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Reward-Relevant Limbic Nuclei in an Animal 
Model of Relapse

 

Jeffrey W. Grimm, Ph.D., and Ronald E. See, Ph.D.

 

The neural substrates underlying relapse to drug-seeking 
behavior after chronic drug abuse may differ from those 
underlying immediate drug-taking behavior. In a model of 
relapse to drug-seeking behavior following chronic cocaine 
self-administration and prolonged extinction, we have 
previously shown that rats will significantly reinstate lever 
responding for either primary reward (cocaine) or 
secondary reward (tone 

 

1

 

 light stimulus previously paired 
with cocaine). In the present study, we utilized reversible 
inactivation of discrete brain nuclei with tetrodotoxin 
(TTX) in order to examine the neural substrates mediating 
primary and secondary cocaine reward in rats allowed two 
weeks of cocaine self-administration. After one week of daily 
extinction sessions, bilateral inactivation of the basolateral 

amygdala resulted in significant attenuation of lever 
pressing for a cocaine-conditioned reward (tone 

 

1

 

 light). 
Following three more days of extinction, bilateral TTX 
inactivation of the basolateral amygdala had no effect on the 
reinstatement of cocaine self-administration. In contrast, 
TTX inactivation of the nucleus accumbens produced the 
exact opposite effects, with significant blockade of primary 
reward (cocaine alone), but not secondary reward (tone 

 

1

 

 
light). Thus, cocaine-conditioned reward is 
neuroanatomically dissociated from primary cocaine 
reward.

 

[Neuropsychopharmacology 22:473–479, 2000] 
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Treatment of addiction to drugs such as cocaine is prob-
lematic due to the propensity of dependent individuals
to return to drug-taking, even after prolonged with-
drawal. This relapse to drug-taking may represent the
ultimate behavior in a preceding chain of events not
maintained by the drug, but by contingencies estab-
lished between the drug and environmental stimuli

during the active period of drug use. Clinical studies
have described how drug-paired stimuli can produce
subjective reports of craving in cocaine addicts (Ehrman
et al. 1992), as well as reliable changes in physiological
measures of arousal (Johnson et al. 1998) and activation
of limbic brain regions associated with the processing
of reward (Childress et al. 1999). In addition, a number
of animal models have demonstrated various forms of
cocaine-paired stimulus conditioning with rats trained
to self-administer drugs of abuse (Davis and Smith
1976; de Wit and Stewart 1981; Markou et al. 1993;
Weissenborn et al. 1995; Meil and See 1996).

The nucleus accumbens and amygdala are two brain
structures shown to be critically involved in appetitive be-
haviors (Everitt and Robbins 1992; Gaffan 1992), including
drug-seeking behavior (Whitelaw et al. 1996; Meil and See
1997; Wise 1998). Indeed, in human brain imaging studies,
cocaine ingestion has been associated with activation of
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the nucleus accumbens (Breiter et al. 1997), whereas meta-
bolic changes in the amygdala have been associated with
presentations of cocaine-related stimuli and self-reported
craving (Grant et al. 1996; Childress et al. 1999). Efferent
projections from the amygdala to the nucleus accumbens
have been suggested to mediate the perception of motiva-
tionally relevant environmental stimuli into goal-directed
behaviors (Mogenson et al. 1980, 1993). Thus, amygdalar-
accumbal interactions may play a critical role in the mani-
festation of craving and drug-seeking behaviors seen after
prolonged drug abuse.

The purpose of the present study was to examine the
contributions of the basolateral amygdala and the nu-
cleus accumbens in an animal model of relapse that in-
corporates assessment of both primary and secondary
(conditioned) cocaine reward. Reward presentations
were dependent on the behavior of the animal (re-
sponse contingent presentations) and primary and sec-
ondary reward presentations occurred on separate test
days in order to avoid the confound of animals seeking
conditioned cocaine reward under the influence of the
effects of cocaine itself. Intracranial infusion of tetrodo-
toxin (TTX), a sodium channel blocker, was used to pro-
duce reversible inactivation of the basolateral amygdala
or the nucleus accumbens. This form of temporary neu-
ral interruption allows examination of the loss of a
structure in a circuit without the degeneration of sec-
ondary structures and compensation by spared tissue
that can occur with traditional lesion procedures
(Zhuravin et al. 1994).

