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Chiral Anomaly in Toroidal Carbon Nanotubes

K. Sasaki
Department of Physics, Tohoku University, Sendai 980-8578, Japan

It is pointed out that the chiral anomaly in 1+1 dimensions should be observed in toroidal carbon
nanotubes on a planar geometry with varying magnetic field. We show that the chiral anomaly is
closely connected with the persistent current in a one-dimensional metallic ring.

Recently carbon nanotubes(CNTs) [1] have attracted
much attention from various points of view. Espe-
cially their unique mechanical and electrical properties
have stimulated many people’s interest in the analysis of
CNTs [2, 3]. They have exceptional strength and stabil-
ity, and they exhibit either metallic or semiconducting
behavior depending on the diameter and helicity [4, 5].
Because of their small size, properties of CNTs should
be governed by the law of quantum mechanics. There-
fore it is quite important to understand the quantum
behavior of electrons on CNTs. The bulk electric prop-
erties of (single-wall)CNTs are relatively simple, but the
behavior of electrons at a metal-CNT junction is com-
plicated and its understanding is necessary for building
actual electrical devices. On the other hands, toroidal
carbon nanotubes (Fullerence ‘Crop Circles’ [6], hereafter
we use ‘torus’ or ‘nanotorus’ instead of ‘toroidal carbon
nanotube’ for simplicity) are clearly simple because of
their no-boundary shape and they would also exhibit ei-
ther metallic or semiconducting properties. Even in the
torus case, quite important effect: ‘chiral anomaly’ [7],
which is of essentially quantum nature, might occur.

Low energy excitations in CNTs at half filling move
along the tubule axis because the circumference degree
of freedom(an excitation in the compactified direction)
is frozen by a wide energy gap. Hence this system can
be described as a 1+1 dimensional system. Further-
more in the case of metallic CNTs, the system describing
small fluctuations around the Fermi point is equivalent to
two components “massless” fermions in 1+1 dimensions.
This situation can be modeled by the quantum field the-
ory of massless fermion which couples to the gauge field
through minimal coupling. This model realizes the chiral
anomaly phenomenon [8, 9, 10].

The chiral anomaly is one of the most interesting phe-
nomena in quantum field theory and has had an apprecia-
ble influence on the modern development of high energy
physics [11] and of condensed matter physics [12]. The ef-
fect of the chiral anomaly on the electrons in a nanotorus
appears directly as a current flow. On the other hand,
it is known in solid state physics that a one-dimensional
metallic ring shows the persistent current [13, 14] in an
appropriate experimental setting. The current originat-
ing from the chiral anomaly shows the same magnetic
field dependence to the persistent current. Therefore, the
chiral anomaly in 1+1 dimensions is closely connected
with the persistent current.

In this letter, we examine the anomaly effect on
toroidal carbon nanotubes and discuss how such an effect
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FIG. 1: Lattice structure of a two-dimensional graphite sheet
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can be observed experimentally.
A CNT can be thought of as a layer of graphite

sheet folded-up into a cylinder. A graphite sheet con-
sists of many hexagons whose vertices are occupied by
carbon atoms and each carbon supplies one conduct-
ing electron which determines the electric properties of
the graphite sheet. The lattice structure of a two-
dimensional graphite sheet is shown in Fig.1. There are
two symmetry translation vectors on this planar honey-

comb lattice, T1 =
√
3aex, T2 =

√
3
2 aex + 3

2aey. Here a
denotes the length of the nearest carbon vertex, ex and
ey are unit vectors which are orthogonal to each other
(ex·ey = 0). If we neglect the spin degrees of freedom, be-
cause of these translation symmetries, the Hilbert space
is spanned by the following two Bloch basis vectors,

|Ψk
•〉 =

∑

i∈•
eikria†i |0〉, |Ψk

◦〉 =
∑

i∈◦
eikria†i |0〉, (1)

where the black(•) and blank(◦) indices are indicated
in Fig.1. ri labels the vector pointing each site i, and

ai, a
†
j are canonically annihilation-creation operators of

the electrons of site i and j that satisfy {ai, a†j} = δij .
We construct a state vector which is an eigenvector of

these symmetry translations as follows:

|Ψk〉 = Ck
• |Ψk

•〉+ Ck
◦ |Ψk

◦〉. (2)

In order to define the unit cell of wave vector k, we act
the symmetry translation operators on the state vector
and obtain the Brillouin zone

− π√
3
≤ akx <

π√
3
, −π ≤

√
3

2
akx +

3

2
aky < π, (3)
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where kx = k ·ex and ky = k ·ey. Now we compactify the
sheet into a torus by imposing a boundary condition to
the state vector. For example, we may consider a zigzag
type torus which has the following boundary conditions

