
and a Maximum of Five Classes of Values for Each Variable (i.e., nX=5)P (continued)

Variable CL:AlLIxS CL:RLIxS CL:R2IxS CL:R3,Ix5 Variable  CL:AlL IS CL:RLIXS CL:R21Ix5 CL:R3.IxS5
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Common Locations (CLs) for £0:WAS_PRES L Common Locations (CLs) for EO:BRAALIC
WMICDFLG 10 0.0000. 1.0 00000 10 00000 1.0 0.0000 WMICDFLG 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
HALPOR 20 00000 20 00003 20 00000 20 00023 - ANHPRM 20 0.0000 2.0 00000 20 00000 2.0 0.0000
WGRCOR 30 00000 30 00112 30 00093 30 00179 HALPRM - 3.0 0.0019 4.0 02667 60 02321 3.0 00125
ANHPRM 40 00187 60 03792 60 02595 80 03770 WGRCOR 4.0 0.0427 6.0 03340 100 03212 13.0 04371
SHPWSP 50 01237 190 0.7696 5.0 0.1901 11.0 04537 SHPRMDRZ 50 0.1060 5.0 02785 150 0.5898 9.0 0.2393
o Common Locations (CLs) for E2:WAS_SATB Common Locations (CLs) for E2:WAS_PRES
BHPRM 10 00000 10 00000 1.0 00000 10 00000 BHPRM 1.0 0.0000 10 00000 10 0.0000 1.0 0.0000
WRGSSAT 20 00000 20 0.0000 3.0 00450 2.0 0.0001 HALPRM 20 00000 40 0.1176 20 00025 2.0 0.0028
ANHPRM 3.0 00001° 30 00102 20 0018 7.0 02010 ANHPRM 3.0 00000 20 00154 3.0 00523 4.0 0.0419
WGRMICH - 40 00059 90 0.1714 50 00579 3.0 0.0206 ANHBCEXP 40 00602 70 02213 60 01191 50 0.0438
SHPRMCON 50 0.0202 130 04691 100 0.1278 100 03785 HALPOR S50 0.0940 180 05620 90 0.2452 110 05243
Variable  CMD: All,2x5 CMD:R1,2x5 CMD:R2,2x5 CMD: R3,2x5 Variable CMD: All,2x5 CMD: R1,2x5 CMD: R2,2x5 CMD: R3.2x5
Name Rank  p-Val Rank p-Val Rank p-Val Rank p-Val Name  Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Common Medians (CMDs) for E0:WAS_PRES Common Medians (CMDs) for E0:BRAALIC
WMICDFLG 1.0 - 00000 1.0 00000 1.0 00000 10 0.0000 WMICDFLG 1.0 00000 1.0 00000 1.0 0.0000 1.0 0.0000
HALPOR 20 0.0000 20 00001 20 00000 20 00123 ANHFRM 20 00000 2.0 00009 20 00001 20 0.0003
WGRCOR 3.0 00025 50 01712 3.0 0.0663 4.0 0.1712 HALPRM 3.0 0.0050 17.5 07358 13.0 04060 3.0 0.002!
ANHPRM 40 00663 165 07358 160 0.6626 5.0 0.1991 HALPOR 40 00155 85 03084 50 0.0563 11.0 0.3060
SHPRMASP 5.0 0.2427 165 0.7358 7.0 0.2674 6.0 0.2674 WGRCOR 50 00231 3.0 0.1257 30 0.0244 160 0.5918
Common Medians (CMDs) for E2:WAS_SATB Common Medians (CMDs) for E2:WAS_PRES
BHPRM 10 00000 20 0.0000 1.0 00000 20 0.0001 BHPRM 1.0 00000 10 00000 10 0.0000 1.0 0.0000
WRGSSAT 20 00000 10 00000 20 00015 1.0 0.0000 HALPRM 20 00000 50 00663 20 00113 25 00289
ANHPRM 30 00003 30 00073 13.0 02674 8.0 02674 ANHPRM 30 0.0007 3.0 00477 40 00780 50 0.1074
WGRMICH 40 00130 9.0 01712 65 00477 40 00916 ANHBCEXP 40 0.0595 20 0.0289 30 00663 25 00289
SHPRMCON 5.0 00206 160 07358 3.0 00244 65 0.1991 - HALPOR 50 0.0700 150 05918 55 0.1468 21.5 0.8781
Variable CV: All,1x5 CV:RLIx5 CV:R2Ix5 CV:R3,Ix5 Variable CV:AlLIXS CV:RLIXS CV:R2,Ix5 CV:R3,1x5
Name Rank  p-Val Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Common Variances (CVs) for E0: WAS_PRES Common Variances (CVs) for E0:BRAALIC
WMICDFLG 1.0 0.0000 1.0 00016 1.0 00058 1.0 0.0004 ANHPRM 1.0 00078 1.0 02779 10 00576 1.0 0.0005
ANHPRM 20 0.0042 17.0 0.8561 2.0 0.0171 20 0.0671 SHPRMCON 2.0 00426 13.0 04026 6.0 00938 220 0.6452
HALPRM 3.0 0.1184 140 0.6965 100 04818 9.0 02016 SHBCEXP 3.0 0.1463 17.0 04412 21.0 05811 23.0 0.6840
WGRCOR 4.0 0.1244 160 0.8147 7.0 03521 3.0 0.0543 ANRBRSAT 40 0.1994 60 03463 190 0.5557 9.0 0.1509
SHPRMCON 50 0.1287 220 0.9555 3.0 0.0381 10.0 0.2053 WGRCOR 50 02125 11.0 03969 90 04550 150 04175
Common Variances (CVs) for E2: WAS_SATB Common Variances (CVs) for E2:WAS_PRES