 

METHODS

Self-Administration Procedures

 

Male Sprague-Dawley rats (3–4 months, 350–450 g;
Taconic) were trained to press the right lever for 45 mg
food pellets in operant chambers (30 x 20 x 24 cm; Med
Associates) enclosed in sound-attenuated cabinets with
ventilation fans. Intra-jugular catheters and cranial can-
nulae were then implanted into the rats. Jugular cathe-
ter construction and implantation were based on previ-
ously described procedures (Caine et al. 1993). Briefly,
catheters were constructed by gluing Silastic tubing (ID

 

5

 

 0.64 mm; OD 

 

5

 

 1.19 mm; Dow Corning) to an exter-
nal guide cannulae (Plastics One). The cannulae were
then glued to polypropylene mesh with cranioplastic
cement. The free end of the Silastic was inserted into the
right jugular vein and secured with 4.0 silk sutures
around the venous tissue. The catheters exited dorsally
on the animals’ backs. Dummy stylets were inserted
into the catheters when rats were not connected to infu-
sion pumps. Catheters were flushed twice daily with
heparinized saline and an antibiotic (Timentin) for 5
days following surgery. For each self-administration
session, rats were flushed with 0.1 ml of heparinized sa-

line before sessions began and with 0.1 ml of heparin-
ized saline and 0.1 ml of Timentin after each session.

Following four days of recovery from surgery, rats
began daily cocaine self-administration sessions (3 h
duration). A response on the right (active) lever pro-
duced a compound stimulus consisting of a white stim-
ulus light 

 

1

 

 a tone (2 kHz, 15 dB over ambient noise)
and an intravenous injection of cocaine HCl (0.33 mg/
0.05 ml; dissolved in sterile saline) delivered by an infu-
sion pump (Med Associates) located outside of the cab-
inet. The compound stimulus (5 s duration) occurred si-
multaneously with cocaine injection and was followed
by a 40 s time out period, during which lever respond-
ing had no programmed consequences, but lever re-
sponses were recorded. Responses on the left (inactive)
lever were recorded, but had no programmed conse-
quences. After 14 days of self-administration, animals
were exposed to seven days of extinction sessions (lever
responding had no programmed consequences). The
following 3 h session was a reinstatement day where
contingent access to the cocaine-related stimulus (tone

 

1

 

 light) was allowed (but no cocaine delivery). Three
further extinction days were followed by a final day on
which cocaine, but no tone 

 

1

 

 light, was delivered fol-
lowing a right lever response. Data from the basolateral
amygdala and nucleus accumbens groups were ana-
lyzed separately. Two-way repeated measures analysis
of variance (RM-ANOVA) was used to assess changes
in lever responding over time (day 14 of self-adminis-
tration, days 1, 7, 9, and 11 of extinction, and the two-
test days (tone 

 

1

 

 light access and cocaine access) and
between vehicle and TTX groups. Following a signifi-
cant F, the Student Newman-Keuls test was used for
appropriate post hoc comparisons. The minimum crite-
rion for significant differences was set at 

 

p

 

 

 

,

 

 .05.

