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A transformed fish cell line expressing a green fluorescent
protein-luciferase fusion gene responding to cellular stress
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Abstract

We obtained a stable transformed fish (EPC) cell line containing a reporter gene under the control of the tilapia HSP70 promoter.
Expression of the reporter gene, coding for a green fluorescent protein (GFP)-luciferase fusion protein, was assessed by measuring
the luciferase enzymatic activity by luminometry and the GFP expression by fluorescence microscopy and flow cytometry. The
clone was characterized for its capacity to respond to heat shock treatment. The results show high induction after 1 h at 37 °C of
treatment, up to 500-fold. In addition, its convenience to detect a large range of cellular stressors was evaluated. We observed high
induction when Cd?>™", Zn?>", Hg?* or Cu?" was added, but not Pb>*. In addition, activation of the reporter gene was observed in
the presence of other compounds such as acetyl chloride, tetrachlorophenol, chloroacetamide and sodium arsenite. In conclusion,
this cell line can be used as a rapid, cheap and easy biological test to determine cellular stress induced by environmental pollutants,
alone or in conjunction with other, more specific assays. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Aquatic organisms are exposed to a wide range of
environmental compounds that very often are able to
cause physiological or cellular stress. Individual cells
then undergo many changes, among which the synthesis
of proteins involved in the protection of the cell are
probably the most studied. In addition to more specifi-
cally induced proteins such as cytochromes P450 (e.g.
by dioxins) or metallothioneins (metal ions), a more
general protection system is represented by the heat
shock proteins (HSP). First identified as a set of pro-
teins induced after heat shock in Drosophila (Ritossa,
1962), HSPs have since been found universally from
bacteria to human.

The most important and most studied HSPs form the
HSP70 family. HSP70s have been included in the large
family of chaperones; they play essential roles in protein
metabolism under normal and stress conditions, includ-
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regulatory regions; HSF, heat shock factors; HSP, heat shock pro-
teins; PBS, phosphate buffered saline.

* Corresponding author. Tel.: +32-4-366-4437; fax: +32-4-366-
2968.

E-mail address: m.muller@ulg.ac.be (M. Muller).

! Present address: Laboratorio de Biologia Molecular y Celular,
Universidad Andres Bello, Av. Republica 237, Santiago de Chile, Chile.

ing protein translocation, de novo protein folding and
protection of unfolded proteins. While their binding to
an unfolded polypeptide chain results in stabilization of
the unfolded state, their controlled release may allow
progression along the folding pathway (Hartl, 1996).
Thus, HSP70s are thought to protect the cell from pro-
teotoxic stress by preventing the irreversible loss of vital
proteins and by facilitating their subsequent regenera-
tion. The expression of HSP70 proteins is regulated by a
variety of toxic compounds (Morimoto, 1998), accord-
ing to its function most often at sublethal levels, and
their induction following exposure to environmental
stressors has been increasingly studied in recent years.
The methods used in these studies range from direct
detection of the protein in extracts from cells or whole
organisms by SDS-PAGE-gel electrophoresis (Misra et
al., 1989), specific detection of HSP70 by Western blot-
ting (Dunlap and Matsumura, 1997, De Wachter et al.,
1998) or detection of the induced HSP70 mRNA levels
by RT-PCR (Steiner et al., 1998). Reporter gene assays
using mammalian cells containing an expression con-
struct based on a HSP70 promoter have also been
described (Todd et al., 1995; Vincent et al., 1997; Ait-
Alssa et al., 2000).

The expression of HSP70 is regulated by environ-
mental and physiological stress, this regulation occurs
mainly at the transcriptional level. The promoter region
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of hsp70 genes contains specific heat shock regulatory
regions (HSEs) that bind the trans-acting heat shock
factors (HSF). HSFs are required for the heat shock
response, they are normally present in the cytoplasm in
a monomeric form and, upon heat stress, form trimers
and migrate to the nucleus to bind HSEs with high affi-
nity (Morimoto, 1993, 1998; Rabindran et al., 1993;
Sistonen et al., 1994). Recently, we reported the isola-
tion and characterization of the tilapia (Oreochromis
mossambicus) HSP70 gene including about 1 kb of reg-
ulatory sequences (Molina et al., 2000). We showed that
the tilapia HSP70 promoter is able to confer ubiquitous
and heat shock controlled transient expression to a
reporter gene both in fish cells and in microinjected
zebrafish embryos. In this study, we generated a fish cell
line containing a reporter gene coding for a fusion pro-
tein between the luciferase and the green fluorescent
protein (GFP). Expression of this protein can be detec-
ted both by measuring the luciferase activity in cell
extracts and in living cells by the spontaneous fluores-
cence of the GFP. We characterize the heat shock
response of this cell line and we evaluate the induction
by a collection of environmental stressors.

