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The Neuropsychopharmacology of
Phencyclidine: From NMDA Receptor
Hypofunction to the Dopamine
Hypothesis of Schizophrenia

J. David Jentsch, Ph.D., and Robert H. Roth, Ph.D.

Administration of noncompetitive NMDA/glutamate
receptor antagonists, such as phencyclidine (PCP) and
ketamine, to humans induces a broad range of
schizophrenic-like symptomatology, findings that have
contributed to a hypoglutamatergic hypothesis of
schizophrenia. Moreover, a history of experimental
investigations of the effects of these drugs in animals
suggests that NMDA receptor antagonists may model some
behavioral symptoms of schizophrenia in nonhuman
subjects. In this review, the usefulness of PCP
administration as a potential animal model of schizophrenia
is considered. To support the contention that NMDA
receptor antagonist administration represents a viable
model of schizophrenia, the behavioral and neurobiological

effects of these drugs are discussed, especially with regard to
differing profiles following single-dose and long-term
exposure. The neurochemical effects of NMDA receptor
antagonist administration are argued to support a
neurobiological hypothesis of schizophrenia, which includes
pathophysiology within several neurotransmitter systems,
manifested in behavioral pathology. Future directions for
the application of NMDA receptor antagonist models of
schizophrenia to preclinical and pathophysiological research
are offered. [Neuropsychopharmacology 20:201-225,
19991 © 1999 American College of
Neuropsychopharmacology. Published by Elsevier

Science Inc.
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Biological psychiatric research has seen the develop-
ment of many putative animal models of schizophrenia.
The etiological bases of these models have varied
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widely from the administration of purportedly psychot-
omimetic drugs (Snyder 1988; Javitt and Zukin 1991;
Jentsch et al. 1998a), to perinatal insults (Lipska et al.
1993; El-Khodor and Boksa 1997; Moore and Grace
1997; Bertolino et al. 1997), to chronic social isolation or
stress (Jones et al. 1990), and beyond. The administra-
tion of psychotomimetic drugs to humans and animals
represents probably the most widely accepted and uti-
lized class of schizophrenia models. These “pharmaco-
logical” models seem to represent methods for the in-
duction of psychopathology in humans and aberrant
(potentially related) behavior in animals.

At the behavioral level, there seems to be some heter-
ogeneity in the effects of different psychotomimetic
drug classes. The psychomotor stimulants, such as am-
phetamine and cocaine, can clearly induce a form of
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paranoid psychosis in human subjects after high-dose
or long-term administration, but evidence regarding
the ability of these agents to induce “deficit” state
symptoms is conflicting (Angrist and Gershon 1970;
Everitt et al., 1997); moreover, there is evidence that am-
phetamine may actually alleviate negative and cognitive
symptoms in schizophrenic patients (Angrist et al. 1982;
Goldberg et al. 1991; Carter et al. 1997). Psychotomi-
metic indoleamines, such as lysergic acid diethylamide,
can induce profound sensory hallucinations without
causing any apparent deficit state in normal subjects
(Geyer and Markou 1994) and without precipitating
symptomatology in schizophrenic patients (Cohen et al.
1962). In contrast, the noncompetitive antagonists of the
N-methyl-D-aspartate (NMDA)/glutamate receptor, in-
cluding phencyclidine (PCP) and ketamine, seem to be
capable of inducing both positive and negative symp-
toms of schizophrenia, including cognitive dysfunction
in normal humans (Snyder 1980; Javitt and Zukin 1991;
Tamminga 1998); these drugs also profoundly exacer-
bate both positive and negative symptoms in schizo-
phrenic patients (Itil et al. 1967; Lahti et al. 1994; Mal-
hotra et al. 1997a).

Because of the more comprehensive psychopathol-
ogy induced by PCP, many researchers have studied
the effects of NMDA receptor antagonists in humans
and animals to gain insights into the neurobiology of
schizophrenia. In this review, the validity of NMDA re-
ceptor antagonist-induced models of schizophrenia in
humans and animals are considered, and the applicabil-
ity of acute versus chronic administration of PCP as a
more precise model is assessed. The neurobiological
substrates of the observed behavioral effects in acute
and chronic NMDA receptor antagonist models are re-
viewed. Finally, new directions for use of PCP/ket-
amine administration as a model of schizophrenia are
offered.

BASIS OF THE PCP/KETAMINE MODELS OF
SCHIZOPHRENIA IN HUMANS

Nearly 40 years ago, it was first reported that acute ad-
ministration of the noncompetitive NMDA-sensitive
glutamate receptor antagonist PCP to normal humans
induced a psychopathology with “impressive similarity
[to] . .. certain primary symptoms of the schizophrenic
process” (Luby et al. 1959, p. 367). This finding has been
replicated over the intervening years (Davies and Beech
1960; Cohen et al. 1962), and in addition, it has been
found that PCP likewise exacerbates the primary symp-
toms of chronic schizophrenic patients (Luby et al. 1959;
Itil et al. 1967).

Controlled studies of the effects of PCP in normal
and schizophrenic humans are now prohibited, in part,
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because of the overtly neurotoxic effects of this drug as
determined by studies in rodents (Olney et al. 1989;
1991; Olney and Farber 1995). Nevertheless, scientists
have recently utilized a PCP congener, ketamine, to
produce a model of psychosis in humans. This drug,
which (like PCP) noncompetitively blocks NMDA re-
ceptors, also simulates schizophrenic psychopathology
in normal humans (Krystal et al. 1994; Malhotra et al.
1996) and exacerbates symptoms in schizophrenic pa-
tients (Lahti et al. 1994; Malhotra et al. 1997a). Although
it seems that ketamine can induce many of the effects of
PCP in humans, it should be noted that ketamine is far
less potent for inducing psychotomimetic reactions, es-
pecially after chronic use (Rainey and Crowder 1974).
Several reports have demonstrated that competitive
NMDA receptor antagonists are also psychotomimetic
in humans (Bunney et al. 1994; Grotta et al. 1995; Tam-
minga 1998).

It is important to summarize the primary symptoms
of schizophrenia that may be “modeled” in a drug-
treated individual. Many of the “positive” symptoms of
schizophrenia, including paranoia, hallucinations, im-
pulsivity, formal thought disorder, delusions, and vio-
lent behavior, are characteristic of psychotomimetic
drug-induced psychopathology (Angrist and Gershon
1970; Javitt and Zukin 1991; Ellison 1995), but PCP
seems to be unique among psychostimulants because of
its ability to produce “negative” or deficit state symp-
toms of schizophrenia, such as emotional lability and
social withdrawal. In addition, PCP/ketamine adminis-
tration can lead to profound cognitive dysfunction
(Luby et al. 1959; Cohen et al. 1962; Pearlson 1981; Javitt
and Zukin 1991), including impaired performance of
the Wisconsin Card Sort and continuous performance
vigilance tasks and deficits in delayed recall, free recall,
recognition memory, and verbal fluency (Krystal et al.
1994; Malhotra et al. 1996). Many of these deficits impli-
cate frontal lobe dysfunction (Krystal et al. 1994), which
is critical for the validity of a PCP model of schizophre-
nia, because frontal cortical deficits are clearly a compo-
nent of the schizophrenic disease process (Fey 1951;
Robbins 1990; Goldman-Rakic 1991; Weinberger and
Berman 1996; Goldman-Rakic and Selemon 1997).

Although the initial observations of NMDA receptor
antagonist-induced psychosis were made in humans in
small, controlled studies of the effects of single-dose ex-
posure, PCP became a popular drug-of-abuse within
certain subcultures by the early 1960s. In addition to the
“toxic psychosis” induced by single-dose administra-
tion, it has also been noted that repeated use of PCP by
humans induces a more persistent schizophrenic symp-
tomatology, including psychosis, hallucinations, flat-
tened affect, delusions, formal thought disorder, cogni-
tive dysfunction, and social withdrawal (Rainey and
Crowder 1975; Allen and Young 1978; Pearlson 1981;
Javitt and Zukin 1991; Cosgrove and Newell 1991).
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DO ACUTE AND LONG-TERM PCP EXPOSURE
HAVE SIMILAR CONSEQUENCES?

An important question pertains to whether the differ-
ence between the behavioral and biological effects of
acute and chronic PCP exposure are more real than ap-
parent. As already noted, both regimens can induce
profound behavioral symptomatology reminiscent of
schizophrenia in humans, but there are more differ-
ences between the consequences of acute versus long-
term PCP administration than merely the duration of
the observed effects.

Table 1 summarizes the reported effects of acute and
long-term PCP/ketamine exposure in humans. Both reg-
imens can induce psychosis, thought disorder, delu-
sions, flattened affect, and withdrawal, with the effects
of chronic exposure being generally more persistent
(Luby et al. 1959; Rainey and Crowder 1975; Allen and
Young 1978; Pearlson 1981; Krystal et al. 1994; Malhotra
et al. 1996). The quantitative differences in the time
course of the effects of the two regimens may be largely
attributable to differences in dosage and route of ad-
ministration. Studies have rarely controlled for these fac-
tors. What is interesting is that there are qualitative dif-
ferences between the effects of these two dosing regimens.
Acute ketamine administration produces delusions and
hallucinations, typically within the visual domain
(Krystal et al. 1994), similar to LSD intoxication but not
to schizophrenia (Geyer and Markou 1994). More con-
sistent with symptoms observed in schizophrenic pa-
tients, PCP-abusing humans present with religious and
paranoid delusions and auditory hallucinations (Rainey
and Crowder 1975; Allen and Young 1978). In addition,
long-term PCP abuse is associated with “emotional la-
bility, social incompetence, overt impulsiveness, poor
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social judgment, poor attention span and concentration,
poor interpersonal relationships, and social maladjust-
ment” (American Psychiatric Association 1989, p. 1217).
These findings provide support for the argument that
long-term PCP abuse is associated with a psychopathol-
ogy that is remarkably similar to schizophrenia and that
may be more isomorphic to the chronic symptoms of
schizophrenia (e.g., cognitive and negative symptoms)
than those induced by single-dose PCP exposure.