 

Intracranial Infusions

 

Immediately following catheter implantation, rats were
placed in a stereotaxic device (Stoelting) and stainless
steel guide cannulae (22 g) were bilaterally implanted
using set coordinates (Paxinos and Watson 1997) into
the basolateral amygdala (A/P 

 

2

 

 2.5, L 

 

6

 

5.0, V 

 

2

 

7.5) or
the nucleus accumbens (A/P 

 

1

 

1.2, L 

 

6

 

1.5, V 

 

2

 

6.5).
Immediately prior to beginning a test day session,

infusion cannulae (28 g) were bilaterally inserted such
that 1 mm of each tip extended past the end of the
guide cannulae. TTX (tetrodotoxin citrate; Tocris) was
dissolved in a phosphate buffered saline vehicle (both
solutions adjusted to pH 7.0). Vehicle or TTX (6 ng/

 

m

 

l)
were infused at a volume of 0.5 

 

m

 

l/side delivered over
1 min. Cannulae were left in place for 1 min following
infusions, after which the subject was placed in the self-
administration chamber. In pilot studies, this dose of
TTX microinjected into either the basolateral amygdala
or nucleus accumbens failed to affect basal- or cocaine-
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stimulated locomotor behavior. After the final session,
rats were given an overdose of Equithesin and perfused
with saline, followed by 10% formaldehyde solution.
The brains were extracted and tissue cut in 75 

 

m

 

m coro-
nal sections, followed by staining with cresyl violet. Tis-
sue sections were then inspected for infusion cannulae
tip placements.

All animal care and use procedures conformed to the
Guide for the Care and Use of Laboratory Animals
(NIH) and were approved by an Institutional Animal
Care and Use Committee.

 

RESULTS

 

Rats implanted with jugular catheters and allowed to
self-administer daily cocaine showed steady rates of le-
ver responding for cocaine infusions (Figure 1). No sig-
nificant differences were found between groups for
right lever responding during the two weeks of chronic
cocaine self-administration. Statistical analysis revealed
a significant effect of time (F(6,82) 

 

5

 

 15.84; 

 

p

 

 

 

,

 

 .05), and
a significant interaction (F(6,82) 

 

5

 

 2.25; 

 

p

 

 

 

,

 

 .05) for the
basolateral amygdala group, and a significant effect of
drug (F(1,15) 

 

5

 

 6.71; 

 

p

 

 

 

,

 

 .05), time (F(6,84) 

 

5

 

 13.07; 

 

p

 

 

 

,

 

.001), and a significant interaction (F(6,84) 

 

5

 

 2.55; 

 

p

 

 

 

,

 

.05) for the nucleus accumbens group. One week of ex-
tinction sessions, during which time cocaine was un-
available, resulted in a significant decrease in lever re-
sponding for both groups (

 

p

 

 

 

,

 

 .05; comparison between
extinction day 1 and day 7).

On two separate test days after extinction sessions,
rats given bilateral vehicle microinjections in the baso-
lateral amygdala (Figure 1) or the nucleus accumbens
(Figure 1) reinstated high levels of lever responding for
presentation of the compound stimulus (tone 

 

1

 

 light)
previously associated with cocaine (secondary reward),
or cocaine infusions alone (primary reward) (

 

p

 

 

 

,

 

 .05;
comparison between previous extinction day and sub-
sequent test day). These results confirm our previous
data showing a robust reinstatement of responding for
primary or secondary reward after prolonged extinc-
tion and withdrawal from self-administered cocaine
(Meil and See 1996; See et al. 1999).

Bilateral TTX inactivation of the basolateral
amygdala selectively disrupted lever responding for
the tone 

 

1

 

 light (

 

p

 

 

 

,

 

 .05), but had no effect on lever re-
sponding for cocaine alone when compared to vehicle
microinjection (Figure 1). The total dose of cocaine re-
ceived on the second test day did not differ between the
two basolateral amygdala groups (mean 

 

6

 

 SEM: vehi-
cle 

 

5

 

 20.4 

 

6

 

 2.5 mg/kg; TTX 

 

5

 

 24.7 

 

6

 

 1.0 mg/kg; t(14) 

 

5

 

1.60; 

 

p

 

 

 

.

