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Abstract 

Some alloys containing a transition metal atom in an III-V host semiconductor show an intermediate half filled band 
in the middle of the usual semiconductor band gap. The presence of this intermediate band allows to use this material in 
high efficiency solar cells due to its capability of absorbing low energy photons. In the current work a study of the 
optoelectronic properties is presented. We mainly focus the work in the obtaining the matrix elements that contribute to 
direct transitions. We also have analyzed some of the factors on which that process depends. We have also found that 
some low energy transitions can be found for several points inside the Brillouin zone. 
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1. Introduction 

The high efficiency intermediate-band solar cell 
whose physical properties we study in this work, is 
based on a semiconductor alloy which presents an 
intermediate band of states within the host semi-
conductor band gap. It has been demonstrated [1] 
the possibility of increasing the efficiency of ideal 
semiconductor solar cells, exceeding the thermo-
dynamic limits established by Shockley and Que-
isser [2], the proposed material is capable of 
absorbing two sub-band gap photons to create one 
electron-hole pair [3]. 

In a recent work [4] we have identified several 
semiconductor compound candidates for high ef-
ficiency photovoltaic materials using very precise 
first principle calculations. These compounds of 
the type Ga 4 X 3 M with X = As or P, and 
M = transition metal, are formed by the substi-
tution of some atoms in several III-V semicon-
ductors for transition atoms. Some of these 
compounds show an intermediate, isolated, nar-
row band in the middle of the semiconductor band 
gaps. Several factors such as the width values of 
the intermediate band (IB) and the two band gaps, 
density of states (DOS), photon absorption coef-
ficients or non-radiative recombination must ac-
count for the effectiveness of the processes [5]. 

The influence of both the direct and indirect 
transitions have to be taken into account 
when calculating the absorption coefficients. For 



characterizising the direct transitions, it is neces-
sary to obtain previously the dispersion band dia-
grams, the DOS and the transition matrix 
elements. There are three kinds of transitions to be 
considered, one between the valence band and the 
IB, another between the valence band and the 
conduction band and finally on between the IB 
and the conduction band. Transition matrix 
elements are the main objective for the present 
work. 

2. Matrix elements for direct transitions 

The probability of having a direct transition 
between an initial state (which will be denoted as 
|i,k >), belonging to the band i and a final state 
|/, k > , in a band labeled as / , is: 
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where i/e-P represents the Hamiltonian for the in-
teraction between the electron and the photon. For 
the purpose of this work, as usual, we will ap-
proximate this in terms of the Radiat ion-Matter 
interaction theory, yielding the next expression: 
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In which, e represents the electron charge, m rep-
resents the effective electron mass, s is used to 
denote the dielectric constant for the material, Q is 
the volume, /? is the wave vector for the photon, cop 
is the angular frequency for the photon, ev is the 
polarization vector for the photon, and p = ihV 
is the momentum operator. 

In order to characterize direct transition matrix 
elements it is necessary to connect the initial and 
final states for the electron involved in the inter-
band direct transition having the wave vector (k): 
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To obtain matrix elements such us the one 
presented in the Eq. (1), the wave function for a 
solid is built as a linear combination of localized 

orbitals in the different atomic positions. These 
orbitals are known to be the basis representation 
for the wave function. The wave function has to 
include the translation symmetry of the solid being 
studied. It has to satisfy the Bloch's theorem 
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where, p is an index that labels every atom con-
tained in the unit cell of the solid, np labels every 
basis function belonging to the atom p, R is a 
lattice vector and represents the position of each 
cell within the solid 

R = ll\a\ + «2«2 + (5) 

The n s are integers and the a,'s are the lattice 
vectors. xp represents the position of the /;th atom 
within the unit cell, N is the number of cells under 
consideration and Cj;k

n is an expansion coefficient. 
Using this wave function the matrix elements 

have the following form: 
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From this expression it is possible to observe that 
the matrix elements depend on several factors: the 
atomic basis of functions used (0 ) , the expan-
sion coefficients of the band in the chosen k 
point, the number of cells used in the calculation 
and the integral containing the product of two 
basis functions. One of the basis functions is lo-
cated in an atom, the other function being lo-
cated in another atom within the considered cells. 
(This cell will be placed R with respect to the 
reference cell.) In order to characterize the direct 
transitions well we have to analyze each one of 
these factors. 

The basis functions are obtained by solving a 
pseudo-atomic equation in which we confine the 
atomic orbital in a sphere with a finite radius. 
These pseudo-atomic orbitals finally take the form 



of a numerical radial function multiplied by a real 
spherical harmonic. 