Other differences lie in the biological effects of PCP.
Recent studies of regional cerebral blood flow after ket-
amine or PCP administration may provide clues as to
the neural circuits affected by NMDA receptor antago-
nist administration in humans. Acute ketamine expo-
sure markedly increases frontal cortical blood flow, es-
pecially in the anterior cingulate and frontomedial
cortical regions of normal humans or schizophrenic pa-
tients (Lahti et al. 1995; Breier et al. 1997a; Vollenweider
et al. 1997). In sharp contrast, long-term abuse of PCP
by humans has been associated with reduced frontal
lobe blood flow and glucose utilization (Hertzman et al.
1990; Wu et al. 1991). The finding that repeated expo-
sures to PCP reduces frontal blood flow is consistent
with the observation that some components of the cog-
nitive dysfunction of schizophrenia are associated with
reduced frontal blood flow, so-called “hypofrontality”
(Ingvar and Franzen 1974; Weinberger et al. 1986; An-
dreasen et al. 1992; Weinberger and Berman 1996).
Thus, long-term, but not acute, PCP exposure isomor-
phically models the behavioral and metabolic dysfunc-
tion of schizophrenia.

Likewise, previous studies have clearly shown that
acute administration of PCP or ketamine to animals
profoundly increases forebrain dopaminergic transmis-
sion (Doherty et al. 1980; Bowers and Hoffman 1984;

Table 1. Differing Psychiatric and Biological Effects of Acute versus Long-Term PCP/

Ketamine Exposure in Humans

Acute Exposure

Repeated Exposures

Psychosis Intense (hours)*?
Hallucinations Visual illusions (hours)®
Delusions Yes (hours)*

Thought disorder Yes (hours)™

Affect Euphoric to catatonic (hours)*
Cognition Impaired (transiently)?

Frontal blood flow

Increased (transiently)’

Intense (days to weeks)*?
Auditory and paranoid
(days to weeks)?
Frequently religious
(days to weeks)?
Yes (days to weeks)™
Anxious, labile or paranoid
(days to weeks)?
Impaired (persistently)®
Decreased (persistently)s

* Luby et al. (1959).

b Krystal et al. (1994).

¢ Rainey and Crowder (1975).
¢ Allen and Young (1978).

¢ Cosgrove and Newell (1991).
f Breier et al. (1997a).

8 Hertzman et al. (1990).
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Deutch et al. 1987, Hertel et al. 1996; Verma and
Moghaddam 1996; Jentsch et al. 1997a); whereas, long-
term PCP administration reduces frontal dopamine
transmission (Jentsch et al. 1997b,c; see below). Because
hypofrontality and some cognitive deficits of schizo-
phrenia have been associated with reduced dopamine
transmission within the prefrontal cortex (Weinberger
et al. 1988; Daniel et al. 1989, 1991; Dolan et al. 1995; re-
viewed in Davis et al. 1991; Knable and Weinberger
1997), these findings suggest that long-term administra-
tion of NMDA receptor antagonists produces effects
that are most consistent with schizophrenia. Later in
this review, the validity of acute versus long-term PCP
exposure as models of schizophrenia is revisited.

THE RELATIVE VALIDITY OF ANIMAL
MODELS OF SCHIZOPHRENIA

Studies of the neurochemical effects of PCP in animals,
in part, represent the trend to utilize these drugs in non-
human subjects to model aspects of idiopathic schizo-
phrenia. These animal studies may provide new insights
regarding the pathophysiology and treatment-responsiv-
ity of schizophrenia without the ethical and pragmatic
constraints associated with using human experimental
subjects. Nevertheless, an insurmountable obstacle is the
inability to model certain schizophrenic deficits (e.g., those
associated with verbal behavior) in animals, making it
impossible to produce a comprehensive model of schizo-
phrenia in nonhuman subjects. Despite these obvious
limitations, animal models may be able to reflect sub-
sets of primary behavioral symptoms of schizophrenia;
for example, frontal-like cognitive dysfunction. Likewise,
it may be possible to mimic certain biological sequelae
of schizophrenia (e.g., “hypofrontality”; Weinberger and
Berman 1996) in a model system (e.g., human PCP abus-
ers, Hertzman et al. 1990).

Another important consideration in determining the
comprehensive validity of a particular animal model of
schizophrenia is that the idiopathic disease likely repre-
sents a conglomeration of numerous behavioral, etio-
logical, and pathophysiological factors. As such, a sin-
gle model system may be incapable of representing all
symptoms of schizophrenia reliably or comprehen-
sively. This possibility makes the prospect of multiple,
heterogeneous animal models a tantalizing one, because
different systems may confer particular insights regard-
ing differing classes of symptoms of schizophrenia.

The problems associated with developing a model of
schizophrenia with comprehensive face validity, let
alone construct validity, seem daunting. Nevertheless,
as noted by Geyer and Markou (1994) in their review of
this subject, it is most important to develop and utilize
model systems that: (1) exhibit some symptomatic iso-
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morphism with the idiopathic disease; (2) present with
dependent measures that can be objectively quantified;
and (3) are reproducible and robust. These features can
confer a particular model with characteristics sufficient
to yield a pragmatically acceptable level of validity. A
final, and perhaps most critical, consideration is the
predictive validity of a particular model. Can the model
yield new and predictive insights regarding novel treat-
ment strategies? Again, it is important to limit the inter-
pretation of any data within the context that a particu-
lar model system may only mimic a particular domain
of symptoms and is not likely predictive of the com-
prehensive response of a human patient to a given
treatment.

The PCP/ketamine model of schizophrenia seems to
be valid at several levels of interpretation. Clearly, PCP
or ketamine administration induces behavioral patholo-
gies in humans that are isomorphic to certain primary
symptoms of schizophrenia, which are readily quantifi-
able and highly robust; for example, frontal-like cogni-
tive dysfunction (Luby et al. 1959; Javitt and Zukin
1991; Krystal et al. 1994). In addition, this model system
may have demonstrable predictive validity, because
ketamine-precipitated psychosis has been shown to be
responsive to the atypical antipsychotic drug clozapine
(Malhotra et al. 1997a). Finally, mounting data in non-
human primates (see below) suggests that, in animals,
PCP may have strong face and construct validity for
schizophrenia. Thus, in the following sections, we focus
our discussion on many of the findings of the behav-
ioral and biological consequences of PCP administra-
tion in animals.

NMDA ANTAGONIST-INDUCED BEHAVIORAL
ALTERATIONS IN ANIMALS: ISOMORPHISM
TO SCHIZOPHRENIA?

Many attempts have been made to draw parallels be-
tween the behaviors exhibited by (acute and chronic)
PCP-treated animals and schizophrenic symptomatol-
ogy (see Geyer and Markou 1994; Steinpreis 1996;
Jentsch et al. 1998a for review). The quantified behav-
iors examined occur within several different domains,
including locomotor behavior, sensorimotor gating,
cognitive function, motivation, and social behavior. The
behavioral effects of PCP administration (both after
acute and long-term administration) are summarized in
Table 2.

Effects of Acute PCP Administration on
Noncognitive Behavior

Several groups have studied the ability of acute admin-
istration of PCP, or its congeners, to stimulate locomo-
tor behavior in animals (Freed et al. 1980; Carlsson
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1988; Carlsson and Carlsson 1989; Boyce et al. 1991;
Moghaddam and Adams 1998). This is based upon the
notion that “locomotor activity in the rodent may be a
useful indicator of the propensity of a drug to elicit or
exacerbate psychosis in humans . . .” (p. 1350) (Moghad-
dam and Adams 1998); however, the relationship be-
tween rodent locomotor behavior and schizophrenic
symptoms lacks “discriminant validity” because sev-
eral drugs which stimulate locomotion in rats (e.g., al-
pha-2 antagonists and nicotine) fail to produce or elicit
psychosis in humans (Levin et al. 1996; Glazer et al.
1987). In contrast, delta-9-tetrahydrocannabinol can
produce or precipitate psychosis in normal and schizo-
phrenic humans, respectively, (D’Souza et al. 1997), yet
is cataleptic in rodents. Nevertheless, dysfunction within
corticostriatal-pallido-thalamo-cortical loops produced
by PCP administration may contribute to both locomo-
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tor abnormalities in PCP-treated rats (Carlsson and
Carlsson 1989) and in schizophrenia (Robbins 1990;
Grace and Moore 1998).

Single-dose PCP administration to rats has also been
shown to disrupt prepulse inhibition, a measure of sen-
sorimotor gating (Geyer et al. 1984), a finding with iso-
morphism to startle-gating deficits of schizophrenic pa-
tients (Geyer and Braff 1987; Braff et al. 1992). In this
paradigm the delivery a stimulus that normally causes
startle in animals or humans (a mild shock or very loud
tone) is presaged by a neutral stimulus. In normal hu-
mans and animals, the delivery of the neutral stimulus
results in reduced startle. In contrast, PCP-treated ani-
mals and schizophrenics both exhibit an inability to at-
tenuate their startle response with the presentation of
the neutral “warning” stimulus. The face validity of the
prepulse inhibition paradigm for modeling schizo-

Table 2. Effects of Acute versus Long-Term Exposure to PCP on Rodent and

Primate Behavior

Acute Exposure

Repeated Exposures

Rodent

Frontal cortex function Impaired” Impaired®

Temporal cortex function Impaired*™" Preserved®

Sensorimotor gating Impaired’ Unknown

Motor function Impaired/ Preserved’

Motivation Impaired* Preserved’

Associative processes Impaired* Preserved®

Social behavior Reduced” Reduced’

Locomotion Increased’ Augmented response to stress

or amphetamine”

Nonhuman primate

Frontal cortex function Impaired® Impaired’

Temporal cortex function Impaired” Unknown

Motor function Impaired” Preserved'

Motivation Impaired” Preserved'

Social behavior Reduced® Unknown

Locomotion Typically reduced* Increased locomotion and

stereotypy in some cases‘

*Verma and Moghaddam (1996).
b Jentsch et al. (1997b).

¢ Our unpublished observations.
4 Heale and Harley (1990).

¢ Jones et al. (1990).

fKesner and Davis (1993).

8 Murray and Ridley (1997).

" Fraser et al. (1997).

Geyer et al. (1984).

i Tricklebank et al. (1989).

¥ Hoehn-Saric et al. (1991).

! Aguado et al. (1994).

" Pallares et al. (1995).

" Tang and Ho (1988).

° Stevens et al. (1997).

P Sams-Dodd (1996).

7 McCullough and Salamone (1992).
" Jentsch et al. (1998c).

* Boyce et al. (1991).

! Jentsch et al. (1997¢).

“ Moerschbaecher and Thompson (1980).
? Frederick et al. (1995).

® Schlemmer and Davis (1983).
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phrenic sensorimotor-gating deficits has been well es-
tablished (Geyer and Markou 1994).