 

 .05). In marked contrast to bilateral TTX inacti-
vation of the basolateral amygdala, bilateral TTX inacti-
vation of the nucleus accumbens had no significant ef-
fect on lever responding for the tone 

 

1

 

 light on test day

1, but significantly attenuated lever responding (

 

p

 

 

 

,

 

.05) for cocaine on test day 2 (Figure 1). The total dose
of cocaine received on the second test day was also sig-
nificantly different (

 

p

 

 

 

,

 

 .05) between the two nucleus
accumbens groups (mean 

 

6

 

 SEM: vehicle 

 

5

 

 25.7 

 

6

 

 2.8
mg/kg; TTX 

 

5

 

 11.2 

 

6

 

 1.7 mg/kg; t(15) 

 

5

 

 4.54; 

 

p

 

 

 

,

 

 .001).
Responding on the left (inactive) lever was negligible
over the course of the experiments (data not shown).

TTX microinjections in both groups did not simply

Figure 1. Responses on the cocaine-paired right lever
(mean 6 SEM) during the last week of self-administration,
extinction, and the two test days. Animals were microin-
jected with vehicle or TTX immediately prior to test days
indicated as “tone 1 light” and “cocaine”. Top: Lever
responses for rats implanted with bilateral cannulae in the
basolateral amygdala and microinjected with vehicle (n 5 8)
or TTX (n 5 8). Rats microinjected with TTX failed to rein-
state responding for the tone 1 light (p , .05). Bottom: Lever
responses for rats implanted with bilateral cannulae in the
nucleus accumbens and microinjected with vehicle (n 5 8)
or TTX (n 5 9). Responding of TTX-treated rats for the pri-
mary (cocaine) reward was selectively attenuated when
compared to vehicle infusion (p , .05). * indicates a signifi-
cant between group difference for the test session; p , .05.
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induce behavioral inactivation, as evidenced by the fact
that the magnitude and patterns of responding were
not different from vehicle-treated rats on the tone 

 

1

 

light test day (nucleus accumbens) or the cocaine test
day (basolateral amygdala). Representative individual
records across the 3 h test session illustrate the selective
attenuation of lever responding after TTX microinjec-
tion in the basolateral amygdala on test day 1 (Figure 2)
and the nucleus accumbens on test day 2 (Figure 2).

Following all behavioral testing, histological exami-
nation of cresyl-stained tissue sections showed that in-

tracranial microinjection sites were localized through-
out the basolateral amygdala (Figure 3) and ranging
from the central core to the core/shell boundary of the
nucleus accumbens (Figure 3).

 

DISCUSSION

 

These results demonstrate a striking dissociation of
structure and function in a novel extinction/relapse
paradigm of drug craving, whereby the basolateral
amygdala is implicated in reinstatement of cocaine-con-
ditioned reward and the nucleus accumbens plays a
role in primary cocaine reward. The selective decrease
in responding for conditioned reward following bilat-
eral TTX microinjections into the basolateral amygdala
confirms previous findings that excitatory amino acid

Figure 2. Lever response records for individual subjects
selected to represent the general pattern after bilateral
microinjections in the basolateral amygdala (top) or the
nucleus accumbens (bottom). Each vertical mark represents
one lever press. The same subject is depicted for both test
sessions of tone 1 light and cocaine. The first line in each
depiction is the vehicle infused rat (VEH) and the second
line is the TTX infused rat.

Figure 3. Microinjection tip placements in the basolateral
amygdala (top) and the nucleus accumbens (bottom). Dis-
tance from bregma in mm: basolateral amygdala 22.56;
nucleus accumbens 11.20.
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lesions of this structure attenuate responding for co-
caine-paired stimuli, but do not affect maintenance of
cocaine self-administration (Whitelaw et al. 1996; Meil
and See 1997). The attenuation of cocaine self-adminis-
tration following microinjections of TTX into the nu-
cleus accumbens parallels a number of studies in which
cocaine self-administration is significantly decreased
following dopamine depletion or excitatory amino acid
lesions (Roberts et al. 1977; Zito et al. 1985). This de-
crease in behavior might be described as an attenuation
in the rewarding properties of cocaine.

