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Abstract

The robustness of procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses is

investigated. These procedures are based on attempts to detect increasingly complex patterns in the scatterplots

under consideration and involve the identification of (i) linear relationships with correlation coefficients, (ii)

monotonic relationships with rank correlation coefilcients, (iii) trends in central tendency as defined by means,

medians and the Kruskal-Wallis statistic, (iv) trends in variability as defined by variances and interquartile ranges,

and (v) deviations from randomness as defined by the chi-square statistic. The following two topics related to the

robustness of these procedures are considered for a sequence of example analyses with a Iarge model for two-phase

fluid flow: the presence of Type I and Type II errors, and the stability of results obtained with independent Latin

hypercube samples. Observations from analysis include: (i) Type I errors are unavoidable, (ii) Type 11errors can

occur when inappropriate analysis procedures are used, (iii) physical explanations should always be sought for why

statistical procedures identify variables as being important, and (iv) the identification of important variables tends to

be stable for independent Latin hypercube samples.
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1. Introduction

Procedures foridentifying patterns inscatteTloK generated in Monte Cmlo sensitivity analyses are described

andillustrated inthepreceding ~icle. ] ‘lleseprocedure sareb=ed onattempts torecognize increasingly complex

patterns in the scatterplots under consideration and involve the identification of (i) linear relationships with

correlation coefficients, (ii) monotonic relationships with rank correlation coet%cients, (iii) trends in central tendency

as defined by means, medians and the Kmskal-Wallis statistic, (iv) trends in variability as defined by variances and

interquartile ranges, and (v) deviations from randomness as defined by the chi-squ~e statistic. The robustness of

these procedures is now considered. In particular, the presence of Type I and II errors is considered (Sects. 2, 3),

and”the stabdity of results obtained with independent Latin hypercube samples (LHSS)2 is examined (Sect. 4).

2. Type I and II Errors

The sensitivity analysis techniques under discussion use p-values to indicate if a relationship appears to exist

between an uncertain analysis input and a predicted analysis outcome (Sect. 8, Ref. 1). Clearly, it is desirable that

the techniques identify the inputs that actually affect analysis outcomes (i.e., to “avoid Type II errors, which

correspond to the failure to identify important variables). As shown by the example analyses in Sect. 10 of Ref. 1,

Type II errors can occur when the test for variable importance is inappropriate for the relationships that exist

between analysis inputs and analysis outcomes (e.g., see the analyses for E2: WAS_PRES in Sect 10.4, Ref. 1). Thus,

a good ana]ysis s~ategy is to use several tests for variable importance and thus reduce the likelihood of overlooking

an important variable (i.e., committing a Type II error).

In addition, it is also important that the techniques not identify inputs as having effects that are not actually

present (i.e., to avoid Type I errors, which correspond to the indication of nonexistent effects for unimportant

variables). Unfortunately, the “price” of using multiple tests for variable importance is an increase in the number of

Type I errors (i.e., in “false alarms”); however, it is the responsibility of the subject-area experts to explain why

individual variables are identified as being important. Ultimately, if such explanations cannot be developed, then the

analysis is suspect and the observed results may be due to errors in the implementation of the analysis.

If a variable has no effect on a particular analysis outcome and the assumptions of the statistical test in use are

satisfied, then the comesponding p-values generated from repeated random sampling should have a uniform

distribution on the interval (O, 1). Specifically, prob ( j < p) = prob (; > tP) = p, and thus ~ has a uniform

distribution on (O, 1), where 0< p <1, prob denotes probability, and tP and ; are values of the statistic with p-values

of p and ~, respectively. Similarly, if multiple unimportant variables are involved, their p-values from a single

sampling should be uniformly distributed on (O, 1). Thus, for a specified p-value (i.e., p) and n unimportant

variables, the likelihood prob (Type I I p, n) of committing a Type I error (actually, one or more Type I errors) is

given by
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prob (Type I Ip, n) = 1 – (1 –p)”, (1)

with prob (Type I Ip, n) increasing as each of p and n increases (Fig. 1). Thus, Type I errors cannot be avoided, and

their likelihood of occurrence is defined by Eq. (1) provided that the p-values for unimportant variables follow a

uniform distribution.

The LHSS indicated in Eqs. (8)-(10) of Ref. 1, ahd on which the examples in Sect. 10 of Ref. 1 are based,

involved 75 variables (Table 2, Ref. 1). However, 49 of these variables were not used in’the calculation of the modeI

results EO:WAS_PRES and EO:MAALJC, and 48 of these variabies were not used in the calculation of the model

results E2: WAS_SATB and E2: WAS_PRES (Table 1, Ref. 1). Thus, the p-values associated with these 49/48

variables shotdd have uniform distributions on the interval (O, 1). The Kolmogorov-Smirnov test3 carI be used to

indicate if the distributions of p-values for these variables do indeed have uniform distributions on (O, 1). In

particular, the 0.9 and 0.99 two-sided Kolmogorov-Smirnov bounds around the cumulative distribution function

(CD)?) for the true distribution (i.e., uniform on (O, 1)) are given by 1.22/(n+J~)% and 1.63/(n+ ~)%,

respectively, where n is the sample size (Table A14, Ref. 3). For n = 48,49, the corresponding 0.9 and 0.99 bounds

are 0.17 and 0.23, respectively.