Acute PCP administration has also been shown to re-
duce social interactions in rats (Steinpreis et al. 1994;
Sams-Dodd 1995, 1996) and monkeys (Miller et al. 1973;
Schlemmer and Davis 1983). Although these effects
seem to bear relationship to the social deficits exhibited
by schizophrenic subjects, it would be informative to
know whether these drug-induced effects occur inde-
pendent of nonspecific alterations in general locomo-
tion and arousal. Moreover, it is possible that rodent
social/interactive behavior is a measure that has a prob-
lematic relationship with schizophrenic social with-
drawal (i.e., the measured construct is not the same). It
seems that deficits in social interactions in schizo-
phrenic subjects are not a primary symptom of the dis-
order, per se, but rather, are secondary to a variety of
other symptoms, such as cognitive dysfunction, flat-
tened affect, primary thought disorder, impulsivity,
and psychosis (Dickerson et al. 1996). Thus, care should
be exercised when drawing parallels between the social
dysfunction of schizophrenia and that of PCP-treated
rodents.

Effects of Acute PCP Administration on Cognitive
Behavior

Attempts to study cognitive functions in PCP-treated
animals may yield the more informative results for sev-
eral reasons. The performance of cognitive tasks by ani-
mals and humans may depend on similar neural and
psychological constructs, and the validity of the partic-
ular tasks may be directly assessed. Second, measures
of cognitive behavior in animals can be frankly objec-
tive, especially when automated testing or highly con-
trolled task circumstances are used. Finally, much is
known about the cognitive constructs subserved by
particular brain regions (e.g., working memory func-
tion in prefrontal cortex; monkeys: Goldman-Rakic
1987; humans: Courtney et al. 1998), and a variety of
behavioral tasks can be used to measure the same
construct (e.g., delayed response, delayed nonmatch-to-
sample with repeated objects, N-back tasks, self-ordered
tasks). Thus, different procedures can be used in hu-
mans and animals, if necessary, to measure similar con-
structs. In consideration of the above, we focus much of
our subsequent discussion on cognitive functions in
NMDA receptor antagonist-treated animals as models
of schizophrenic cognitive dysfunction.

Many studies have examined the effects of acute
NMDA receptor antagonist administration on cognitive
functions. Although schizophrenia is certainly associ-
ated with fairly wide-ranging deficits, it is unclear
whether the global impairments caused by PCP admin-
istration are comprehensively representative of schizo-
phrenic deficits. Administration of PCP, ketamine, or
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MK-801 (another noncompetitive NMDA receptor an-
tagonist) to rats has been shown to impair performance
on tasks that seem to depend upon hippocampal or
amygdalar function; for example passive avoidance, ac-
quisition of the Morris water maze task, or a conditional
discrimination or performance of a spatial continuous-
recognition memory task (Heale and Harley 1990; Jones
et al. 1990; Kesner and Davis 1993; Murray and Ridley
1997). In addition, although delayed alternation deficits
have been reported after ketamine and MK-801, sug-
gesting spatial working memory dysfunction (Verma
and Moghaddam 1996), spontaneous (no-delay) alter-
nation is likewise affected (Fraser et al. 1997), compli-
cating this interpretation. Furthermore, administration
of noncompetitive NMDA receptor antagonists has
been shown to impair even simple behavioral mea-
sures, such as acquisition of a conditioned emotional re-
sponse (Hoehn-Saric et al. 1991), of a flavor aversion
(Aguado et al. 1994), of an operant response (Pallares et
al. 1995), of a brightness discrimination (Tang and Frank-
lin 1983; Tang and Ho 1988), or of a conditioned cue
preference (Stevens et al. 1997). Because many of these
latter tasks depend largely upon simple sensory pro-
cesses and associative learning (which are relatively
preserved in schizophrenic patients), the specificity of
“cognitive” deficits in animals acutely treated with
PCP/ketamine/MK-801 is questionable. It is important
to comment that acute PCP administration to monkeys
similarly impairs performance of working memory
tasks in a delay-independent fashion (Boyce et al. 1991;
Hudzik and Wenger 1993), visual recognition tasks
(Ogura and Aigner 1993), conditional discrimination
tasks (Moerschbaecher and Thompson 1980), and tasks
that measure motivation and other nonspecific effects
(Frederick et al. 1995). Thus, care should be taken when
arguing for complete isomorphism between acute
NMDA receptor antagonist-induced behavioral deficits
in animals and the symptoms of schizophrenia.

Effects of Long-Term PCP Administration on
Noncognitive Behavior

As previously discussed, the effects of chronic, rather
than acute, exposure to PCP may better represent some
facets of schizophrenia. Thus, it is important to under-
stand the behavioral/cognitive consequences of long-
term exposure to PCP in animals. Although few invest-
igators have explored the behavioral and cognitive
deficits associated with chronic PCP administration,
initial examinations (see below) suggest that a more se-
lective set of impairments results from long-term dos-
ing. Altered social behavior, locomotor sensitization,
and cognitive function might be expected to be altered
in chronic PCP-treated animals if the effects of PCP rep-
resent a possible model of schizophrenia. Social deficits
have been reported in rats after cessation of long-term
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PCP administration (Steinpreis et al. 1994; Sams-Dodd
1995, 1996), although it is not presently clear how en-
during these effects are.

Behavioral sensitization is a phenomenon whereby
repeated exposures to a drug or environmental stimu-
lus lead to progressively enhanced behavioral re-
sponses. A “sensitization” hypothesis of schizophrenia
has been offered in an attempt to describe psychomotor
stimulant-induced psychosis and stress-precipitated
psychopathology (Robinson and Becker 1986; Post et al.
1988; Lieberman et al. 1997). PCP-induced sensitization
of limbic circuits might have relevance to the neurobiol-
ogy of schizophrenia, as sensitization to the locomotor-
stimulating effects of PCP, ketamine, and MK-801 has
been reported (Scalzo and Holson 1992; Wolf and
Khansa 1991; Xu and Domino 1994). Importantly, this
phenomenon seems to be very dose and regimen sensi-
tive and may be complicated by tolerance to the ataxic
effects of PCP (Melnick et al. 1997).

Augmented locomotor responsivity to stress and
d-amphetamine has been reported after long-term PCP
exposure (Jentsch et al. 1998c), and subchronic ket-
amine administration has been shown to increase apo-
morphine-induced stereotypy (Lannes et al. 1991). Fur-
thermore, we have observed that subchronic PCP
exposure leads to an increased mesolimbic dopamine
response after an acute administration of haloperidol
(Jentsch et al. 1998¢). Therefore, at least a component of
limbic circuitry (the mesolimbic dopamine system)
does seem to show augmented function after long-term
NMDA receptor antagonist exposure; however, it is not
currently apparent that this is attributable to a simple
sensitization phenomenon, because the locomotor re-
sponse to PCP itself is reduced after the drug adminis-
tration regimen used in our studies (Jentsch and Taylor,
unpublished observations). Thus, although locomotor
sensitization may yield some insights regarding subcor-
tical dopaminergic hyperactivity, it may not be a pre-
requisite of this hyperactivity.

Effects of Long-term PCP Administration on
Cognitive Behavior

Recently, the cognitive effects of long-term PCP treat-
ment in rats and monkeys have been investigated. The
initial results would suggest that dysfunction within
the prefrontal cortex (principally, dorsolateral prefron-
tal cortex in monkeys and medial frontal cortex in rats)
is a component of these deficits. Because working mem-
ory is clearly one cognitive function subserved by fron-
tal cortex (Goldman-Rakic 1987), we have examined the
performance of a spatial delayed alternation task by
rats after subchronic PCP administration. In this task,
rats are required to maneuver through a T-maze to ob-
tain a reward; on the first trial, the rat is rewarded for
entering either arm, and on subsequent trials, the re-
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ward is only given if the rat alternates between entering
the two arms (e.g., left-right-left, etc.). Because a delay
period is interposed between trials, the rat is required
to briefly maintain information regarding the next
choice “on-line,” thus, requiring the working memory
construct. This task is closely linked with the function
of the frontal cortex and its dopaminergic innervation
(Brozoski et al. 1979; Kolb 1984; Goldman-Rakic 1987;
Bubser and Schmidt 1990; Roberts et al. 1994). Long-
term PCP administration produces delay-dependent
performance impairments on a variable-delay spatial
T-maze alternation task (Jentsch et al. 1997b). Because
deficits were minimal at short (0 s) delays and greater at
longer delays, these data seem to implicate specific
working memory dysfunction.

Another frontal function that contributes to success-
ful performance of the spatial delayed alternation task
is response inhibition. Diamond (1988, 1996) and Rob-
bins (1996) have both eloquently described a role for re-
sponse inhibition in delayed response tasks. In these
tasks, the subject must simultaneously maintain infor-
mation about the next choice “on-line” and also inhibit
the tendency to make a choice that was previously re-
warded but which is no longer appropriate (a “prepo-
tent” response). This cognitive function has been most
closely linked with ventrolateral prefrontal cortex based
upon lesion studies in nonhuman primates (Iversen and
Mishkin 1970; Dias et al. 1996a). As with delayed re-
sponse, another task with components of response inhi-
bition, motor planning, and working memory, and that
is sensitive to frontal lobe lesions is object retrieval/
detour.

The object retrieval/detour task can be used to assess
cognitive function in humans or monkeys (Diamond
1988, 1996; Taylor et al. 1990a,b). This task involves the
retrieval of a reward from behind a transparent barrier
and, thus, requires several frontal lobe functions, in-
cluding response inhibition (the need to block the pre-
potent tendency to make a direct reach for the reward
through the transparent barrier), motor planning (the
formation of a complex motor act for retrieval of the re-
ward), and, perhaps, working memory (the guidance of
reaching behavior by memory, knowledge, or represen-
tation, rather than simple visual feedback). Thus, ven-
tral and dorsolateral prefrontal, as well as premotor,
cortices may contribute to successful task performance.

Frontal involvement in this task is implicated by im-
paired performance after widespread lesions of frontal
lobe (Moll and Kuypers 1977), more specific ablation of
the lateral and orbital frontal regions (Dias et al. 1996b),
or dorsolateral prefrontal cortex (Diamond and Gold-
man-Rakic 1985; Diamond 1988, 1996) in monkeys. In
contrast, parietal cortical or hippocampal lesions fail to
affect object retrieval performance (Diamond and Gold-
man-Rakic 1985; Diamond et al. 1989; Diamond 1988,
1996). Furthermore, impaired performance of this task
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is exhibited by monkeys after MPTP-induced reduc-
tions in dopamine concentrations within the striatal
complex (Taylor et al. 1990a,b). Thus, this task seems to
measure several constructs (frontal lobe function, re-
sponse inhibition, working memory, response plan-
ning) impaired in schizophrenia.