Recent studies have found increased responding on
a drug-paired lever following microinjection of either
glutamate receptor agonists (Cornish et al. 1999) or
cAMP-dependent protein kinase inhibitors (Self et al.
1998) in the nucleus accumbens, contrasting with the
present results. It is possible that these manipulations
led to stimulation of accumbens-mediated circuitry in a
manner similar to an intra-accumbens infusion of
dopamine or by cocaine itself, as demonstrated in stud-
ies which have shown that a single priming dose of
cocaine will increase lever responding (de Wit and
Stewart 1981). Depending upon how increased lever re-
sponding (a measure of drug-seeking behavior) is initi-
ated following extinction, the nucleus accumbens may
be sufficient in “conditioned reward-like” responding,
but not necessary in responding for conditioned re-
ward. In the paradigm utilized in the present study,
rats will robustly reinstate lever pressing if presented
with a contingent, but not a noncontingent, stimulus
previously associated with cocaine (unpublished data).
In addition, we have demonstrated (See et al. 1999) that
such responding is very specific for the cocaine paired
stimulus (e.g., rats will not press for a tone or light
alone following training with a tone 1 light compound).

Responding for cocaine-conditioned reward after ex-
tinction, as evaluated in the present study, appears to
be mediated outside of the nucleus accumbens. These
results imply that different neural processes may con-
tribute to relapse to drug-seeking behavior in cocaine
addicts when exposed to conditioned environmental
stimuli vs. renewed consumption of the drug itself.
However, a number of other experimental paradigms
have shown a critical role of the nucleus accumbens in
conditioned reward (for recent review, see Sutton and
Beninger 1999). While we did not differentiate between
accumbal subregions, the different subregions of the
nucleus accumbens may have diverse roles in mediat-
ing conditioned reward.

A recent study localized Pavlovian components of
learned behavior (discriminative approach to a stimu-
lus light and sucrose containing magazine during CS-
US pairings) to the nucleus accumbens core subregion
and the potentiative effects of amphetamine to the nu-
cleus accumbens shell subregion (Parkinson et al. 1999).
The nucleus accumbens core thus appears to have a

critical role in some aspects of the acquisition of re-
sponding for conditioned reward, while DA activation
in the shell region potently enhances responding for the
conditioned reward. However, these results did not
show the nucleus accumbens to be necessary for condi-
tioned reward as regardless of lesion subregion, rats
responded for conditioned reward. Other studies in
support of this include: a) the lack of elimination of con-
ditioned reward by 6-OHDA lesions of the nucleus ac-
cumbens (Taylor and Robbins 1986); and b) failure of
NMDA antagonist infusion into the nucleus accumbens
core to affect responding for conditioned reward at a
dose that disrupted food consumption (Kelley et al.
1997). Finally, it has recently been reported that paired
environmental cues induce c-fos immunoreactivity in
the amygdala and prefrontal cortex, but not the nucleus
accumbens, of rats during reinstatement of lever re-
sponding after prolonged extinction from cocaine self-
administration (Ciccocioppo et al. 1999).

The present study extends on previous findings us-
ing excitatory amino acid lesions of the basolateral
amygdala, which resulted in attenuation of conditioned
reward, but not cocaine self-administration (Meil and
See 1997). Replication of these findings using a revers-
ible inactivation technique indicates that these previous
results were likely not due to changes (damage or com-
pensation) in nuclei distal to the basolateral amygdala
in the days following recovery from the lesion surgery.

TTX is a voltage-dependent sodium channel blocker,
which inhibits impulse generation and neural conduc-
tance (Narahashi 1972). TTX has been utilized as a revers-
ible inactivating agent in several behavioral studies in
rats requiring a within-subject design such as that utilized
in the present study (Harlan et al. 1983; Roldan and Bures
1994; Brozek et al. 1996). While our study did not include
a cross-over design to specifically investigate reversibility
of function following TTX, the duration of action of TTX
within the range of the dose we utilized has been shown
to be less than 24 h (Harlan et al. 1983; Zhuravin and
Bures 1991) and recovery of multiunit neuronal activity
within this time frame has been demonstrated following
TTX administration (Harlan et al. 1983).