As 4 variables (i.e., EO:WAS_PRES, EO:BRAALIC, E2: WAS_SATB, E2: WAS_PRES) and 8 tests (i.e., CC, RCC,

CMN, CL, CMD, CV, CIQ, S1) are under consideration (see Sect. 10, Ref. 1), 32 distributions of p-values result

(Fig. 2). The p-values that give rise to these 32 distributions were calculated with the analytic rather than the Monte

Carlo procedures described in Ref. 1. Of these 32 distributions, 24 are withh the 0.9 bounds. Further, 6 of the 9

distributions that are outside the bounds are for the variable/test pairs (EO:WAS_PRES, CC), (EO:BRAALZC, CC),

(E2: WAS_SATB, CC), (EO:WAS_PRES, RCC), (EO:BRAALIC, RCC), and (E2: WAS_SATB, RCC). As results

obtained with CCS and RCCS are not independent, the indicated deviations of (EO:WAS_PRES, CC) (EO:BRAALIC,

CC) and (E2: WAS_SAT’B, CC) from a uniform distribution on (O, 1) are not independent of the indicated deviations

for (EO:WAS_PRES, RCC), (EO:BRAALIC, RCC), and (E2: WAS_SATB, RCC). The most notable deviation occurs

for the pair (EO:BRAALJC, CV), with no p-values exceeding 0.7. There is something associated with EO:BRAALJC

that is causing an underrepresentation of large p-values for unimportant variables, This underrepresentation

probably derives from the fact that EO:BRAALIC has a few large values and many very small values (Fig. 2b, Ref. 1).

Fortunately, the shape of the individual CDFS in Fig. 2 does not suggest any tendency for the tests to produce

unusual numbers of very small p-values; thus, there does not appear to be a tendency to produce excessive numbers

of Type I errors in the examples under consideration. However, the results in Fig. 2 do suggest that the p-values for

unimportant variables may not have a uniform distribution on (O, 1). Because of this behavior, additional

simulations were carried out as described in the next section.

-...
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3. Type I and Type II Errors: Additional Simulations

An additional set of simulations was carried out to provide a check on the reasonableness of the distributions of

p-values in Fig. 2. In particular, 10 independent LHSS of size 300 were generated with the Iman and Conover

restricted pairing technique4 from 50 independent variables with uniform distributions on the interval [0, 1]. These

LHSS were then associated with the calculated “values for EO:WAS_PRES, EO:BRAALIC, E2: WAS_SATB and

E2: WAS_PRES obtained with the original LHS of size 300 dkcussed in Sect. 2 of Ref. 1, and the corresponding

distributions of p-values were calculated for the preceding four output variables, each of the eight tests under

consideration, and each of the 10 independent LHSS. Again, the p-values were calculated with the analytic

procedures described in Ref. 1. The outcome is 10 CDFS for each of the 32 test/output variable pairs.

If the assumptions of the tests are met and the calculations are implemented correctly, then the CDFS for each

testidependent variable pair should approximate a uniform dkibution on [0, 1]. This generally appears to be the

case. For example, the original CDFS for EO:WAS_PRES and tests based on CCS and RCCS move across the 0.99

Kolmogorov-Smimov boundary (F@ 2a, b). In contrast, the current exercise with 10 independently-generated

LHSS produces CDFS ofp-values that generally stay within the 0.9 Kolomogorov-Smimov bounds (Fig. 3).

Twenty-nine of the remaining 30 test/output variable pairs produced distributions of p-value CDFS that were

similar to the two CDF distributions in Fig. 3. The exception to this consistency occurred for EO:BRAALIC and the

CVS test (Fig. 4). For this test/output variable pair, the p-values remain below approximately 0.7, which was also the

case in F@ 2f. The variable EO:BRAALZC has a large number of values that are effectively zero (Figs. 2, 4, Ref. 1).

As a result, the estimated variances rql in Eq. (50) of Ref. 1 used to define the F statistic for the CVS test do not have

a normal distribution for the individual independent variables, and so the associated p-values do not have a uniform

distribution on [0, 1] even though the independent variables have no effect on EO:BRAALIC.

4. Robustness with Respect to Repeated Independent Samples

The examples in Sect. 10 of Ref. 1 use a sample of size 300 obtained by pooling the three samples of size 100

each indicated in Eqs. (8)-(10) of Ref. 1. The availability of these three independent samples provides a way to

examine the robustness of the techniques under consideration. In particular, the analyses in Sect. 10 of Ref. 1 with

each of the 8 techniques can be repeated with the individual samples of size 100. The extent to which the individual

samples agree in the identification of important variables then provides an indication of how robust the techniques

are with respect to repeated independent samples and also reductions in sample size (Table 1).

When comparing the variable selections in Table 1, it is important to keep in mind that the likelihood of a Type

I error increases rapidly as p-values increase (Fig. I), with 25 variables and a p-value of 0.01 producing a probability

of 0.22 of a Type I error as indicated in Eq. (1). Further, the p-values for unimportant variables may not be random
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on (O, 1) due to patterns that are imposed on the data by the effects of other variables (F&g.4). Thus. the

probabilities in Fig. 1 are, at best, only an indication of the likelihood of a Type I error. As a result, the comparison

of sets of important variables obtained with different replicates is probably valid only for variables with fairly low p-

values. Asp-values increase (e.g., > 0.01), such comparisons become less and less meaningful.