Ĝ(NT1)|Ψk〉 = |Ψk〉,
Ĝ(M(2T2 − T1))|Ψk〉 = |Ψk〉. (4)

Ĝ denotes a symmetry translation operator. It is clear
that there are many possibilities for the shape of the torus
and each shape has its own boundary condition. So, some
of them might have different properties from the above.
Especially we can image a torus in which some twist ex-
ists along the tubule axis direction [15]. This system has
the following boundary condition in general,

Ĝ(M(2T2 − T1))|Ψk〉 = Ĝ(ÑT1)|Ψk〉, (5)

where Ñ is determined by the twist at the junction of
CNT ends. Let us focus on the simple untwisted case
given by Eq.(4). The periodic condition yields the dis-
crete wave vectors

akx =
2π√
3

n

N
, aky =

2π

3

m

M
. (6)

where n and m take an integer value.
Next we consider the Hamiltonian of this system [16].

Each carbon atom has an electron which makes π-orbital.
The electron transfers from any site to the nearest three
sites through the quantum mechanical tunneling or ther-
mal hopping in finite temperature. Therefore there is
some probability amplitude for this process. In this case,
the tight-binding Hamiltonian is most suitable.

H = E0

∑

i

a†iai + γ
∑

〈i,j〉
a†iaj, (7)

where the sum 〈i, j〉 is over pairs of nearest-neighbors
carbon atoms i, j on the lattice. γ is the transition am-
plitude from one site to the nearest sites and E0 is the
one from a site to the same site. The parameter E0 only
fixes the origin of the energy and therefore is irrelevant.
Hereafter we set E0 = 0.
It is an easy task to find the energy eigenstates and

eigenvalues of this Hamiltonian. In the matrix represen-
tation, the energy eigenvalue equation reads

(

0 γ
∑

i e
ikui

γ
∑

i e
−ikui 0

)(

Ck
•

Ck
◦

)

= Ek

(

Ck
•

Ck
◦

)

, (8)

where |Ψk
•〉 = (1, 0)t, |Ψk

◦〉 = (0, 1)t, and the vector ui is
a triad of vectors pointing respectively in the direction of
the nearest neighbors of a black(•) cite shown in Fig.1.
The energy eigenvalues and eigenvectors are as follows

Ek = ±∆(k), (9)
(

Ck
•

Ck
◦

)

=
1√

2∆(k)

(

γ
∑

i e
ikui

±∆(k)

)

, (10)

where

∆(k) = γ

√

1 + 4 cos

√
3

2
akx cos

3

2
aky + 4 cos2

√
3

2
akx.

(11)
The structure of this energy band has striking proper-
ties when considered at half filling. This is the situation
which is physically interesting. Since each level of the
band may accommodate two states due to the spin de-
generacy, the Fermi level turns out to be at midpoint of
the band (Ek = 0). Fermi points in the first Brillouin

zone are located at k̃1,2 = (akx, aky) = (± 2π
3
√
3
,∓ 2π

3 ).

Hence, if N in Eq.(6) is a multiple of 3 then the torus
shows metallic properties.
In order to understand the electric properties, we

should take into account a small perturbation around
the Fermi point. So we take k = k̃1 + δk as a small
fluctuation. Perturbation around the point k̃2 is same as
around the point k = k̃1. So we may only consider one
of the pairs. In this case the effective Hamiltonian which
describes the system is given by Hpert = vF (σ · p) [17]

where vF (≡ 3γa
2h̄ ) is the Fermi velocity, p is the momen-

tum operator (p = −ih̄∇) and σi are the Pauli matrices.
Hence the Schrödinger equation becomes

ih̄
∂

∂t
ψ = vF (σ · p)ψ. (12)

We conclude that the low energy excitations of a metallic
torus at half filling are described by an effective theory
of two components spinor obeying the Weyl equation.
It should be noted that the characteristic properties of

metallic CNTs are all reproduced quite well by analyzing
this equation with external fields such as a magnetic and
electronic field [18]. In the following, we consider metallic
tori that have small N and largeM values(M/N ∼ 103).
In this case, transitions between different kx are rarely
happen because of their costed energy(∼ γ/N) as com-
pared to that of ky:(∼ γ/M). Hence, the only surviving
degree is a motion in the y-direction, i.e. this system is
1+1 dimensional effectively.
One can obtain the quantum field theory by promoting

the wave function(ψ) to the field operator(Ψ) satisfying
the canonical anticommutation relations. Because the
Schrödinger equation is the Weyl equation it is appropri-
ate to adopt the following Lagrangian density:

L = Ψ̄D/Ψ, (13)

where Ψ̄ = Ψ†γ0 and D/ is the Feynman notation defined
as D/ =

∑

µ=0,1

(

ih̄∂µ − e
c
Aµ

)

γµ. Here Aµ = (A0, A1) ≡
(At, vFAy) are the gauge fields and we adopt the follow-
ing relativistic notation: xµ = (x0, x1) ≡ (t, y/vF ), ∂µ =
(∂0, ∂1) ≡ ∂/∂xµ, γ0 = σx, γ

1 = iσy, γ
5 = −γ0γ1 = σz .