BHPRM 1.0 00000 10 00000 1.0 00001 1.0 0.0000 BHPRM 10 00000 1.0 0.0082 10 00633 110 02843
ANHPRM 20 00000 20 00030 20 000i8 20 00134 HALPRM 20 00014 40 01392 40 0.1719 9.0 0.2669
HALPOR 3.0 00011 50 00243 60 0.1228 120 0.3601 WGRCOR ] 3.0 00296 20 00329 80 03272 5.0 00741
WGRMICH 40 00050 3.0 00!56 7.0 0.1353 3.0 0.1013 SHPRMDRZ 40 00298 30 00713 50 02094 13.0 03795
WGRCOR 5.0 0.0067 4.0 0.02110 30 00080 100 0.3387 ANHBCVGP 50 0.1173 200 07401 9.0 C4415 I..O 0.0178
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Table 1. Comparison of Variable Rankings Obtained with Different Analysis Procedures? for Three
Independent Samples of Size 100 (Columns AP:R1, AP:R2, AP:R3, where AP ~ CC, RCC,
CMN, CL, CMD, CV, CIQ, S! as appropriate), Pooled Sample of Size 300 (Column AP:All,
and a Maximum of Five Classes of Values for Each Variable (i.e., nX=5)® (continued)
Variable  CIQ: All,2x5 CIQ:R1,2x5 CIQ:R2.2x5 CIQ:R3,2%5 Vahable CIQ:All2x3 CIQ:RI 25 CIQ:R2.2x5 CIQ:R3.2x3
Name Rank p-Val Rank p-Val Rank p-Val Rank p~\_lal Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Common Interquartile (CIQ) for EO:WAS_FRES ~ Common Interquartile (CIQ) for E0:BRAALIC
WMICDFLG 1.0 0.0000 1.0 0.0057 1.0 0.0012 1.0 0.0001 ANHPRM 1.0 0.0000 17.0 0.7358 6.5 0.1468 1.0 0.0001
HALPOR 20 00000 20 0.1257 20 00206 2.0 0.0061 WMICDFLG 20 00000 20 00352 10 0.0321 20 00057
ANHPRM 3.0 0.0007 85 04628 3.0 0.0342 '5.0 0.0780 SHRGSSAT 3.0 00628 13.5 0.5918 5.0 0.1074 55 0.2674
SHPRMCON 40 0.0244 170 0.6626 160 04628 100 03546 WGRMICI 40 00780 50 02311 3.0 00663 7.0 0.3084
WGRMICI 50 0.0595 135 05918 6.5 0.1468 17.0 0.8088 SHRBRSAT 50 01395 7.0 03084 20.0 0.8088 240 08781
" Common Interquartile (CIQ) for E2:WAS_SATB Common Interquartile (CIQ) for E2:WAS_PRES
WRGSSAT 10 00000 10 00001 10 00001 L0 0.0000 BHPRM 1.0 00000 1.0 00002 10 00021 20 0.0061
WGRCOR 20 00019 90 02311 40 00563 60 0.1468 WGRCOR 20 00130 20 01074 7.0 02674 7.0 0.1468
BHPRM 30 00054 20 00206 13.5 03546 2.0 0.0289 SHRGSSAT 3.0 00289 110 04628 2.0 01074 11.0 03546
ANHPRM 40 00628 130 04628 60 01074 50 0.1074 ANRBRSAT 40 00739 225 08781 145 05918 10.0 0.3084
SHRBRSAT 5.0 0.1257 110 02674 50 00663 200 0.6626 SHRBRSAT 50 02093 185 07358 80 04060 10 0.0051
Variable  SEAILSxS  SERLSXS  SLR25x5S  SER35%S Variable  SLAILSxS SLR1SxS  SER25xS  SLR3.5x5
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
Statistical Independence (SI) for E0:WAS_PRES Statistical Independence (SI) for EO:BRAALIC
WMICDFLG 10 0.0000 1.0 00000 10 00000 10 0.0000 WMICDFLG 10 00000 10 00000 10 00000 10 0.0000
HALPOR 20 00000 20 00034 20 00000 20 0.0000 ANHPRM 20 00000 20 00003 20 00001 20 0.0000
WGRCOR 30 00003 135 04884 4.0 00316 9.5 0.2687 HALPRM 30 00517 7.5 03540 215 07776 50 0.1137
ANHPRM 40 00049 45 01785 85 02202 3.0 0.1010 HALPOR 40 0.0698 17.5 07089 80 02202 17.0 0740
ANHBCVGP 50 0.0194 3.0 0.1712 13.0 0.3546 18.0 0.7358 SHRBRSAT 50 0.1917 230 08392 100 02687 30 00540
Statistical Independence (SI) for E2:WAS_SATB Statistical Independence (SD) for E2:-WAS_PRES
WRGSSAT 1.0 0.0000 1.0 0.0000 1.0 00000 1.0 0.0000 BHPRM 1.0 00000 [0 00000 1.0 0.0000 1.0 0.0000
BHPRM 20 00000 2.0 0.0000 2.0 0.0000 20 0.0001 HALPRM 20 00002 10.0 02954 3.0 0.1137 7.0 0.2202
ANHPRM 3.0 00002 3.0 00316 7.5 00415 7.0 0.2954 WGRCOR 3.0 00002 20 00100 180 07089 20 0.0362
ANRBRSAT 4.0 0.0495 14.0 04530 50 0.0275 235 09134 ANAPRM 4.0 0.0049 140 03856 9.0 0.3856 5.0 0.1785
WGRMICH 5.0 00564 110 03856 9.0 00895 85 0.3540 SHRGSSAT 50 00698 17.5 05615 160 06359 110 03856