2. Materials and methods
2.1. Plasmid constructs

The pOGL reporter plasmid, containing a cDNA
coding for a fusion protein of GFP and the luciferase
was previously described (Day et al., 1998). The wild-
type promoter was excised from the tiHSP70-1.0LacZ
(Molina et al., 2000) by Notl and inserted into the
pOGL to obtain the tiHSP70-1.0GL construct.

2.2. Cell culture

EPC cells (Epithelioma Papulosum Cyprini), derived
from carp epidermal herpes virus-induced hyperplasia
lesions (Fijan et al., 1983), were grown in Glasgow
MEM (BHK-21) medium supplemented with 10% fetal
bovine serum and 1% penicillin—streptomycin at 24 °C
in 5% CO,.

2.3. Stable transformed cell line

Vectors tiHSP70-1.0GL and pcDNA6/V5-HisB (Invi-
trogen™, Carlsbad, US) were co-transfected into EPC
cells by using the lipofectAMINE PLUS reagent
(GIBCO-BRL, Gaithersburg, MD, US) according to
the manufacturer’s instructions. 24 h after transfection,
the cells were cloned by limiting dilution into a 75 cm?
plate in the presence of 5 ppg/ml Blasticidin (Invitro-
gen). After 2 weeks, the cells were heat shocked and
green fluorescent colonies were selected and transferred

into a 24-well plate. After growing, clones were tested
for their efficiency to respond to heat shock.

Heat and chemical shocks were performed by seeding
the cells (8 x 103 cells/well in six-well and 10* cells/well in
96-well plates) in fresh medium. After 72 h, the various
chemicals were added to the medium for 12 h or a heat
shock was performed by exposing the plate previously
sealed with parafilm in a thermoregulated bath at 37 °C.
After the treatment, the cells were returned for 4 h at
24 °C for recovery. The cells were washed twice in
phosphate buffered saline (PBS) and resuspended in
lysis buffer (Brasier et al., 1989). The luciferase activity
was determined in a multilabel counter (Wallac Victor?
from Perkin-Elmer Life Sciences, Turku, Finland). The
luciferase activity in these assays was normalized to the
total cell number, as determined by protein concentra-
tion (Bradford assay, Biorad, Hercules, US) for experi-
ments performed in six-well plates, or DNA
concentration for 96-well plates using the Pico Green
dsDNA® Quantification reagent kit (Molecular Probes,
Eugene, OR, US) according to the supplier’s instruc-
tions. Control experiments had been performed to con-
firm that estimation of the cell number by measuring
total DNA amount correlated well with that based on
total protein amounts. A consistent decrease in the DNA
concentration of the total cell extracts after specific
treatments was indicative of cell death and was used as
an estimate of the toxicity of the treatment. Experiments
were performed in triplicates and repeated at least twice.

2.4. Flow cytometry

The cells were harvested by trypsinization, washed
and resuspended in PBS buffer for cytometric analysis.
Cytometric analysis was performed using an
EPICS®XL-MCL flow cytometer (Becton-Dickinson
Immunocytometry Systems, San Jose, CA, USA)
equipped with a water-cooled argon laser emitting at
488 nm. Analysis was performed using System™ Ver-
sion 1.0 software (Becton-Dickinson). Green fluores-
cence was measured using a 530+30 nm band pass
filter. Data were collected from 10,000 events for each
sample. Signal amplification was adjusted to normalize
the dot plot for analysis.

2.5. Fluorescence microscopy

For fluorescence detection, 10° cells were seeded on
two-chamber glass slides (LAB-TEK, Naperville, IL,
US) in culture medium. After 72 h at 24 °C, the slides
were incubated for 1 h at 37 °C and returned at 24 °C
for recovery. Four hours later, the GFPLuc fusion pro-
tein was visualized by using an Olympus BX60 micro-
scope equipped with a ColorView8 device camera and
analySIS® 3.0 imaging software (Soft Imaging System,
Miinster, Germany).
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3. Results
3.1. Generation of a stable reporter cell line

We showed previously that the plasmid construct
tiHSP70-1.0GL, containing the tilapia HSP70 promoter
driving a reporter gene coding for a fusion protein
between the GFP and the luciferase, was able to
mediate a strong heat shock response in transient
expression experiments (Molina et al., 2001). To
obtain a cell line carrying an easily detectable repor-
ter gene for environmental pollutants, we generated a
stable cell line transformed with the tiHSP70-1.0GL
construct. Taking advantage of the teleost origin of its
regulatory regions, we decided to use carp EPC cells
with this aim.