Monkeys that are repeatedly exposed to PCP are im-
paired in acquisition and performance of this retrieval
task. During the acquisition phase, drug-treated sub-
jects fail to acquire the “reaching strategy” necessary to
perform the task, as do frontal-lesioned or MPTP-treated
monkeys (Moll and Kuypers 1977; Diamond and Gold-
man-Rakic 1985; Diamond 1988; Taylor et al. 1990a,b;
Dias et al. 1996b). Furthermore, PCP-treated monkeys
are disinhibited; they tend to attempt to reach through
the transparent barrier to retrieve the reward and are
also specifically perseverative in response (Jentsch et al.
1997c¢). Importantly, performance of the object retrieval/
detour task is impaired in PCP-treated subjects only
when monkeys need to negotiate the barrier (and thus
inhibit the prepotent response and maintain “on-line”
sequences of responses) and not on special trials that re-
quire nothing more than visually guided behavior. Fur-
thermore, no motor or motivational deficits have been
found using task-related measures in PCP-treated mon-
keys (Jentsch et al. 1997c). These data suggest that, un-
like acute PCP exposure, “cognitive impulsivity,” im-
paired working memory, and perseveration, but not
nonspecific effects, are consequences of repeated expo-
sures to PCP.

Conclusions

These data on the effects of long-term PCP administra-
tion on rats and monkeys are suggestive of a more se-
lective cognitive deficit profile than that exhibited by
animals treated with a single dose of the drug. The ini-
tial evidence seems to suggest that frontal lobe function
is particularly affected after long-term treatment and
withdrawal. Because schizophrenics show particularly
profound and pronounced deficits on tasks linked with
frontal lobe function (see below; Fey 1951; Robbins
1990; Goldman-Rakic 1991; Park and Holzman 1992),
with spared performance on simple, associative pro-
cesses, the cognitive consequences of long-term admin-
istration may more isomorphically model the frontal
lobe deficits associated with schizophrenia.

FRONTAL CORTICAL DYSFUNCTION:
RELEVANCE TO THE PCP MODEL

As noted, the behavioral deficits in schizophrenic patients
are strongly reminiscent of frontal lobe dysfunction.
Frontal lobe lesions in humans and monkeys are associ-
ated with cognitive dysfunction, flattened affect, social
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withdrawal, impulsivity, and perseveration (Goldman
and Rosvold 1970; Fuster 1997; Goldman-Rakic 1987,
1991; Petrides 1996; Robbins 1990, 1996).

Some specific discussion of the characteristic cogni-
tive deficits exhibited by frontal lobe-lesioned subjects
is important when interpreting the previously summa-
rized data. Goldman-Rakic, Petrides, Fuster and Rob-
bins have each described working memory deficits fol-
lowing lesions to the frontal lobe, specifically the
dorsolateral frontal cortex (Goldman-Rakic 1991; Pet-
rides 1996; Robbins 1996; Fuster 1997). Goldman-Rakic
(1987, 1991) has postulated that working memory con-
stitutes a generalized function of the anatomical subdi-
visions of frontal cortex that operate in parallel within
distinct domains, and Petrides (1996) has described the
function of the midventrolateral frontal cortex as the re-
trieval of information from long-term memory, and
thus, this system would be integral to the function of
the working memory system (dorsolateral prefrontal
cortex), providing access to memories that must be inte-
grated with incoming sensory information. Along with
“on-line” processing systems, Robbins (1996) has fur-
ther argued for a distributed system within frontal cor-
tex subserving inhibitory response control. Fuster
(1997) has also described a motor “planning” function
to prefrontal cortex, complementing the on-line pro-
cessing and self-ordering functions of this brain re-
gion.Thus, lesions within frontal lobe would be hypoth-
esized to impair working memory and response
inhibition, and this is, indeed, the case (Milner 1963,
1982; Freedman and Oscar-Berman 1986; Petrides and
Milner 1982; Verin et al. 1993).

At present, subchronic PCP-treated rats and mon-
keys seem to exhibit deficits in working memory and
inhibitory control. In contrast, relatively simple sensory
and associative processes seem preserved. Although
schizophrenic patients exhibit cognitive deficits that
likely result from dysfunction with temporal and pari-
etal, as well as frontal, cortices (Goldberg and Gold
1995), it remains to be seen whether long-term PCP ad-
ministration causes a cognitive deficit syndrome that
includes extrafrontal dysfunction. As subchronic PCP
exposure seems to induce a syndrome of behavioral
deficits consistent with frontal cortical dysfunction, it is
perhaps most useful to describe long-term PCP admin-
istration as a potential model of schizophrenic frontal
cortical dysfunction. Nevertheless, PCP clearly exerts
pharmacological and neurochemical effects on numer-
ous cortical regions (see below), so dysfunction within
extrafrontal cortical regions is likely. Indeed, schizo-
phrenics and ketamine-treated individuals exhibit im-
paired declarative memory, a dysfunction possibly as-
sociated with altered mesial temporal function (Krystal
et al. 1994; Malhotra et al. 1996), so it remains to be seen
whether chronic PCP treatment leads to deficits within
this mnemonic modiality.
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NEUROBIOLOGICAL SUBSTRATES OF
PCP/KETAMINE MODELS OF SCHIZOPHRENIA

As previously described, the effect of PCP to block
NMDA receptors supports a hypoglutamatergic hy-
pothesis of schizophrenia. In this section, we review
more comprehensively the neurochemical, neuroana-
tomical, and neurophysiological effects of PCP to de-
velop a hypothetical substrate for impaired cognition in
PCP-treated subjects. An understanding of the full ef-
fects of PCP is important when constructing a neurobio-
logical hypothesis of schizophrenia.

NEUROCHEMISTRY
Cortical Dopamine Dysfunction

Several neurotransmitter systems in frontal lobe modu-
late cognitive functions, the most well-studied likely
being dopamine. In a seminal series of studies, Gold-
man-Rakic and colleagues observed preferentially high
concentrations of dopamine within the primate pre-
frontal cortex (Brown and Goldman 1977) and showed
that large reductions in dopamine (and norepineph-
rine) concentrations within the dorsolateral prefrontal
cortex of the monkey, induced by 6-hydroxydopamine
infusion, led to impairments of spatial delayed alterna-
tion, a working memory task (Brozoski et al. 1979).
These deficits were equivalent to those seen after abla-
tive lesions of this brain region (Goldman et al. 1971).
Furthermore, dopamine D; receptors within prefrontal
cortex have been shown to be involved in working
memory, because intraprefrontal cortical infusion or
systemic administration of specific dopamine D; recep-
tor antagonists impaired oculomotor or manual spatial
delayed response, respectively (Sawaguchi and Gold-
man-Rakic 1991; Arnsten et al. 1994). In addition, in-
creased dopamine release in monkey prefrontal cortex
is specifically associated with performance of spatial
delayed alteration, as opposed to performance of a con-
trol task (Watanabe et al. 1997). In contrast, perfor-
mance of an attentional set-shift task, a test of inhibitory
control (Dias et al. 1996a, 1997), was improved by dopam-
ine-specific lesions of the lateral frontal cortex in mar-
mosets (Roberts et al. 1994). In addition, as previously
discussed, object retrieval/detour, has been shown to be
sensitive to MPTP-induced reductions in corticostriatal
dopamine levels (Taylor et al. 1990a,b; Schneider and
Kovelowski 1990) and is known to be impaired after
long-term PCP administration in monkeys (Jentsch et
al. 1997c). Thus, dopamine seems to exert a critical neu-
romodulatory influence on a subset of the cognitive
functions of frontal lobe, and thus, it remains possible
that dopaminergic dysfunction results in the deficits in
animals after subchronic PCP administration. Is it pos-
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sible that the PCP-induced dysregulation of frontal cor-
tical dopamine transmission contributes to the associ-
ated drug-induced frontal cortical dysfunction? Our
recent observations support this notion (see below).

As noted above, acute administration of noncompet-
itive NMDA receptor antagonists is associated with a
dramatic activation of dopamine transmission in fore-
brain (Doherty et al. 1980; Bowers and Hoffman 1984;
Deutch et al. 1987, Hertel et al. 1996; Verma and
Moghaddam 1996; Jentsch et al. 1997a), and this effect is
likely directly implicated in the cognitive dysfunction
exhibited by subjects acutely treated with PCP or ket-
amine (Verma and Moghaddam 1996), because in-
creased dopamine transmission in prefrontal cortex has
been reported to impair spatial working memory (Mur-
phy et al. 1996a; Jentsch et al. 1997d). In rodents, an
acute dose of PCP seems to augment prefrontal cortical
and ventral striatal dopamine transmission; whereas,
the dopaminergic innervation of the dorsal striatum is
relatively unaffected (Deutch et al. 1987; Jentsch et al.
1997a). In the monkey, we measured marked increases
in frontal cortical dopamine utilization in PCP-treated
monkeys, but no change was noted in any subcortical
region, including the nucleus accumbens (Jentsch et al.
1997a). Acute PCP administration has also been re-
ported to activate serotonergic, glutamatergic, norad-
renergic, cholinergic, and neurotensinergic transmis-
sion in rodents and monkeys (see below) (Deutch et al.
1987; Hertel et al. 1996; Jentsch et al. 1997a).

Previously, it was suggested that inhibition of dopa-
mine re-uptake was directly implicated in the acute
PCP-induced increases in extracellular levels of dopam-
ine in prefrontal cortex and nucleus accumbens (Mc-
Cullough and Salamone 1992; Steinpreis and Salamone
1993; Hondo et al. 1994); however, several lines of data
refute this hypothesis. The activation of dopamine
transmission in the prefrontal cortex and nucleus ac-
cumbens induced by acute PCP administration is
blocked by such agents as (=)HA966, prazosin, and
clonidine (Mathe et al. 1996; Jentsch et al. 1997a, 1998b),
which modulate the firing patterns of dopaminergic
neurons within the ventral mesencephalon (Shepard et
al. 1996; Grenhoff and Svensson 1989, 1993) and by in-
traprefrontal cortical administration of tetrodotoxin
(Nishijima et al. 1996). Likewise, PCP itself increases the
firing rate of dopaminergic neurons (Freedman and
Bunney 1984; French 1994). The available data suggest
that acute administration of PCP may reduce cortical
GABAergic function (Grunze et al. 1994; Yonezawa et
al. 1998), disinhibiting glutamatergic transmission in
the prefrontal cortex (Moghaddam et al. 1997) and ven-
tral tegmental area (Mathe et al. 1998). This increase in
glutamatergic transmission would then stimulate meso-
corticolimbic dopaminergic transmission and locomo-
tor behavior (Jentsch et al. 1998d).