3 Twenty-four (24) variables included in analysis for EO:WAS_PRES and EQ:BRAALIC (see Footnote b to Table 4, Ref. 1); twenty-five (25)
variables included in analysis for E2:WAS_SATB and E2;WAS_PRES (see Footnote b to Table 17, Ref. 1); for each test and dependent
variable, top five variables based on their ordering with p-values obtained from pooled sample of size 300 are included in table.

b See Footnote ¢, Table 4, Ref, 1.
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Table 2.

Variable
Name
ANHPRM
WMICDFLG
SHPRMCON
SHBCEXP
WASTWICK

Comparison of Variable Rankings Obtained with Common Variances (CVs) Test with Use of
Logarithms® for Three Independent Samples of Size 100 (Column CV:R1, CV:R2, CV:R3)
and Pooled Sample of Size 300 (Column CV:All) for y=E0:BRAALIC’

CV: All.1x5 CV:RLIxS CV:R2.1x5 CV:R3.1x5
Rank  p-Vai  Rank  p-Val Rank p-Val Rank p-Val
1.0 0.0000 1.0 0.0000 1.0 00000 20 0.0000
20 00002 100 0.0251 70 0.0035 - 1.0 0.0000
30 00019 - 110 0.0257 50 0.0022 220 07134

40 00130 150 0.0528 19.0 0.2129 21.0 0.6442
50 00144 130 0.0387 4.0 0.0002 17.0 0.3413

a

See Foomote a, Table 10, Ref. 1, for description of test.

b See Footnote a. Table 1.
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