The overall pattern that emerges from the results in Table 1 is that the most important variables identified with

the pooled sample of size 300 are also identified as being important with the three individual samples of size 100. In

particular, the two most important variables as defined by the size of their p-values are typically the same across all

four samples for the individual tests (i.e., CCS, RCCS, CMS, CIA, CMDS, CVS, CIQ, S1), although it should be
....

recognized that the results obtained with the pooled sample are not independent of the results obtained with the

individual samples. Hence, the use of a sample size of 300 or 100 made little difference with respect to the variables

identified as being most important, although the larger sample size did tend to indicate likely effects for more

variables than was the case for the smaller sample size. Similar robustness has been observed in several other studies

involving Latin hypercube sampling.5-7

The most notable deviations from this consistency occur for the CVS test for EO:BRAALIC and E2: WAS_PRES

and the CIQ test for EO:BRAALIC.. The variable EO:BRAALIC is significantly affected by both WMICDFLG and

ANHPRM (Fig. 4, Ref. 1). However, as WMICDFLG is being missed by the CVS test, it is perhaps not surprising

that the individual samples are not producing consistent results. A logarithmic transformation improved the results

obtained with the CVS test for WMICDFLG with the pooled sample (Table 16, Ref. 1) and aiso produced somewhat

better results for the individual samples (Table 2). The variable E2: WAS_PRES is almost completely dominated by

BHPRM (Fig. 6, Ref. 1), with this effect being missed by the CVS test for replicate R3; further, aithough BHPRM is

identified by the CVS test as the most important variables affecting E2: WAS_PRES for replicate R2, the p-value is

high (i.e., 0.0633). The CIQ test misses the effect of ANHPRM on EO:BRAALJC for replicates RI and R2, with this

behavior probably resulting from the large number of zero and near-zero values associated with EO:BRAALJC

(Fig. 4, Ref. 1). The CVS and CIQ tests attempt to detect important variables on the basis of variable spread rather

than variable location as is the case for the CMNS, CLS and CMDS tests. For the output variables under

consideration, the tests based on location appear to be more effective in identi~ing important variables than tests

based on spread.

An important point that emerges from the individual replicates is that consistency across independent analyses

does not necessarily imply that these analyses are properly identi~ing the dominant variabIes. For example, all four

analyses with both CCS and RCCS identify HALPRM and ANHPRM as being the two most important variables with

respect to E2: WAS_PRES (Table 1) and completely fail to identify the dominant role played by BHPRM (Fig. 6, Ref.

l). For E2: WAS_PRES, the three replicates are producing similar patterns, which in turn are producing similar

outcomes when analyzed with CCS and RCCS.
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5. Discussion

Two aspects of statistical analyses of scatterplots to identify important factors in large-scale simulations have

been examined: the occurrence of Type I and Type H errors, and the stability of results obtained with independent,-
M-3ss.

The occurrence of Type I errors is unavoidable in sampling-based sensitivity analyses (Fig. 1), with the

likelihood of such errors increasing as the number of independent variables under consideration increases and also as

more tests are applied to a given dependent variable. Although the possibility of Type I errors exists, this is not

“viewed as a serious problem for two reasons. First, the really important variables typically display a sufficiently

strong effect that there is little likelihood that this effect could have originated from chance alone. Second, a variable

should never be assumed to be important solely on the basis of a statistical test. Rather, an explanation for its

indicated importance should be developed on the basis of the properties of the model under consideration. If such an

explanation cannot be developed, then the effect may be spurious or, as occurs with disconcerting frequency, there

may be an error in the implementation of the model.

The occurrence of Type II errors is a real possibility when statistical tests are used that are inappropriate for the

patterns that occur in the analysis results under consideration. In a large analysis, there may be hundreds of

dependent variables that are investigated in sensitivity analyses in a rote manner (i.e., the same test or tests are

applied to each dependent variable rather than a unique sequence of tests being developed for each dependent

variable). A good analysis strategy is to apply a sequence of tests to each dependent variable. Then, there is a high

likelihood that at least one of these tests will be appropriate for a given dependent variable and correctly identify the

factors affecting this variable. A possible sequence of tests is correlation coefficients (CCS), rank correlation

coefficients (RCCS), common locations (CLS) or common medians (CMDS), and statistical independence (S1)

(Sect. 11, Ref. 1).

Sample size is often an important consideration in sensitivity analyses for long-running models. In parti~ular,

the computational cost of evaluating the model may be a significant limitation on the number of model evaluations

that can be carried out, with Latin hypercube sampling having been developed to make efficient use of a iimited

number of model evaluations.2 Given the need to limit sample size, the stabiIity of results obtained with

independent, relatively small samples is a concern. In the empirical investigations reported here, individual LHSS of

size 100 typically identified the same dominant variables as identified with a sample of size 300 obtained by pooling

the three individual samples. Thus, relatively-small samples led to the identification of the important variables

provided an appropriate statistical test was used. An inappropriate test will fail regardless of sample size. However,

success at identifying less important variables rather unsurprising goes up as the sample size increases, The

preceding suggests that a small sample size will lead to an identification of the most important variables, with an

increased sample size leading to greater resolution of the effects associated with less important variables. The
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authors’ experience is that the uncertainty in individual model predictions tends to be dominated by a small number

of variables even though the model itself may have a large number of uncertain inputs.
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Figure Captions

Fig. 1.