Given the effects of acute PCP treatment on dopa-
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mine transmission and the modulation of cognitive
function by this transmitter, we examined dopamine
transmission after subchronic PCP exposure in rats and
monkeys. In stark contrast to the consequences of acute
PCP exposure, we found that repeated, intermittent
PCP administrations reduce dopamine turnover in the
prefrontal cortex of rats and monkeys (Jentsch et al.
1997b,c). Repeated exposures of PCP to rats cause a
marked (to approximately 75% of control levels) and
persistent (at least 3 week) reduction in basal, resting
dopamine utilization (dihydroxy-O-phenyl-acetic acid
[DOPAC]:dopamine ratio) in the medial prefrontal cor-
tex, but not nucleus accumbens or striatum (Jentsch et
al. 1997b, 1998c). This effect of PCP seems to be medi-
ated, in part, by NMDA antagonism, because a similar,
if smaller, reduction in dopamine transmission in rat
prefrontal cortex was noted after subchronic (+)MK-
801 administration (Jentsch et al. 1998¢). In addition, re-
peated treatment seems to be required because single
injection of PCP failed to alter dopamine transmission
enduringly in the prefrontal cortex.

The PCP-induced alterations in metabolite:dopam-
ine ratio are caused almost entirely by changes in con-
centrations of metabolite (Jentsch et al. 1997b,c). The
lack of PCP-induced change in tissue concentrations of
dopamine, itself, suggests that no direct neurotoxic in-
sult to dopamine neurons occurs during subchronic
PCP administration. Presumably, a loss of dopamine
neurons would be indicated by a loss of dopamine con-
tent in the terminal fields of these projection neurons,
but no sign of this is currently apparent. This finding
does not rule out the possibility that populations of
cells in other regions of the brain, including those that
project to prefrontal cortex or the ventral midbrain
dopaminergic nuclei, are subject to PCP-induced neuro-
toxicity.

The effects of long-term PCP exposure in the mon-
key forebrain are even more profound and anatomi-
cally localized. Subchronic PCP treatment enduringly
(at least 9 days) reduces dopamine utilization (homo-
vanillic acid [HVA]:dopamine ratio) in several regions
of monkey frontal cortex (Jentsch et al. 1997c, 1998e); af-
fected areas include the dorsolateral prefrontal cortex
(Walker’s area 46), medial prefrontal cortex (area 9),
frontal eye fields (area 8A), lateral orbital cortex (area
12), infragranular cortex (area 14), and prelimbic (ven-
tromedial limbic frontal) cortex (areas 25/32/33). In con-
trast, no drug-induced changes are observed in the sup-
plementary motor area (area 6M), primary motor cortex
(area 4), or rostral frontal pole (area 10). In addition,
dopaminergic transmission in other cortical areas
(amygdala and entorhinal cortices) and subcortical re-
gions (nucleus accumbens core and shell, caudate nu-
cleus, putamen, septal nucleus, and ventromedial hy-
pothalamus) are unaffected. Thus, the effects are
strikingly restricted to frontal cortex. These findings
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may not be completely analogous to schizophrenia, as
Akil and Lewis (1995, 1996) have found dopaminergic
abnormalities in both frontal and entorhinal cortical areas.

Furthermore, we have recently noted that the extent
of dopaminergic inhibition in the dorsolateral prefron-
tal and prelimbic frontal regions correlates significantly
with the degree of performance impairment on the ob-
ject retrieval/detour task in PCP-treated monkeys (Jentsch
et al., 1998e), while successful performance does not
correlate with dopamine transmission in other frontal
cortical or subcortical brain regions. Likewise, serotonin
transmission in any brain region is not significantly re-
lated to successful performance of this task. Thus, these
data implicate dopaminergic dysfunction with specific
frontal regions in the performance of the object re-
trieval/detour task.

The PCP-induced changes in basal, resting dopam-
ine metabolism are mirrored in the dopaminergic re-
sponse to stimulation. Acute, mild stress increases
dopamine transmission in the rodent prefrontal cortex
(Deutch and Roth 1990); however, the dopaminergic re-
sponse to stress is markedly reduced in the prefrontal
cortices of rats that have been subchronically exposed
to PCP (Jentsch et al. 1997b). In addition, we have noted
that the increase in dopamine release and metabolism
induced by an acute PCP challenge is reduced after
long-term PCP exposure in rats and monkeys (Jentsch
et al. 1997¢, 1998f). Thus, it seems that both basal and
stimulated dopamine function are reduced by sub-
chronic PCP exposure.

In an attempt to relate these changes in dopamine
turnover to transmitter efflux, we have recently exam-
ined the effects of long-term PCP treatment on extracel-
lular concentrations of dopamine in rodent prefrontal
cortex. A dose regimen that reduces the DOPAC:dopa-
mine ratio in prefrontal cortex (Jentsch et al. 1997b,
1998c) dramatically reduced basal, extracellular dopam-
ine concentrations (to 60% of control levels) in the pre-
frontal cortex (Jentsch et al. 1998f).

In contrast, Lindefors et al. (1997) recently reported
that repeated administration of ketamine to rats in-
creased basal, resting extracellular levels of dopamine
in the prefrontal cortex. Although this finding is seem-
ingly inconsistent with our finding of reduced dopam-
inergic function after repeated exposures to PCP, sev-
eral issues concerning this study should be noted. First,
Lindefors et al. (1997) used once-daily injections of a
relatively moderate dose (25 mg/kg) of ketamine, a
drug with a considerably shorter half-life than that of
PCP. This administration regimen would likely be asso-
ciated with widely oscillating plasma levels of ket-
amine. In our studies, we generally used twice-daily
administration of moderate doses of PCP, a paradigm
likely associated (given the longer half-life of PCP) with
continuously elevated (though waxing and waning)
plasma levels of PCP. This pharmacokinetic difference



NEUROPSYCHOPHARMACOLOGY 1999—VOL. 20, NO. 3

may be a critical determining factor in the net effects of
drug administration on prefrontal dopamine transmis-
sion. Another factor complicating the interpretation of
the results of Lindefors et al. (1997) arises from their find-
ing that repeated ketamine administration results in in-
creased basal, resting extracellular concentrations of
dopamine, but not DOPAC or HVA, in the prefrontal
cortex; however, after repeated ketamine exposures, a
single-dose ketamine challenge fails to elevate dopam-
ine efflux beyond the heightened baseline, but increases
extracellular DOPAC and HVA. It is difficult to con-
struct a mechanistic hypothesis of how functional
changes in neurotransmission, per se, would underlie
the specific changes in extracellular dopamine reported
by Lindefors et al. (1997).

Thus, it appears that, in contrast to previous specula-
tions (Adams and Moghaddam 1998), dopaminergic
function (as measured by in vivo release or ex vivo me-
tabolite measures) is reduced after a dosing regimen of
PCP that produces demonstrable frontal cortical cogni-
tive and behavioral deficits in rodents. The neurochem-
ical differences reported highlight the need for examin-
ing behavioral and neurobiological function after
identical treatments, particularly with regard to phar-
macological models.

The reduction in dopamine transmission in the pre-
frontal cortex of PCP-treated rats and monkeys should
be viewed within the context of potential changes in
postsynaptic dopamine receptor density. Previously, it
was shown that subchronic exposure to MK-801 re-
duced dopamine D;-receptor mRNA in the rat prefron-
tal cortex (Healy and Meador-Woodruff 1996a,b). Like-
wise, in a preliminary study, we have obtained evidence
for reduced dopamine D; mRNA levels in the monkey
dorsolateral prefrontal cortex after subchronic PCP
treatment (Jentsch, Lidow, Roth, and Goldman-Rakic,
unpublished observations). These findings suggest that
the functional effects of reductions in the synaptic re-
lease of dopamine are exacerbated by a loss of a dopa-
mine receptor that seems to be critical to the working
memory functions of prefrontal cortex (Sawaguchi and
Goldman-Rakic 1991).

The reduction in cortical dopamine transmission
(both at the pre- and postsynaptic level) in the chronic
PCP model seems to be consistent with some findings
in schizophrenic patients. First, the reduction in meta-
bolic activity in the prefrontal cortex of schizophrenic
patients is inversely correlated with cerebrospinal fluid
concentrations of homovanillic acid, a measure of cen-
tral dopaminergic transmission (Weinberger et al.
1988). Second, hypofrontality in schizophrenia is allevi-
ated by systemic administration of indirect or direct
dopaminergic agonists, such as amphetamine (Daniel et
al. 1991) or apomorphine (Daniel et al. 1989; Dolan et al.
1995). Finally, a recent positron emission tomographic
(PET) study has suggested that the dopamine D;-recep-
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tor may be downregulated in schizophrenia (Okubo et
al. 1997). Thus, it seems that one component of the cog-
nitive dysfunction of schizophrenia is associated with
reduced frontal dopaminergic transmission. This poten-
tial biological sequela of the disorder would be consis-
tent with a chronic PCP model of schizophrenia but
would be, at face value, inconsistent with an activation
of dopamine transmission induced by acute PCP/ket-
amine administration.

Subcortical Dopamine Dysfunction

As previously discussed, some effects of acute PCP ad-
ministration on subcortical dopamine transmission, es-
pecially in the nucleus accumbens, of rats have been re-
ported (Doherty et al. 1980; Deutch et al. 1987; Hertel et
al. 1996; Jentsch et al. 1997a). In contrast, we failed to
find any effect of single-dose PCP exposure on subcorti-
cal dopamine utilization in the monkey (Jentsch et al.
1997a). The activation in accumbens dopamine trans-
mission in the rat has been associated with the ability of
PCP to stimulate locomotor behavior (McCullough and
Salamone 1992; Steinpreis and Salamone 1993; Jentsch
et al. 1998d) and may be associated with some psycho-
pathology in PCP-treated humans.