The Dirac matrices γµ obey {γµ, γν} = 2gµν and γµγ5 =
ǫµνγν with the metric gµν = diag(1,−1) and the antisym-
metric tensor ǫµν , ǫ01 = ǫ01 = 1. The electro-magnetic
interaction is introduced according to the minimal cou-
pling. The gauge fields propagate in four dimensional
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FIG. 2: A toroidal carbon nanotube on a planar geometry
with a magnetic field

space-time so that the Coulomb potential is given by the
standard long-range interaction. As a gauge fixing, we
take the Weyl gauge A0 = 0; in this case, the Hamilto-
nian of the fermion becomes

HF = Ψ†hFΨ = Ψ†
(

ih̄∂1 − e
c
A1 0

0 −(ih̄∂1 − e
c
A1)

)

Ψ.

(14)
We neglect the one-dimensional long-range Coulomb in-
teraction [19] and regard the gauge field as a classical
field here. Even in this case, it does not lose the nature
of anomaly. We list some main results of the Hamilto-
nian; a detailed description of this system can be found
in References [9, 10]. The energy eigenvectors are given
by (Hereafter let us use x instead of y as a label of the
coordinate of a tubule axis direction)

hFψn

(

1
0

)

= ǫnψn

(

1
0

)

, hFψn

(

0
1

)

= −ǫnψn

(

0
1

)

,

ψn(x) =
1√
L
e
−i e

h̄c

∫

x

0
A1(x

′)dx′−i
ǫn

h̄vF
x
, (15)

where L is the circumferential length of a torus L = 3aM
and ǫn are the energy eigenvalues. Because we take the
periodic boundary condition, the following energy spec-
trum appears

ǫn =
2πh̄vF
L

[

n− e

2πh̄c

∮

A1dx

]

. (16)

The gauge field in the spectrum can be controlled ex-
ternally by the following experimental setup. On the
planar geometry we put a nanotorus and penetrate some
magnetic field inside the torus perpendicular to the plane
as is shown in Fig.2. In this case the gauge field that
expresses this magnetic field is given by, in the vector
notation, A = NΦφD

2π ∇θ. Therefore we get a component,

A1 = NΦφD

L
, where φD = 2πh̄c

e
is the flux quanta. This

vector potential expresses NΦ flux inside the torus and
by tuning the magnetic field, NΦ can be taken as a real
number.
We expand the fermion field using the energy eigen-

vectors as

Ψ =
∑

n∈Z

[

anψn(x)e
−i

ǫn

h̄
t

(

1
0

)

+ bnψn(x)e
+i

ǫn

h̄
t

(

0
1

)]

,

(17)

where an, bn are independent fermionic annihilation op-
erators satisfying the anti-commutators

{an, a†m} = {bn, b†m} = δnm. (18)

All the other anticommutators vanish. The dynamics
of this field is governed by the Lagrangian density (13),
which has two conserved currents that are electric current
Jµ and chiral current Jµ

5 ,

Jµ(x) = Ψ̄(x)γµΨ(x), (19)

Jµ
5 (x) = Ψ̄(x)γµγ5Ψ(x) = ǫµνJν(x). (20)

Therefore, the following two charges conserve in the time
evolution of the system,

Q =

∮

J0(x)dx, Q5 =

∮

J0
5 (x)dx. (21)

Conservation of the electric current ∂µJ
µ = 0 (∂0 =

∂t, ∂1 = vF∂x) is due to the gauge symmetry and the
chiral current conservation ∂µJ

µ
5 = 0 is due to the global

chiral symmetry Ψ → eiγ
5αΨ. For unquantized fermion

field the chiral invariance ensures conservation of the un-
quantized chiral current. However after the second quan-
tization the chiral current ceases to be conserved even
though the interaction appears to be chirally invariant.
Because, different from classical mechanics, in the world
of quantum mechanics, the chiral symmetry is broken [7]
by the vacuum. So the chiral anomaly is similar to the
spontaneous symmetry breaking in the sense that in both
phenomena physical asymmetry is attributed to the vac-
uum state and not to the dynamics.
In order to find what is happening, we need to ana-

lyze the vacuum structure |vac;NL, NR〉 = |vac;NL〉 ⊗
|vac;NR〉, where

|vac;NL〉 =
NL−1
∏

n=−∞
a†n|0〉, |vac;NR〉 =

n=∞
∏

NR

b†n|0〉. (22)