Fig. 2.

Fig. ~.

Fig. 4.

Contour pIots for probability of a Type I error, prob (Type I Ip, n), as a function of p-value, p, and number
of unimportant variables, n (See Eq. (l)).

Distribution of p-values and associated Kolmogorov-Smimov bounds for individual tests and variables in
U-IS that do not affect EO: WAS_PRES, EO:BRAALIC, E2: WAS_SATB and E2: WAS_PRES.

....
Distributions of p-values for 10 independ~tly-generated LHSS: (3a) CCS for -EO.-WAS_PRES and (3b)
RCCS for EO: WAS_PRES.

Distribution of p-values for 10 independently-generated LHSS for CVS test and EO:BRAALK.
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Fig. 1. Contour plots for probability of a Type I error, prob (Type I Ip, n), as a fi.mctionof p-value, p, and number
of unimportant variables, n (See Eq. (l)).
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Table 1. Comparison of Variable Rankings Obtained with Different Analysis Proceduresa for Three
Independent Samples of Size 100 (Columns AP:R1, AP:R2, AP:R3, where AP - CC, RCC,
CMN, CL, CMD, CV, CIQ, S! as appropriate), Pooled Sample of Size 300 (Column AP:AH),
and a Maximum of Five Classes of Values for Each Variable (i.e., nX=5)b

Variable CC All CC RI cc FQ cc R3
Narm Rank p-Vd Rank p-Val Rank p-VaI Rank p-Vaf

CorrelationCoei%cienes(CCS) for EO;WASJ’RES

W,W2CDFLG 1.0 0.0000 1.0 0.00tX 1.0 0.00fXJ 1.0 0.0000 ‘

hXPOR 2.0 0.0030 2.0 0.0000 2.0 O.ccoo 2.0 0.0001

WGRCOR 3.0 O.CWXJ 3.0 0.0180 3.0 0.0051. 3.0 0.0018

AAWPR.M 4.0 0.0241 9.0 0.3947 4.0 0.2371 4.0 0.0598

sALPF@ 5.0 0.0855 4.0 0.0822 18.0 0.8602 7.0 0.2824

Correlation Cedficienrs (CCS) for E2:WA.$_SATB

BHPRM 1.0 .O.0000 1.0 O.ccuo 1.0 0.0000 1.0 0.0000

ANHPRM 2.0 O.O@l 2.0 0.0C03 2.0 0.0281 2.0 0.LX133

IL4LPOR 3.0 o.G006 3.0 0.0884 4.0 0.0706 3.0 0.0159

WGRCOR 4.0 0.0017 6.0 0.1241 3.0 0.0547 5.0 0.0473

WRGSS4T 5.0 0.C081 8.0 0.1367 11.0 0.5224 4.0 0.0175

Variable CC: All CC: RI CC: R? CC: R?
Name Rank p-vd Rank P-vd Rank p-Val Rank p-Vd

Corre}arionCoefficiems (CCS) for EO:BRAALIC

ANHPRM 1.0 O.ccoo 1.0 O.fmo 1.0 O.om 1.0 O.ofm

WMCDFLG 2,0 0.0000 2.0 0.0016 2.0 0.0060 2,0 0.0000

WAS7WICK 3.0 0.CC145 4.0 0.0584 9.0 0.2948 4.0 0.0333

WGRCOR 4.0 0.0048 5.0 0.0957 3.0 0.0318 9.0 0.3018

ANHBC,EXP 5.0 0.0095 3.0 0.0420 6.0 0.1474 120 0.42.74

Correlation Coefficients (CCS) for E2:WAS.PRES

/L4LPRM 1.0 0.0000 1.0 o.@313 1.0 O.oocm 1.0 0.0001

ANHPRM 2.0 0.0000 2.0 0.0020 2.0 0.0303 2.0 0.0267

hiLU-’OR 3.0 0.0090 4.0 0.1417 3.0 0.0680 5.0 0.2188

ANHBCVGP 4.0 0.1123 8.0 0.3286 5.0 0.1492 20.0 0.7457

SHPRMASP 5.0 0.1606 10.0 0.3784 16.0 0.5907 6.0 0.3115

Variable RCC All RCC: RI RCC: R2 RCC: R3
Name Rank p-Val Rank p-VaI Rank p-Val Rank p-Val

RankCorrelationCoefficients (RCCS) for E&WAS_PRES

WMICDFLG 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0

HALPOR 2.0 O.m 2.0 O.CCCO 2.0 O.moo 2.0

WGRCOR 3.0 0.0000 3.0 0.0286 3.0 0.00$1 3.0

ANHPRM 4.0 0.0268 9.0 0.4366 4.0 0.1070 5.0

S.-UPRE3 5.0 0.0664 4.0 0.1111 16.0 0.7611 4.0

RankCorrelationCoefficients (RCCS) for E2:WAS_SATB

BHPRM 1.0 0.0000 1.0 o.oofJ3 1.0 o.cm3 1.0

WRGSSAT 2.0 O.OCCO 2.0 0.0000 2.0 0.0048 2.0

ANHPRM 3.0 0.(031 3.0 0.C013 3,0 0.1182 3.0

O.com

O.cool

0.0051

0.1268

0.0957

0.06Q0

O.ooa

0,0335

SHPRMHAL 4.0 0.0225 4.0 0.1842 5.0 0.1243 9.0 0.2595

HAU’OR 5.0 0.0269 8.5 0.4570 4.0 0.1236 4.0 0.1398

Variable RCC All RCC RI RCC: R2 RCC: R;
Name Rank p-%1 Rank p-Vai Rank fs-Val Rank pVd