We also did not find the use of TTX associated with
any obvious cell damage (e.g. excessive gliosis around
injector tip or cavitation). We did not directly assess the
extent of the spread of TTX. However, a previous study
attempted to quantify larger infusions (1 ml per site)
and indicated a spread with a radius of approximately
1 mm (Zhuravin et al. 1994). Therefore, it is likely that
our injections of half of that volume were limited to tis-
sue inclusive of the basolateral amygdala. With vari-
ability in tip placements, and due to the fact that the ac-
tions of TTX are not specific to any particular receptor
or intracellular message pathway (e.g. glutamate ago-
nist or cAMP-dependent protein kinase inhibitor), infu-
sion likely blocked the activity of multiple axons of pas-
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sage. In this case, TTX could have limited the activity of
nearby nuclei, including the central nucleus of the
amygdala. It should be noted, however, that the baso-
lateral amygdala has been shown to be a critical sub-
strate of conditioned reward in paradigms other than
drugs of abuse, including sexual (Everitt et al. 1989) and
food (Everitt et al. 1991; Burns et al. 1993) rewards. Fi-
nally, the data clearly indicate that TTX selectively af-
fected reward processes and did not simply induce lo-
comotor or discrimination deficits. Specifically, TTX
did not affect responding for cocaine in the rats micro-
injected into the basolateral amygdala, suggesting a
lack of any motor problem. In addition, responding was
particular to the cocaine lever, with no increase in re-
sponding on the inactive lever. The ability of the rats to
discriminate the appropriate manipulandum was in-
tact. Similar results were observed for rats microin-
jected with TTX in the nucleus accumbens; responding
for the conditioned reward was not affected, nor was
there any increase in responding on the inactive lever.

The results of the present study suggest the possibil-
ity that cocaine-conditioned reward might involve pro-
jections of the basolateral amygdala to regions other
than the nucleus accumbens. For example, there is evi-
dence of robust projections from the amygdala directly
to the ventral pallidum (Maslowski-Cobuzzi and
Napier 1994), and cocaine place preference has been es-
tablished with microinjections of cocaine in the ventral
pallidum (Gong et al. 1996). Tract tracing studies also
indicate heavy projections from the amygdala to the
mediodorsal nucleus of the thalamus (McDonald 1987).
Monkeys trained to respond for a conditioned visual re-
ward paired with food had performance deficits follow-
ing bilateral amygdala lesions, but unilateral, asymmet-
ric amygdala/nucleus accumbens lesions produced no
deficit (Gaffan et al. 1993). Monkeys with unilateral,
symmetric lesions of the amygdala and mediodorsal
thalamus, however, had greater deficits and the ani-
mals with the greatest deficits had a lesion of the
amygdala on one side of the brain and a combined le-
sion of the mediodorsal thalamus and ventromedial
prefrontal cortex on the contralateral side. Gaffan (1992)
suggested that such lesions lead to a disconnection be-
tween the unlearned intrinsic value of the reward from
the sensory attributes of its delivery.

The importance of other cortical structures in condi-
tioned reward is supported by a recent study (Schoen-
baum et al. 1999) which showed an interdependence of
activation of orbitofrontal cortex and amygdala neurons
in the learning of a rewarding odor, and studies of hu-
man cocaine addicts in which the prefrontal or cingulate
cortices are highly activated in the presence of cocaine as-
sociated cues (Grant et al. 1996; Childress et al. 1999). Un-
derstanding these multiple substrates of the conditioned
reward circuitry of addiction may facilitate treatment of
craving and relapse across a variety of drugs of abuse.
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