It could be hypothesized that reduced cortical dopa-
mine transmission induced by long-term PCP exposure
may be associated with a hyperactivity of subcortical
dopamine systems (as with acute administration), be-
cause the mesocortical and mesolimbic dopamine sys-
tems demonstrate an inverse relationship in animals;
that is, hypoactivity of the cortical dopamine system
propagates subcortical dopamine hyperactivity (Pycock
et al. 1980; Deutch et al. 1990; Grace 1991; Deutch 1992;
Roberts et al. 1994). Although no changes in basal, rest-
ing dopamine utilization in the nucleus accumbens
were noted after subchronic treatment with PCP
(Jentsch et al. 1997b,c), we have now found that the me-
solimbic dopamine pathway has increased responsivity
to haloperidol, d-amphetamine, or mild stress (Jentsch
et al. 1998c). Because the dopamine innervation of the
striatal complex also seems to be involved in cognitive
functioning (Taylor et al. 1990ab; Schneider and
Kovelowski 1990), a dysregulation of the subcortical
dopamine system by subchronic PCP exposure might
also be related to impaired cognitive function. In fact,
Roberts et al. (1994) have previously hypothesized that
enhanced attentional set shifting performance after
6-hydroxydopamine lesions of the prefrontal cortex is
mediated by subcortical dopaminergic hyperactivity. It
is noteworthy in this regard that subcortical dopamin-
ergic function shows the opposite pattern of response to
long-term PCP as compared to cortical regions.

Subcortical dopaminergic hyperactivity has also
been suggested in schizophrenia (see Davis et al. 1991;
Grace 1991; Deutch 1992). Recently, support for this hy-
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pothesis has come from the demonstration that admin-
istration of d-amphetamine results in an augmented
“release” of dopamine within the striatal complex of
schizophrenic patients relative to controls (Laruelle et
al. 1996; Breier et al. 1997b). These findings are consis-
tent with the original “dopamine hyperactivity” hy-
pothesis of schizophrenia (Carlsson and Lindqvist 1963;
Creese et al. 1976), and, taken with our findings of corti-
cal dopaminergic hypoactivity, are consistent with sev-
eral “revised” dopamine hypotheses of schizophrenia
(Carlsson 1988; Davis et al. 1991; Knable and Wein-
berger 1997). Thus, the chronic PCP model may repre-
sent a functional, drug-induced embodiment of the cor-
tical-subcortical dopamine interaction hypothesis of
schizophrenia (Robbins, 1990; Grace 1991; Deutch 1992).

Serotonin and Norepinephrine Systems

Serotonin and norepinephrine dysfunction have also
been implicated in schizophrenia (Meltzer 1995; Breier
et al. 1998), and norepinephrine, as does dopamine,
seems to modulate frontal cortical function (Arnsten
and Goldman-Rakic 1985; Arnsten and Jentsch 1997);
whereas, little is known about serotonergic effects on
prefrontal cortical cognition. Thus, it is perhaps worth
restating that no changes in norepinephrine or seroto-
nin metabolism were noted in monkeys or rats, respec-
tively, after long-term PCP treatment (Jentsch et al
1997b,c). As previously stated, this further implicates a
selective change in neurotransmission in the reduced
dopamine metabolism after repeated PCP exposures. In
contrast to the effects of subchronic exposure, acute ad-
ministration of PCP clearly augments noradrenergic
and serotonergic transmission (Deutch et al. 1987; Jentsch
et al. 1997a; Martin et al. 1998). Dysfunction within these
systems, then, may be linked to the aberrant behavior of
humans and animals acutely exposed to PCP or ketamine.

Glutamatergic and GABAergic Dysfunction

Alterations in glutamatergic and GABAergic function
within prefrontal cortex in schizophrenia have been
proposed by a number of researchers (Benes et al. 1991;
Akbarian et al. 1995; Selemon et al. 1995; Lewis and
Anderson 1995; Bartha et al. 1997; Tamminga 1998). Be-
cause these transmitters constitute the “currency” of
cortico—cortical circuitry, dysfunction within these sys-
tems should result in significantly impaired function of
affected cortical regions.

The PCP-ketamine model of schizophrenia, coupled
with other findings, became the hallmark of a “hypo-
glutamatergic” hypothesis of schizophrenia (Javitt and
Zukin 1991; Bunney et al. 1994; Tamminga 1998). These
ideas are supported by the finding that schizophrenic
patients had lower cerebrospinal fluid glutamate con-
centrations than controls (Kim et al. 1980); however,
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this finding remains controversial (e.g., Perry, 1982
failed to find such an effect). Furthermore, glutamate
receptors have been reported to be increased in schizo-
phrenia (an effect presumably secondary to reduced
glutamate transmission; Toru et al. 1994).

Although acute PCP or ketamine administration
may be associated with blockade (and net hypoactivity)
of the NMDA receptor, the comprehensive effects of
these drugs on cortical circuitry are complicated by the
finding that acute administration of ketamine or PCP
dramatically increases cortical glutamate (and dopamine)
efflux (Moghaddam et al. 1997), possibly leading to hy-
peractivation of non-NMDA glutamate receptors; this
hyperactivation of glutamatergic transmission at non-
NMDA receptors is a component of Olney and Farber’s
(1995) “NMDA receptor hypofunction” hypothesis of
PCP-induced psychosis. This could also explain the
seemingly paradoxical finding that acute ingestion of
high doses of PCP, although reducing NMDA-associ-
ated transmission, can be proconvulsant (Gorelick and
Balster 1994).

Indeed, Moghaddam and colleagues (Moghaddam
et al. 1997) have argued that the increase in cortical
glutamate efflux after acute NMDA antagonist adminis-
tration (a net potentiation of transmission at non-NMDA
glutamate receptors) produces the increase in dopamine
release since intra-cortical administration of an AMPA
receptor antagonist blocked the ketamine-induced in-
crease in cortical dopamine release. This is complemen-
tary to the finding that injection of the same AMPA antag-
onist into the cell body regions of the dopamine neurons
likewise attenuates PCP-induced biochemical and be-
havioral abnormalities (Mathe et al. 1998). Thus, increased
glutamatergic transmission via non-NMDA /glutamate
receptors has been hypothesized to underlie a portion
of the PCP-induced behavioral and neurochemical dys-
functions. This concept is not, however, supported by a
recent study by Moghaddam and Adams (1998) in which
systemic administration of a group II metabotropic
glutamate receptor agonist was shown to prevent the
PCP-induced augmentation in cortical glutamate release
without blocking the increase in cortical dopamine ef-
flux. Moreover, taken together with the result that
dopamine receptor antagonism alone ameliorates PCP-
induced cognitive dysfunction (Verma and Moghaddam
1996), it appears that cortical glutamate release after
NMDA antagonist administration may not be necessary
or sufficient to produce altered prefrontal cortical
dopamine efflux and associated cognitive deficits.

Further evidence for PCP effects on NMDA and non-
NMDA glutamatergic systems comes from the elegant
studies of Tamminga and colleagues This group has
shown that acute administration of PCP results in
biphasic changes in brain glucose metabolism and
glutamate receptor density. Studies of the uptake of
2-deoxyglucose in the brains of PCP-treated rats have
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revealed a short-lived (on the order of several hours) in-
crease in forebrain metabolic activity, followed by a
longer-lasting reduction in metabolism, which lasts
about 2 days (Gao et al., 1993). In addition, NMDA re-
ceptor binding in the hippocampus is transiently de-
creased (at 3 h) and subsequently increased (for approx-
imately 2 days) after single-dose PCP administration
(Gao and Tamminga 1996). Interestingly, the transient
metabolic and glutamatergic effects of PCP are most
closely temporally associated with symptom produc-
tion in ketamine-treated schizophrenic subjects (Lahti
et al. 1994) and are consistent with increased limbic
blood flow in patients (Lahti et al. 1995). Of course, it is
the early effects that are most closely linked with the
ketamine-induced psychosis and cognitive impair-
ments, because these effects are largely short-lived (on
the order of hours; Krystal et al. 1994).

Schizophrenia also seems to involve a component of
GABAergic dysfunction. Morphometric studies have
found abnormalities in local circuit neurons within the
schizophrenic cingulate cortex (Benes et al. 1991), and
this alteration may actually represent increased cell
packing density in the absence of changes in GABA
neuron number (indicative of reduced neuropil; Selemon
et al. 1995). Furthermore, schizophrenic prefrontal cor-
tex may show reduced levels of GADy;,, the enzyme re-
sponsible for GABA synthesis (Akbarian et al. 1995)
and altered axonal terminals of GABAergic chandelier
cells (Woo et al. 1998). These data strongly suggest that
dysfunction of local circuit neurons, which utilize
GABA as a transmitter, is a component of schizophrenic
pathophysiology.

The acute PCP/ketamine model of schizophrenia
may also incorporate GABAergic dysfunction. In a slice
preparation of rat hippocampal CAl neurons, it has
been shown that MK-801 preferentially reduces alvear
stimulation-induced long-term potentiation in local-cir-
cuit neurons relative to pyramidal cells (Grunze et al
1994), suggesting that the NMDA receptor antagonists
preferentially reduce GABAergic transmission. This, in-
deed, seems to be the case, because, in prefrontal cortex,
PCP increases glutamate release (Moghaddam et al.
1997); whereas, profoundly reducing GABA release
(Yonezawa et al. 1998). These findings concur with the
hypothesis that NMDA receptors primarily regulate the
function of local circuit, GABAergic neurons (Olney
and Farber 1995).

As previously discussed, the effects of long-term
PCP treatment may represent a superior model of
schizophrenic frontal lobe dysfunction. Therefore, it is
important to understand changes in glutamatergic and
GABAergic activity in animals repeatedly treated with
PCP. Although little is known about this subject, pre-
liminary evidence suggests that both glutamatergic and
GABAergic systems may be dysfunctional in animals
subchronically exposed to PCP in a pattern roughly
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analogous to schizophrenia. In recent studies, Wang
and colleagues have recorded from pyramidal cells in
the prefrontal cortices of rats that had been subchroni-
cally treated with PCP, and this group has found height-
ened depolarization of pyramidal neurons after the ap-
plication of exogenous NMDA in the drug-treated rats
relative to controls (Arvanov and Wang 1998). One in-
terpretation of these data is that prolonged reduction in
glutamatergic transmission in prefrontal cortex of drug-
treated rats is associated with an upregulation of
NMDA receptors, and thus, the response to exogenous
NMDA application is amplified. To confirm this hy-
pothesis, it would be essential to monitor directly extra-
cellular glutamate levels in vivo and to measure the ex-
pression of the subunits of the NMDA receptor after
long-term PCP treatment. Increased, expression of GluR1
(a subunit of the AMPA receptor) and NMDARI have
been shown in rat prefrontal cortex after repeated expo-
sures to (but not acute administration of) PCP (Tomita
et al. 1995; Wang et al. 1998) it is also notable that no sig-
nificant difference in AMPA receptor subunit mRNA
levels were observed in either cortical or striatal regions
of elderly schizophrenic patients (Healy et al. 1998);
whereas, a significant increase in NMDAR1 and NMDAR2A
sununit mRNAs were measured in prefrontal cortex of
the same subjects (Meador-Woodruff et al. 1997).