Rank CorrelationCoefficients (RCCS) for EO:BR4ALJC

WIUICDFLG 1.0 O.OCQO 1.0 O.fJXO 1.0 0.0000 1.0 0.0200

ANHPRM 2.0 0.0000 2.0 o.om3 2.0 0.0000 2.0 O.mo

HALPRM 3.0 0.0014 5.0 0.1867 5.0 0.0998 3.0 0.0140

WGRCOR 4.0 0C057 4.0 0.1772 6.0 0.1383 4.0 0.0570

HALPOR 5.0 0.0087 3.0 0.0980 3.0 0.0396 7.0 0.372

Rank Correlation Coefficients (RCCS) for E2: WAS_PRES

HALPRM 1.0 0.ooOO 2.0 0.0110 1.0 O.occo 1.0 0.0CS31

ANHPRM 2.0 O.COOO 1.0 0.0036 2.0 0.0820 2.0 0.0086

HALPOR 3.0 0.0184 4.0 0.1194 6.0 0.2015 5.0 0.2157

ANHBCVGP 4.0 0.1099 11.0 0.2611 4.0 0.1347 18.0 0.8795

WGRMICI 5.0 0.1477 5.0 0.1275 8.0 0.3344 23.0 0.9673

Variable CMN: A11,1x5 CMN: Rl,lx5 CMN: RZIX5 CMN: R3,1x5 Vmiable CMN: A1l.lx5 CMN: R1.1x5 CMN: R2,1x5 CMN: R3.Ix5
Name Rimk p-vd Rank p-va[ Rank p-vd Rank FVd Name Rank p-Val Rank pVd Rank p-Val Rank p-Vd

Common Means (CMNS) for EO:WAS.PRES Common Means (CMNS) for EO:BRAALfC

WMKDFLG 1.0 0.0000 1.0 0.0000 1.0 O.COOO 1.0 0.0000 ANHPRM 1.0 0.0000 1.0 0.0014 1.0 O.cwo 1.0 O.CCCIO

HALPOR 2.0 o.ofxx3 2.0 O.otm 2.0 0.0000 2.0 0.0010 WA.HCDFLG 2.0 O.MOO 2.0 0.0040 2.0 0.0069 2.0 0.0001

WGRCOR 3.0 O.m 3.0 0.0051 3.0 0.0093 3.0 0.0107 SHPRMCON 3.0 0.0057 12.0 0.3818 8.0 0.3098 7.0 0.153 I

ANHPRM 4.0 0.0195 10.0 0.475 I 6.0 0.2920 7.0 0.2881 WGRCOR 4.0 0.0636 5.0 0.1989 11.0 0.3914 20.0 0.5713

SHPRMASP 5.0 0.1439 21.0 0.8597 5.0 0.1824 12.0 0.5410 WFBETCEL 5.0 0.0732 10.0 0.3274 18.0 0.6&5J3 12.0 0.2874

Common Means (CMNS) for E2: WAS_SATB Common Means (CMNS) for &2:WAS_PRES

BHPRM 1.0 O.m 1.0 O.ocoo 1.0 0.0000 1.0 o.o@30 BHPRM 1.0 0.0003 1.0 0.0000 I .0 0.0000 1.0 O.ccco

ANHPRM 2.0 0.0000 2.0 0.0031 2.0 0.0020 3.0 0.0544 HALPRM 2.0 0.0000 3.0 0.0288 2.0 0.0016 2.0 0.&327

WGRMICH 3.0 0.C021 4.0 0.0416 3.0 0.0471 2.o 0,0070 ANHPRh4 3.0 0.0002 2.0 0.0286 6.0 0.1137 5.0 0. 118-!

H4?YOR 4.0 0.0124 10.0 0.2900 8.0 0,2345 10.0 0.3619 ANHBCEKf’ 4.0 0.04s35 6.0 0.1860 5.0 0.1137 4.0 0.0220

WRGSSAT 4.0 0.0143 5.0 0.0429 20.0 0.5575 6.0 0.1363 HAUOR 5.0 0.0415 16.0 0.5971 4.0 0.0956 15.0 0.6365
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Table 1. Comparison of Variable Rankings Obtained with Different Analysis Proceduresa for Three
Independent Samples of Size 100 (Columns AP:R1, AP:R2, AP:R3, where AP - CC, RCC,
CMN, CL, CMD, CV, CIQ, S1 as appropriate), Pooled Sample of Size 300 (Column AP:AII),
and a Maximum of Five Classesof Values for Each Variable (i.e., nX=5)b (continued)

Variable CL Au&x5 CL R1,1x5 CL R2Jx5 CL R3,1x5 Variable CL AU. 1x5 C!i RI.1x5 CL R2,1x5 CL R3.1X5
Name Rank p-Val Rank p-VaI Rank p-Val Rank’ p-Vd Name Rank p-Val Raok p-Vsl Rank p-Val Rank p-VaI