We define |vac;NL〉(|vac;NR〉) such that the levels with
energy lower than ǫNL

(−ǫNR−1) are filled and the others
are empty. On this vacuum, the expectation values of
the charges and the energy become [9, 10]

〈Q〉 = NL −NR, (23)

〈Q5〉 = NL +NR − 2NΦ − 1, (24)

〈HF 〉 =
2πh̄vF
L

( 〈Q〉2 + 〈Q5〉2
4

− 1

12

)

. (25)

To obtain the above results, we have regularized the
divergent eigenvalues on the vacuum by ζ-function regu-
larization. For example, the gauge charge is regularized
as follows:

Q = lim
s→0

(

∑

n∈Z

a†nan
1

|λǫn|s
+
∑

n∈Z

b†nbn
1

| − λǫn|s

)

, (26)
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where λ is an arbitrary constant with dimension of length
which is necessary to make λǫn dimensionless. This reg-
ularization respects gauge invariance because the energy
of each level is a gauge invariant quantity.
The gauge charge 〈Q〉 remains a constant if no electron

flows into the system. We now have NL = NR for an iso-
lated nanotorus. From the above equation (24), it can be
seen that if NL and NR are conserved, then, by varying
the magnetic field NΦ, the chiral charge also changes.
Therefore it is not a conserved quantity. We thus see
that the vacuum is responsible for non-conservation of
chirality even though the dynamics is chirally invariant.
From Eq.(20) we see that the chiral current J0

5 is propor-
tional to the electric current(evFJ

1(x)) in the tubule axis
direction, then we have an average value of the electric
current J as

J ≡ evF
L

∮

J1(x)dx = −evF
L

∮

J0
5 (x)dx = −evF

L
Q5.

(27)
Hence, in order to observe the anomaly, we should ob-
serve the electrical current in the torus.
It is clear from the above equations that there are two

origins of the usual current flow along the torus. One
is the NL + NR term which can be induced in ther-
mal bath or by a sudden change of the magnetic field.
On the other hand, the magnetic field can change the
quantum vacuum structure and lead to the anomaly. In
order to avoid the unexpected changes of NL(= NR),
the magnetic field must be changed adiabatically at low
temperature(< 2πh̄vF

L
). However, in an adiabatic pro-

cess, when the strength of the magnetic field reaches the
point that NΦ is an integer, then NL(= NR) also have to
change. The reason is that, when increasing NΦ starting
from the point NΦ = − 1

2 , NL = 0, the energy is going up
as Eq(25). At NΦ = 0, the spectrum meets an another
line of spectrum coming from the NΦ = 1

2 , NL = 1 as is
shown in Fig.3. Therefore the circular current in the ring

J =
evF
L

[2 (NΦ −NL) + 1] (28)

follows the line shown in Fig.4. We should remark that
there are two spin degrees of freedom at each Fermi point.
Therefore the actual current is four times the J , that is,
the amplitude of this total current is 4evF

L
. A numerical

value of this amplitude is about 0.5[µA] for a nanotorus
with L = 1[µm]. This current for an untwisted torus
shows the same magnetic field dependence to the persis-
tent current in ref. [14]. Our results (28) are in agreement
with the results of other papers.
Let us explain how to measure the current briefly.

Some methods could be considered in order to detect
the current in the torus. As an example, the current
generates a magnetic field around torus, then one can
observe the current via magnetic field which is gener-
ated by the current. However the current could not be

observed by the standard electrical contact because the
electrical perturbation can not affect the current flow.
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FIG. 3: Flux dependence of the fermionic vacuum energy
〈HF 〉. The energy value is labeled in the unit of 2πh̄vF
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FIG. 4: Magnetic field dependence of the induced current.
We plot the current in the unit of evF

L
.

This means that we can not measure the current by an
electrical contact.

In conclusion, low energy excitations in metallic
toroidal carbon nanotubes can be described by the two
components “massless” fermion which couples to a gauge
field through minimal coupling. The anomaly effect
should be observed by an adiabatic change of the vec-
tor potential, since this induces peculiar electrical cur-
rent along the torus through the chiral anomaly. The
chiral anomaly provides a deeper understanding for the
persistent current.
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