As noted above, GABA interneuron dysfunction has
been implicated in schizophrenia. Two main pieces of
evidence suggest the same in a chronic NMDA receptor
antagonist model. First, reduced levels of GADy;,, the
enzyme responsible for GABA synthesis, were found in
the mouse frontal cortex after subchronic MK-801 expo-
sure (Qin et al. 1994), as in schizophrenia. Likewise,
long-term exposure to MK-801 has been reported to re-
duce local circuit inhibition in the CA1 fields endur-
ingly of the rat hippocampus (Grunze et al. 1997). It re-
mains to be seen whether morphometric changes in
local circuit neurons akin to those observed in the
brains of schizophrenic patients are also observed after
subchronic PCP exposure.

Cholinergic Dysfunction

Another critical neuromodulatory influence on cogni-
tive function is exerted by the ascending acetylcholin-
ergic innervation of the forebrain. Moreover, a hyper-
cholinergic hypothesis of the negative symptoms of
schizophrenia has been promoted (Tandon and Greden
1989). Acute administration of PCP to rats seems to in-
crease acetylcholinergic transmission profoundly (as re-
vealed by a hypercholinergic mechanism in the neuro-
toxic effects of PCP, Olney et al. 1991). In addition,
single-dose administration has been observed to in-
crease cortical acetylcholine turnover (Murray and
Cheney 1981) and release in the rat (Giovannini et al.
1994; Hutson and Hogg 1996; Dazzi et al. 1998).
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Little is known about the effects of chronic adminis-
tration of PCP on cholinergic systems. Hsu et al. (1980)
showed that an acute administration of PCP increased
the activity of the cholinergic synthetic and catabolic
enzymes, choline acetyl transferase, and acetylcho-
linesterase, respectively, and that chronic administra-
tion of PCP tended to reduce the ability of a subsequent
PCP challenge to activate these enzymes to the same
degree as a single-dose PCP challenge. It is important to
note, however, that this weak tolerance to these effects
of PCP is not necessarily predictive of the functional ac-
tivity of cholinergic enzymes either under basal or envi-
ronmentally challenged (e.g., stress) conditions. Further
studies of cholinergic transmission after chronic PCP
are necessary to elucidate how cholinergic systems may
be dysregulated in this animal model.

Recent studies have shown that dopaminergic acti-
vation increases cortical acetylcholine release (Day and
Fibiger 1992, 1993), and recent studies have suggested
that this modulatory effect is mediated by dopamine re-
ceptors in the nucleus accumbens (Moore et al. 1998).
Because subcortical dopaminergic transmission seems
to be augmented after long-term PCP administration,
cholinergic hyperactivity in prefrontal cortex may be a
consequence of this pharmacological model. On-going
studies are directed at assessing this hypothesis.

NEUROANATOMY
Neurotoxicity of NMDA Receptor Antagonists

The elegant work of Olney and colleagues (see Olney
and Farber 1995 for review) has focused on the neuro-
toxic effects of “NMDA receptor hypofunction” and the
potential implications of this phenomenon for schizo-
phrenia. This group originally reported the critical find-
ing that exposure to noncompetitive NMDA receptor
antagonists transiently injured neurons within the ret-
rosplenial cortex of the rat, as revealed by cytoplasmic
vacuolization (Olney et al. 1989). In a recent study,
Corso et al. (1997) showed that this damage is largely
reversible; only after administration of extremely high
doses (50 mg/kg) of PCP, does irreversible cell death
(demonstrated by agyrophilia) occur. In addition, even
after high-dose administration, damage, in most cases,
is largely limited to such limbic cortical regions as the
retrosplenial, piriform, entorhinal, insular, amygdalar,
and hippocampal cortices (Corso et al. 1997). Neverthe-
less, the transient damage within limbic cortex regions
may be associated with the acute neurochemical changes
induced by single-dose PCP administration.

At least a component of the acute PCP-induced neu-
rotoxicity may be mediated by hyperactivation of dopa-
minergic systems. For example, several studies have
demonstrated that dopamine receptor antagonists pre-
vent PCP-induced cellular damage (Farber et al. 1993,
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1996). In addition, the neurotoxicity is prevented by ad-
ministration of a-2 noradrenergic agonists (Farber et al.
1995), which have been shown to block the PCP-induced
increases in forebrain dopamine transmission (Jentsch
et al. 1998b). These data suggest that hyperactivation of
dopamine transmission may participate in the pathway
from single-dose PCP administration to neuronal damage.

Cellular death is more frequently a consequence of
repeated exposure to NMDA receptor antagonists. Elli-
son and colleagues (1993, 1994) have shown that chronic
administration of high doses (15 mg/kg) of PCP (by
means of osmotic minipumps) induced a pattern of
neurotoxicity in limbic brain regions similar to those
damaged by high-dose, acute PCP administration (OI-
ney et al. 1989; Corso et al. 1997). Because persistent
neurotoxicity and spatial learning deficits have been
shown in mice treated with a single-, high-dose of
MK801 (Wozniak et al. 1996), it is possible that PCP-
induced neurotoxicity is a neural substrate of cognitive
dysfunction in this putative animal model of psychosis.

ELECTROPHYSIOLOGY

PCP-Induced Changes in Cortical Gating of
Accumbal Neurons

The groundbreaking work of Grace and colleagues has
led to the development of a hypothetical circuit by
which hippocampal and amygdalar efferents can mod-
ulate or “gate” prefrontal cortical input to nucleus ac-
cumbens neurons. Briefly, stimulation of the hippocam-
pus or amygdala significantly facilitates the ability of
prefrontal stimulation to result in spiking in accumbal
neurons (O’Donnell and Grace 1995; Moore and Grace
1996). Moreover, Moore and Grace (1997) have found
that the gating of prefrontal cortical input to accumbens
neurons by temporal cortex is significantly reduced,
and PCP-induced behaviors are augmented, in a neu-
rodevelopmental model of schizophrenia (prenatal ex-
posure to the mitotoxin methylazoxymethanol acetate).
This modulation of frontal cortical afferents to the nu-
cleus accumbens may have relevance for dopaminergic
and PCP models of schizophrenia, because dopamine
receptor agonists and acute PCP administration both at-
tenuate the temporal cortical gating of prefrontal inputs
to the nucleus accumbens (O’Donnell and Grace 1996;
Moore and Grace 1996; Grace et al. 1998). This effect of
PCP is consistent with mesolimbic dopaminergic acti-
vation after acute administration; however, it is not
known, at present, how chronic PCP treatment would
affect this system. We have demonstrated that hyper-
responsivity of the dopaminergic innervation of the nu-
cleus accumbens is a consequence of long-term PCP ex-
posure (Jentsch et al. 1998c); thus, at this level, acute
and chronic administration may induce somewhat sim-
ilar effects.
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SUMMARY

Several neurochemical and neuroanatomical substrates
for altered behavior in PCP-treated animals have been
offered. It is unclear, comprehensively, how the activa-
tion versus inhibition of dopamine systems induced by
acute versus chronic exposure of PCP, respectively, will
be incorporated into a final pathophysiological hypoth-
esis of schizophrenia. Nevertheless, it is important to
note that PCP can not be argued to support a single
“transmitter hypothesis” of schizophrenia. It is perhaps
more informative to investigate how individual behav-
ioral alterations may be subserved by particular neu-
rotransmitter dysfunctions.

PCP MODELS OF SCHIZOPHRENIA AND
ANTIPSYCHOTIC DRUGS

The effects of neuroleptic drugs on PCP-induced behav-
ioral and biological effects in humans and animals have
been examined with reports of varying results. The
modulation of the PCP-induced alterations in dopa-
mine transmission by putative antipsychotic drugs may
also prove to be relevant for predicting cognitive re-
sponse to therapeutic drugs.

Response of PCP Effects to Antipsychotic Drugs

The effects of antipsychotic drugs on the behavioral and
neurobiological consequences of PCP administration in
animals and humans have been studied in the hope that
this model system would provide predictive informa-
tion about the efficacy of novel antipsychotic drugs for
use in the treatment of schizophrenia and other psy-
chotic disorders. Several biological and behavioral indi-
ces predict differential clinical response to typical ver-
sus atypical antipsychotic drugs; whereas, others fail to
produce similar results.

First, it is important to reflect on the response of
NMDA receptor antagonist-induced psychosis in hu-
mans to antipsychotic drugs. Several groups have re-
ported moderate effects after administration of typical
antipsychotic drugs to PCP-abusing individuals with
psychotic symptoms (Castellani et al. 1982; Giannini et
al. 1984); whereas, other studies have failed to find such
results (Rainey and Crowder 1975; Allen and Young
1978; Bowers et al. 1990). Recently, several groups have
examined neuroleptic effects on ketamine-precipitated
psychotic episodes in schizophrenic subjects; Lahti et al.
(1994) reported that haloperidol was ineffective at atten-
uating NMDA antagonist-induced symptoms; whereas,
Malhotra et al. (1997b) demonstrated that clozapine sig-
nificantly blunted ketamine-precipitated psychoses. In
view of the limited, but positive, data, it is clear that
further studies of the response of PCP psychosis to cloz-
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apine and other atypical antipsychotic drugs are war-
ranted.