Cmrrnon Locations (CLS) for EO:W~_PRES

Lo O.moo 1.0 O.oom 1.0 O.m

20 O.OCGO 20 0.0C03 2.0 o.ow3

3.0 O.om 3.0 0.0112 3.0 0.0093

4.0 0.0187 6.0 0.3792 6.0 0.2595

5.0 0.1237 19.0 0.7696 5.0 0.1901

Common Lmaions (Cls) for ii2:WAS_SATB

1.0- o.Mw 1.0 o.m30 1.0 O.CCOO

20 O.cml 20 O.m 3.0 0.0450

3.0 O.om 3.0 0.0102 20 0.0184

4.0 0.0059 9.0 0.1714 5.0 0.0979

5.0 0.0202 13.0 0.4691 10.0 0.2278

Cmnrnon Locations (CLs) for LZ1-BR4AUC

1.0 0.0000 1.0 O.omo 1.0 0.Oooo

20 o.m30 20 O.oa)o 20 o.orxx3

3.0 0.0019 4.0 0.2667 6.0 0.2321

4.0 0.0427 6.0 0.3340 10.0 0.3212

5.0 0.1060 5.0 0.2785 15.0 0.5898

Cornrrron Locations (CLa) for E.2:Wfi_PRES

1.0 O.om 1.0 0.oOOo 1.0 0.0000

2.0 O.OWO 4.0 0.1176 2.0 0.0025

3.0 O.omo 20 0.0154 3.0 0.0523

4.0 0.06JX 7.0 0.2213 6.0 0.1191

5.0 0.0940 18.0 0.5620 9.0 0.2452

1.0 O.OKX)

20 O.&23

3.0 0.0179

8.0 0.3770

I1.0 0.4537

WMICDFLG

ANHPRM

U4LPRM

WGRCOR

SHPRMDRZ

WMICDFLG

Z4UOR

WGRCOR

ANHPRM

SHP&U4SP

1.0 O.m

2.0 0.000o

3.0 0.0125

13.0 0.4371

9.0 0.2393

BHPRM

WRGSS4T

ANHPRM

WGRMJCH

SHPRMCON

1.0 O.ooi)o

2.0 O.ccol

7.0 0.2010

3.0 0.0206

10.0 0.3785

BHPRM

HALPRM

ANHPRM

ANHBCEXP

HALPOR

1.0 0.0003

2.0 0.0028

4.0 0.0419

5.0 0.0438

11.0 0.5243

Vaiiable

Narrre
CMD AU, 2x5 CMll R1,2x5 CMD R2.2xS CMD R3,N5
Rank p-Vsl Rank p-Vd Rank p-%’d Rank /J-Val

Variable CMD AU,2X5 CMfl R1,2%5 CMD: R2.2x5 Chill R3.2x5
Narrre Rank /r-Vd Rank p-Val Rank p-Val Rank fr-Vd

Common Medians (CMDS) for EO:WAS_PRES

1.0 0.000o 1.0 0.0000 1.0 O.m 1.0 O.moo

2.0 O.oowl 2.0 O.ocol 2.0 O.rmoo 2.0 0.0123

3.0 0.0025 5.0 0.1712 3.0 0,0663 4.0 0.1712

4.0 0.0663 16.5 0.7358 16.0 0.6426 5.0 0.1991

5.0 0.2427 16.5 0.7358 7.0 0.2674 6.0 0.2674

Common Medians(CMDS) for W:BRAALIC

WMfCDFL.G 1.0 O.COOO 1.0 O.OfMO 1.0 0.0000 1.0 O.COOO

ANHPRM 2.0 O.woo 2.0 0.CQ09 2.0 O.ml 2.0 o.olM3

fL4LPRM 3.0 0.0350 17.5 0.7358 13.0 0.4060 3.0 0.0021

M4LPOR 4.0 0.0155 8.5 0.3084 5.0 0.0563 11.0 0.40W

WGRCOR 5.0 0.0231 3.0 0.1257 3.0 0.0244 16.0 0.5918

WMICDFLG

.W4LPOR

WGRCOR

ANHPRM

SHPRMASP

Common Medians (CMDS) for E2:WAS_SATB

1.0 O.m 2.0 O.m 1.0 O.woo 2.0 O.ml

2.0 Omoo 1.0 O.omo 2.0 0.0015 1.0 O.omo

Common Medians (CMDS) for EZ.-WAS_PRES

BHPRM 1.0 O.COOO 1.0 O.omo 1.0 0.0000 1.0 O.oom

HALPRM 2.0 0.0000 5.0 0.0663 20 0.0113 2.5 0.0289

ANHPRM 3.0 0.W07 3.0 0.0477 4.0 0.0780 5.0 0.1074

ANHBCEXP 4.0 0.0595 2.0 0.0289 3.0 0.0663 2.5 0.0289

hXLPOR 5.0 0.0700 15.0 0.5918 5.5 0.1468 21.5 0.8781

BHPRM

WRGSSAT

ANHPRM

WGRMICH

SHF’RMCON

3.0 0.0003 3.0 0.0073 13.0 0.2674 8.0 0.2674

4.0 0.0130 9.0 0.1712 6.5 0.0477 4.0 0.0916

5.0 0.0206 16.0 0.7358 3.0 0.0244 6.5 0.1991

Vtiable

Name
Cv Au,lx5 ~ R1,1x5 CV: R2.lx5 CV R3,1xS
Rank p-Val Rank p-Val Rank p-Val Rank p-Val