After transfection, the cells were left for 1 week on
selective medium and several isolated clones were tested
for their ability to respond to heat shock treatment
(data not shown). Based on the requirement for a
clearly detectable basal level activity and a high heat
shock response, one of them (EPCtiHSP70) was selected
for further characterization.

The EPCtiHSP70 cellular clone was submitted to a
heat shock at 37 °C for 1 h and the induced luciferase
expression was followed for 30 h. A 160-fold induction
was already observed after 2 h (Fig. 1A), which further
increased up to 400-fold after 4 and 6 h. Longer incu-
bation times resulted in a gradual decrease, probably
reflecting the degradation of the luciferase enzyme in the
cells. Consequently, expression was tested after 4 h in
the following experiments. The effect of various tem-
peratures on tiHSP70 promoter stimulation was also
tested (Fig. 1B). A clear signal was observed in EPC-
tiHSP70 cells only after 1 h at 32 °C and the strongest
response was obtained at 37 °C. Higher temperatures
resulted in a drastic decrease of the signal, due to
extensive cell death. No stimulation was obtained after
a cold shock at 4 °C.

When various time periods (15, 30, 60 and 120 min) of
the 37 °C heat shock were tested on these cells (Fig. 1C),
a gradual increase of the stimulation was observed up
to 1 h of treatment, while longer exposures did not
increase the signal. We also tested the effect of sub-
mitting the cell to a preceding cellular stress on
tiHSP70 promoter stimulation. The cells were pre-
shocked at 37 °C for 30 min, left for 48 h and then
heat shocked again for 30 min. The response of pre-
treated cells was significantly lower than without the
pretreatment. This phenomenon is known as heat shock
resistance.

Taken together, our data indicate that the EPC-
tiHSP70 cell line displays a very strong and easily
detectable heat shock response that presents several of
the previously described characteristics (Jaattela, 1999;
Samali et al., 1999; Molina et al., 2000).
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Fig. 1. Characterization of the EPCtiHSP70 cell line. (A) The cells
were seeded in six-well plates and exposed to heat shock treatment for
1 h at 30 °C and the luciferase activity in cell lysates was determined
after various periods of time, as indicated. The experiments were per-
formed in triplicates and repeated at least twice. The luciferase activity
was normalized to the total protein amounts and the fold induction
(mean=+S.D.) relative to untreated control cells in one representative
experiment is shown. (B) Luciferase expression was determined 4 h
after heat shock treatment for 1 h at different temperatures. (C) Luci-
ferase expression was measured 4 h after heat shock treatments per-
formed for different time periods. The effect of a 30-min heat shock
was also determined 48 h after a first 30-min heat shock had been
performed (right panel).



204 A. Molina et al. | Toxicology in Vitro 16 (2002) 201-207

3.2. Detection of the GFP

To further characterize the cell clone and to evaluate
different methods to detect the heat shock response,
control cells and treated cells were analyzed by fluores-
cence microscopy for the presence of active GFP pro-
tein (Plate 1). A strong green fluorescence was observed
in about half of the cells only after heat shock, indicat-
ing that the GFPLuc fusion protein is functional in
these cells.

GFP fluorescence of the cells was also monitored by
flow cytometry (Fig. 2). Control cells homogeneously
exhibited very low background fluorescence. After a 30
min heat shock, most of the cells (more than 90%) dis-
played a strongly increased signal; two different cell
populations, respectively with low and high fluorescence
were observed. Treatment for 1 h resulted in a further
shift of the cell population to a higher expression.