Animal studies also seem to suggest that PCP-induced
behaviors are preferentially responsive to clozapine.
Initial studies were directed at investigating the ability
of typical and atypical antipsychotic drugs to affect
acute PCP-induced hyperlocomotion, social impair-
ments, and prepulse inhibition deficits in rats. Whereas
haloperidol was found to be more effective at blocking
amphetamine-induced hyperlocomotion than cloza-
pine, the converse was true for PCP (clozapine more ef-
fectively prevented PCP-induced hyperlocomotion than
haloperidol, Freed et al. 1980; Maurel-Remy et al. 1995).
Furthermore, clozapine has been reported to be more
effective than haloperidol at restoring social behavior
after PCP administration (Steinpreis et al. 1994; Sams-
Dodd 1996). Finally, although haloperidol clearly failed
to restore PCP-induced sensorimotor gating deficits in
rats (Swerdlow et al. 1996), clozapine has been reported
to prevent the same (Bakshi et al. 1994). Likewise, novel
antipsychotic agents, such as olanzapine and Seroquel,
were observed to present PCP-induced prepulse inhibi-
tion deficits (Bakshi and Geyer 1995; Swerdlow et al.
1996). Both clozapine and haloperidol have been re-
ported to prevent stress-induced cognitive dysfunction
in monkeys (Murphy et al. 1996a), an effect mediated
by heightened prefrontal cortical dopamine transmis-
sion (Murphy et al. 1996b). Finally, we have reported
that clozapine partially alleviated cognitive deficits in
monkeys repeatedly treated with PCP (Jentsch et al.
1997c). In contrast, we have observed that haloperidol
actually exacerbates deficits in subchronic PCP-treated
monkeys (Jentsch et al., 1998g). These data, as a group,
concur with findings in humans that clozapine is mark-
edly more effective than haloperidol at alleviating ket-
amine-induced behavioral deficits.

Clozapine and haloperidol may exert differential or
similar effects on PCP-induced neurobiological changes,
depending upon the phenomenon being studied. Both
clozapine and haloperidol, as well as novel antipsy-
chotic drugs, prevent PCP-induced neurotoxicity, al-
though clozapine has been reported to be more effective
(Farber et al. 1993, 1996). In addition, the facilitation of
striatal neuron firing induced by PCP in awake, behav-
ing animals is reversed by either clozapine or haloperi-
dol (White et al. 1995). Finally, clozapine, but not halo-
peridol or raclopride, has been reported to alleviate the
PCP-induced blockade of responses of pyramidal neu-
rons in rat prefrontal cortex to exogenously applied
NMDA (Wang and Liang 1998).

It is informative to consider briefly the neurochemi-
cal effects of neuroleptic drugs in the context of PCP
models of schizophrenia. Both haloperidol and cloza-
pine block postsynaptic dopamine receptors at thera-
peutic doses. Haloperidol is a broad-spectrum dopamine
receptor antagonist, affecting D,-like (and to a lesser ex-
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tent) D;-like receptors; clozapine shows slightly higher
affinity for D,-receptors, with smaller effects on D;, D,
and D, subtypes (Seeman 1992; Seeman and Van Tol
1994; Arnt and Skarsfeldt 1998). Both clozapine and ha-
loperidol, given acutely, increase extracellular levels of
dopamine in the prefrontal cortex and striatal complex.
Acute clozapine treatment preferentially increased pre-
frontal dopamine release in the rat; whereas, haloperi-
dol preferentially increased striatal dopamine efflux
(Moghaddam and Bunney 1990; Pehek et al. 1993;
Youngren et al. 1994), and our group has recently ob-
served a similar effect in the monkey (Youngren et al.
1998). Thus, clozapine (at doses that do not potently
block Dj-like receptors) may actually potentiate trans-
mission at this receptor subtype. Acute administration
of atypical neuroleptics has also been observed to po-
tentiate serotonin and noradrenergic transmission (Breier
et al. 1994; Hertel et al. 1997), alterations that may con-
tribute to their beneficial effects.

The neurochemical consequences of clozapine and
haloperidol administration may have relevance to their
cognitive effects in monkeys repeatedly exposed to
PCP. We have argued for a relationship between dopa-
minergic hypofunction in prefrontal cortex and the cog-
nitive deficits in PCP-treated monkeys (Jentsch et al.
1997c, 1998e). Because clozapine may have a net dopa-
mine D, agonist effect in rats (Salmi and Ahlenius
1996), the beneficial effects of clozapine in this para-
digm may be mediated by a relative augmentation of
cortical dopamine transmission. On the other hand, ha-
loperidol largely blocks dopamine receptors and only
mildly stimulates cortical dopamine release, and this
net reduction in dopamine transmission in prefrontal
cortex may subserve its inability to reverse the PCP-
induced cognitive deficits. Likewise, an augmentation
of cortical dopamine transmission may be associated
with the ability of clozapine to alleviate schizophrenic
negative symptomatology (Kane et al. 1988), which may
result, in part, from cortical dopaminergic hypofunc-
tion (Davis et al. 1991; Knable and Weinberger 1997).
Furthermore, the conflicting findings regarding the
cognitive effects of clozapine in schizophrenic patients
may be caused by the use of high, therapeutic doses of
clozapine, which ultimately occupy a significant percent-
age of dopamine D;-receptors (the primary dopamine-
receptor subtype in prefrontal cortex; Lidow and Gold-
man-Rakic 1994), rendering the increased synaptic
dopamine without a postsynaptic target.

LONG-TERM PCP EXPOSURE: FURTHER
IMPLICATIONS FOR SCHIZOPHRENIA

Studies of the pathophysiology implicated by PCP
models of schizophrenia, especially in nonhuman pri-
mates, may lend considerable understanding to prob-
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lems related to dopaminergic and cognitive dysfunc-
tion in human subjects. Indeed, consideration of the
nature of dopaminergic perturbation in the PCP model
of schizophrenia, in particular, should provide insights
regarding novel treatments for symptom subtypes of
this disorder, although selective pharmacological mod-
ulation of a cortical hypofunction and subcortical hyper-
function may pose a significant challenge. Nevertheless,
information regarding: (1) the selective pharmacological
regulation of the heterogeneous, ascending dopamine
systems (Deutch and Roth 1990); (2) the distinct distri-
bution of dopamine receptor subtypes in forebrain (e.g.,
Bergson et al. 1995; Mrzljak et al. 1996); and (3) the func-
tionally distinct properties of these receptor subtypes
(e.g., on cognition; Goldman-Rakic et al. 1996) should
aid in construction of new strategies.

Application of knowledge regarding the unique sen-
sitivity of the mesoprefrontal dopamine projection to
stress and several neurotransmitter influences, such as
norepinephrine, acetylcholine, serotonin, and substance-
P, (Deutch and Roth 1990) should allow for novel strate-
gies for alleviating cortical dopaminergic hypoactivity.
For instance, several recent studies have focused on the
ability of nicotine, which activates nicotinic acetylcho-
line receptors and increases D; dopaminergic transmis-
sion (Nisell et al. 1996, 1997), to alleviate schizophrenic
symptomatology (Goff et al. 1992; Adler et al. 1993;
Ziedonis and George 1997), including deficits presum-
ably mediated by cortical dysfunction (Olincy et al.
1998). Another receptor that seems selectively to regu-
late the mesocortical dopamine projection is the seroto-
nin 5-HT2a receptor; M100,907; a selective antagonist of
this receptor preferentially increases prefrontal cortical
dopamine release (Schmidt and Fadayel 1995), and its
clinical antipsychotic efficacy is currently being investi-
gated. Furthermore, clozapine has high affinity for this
receptor (Meltzer 1995; Ashby and Wang 1996; Arnt
and Skarsfeldt 1998). Drugs such as these, which aug-
ment cortical dopamine transmission, may alleviate
some components of frontal cortical-associated deficits
in the PCP model. Theoretically, if cortical dopaminer-
gic dysfunction propagates subcortical dopamine dys-
function, both phenomenon could be alleviated after
cortical dopaminergic augmentation; however, this is
unlikely, because striatal dopamine release is under the
influence of other brain regions likely dysfunctional in
schizophrenia (e.g., the hippocampus, Lipska et al.
1993). Nevertheless, the PCP model may provide a use-
ful experimental paradigm for testing drugs that selec-
tively affect cortical dopamine transmission.

Likewise, selective modulation of subcortical dopa-
mine systems may be amenable to investigation in ani-
mals that have been repeatedly treated with PCP. Regu-
lation of mesostriatal dopaminergic transmission at the
cell body or terminal level may allow for such specific
effects. For example, substance-K receptors have been
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argued to affect subcortical dopamine systems more
potently (Deutch and Roth 1990). In addition, dopam-
ine D;-receptors are highly enriched in the ventral stria-
tum (Diaz et al. 1995) and may possess autoreceptor-
like functions (Aretha et al. 1995); thus, low doses of a
dopamine D;-receptor agonist may preferentially educe
mesostriatal dopamine overflow. Indeed, Tamminga
and colleagues (1978, 1986; Lahti et al. 1998) have
shown that schizophrenic symptomatology is reduced
after administration of low (“autoreceptor-preferring”)
doses of apomorphine or preclamol and have hypothe-
sized that dopamine autoreceptor-preferring agonists
may be effective treatments for the positive symptoms
of schizophrenia. Hypotheses such as these may be
tested, at the preclinical level, in subjects that have un-
dergone long-term PCP treatment.

CONCLUSIONS

The hypoglutamatergic and hyperdopaminergic hypothe-
ses of schizophrenia have been, in principle, difficult to
reconcile. We have argued that dysfunction of multiple
neurotransmitter systems, beginning with NMDA re-
ceptor antagonism, is likely responsible for the behav-
ioral pathologies exhibited by subjects acutely or re-
peatedly treated with PCP. The reviews of Javitt and
Zukin (1991) and O’Donnell and Grace (1998) reflect
this hypothesis as they argue for dysfunction within
multiple, interactive brain systems after PCP adminis-
tration. It seems plausible that the heterogeneous sub-
sets of schizophrenic symptoms result from these multi-
ple neural pathologies. Any hypotheses of schizophrenia
based upon dysfunction within single transmitter sys-
tems must be considered limited. Instead, an integra-
tive, multisystem hypothesis of schizophrenia is war-
ranted, and, indeed, is supported by this pharmacological
model of the disorder. Further investigations of the
pathophysiology of PCP-treated subjects (especially af-
ter long-term exposure) should provide unparalleled
insights regarding the neurobiological basis of both
normal and schizophrenic functioning, and, ultimately,
provide a context for the design of selective treatments
for affected forebrain circuits. Pharmacological modula-
tion of the complex neurochemical dysfunctions of
schizophrenia pose the ultimate therapeutic challenge,
but the characterization of models of the disorder, such
as that induced by long-term PCP administration, may be
a fundamental step toward solving this intriguing riddle.
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