Variable

Name
~ AUJX5 W RI, Ix5 CV: R2.1x5 CV R3,M5
Rank p-Vsl Rank p-Val Rank p-Val Rank p-VaI

CornrnonVariances(CVS)for EO:WAS.PRES

1.0 0.0000 1.0 0.0016 1.0 0.0058

2.0 0.0042 17.0 0.8561 2.0 0.0171

3.0 0.1184 14.0 0.6965 10.0 0.4818

4.0 0.1244 16.0 0.8147 7.0 0.3521

5.0 0.1287 220 0.9555 3.0 0.0381

Corrumxr Variances (CVS) for E2:WAS.SATB

1.0 O.OCCO 1.0 O.moo 1.0 O.ml

2.0 0.0000 20 0.0030 2.0 0.0318

3.0 0.0011 5.0 0.0243 6.0 0.1228

4.0 0.0050 3.0 0.0156 7.0 0.1353

5.0 0.0067 4.0 0.0210 3.0 0.0080

Common Variances (CVS) for Eil:BRAALfC

1.0 0.0078 1.0 0.2779 1.0 0.0576 1.0 0.0CX)5

2.0 0,0426 13.0 0.4026 6.0 0.0938 22.0 0.6452

3.0 0.1463 17.0 0.4412 21.0 0.5811 23.0 0.6840

4.0 0.1994 6.0 0.3463 19.0 0.5557 9.0 0.1909

5.0 0.2125 1I.0 0.3969 9.0 0.4550 15.0 0.4175

Common Varianaa (CVS) for E2:WAS_PRES

1.0 O.MYXI 1.0 0.0082 1.0 0.0633 11.0 0.2843

2.0 0.0014 4.0 0.1392 4.0 0.1719 9.0 0.2669

3.0 0.02% 2.0 0.0329 8.0 0.3272 5.0 0.0741

4.0 0.0298 3.0 0.0713 5.0 0.2094 13.0 0.3795

5.0 0.1173 20.0 0.7401 9.0 0.4415 1.0 0.0178

WMICDFLG

ANHPRM

HALPRM

WGRCOR

SHPRMCON

1.0 0.0004

2.0 0.0671

9.0 0.2016

3.0 0.0943

10.0 0.2053

ANHPRM

SHPRMCON

SHBCEXP

ANRBRSAT

WGRCOR

BHPRM

ANHPRM

HALPOR

WGRMICH

WGRCOR

1.0 O.cmo

2.0 0.0134

12.0 0.3601

3.0 0.1013

10.0 0.3387

BHPRM

HALPRM

WGRCOR

ANHBCVGP
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Table 1.

Varisbk

Nsrne

WMICDFLG

M4.LPOR

ANHPRM

SHPRMCON

WGRMICI

WRGSSAT

WGRCOR

BHPRM

ANHPRM

SHRBRSAT

Comparison of Variable Rankings Obtained with Different Analysis Proceduresa for Three
Independent Samples of Size 100 (Columns AP:RI, AP:R2, AP:R3, where AP - CC, RCC,
CMN, CL, CMD, CV, CIQ, S1 as appropriate), Pooled Sample of Size 300 (Column AP:AII),
and a Maximum of Five Classes of Values for Each Variable (i.e., 17X=5)b(continued)

CIQ All 2x5 CIQ: RI.2x5 CIQ: R2.2x5 CIQ R3,2x5 Vtiable CIQ A31,2x5 CIQ R1,2x5 CIQ R2.ZX5 CIQ R3.2x5
Rank P-WI Rank p-Vai %ssk pVal Rsnk PVSI Nsme Rank p-Vsl Rsnk P-vrd Rank p-Val Rank pVal