U r ) = M r ) Y r ( 0 , 4 > ) (7) 

The numerical radial part is obtained by using the 
algorithm proposed by Sankey and Niklewski [6], 
The main reason for using this basis set is because 

the atomic wave functions seems to be more con-
fined in the solid than it is in the free atom, so a 
scheme of confined basis functions seems to be 
very suitable for representing the wave function. 
These pseudo-atomic orbitals are chosen in order 
to be continuous in the limiting confinement 
sphere. We use a parameter (AE) as a measure-

Fig. 1. Representation of the localized pseudo-atomic orbitals for the Ti (a), 

7 8 

6 7 

Ga (b) and P (c) atoms. 



ment for the confinement of the pseudo-orbitals. 
This parameter represents the increasing energy 
that each orbital undergoes when confined in a 
finite sphere. In Fig. 1, we show the radial part for 
the confined pseudo-orbitals for the Ga, P and Ti 
atoms. 

To obtain the coefficients to expand the wave 
function of the solid in our basis set, we have used 
first principles quantum-mechanical calculations. 
We have used a FORTRAN code called SIESTA 
[7]. This code is based on the formalism of the 
density functional theory (DFT). It uses norm 
conserving non-local pseudo-potentials to repro-
duce the core of the atoms, thus reducing the 
computational cost. We have used the Perdew, 
Burke and co-workers [8] parametrization for 
Generalized Gradient Approximation to introduce 
the exchange and correlation potential into the 
calculation. 

In Fig. 2 we show the dispersion band diagram 
for the Ga4PsTi system. In this figure we observe 
the half filled IB needed to obtain the IB material. 
From these diagrams we have also calculated the 
corresponding DOS (Fig. 3). This will allow us, 
bearing in mind the matrix elements, to charac-
terize the direct transitions. 

We add up on R in order to represent the in-
teraction between the different cells in this mate-
rial. This sum is infinite. However, R only appears 

in the integral connecting two different basis 
functions by means of the momentum (p) opera-
tor. If we apply this expression to two different 
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Fig. 3. DOS representation corresponding to the dispersion 
band diagram shown in Fig. 2. 

Fig. 2. Dispersion band diagram for the Ga4P3Ti. In the figure we show some of the possible direct transitions, with arrows. 



functions that are quite distant from each other, 
this integral will vanish. Moreover, this effect is 
stressed when using confined basis functions. In 
this scheme, if the separation between the two 
functions is greater than the sum of the two con-
finement radius the integral will be negligible. To 
have a reasonable idea when this infinite sum has 
converged it is necessary to do a previous test in 
order to fix the truncation limit for this sum cor-
rectively with the desired precision in the calcu-
lation. 

In Fig. 4 the influence on the truncation size of 
the sum on R, it is shown. As we can see, no so 

many qualitative changes are found, but there are 
some quantitative changes in the values of the 
obtained matrix elements. 

Fig. 5 shows the characterization of the matrix 
elements corresponding to the IB system. This 
figure shows a large variation in the matrix ele-
ments when the direction in which the Brillouin 
zone is being inspected. As a consequence of these 
results, as well as by means of the results for the 
DOS, we can expect the higher transition proba-
bilities in then zone close to the point K, where the 
minimal energy difference between the initial and 
final states is found. 
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Fig. 4. Representation of the matrix elements (in Rydbergs) for the transition bands 4 and 5 in the main directions of the Brillouin 
zone for the GaAs: (a) using three unit cells in the calculation and (b) using eight cells. In both figures we show the x, y, z polarization 
components. 



Fig. 5. Direct transition matrix elements for the Ga4P3Ti (in Rydbergs) for the direct transition between the valence state (13)— 
intermediate (14-15-16) bands and intermediate (14-15-16)—conduction (17) bands. 

3. Conclusions 

From the analysis of the direct optical transi-
tion matrix elements from the valence band to the 
IB, and from the IB to the conduction band we 
conclude that the presence of the IB band allows 
this material to absorb photons having lower en-

ergy than the photons usually absorbed in host 
semiconductor materials. 

These matrix elements exhibit noticeable values 
in a wide range of /(-points in the Brillouin zone. 
We also have demonstrated that the magnitude of 
the matrix elements depends on the polarization of 
the photon. 



The magnitude of these matrix elements is also 
very sensitive to the basis set used to describe the 
wave function, and, also, to the number of cells 
considered in the calculation. We analyze the in-
fluence of these two factors and we found that the 
basis set used affects to the qualitative form of the 
spectrum obtained, so we correct this influence by 
improving the basis set from a SZ to DZ or DZP 
basis set. In reference to the influence of the other 
factor, being the number of cells used in the cal-
culation not sufficient to account for the basis 
functions overlapping, we conclude that this in-
fluence in only quantitative. So when calculations 
with different number of cells are compared, we 
find quantitative differences. 

In order to complete the description of the op-
tical transitions in future works we have to regard 
to some features. We will have to include the in-
direct transition matrix elements, thus it will be 
necessary to take in account the electron-photon-
phonon interaction. As it is a process in which 
three different particles are involved, we expect the 
contribution of the indirect transition matrix ele-
ments to be much lower than the contribution 
coming for the already studied transitions. 
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