Control

3.3. Use of the reporter cell line to test environmental
pollutants

After characterizing the heat shock response of the
EPCtiHSP70 clone, we decided to test different envir-
onmental pollutants for their ability to activate the
expression of the GFPLuc reporter gene. To that pur-
pose, we changed the setup of the experiments to a 96-
well plate system, taking advantage of the high tran-
scriptional activity of the transgene in the EPCtiHSP70
clone. We first tested a well-known inducer of HSP
genes, sodium arsenite, which leads to a clear 200-fold
stimulation at 50 uM (Fig. 3A) and is detectable at a
concentration as low as 500 nMm (five-fold induction).
Higher concentrations (more than 250 pum) caused loss
of the signal due to cell death, as detectable from the
total DNA measurements (see also Discussion). Acetyl
chloride was detected at 500 um, gave a clear signal at

Heat shock 1h at 37°C

Plate 1. Detection of the GFPLuc protein by fluorescence microscopy. EPCtiHSP70 cells in control conditions (left) or after 1 h of heat shock
treatment (right) are shown. The cells were stained with DAPI (blue fluorescence) and the green fluorescence due to GFPluc expression was super-

imposed.
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Fig. 2. Quantification of the GFPluc fluorescence by flow cytometry. Control EPCtiHSP70 cells or cells treated for 30 or 60 min at 37 °C were
analyzed in a flow cytometer and the number of cells was plotted against the intensity of their fluorescence. The fluorescence scale is logarithmic.
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750 um and produced a 100-fold stimulation at 2 mm
(Fig. 3A).

We also tested various metal ions for their effects on
the HSP70 promoter (Fig. 3B). Mercury, zinc, copper
and cadmium salts were all able to induce the reporter
gene expression. The detectable concentrations and the
intensities of the signal were different (summarized in
Table 1). Very low levels of mercury ions (5 um) already
led to a clear induction, but the maximal signal obtained
at 75 pM was also very low, again due to cellular death.
In contrast, other ions such as lead, cobalt, lithium and
nickel failed to induce the expression of the reporter
gene. Several other organic or inorganic compounds
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Fig. 3. Response of EPCtiHSP70 cells after exposure to various
chemical stressors. The cells were seeded into 96-well plates, treated
for 12 h with various concentrations of the indicated compounds and
allowed to recover for 4 h. The luciferase activity in the cell lysates was
determined, normalized to total DNA content and the fold induction
relative to untreated cells was calculated. All experiments were per-
formed in quadruplicate (mean£S.D.).

were tested, again showing various induction levels and
sensitivities (Fig. 3C). Tetrachlorophenol, chloro-
acetamide and sodium metabisulfite caused low, but
detectable promoter stimulation, while trichlorophenol,
sodium dodecyl sulfate or sodium nitrite was ineffective
at the concentrations used.

4. Discussion

We present the utilization of a plasmid construct
containing the heat shock inducible HSP70 promoter
from tilapia controlling the transcription of the GFP-
Luc fusion protein. The presence of this protein can be
detected either by luminometry based on the luciferase
activity, or by detecting the fluorescence of the GFP.
This construct was used to generate a stable trans-
formed cell line from carp epithelial cells.

Characterization of the EPCtiHSP70 cell line revealed
a very strong stimulation of reporter gene expression
(up to 800-fold) after heat shock, the response was
highest after treatment for 1 h at 37 °C and the signal
decreased about 8 h after the end of the heat shock.
Protection of the cells by a preceding cellular stress,
probably due to the presence of residual heat shock
proteins in the cell (Jaattela, 1999; Samali et al., 1999),
was also observed on the integrated reporter gene. This
response behavior is similar to that observed in other
whole organisms (Krone and Heikkila, 1988; Misra et
al., 1989; Arai et al., 1994) or in transient expression
experiments (Vogel et al., 1997).

In addition to analyzing the increase of luciferase
activity in extracts from treated cells, the EPCtiHSP70
cell line also offers the possibility to observe the stimu-
lation of green fluorescence in the living cell. This very
rapid assay implies inspection of single cells, either by
fluorescence microscopy or flow cytometry. It is con-
ceivable to follow the response in the same cell during
the cell cycle or after repeated consecutive stress events.
Such a direct observation will possibly shed new light on
the mechanisms involved in stress response.