Comnron Iotequanik (CIQ) forEO:WAS.PRES

1.0 O.ooco 1.0 0.0057 1.0 0.0012 1.0

2.0 O.(x)oo 2.0 0.1257 2.0 0.0206 2.0

3.0 0.0007 8.5 0.4628 3.0 0.0342 5.0

4.0 0.0244 17.0 0.6626 16.0 0.4628 10.0

5.0 0.0595 13.5 0.5918 6.5 0.1468 17.0

CommonInterqmrtiIe(CIQ) forE2:WAS.SATB

1.0 O.woo 1.0 0.0031 1.0 0.0001 1.0

20 0.0019 9.0 0.2311 4.0 0.0563 6.0

3.0 o.ccr54 20 0.0206 13.5 0.3546 2.0

4.0 0.0628 13,0 0.4628 6.0 0.1074 5.0

5.0 0.1257 11.0 0.2674 5.0 0.0663 20.0

\

O.0001

0.0051

0.0780

0.3546

0.8088

0.0000

0.1468

o.02a9

0.1074

0.6626

CornrnonInsqusrde (CIQ) for E&NfAALfC

ANHPRM 1.0 0.0000 17.0 0.7358 6.5 0.1468 1.0 0.0001

WMJCDFLG 2.0 0.0000 2.0 0.0392 1.0 0.0321 2.0 0.C057

SHRGSSAT 3.0 0.C628 13.5 0.5918 5.0 0.1074 5.5 0.2674

WGRMICI 4.0 0.0780 5.0 0.2311 3.0 0.0643 7.0 0.3084

SHRBRSAT 5.0 0.1395 7.0 0.3084 20.0 0.8088 24.0 0.8781

Common Interqusrdk(CIQ) for E2:WAS.PRES

BHPRM 1.0 0.0000 1.0 0.0032 1.0 0.0021 2.0 0.CC61

WGRCOR 2.0 0.0130 20 0.1074 7.0 0.2674 7.0 0.1468

SHRGSSAT 3.0 0.0289 11.0 0.4628 2.0 0.1074 11.0 0.3546

ANRBRSAT 4.0 0.0739 22.5 0.8781 14.5 0.5918 10.0 0.3084

SHRBRSAT 5.0 0.2093 18.5 0.7358 8.0 0.4060 1.0 0.0051

Variabk S1: An, 5x5 S1: R1,5x5 S1: R2,5x5 Sfi R3,5X5 VsriabIe SL An. 5x5 S1: RI.5x5 SI R2.5X5
Nsrsx Rsnk p-VsI Rank p-Vsl Rank p-Vsl Rank p-Vsi Name Rsnk p-Vrd Rsnk F%l Rank p-vcd

Saristicd Independence(SO for EO:WAS_PRES Starisriralindependence(S1) for .ED:BR4ALfC

WMICDFLG 1.0 o.oa30 1.0 O.ofm 1.0 O.ccoo 1.0 o.o@o WM{CDFLG 1.0 0.0XX3 1.0 .O.cooo 1.0 0.0000

HALPOR 2.0 O.owo 2.0 0.0034 2.0 Omoo 2.0 O.ocw ANHPRU 2.0 O.ocs)o 2.0 o.m33 2.0 O.wlol

WGRCOR 3.0 0.CO03 13.5 0.4884 4.0 0.0316 9.5 0.2687 HALPRM 3.0 0.0517 7.5 0.3540 21.5 0.7776

ANHPRM 4.0 0.0349 4.5 0.1785 8.5 0.2202 3.0

ANHBCVGP 5.0 o.oi94 3.0 0.1712 13.0 0.3546 18.0

Srsrisricalfndeprdence (S1) for E2: WAS_SATB

WRGSSAT 1.0 0.0000 1.0 O.rmo 1.0 0.ooOO 1.0

BHPRM 2.0 o.ccn30 2.0 0.ooOO 2.0 O.om 2.0

ANHPRM 3.0 0.0002 3.0 0.0316 7.5 0.0415 7.0

ANRBRSAT 4.0 0.0495 14.0 0.4530 5.0 0.0275 23.5

WGRMICH 5.0 0.0564 11.0 0.3856 9.0 0.0895 8.5

St R3.5X5
Rmk pVsl

1.0

2.0

5.0

0.1010 FLUYOR 4.0 0.0698 17.5 0.7089 8.0 0.2202 17.0

0.7358 SHRBRSAT 5.0 0.1917 23.0 0.8392 10.0 0.2687 3.0

Statistical Independence (SI) for .S2:WAS_PRES

o.om3 BHPRM 1.0 Omoo 1.0 O.owo 1.0 O.oow 1.0

O.ci)ol HA.?YRM 2.0 o.m12 10.0 0.2954 3.0 0.1137 7.0

0.2954 WGRCOR 3.0 0.0002 10 O.OICQ 18.0 0.7089 2.0

0.91.34 ANHPRM 4.0 0.0049 14.0 0.3856 9.0 0.3856 5.0

0.3540 SHRGSSAT 5.0 0.0698 17.5 0.5615 16.0 0.6359 11.0

O.lxm

O.cnoo

0.1137

0.7440

0.0540

O.cim

0.U02

0.0362

0.1785

0.3856

a Twentv-four (24) variables included in onalvsis for EO:WAS-PRESand EO:ERAALfC(see Footnote b to Table4, Ref. 1); twentv-five (25). . .
vasiab~es included in mid ysis for E?: WA.$_~AT13ard E2: WA.f_PRES (see Footnoteb tOTable 17. Ref. 1): for =ch ~t ad dependent
variable, top five variables based on their ordering with p-values obtained from pooled sample of size 300 are included in table.

b See Footnote c, Table 4, Ref. 1.
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Table 2.

Variabk

Nams

ANHPRM

WMICDFLG

SHPRMCON

SHBtXXP

WASTWICK

Comparison of Variable Rankings Obtained with Common Variances (CVS) Test with Use of
Logarithmsa for Three Independent Samples of Size 100 (Column CV:131, GV:R2, CV:R3)

and Pooled Sample of Size 300 (Column CV:AII) for y= f3ER4ALK?

CV: AO.1X5 CV: RI,1x5 CV: R21x5
Rank pval Rank p-Val Rank p-Val

1.0 O.m 1.0 O.oom 1.0 0.00W

2.0 0.0XJ2 10.0 0.0251 7.0 0.0035

3.0 0.0019 11.0 0.0257 5.0 0.0Q22

4.0 0.0130 15.0 0.0528 19.0 o.z129

5.0 0.0144 13.0 0.0387 4.0 0.CC02

CV: R3.Ix5
Rank pVal

2.0 O.oow

1.0 O.rmo

~~,o 0.71s4

21.0 0.6442

17.0 0.3413

a See Foomote a, Table 10, Ref. 1, for description of test,.

b See Foomote & Table 1.
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