A collection of inorganic and organic toxics was tes-
ted for their ability to induce the heat shock response in
the EPCtiHSP70 cells. Known stimulators of HSP70
genes (Cd?*, Zn?", Hg?>", AsO;) were able to induce a
strong response, at different concentrations and with
various lowest detection levels (see Table 1). Other,
mainly organic compounds were less efficient and yiel-
ded a maximal 10-fold response. Notably, 2 mm 2,4,5-
trichlorophenol was not detected in our assay, although
a significant response has been reported with this com-
pound at 50 pum in other cell systems (Fischbach et al.,
1993, Ait-Aissa et al., 2000). Considering the strong
signals observed in EPC cells with other compounds,
this lack of sensitivity is probably due to a higher resis-
tance of these cells to specific compounds. Other cell
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Table 1

Summary of the luciferase signals and the mortality induced by various stressors®

Stressor I max (um) I min (u™m) LC (um) %
CdCl, 213+19 100 60+5 50 150 60
ZnCl, 203+£22 200 58+4 150 200 68
CuCl, 57+£12 300 542 150 - -
HgCl, 267 75 5+04 5 50 75
NaAsO; 196+29 50 44+0.9 0.5 100 27
Acetyl chloride 99+9 2000 3.24+0.3 500 500 42
2-Chloroacetamide 11+3 500 2.54+0.2 250 250 67
2,3,4,5-Tetrachlorophenol 10£0.8 750 2.340.2 250 - -
Sodium metabisulfite 14+1.4 2000 32+04 750 750 58
Sodium dodecyl sulfate - - - - 750 13
2,4,5-Trichlorophenol — — — - 750 47

Pb(NO3), - -
NaNO, - -
CoCl, _ _
NiCl, - -
LiCl - -

4 Various concentrations of the different compounds (stressors) were tested for luciferase induction and the amount of cell death was estimated by
measuring the DNA content of the cell lysates. Maximal induction (I max) and the minimal detected signal (I min) are indicated as well as the
concentrations at which they were observed (um). The lowest concentrations at which a decrease in DNA content was observed (LC) are given as
well as the fraction of surviving cells (%) at this concentration. (=) indicates that no signal or no mortality was observed for this compound in the

concentration range tested.

lines presenting a different pattern of stress response
must be envisaged in order to extend the spectrum of
compounds to be detected. Another aspect of cell-based
detection systems is the relation between the detected
signal and the cytotoxicity of the investigated com-
pound. In Table 1, the concentrations causing sig-
nificant cell death and the fraction of residual cells are
indicated for each chemical tested. When these con-
centrations (LC) are compared to those causing the
HSP response, basically two types of situations were
observed. First the agents causing very high HSP sti-
mulation (heat shock, Cd®>*; Zn?>"; Cu?*; NaAsO;) did
so at concentrations clearly below that causing sig-
nificant cell death, suggesting that they induce HSF
activation by a direct mechanism inside the cell. This
stimulation is probably triggered by intracellular pro-
tein aggregation due to exposure of hydrophobic resi-
dues upon heat shock or to thiol modification through
glutathione depletion upon oxidative stress (Freeman et
al., 1999). Cell death at higher concentrations probably
results from the incapacity of the cell to cope with the
corresponding levels of protein denaturation. Other
compounds caused a more moderate response at con-
centrations that were also cytotoxic. Particularly the
organic compounds 2-chloroacetamide and 2,3,4,5-
tetrachlorophenol caused significant cell death at the
concentrations inducing the highest signal, probably
explaining the low signals (10-fold) observed. This
observation is consistent with previous reports (Neu-
haus-Steinmetz and Rensing, 1997; Ait-Aissa et al.,
2000), which also revealed a high cytotoxicity of similar
compounds. Moreover, they found a close correlation
between the lipophilicity of the chemical and its cyto-

toxicity and proteotoxicity (the latter as revealed by
HSP stimulation). These results suggest that these com-
pounds, due to their chemical properties, cause cell
death by one particular mechanism (e.g. lipophilic
compounds could integrate into cellular membranes)
and stimulate the HSP response by a different mechan-
ism (e.g. by exposing the hydrophobic core of inter-
cellular proteins). Alternatively, the HSP70 promoter is
induced as a consequence of cell death or apoptosis. In
this respect, it is interesting to note that the small
GTPase Rac-1, implicated in actin cytoskeletal organi-
zation, growth factor-induced membrane ruffling, cell
proliferation and stress response, is also involved in the
activation of HSF by some, but not all HSP inducers
(Han et al., 2001).

In conclusion, we present a cell line that produces a
fluorescent signal and synthesizes luciferase in response
to various cellular stressors. In conjunction with other,
more specific assays, this or similar fish cell lines might
be useful to study the impact of environmental pollu-
tants on living cells or to evaluate the toxic potential of
complex mixtures that are typical for aquatic environ-
mental samples.
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